MIT/ICS/TM-156

DEFINABITITY IN DYNAMIC LOGIC

Albert R. Mever

Rohit Parikh

February 1980

Definability in Dynamic I..ogit:1

Albert R. Meyer2 and Rohit Parikh»3

Abstract: We study the expressive power of various versions of Dynamic Logic
and compare them with each other as well as with standard languages in the
logical literature. One version of Dynamic Logic is equivalent to the
infinitary logic Lglli’ o but regular Dynamic Logic is strictly less expressive.

In particular, the ordinals ® and ©®2 are indistinguishable by formulas
of regular Dynamic Logic.

0.Introduction. Dynamic logic, a language for expressing properties of
programs, was introduced by Pratt in [8] and has, since then, been extensively
studied, see [3]. However, as pointed out in [6], dynamic logic (or DL) has
various versions depending on the class of programs admitted. These various
versions do not all have the same expressive power.

DL resembles the predicate calculus in that its nonlogical symbols are
uninterpreted. Thus its formulas do not have a full meaning until the
interpretations of these symbols together with the range of the universe of
discourse, are specified. Such an interpretation is called a stare.

Similarly, the program expressions of DL are program schemes and do not
determine computations until the state is given. In any given state, the
formulas acquire truth values and the program schemes can be executed.

One can think of a program scheme as an experiment on a state,
exploring and modifying the state and thereby discovering its properties. We
naturally expect that a language with more powerful program schemes can find

out more about states than one with simpler program schemes, i.e., we expect it
to be more expressive.

Since, as we shall see, the expressive power of a version of DL depends
primarily on the class of its program schemes, we expect that there will be a
correlation between the power of the language and the ease or difficulty of
proving facts about the particular class of programs. Moreover, by measuring
the expressive power of these versions of DL we can hope to get some insight
into the properties of the classes of programs included in these languages.

(See [6] for a discussion of this issue and a comparison of DL with other
program logics.)

2

Definition I: Let s EA mean that the formula A is true in the state s. Let L
be an uninterpreted language (say some version of DL) and P be a property of
states, i.e. for every state s, either s has P or lacks P. We shall say that

the property P is expressible in L if there is formula A of L such that for
all states s, s has P iff s EA.

Our basic question is: what properties of states are expressible in
various versions of DL? A related question concerns a comparison of expressive
power among various versions of DL, as well as standard languages in the
literature.

Definition 2: Let L and M be two sets of logical formulas. L is no more
expressive than M (L { M) if for every formula A in L, there is a formula B
in M such that for every state s, s EA iff s EB. Similarly we say that L is
strictly less expressive than M (L < M) iff L < M and not M <L

Finally, L and M are equally expressive (L ~ M) if L < M and M 1 L.

We shall assume that the reader has some familiarity with dynamic -
logic, so we include here only a brief summary. Dynamic logic is an extension
of the predicate calculus obtained by allowing the formula construct <a>A
where a is a program and A is a formula that has already been formed at some
previous stage. The state s satisfies <a>A iff there is a computation of (the
possibly nondeterministic) program a which begins at the state s and
terminates at another state s" such that s’ satisfies A.

The various versions of DL arise because of choices in the class of
programs admitted. These choices can be made at two different points.

(1) In the class of basic instructions allowed.

We may or may not allow random assignments of the form x«? (which
change non-deterministically the value of x, but leave the state otherwise
unchanged) and we may or may not allow array assignments which change the
values of some given function symbol in the language. However we always allow
ordinary assignments of the form xet where t is any term in the language.
There is also some choice as to the class of tests allowed. We may allow tests
of the form A? for (a) atomic A or (b) arbitrary program free A or, most
generously (c) arbitrary A in the language. This last version will be called
"rich test", see [3].

3
(2) In the kind of program constructions allowed.

The strictest class of programs will be the class of regular programs,
i.e., programs defined by finite flow charts. There is an alternative way to
describe this class. Let a seg be a finite sequence of assignments (including
array assignments and random assignments if these are allowed) and tests. Then
a particular program execution consists of the execution of some seq. If we
think of a program scheme as the set of all possible seqs which might get
performed during any execution, i.e., all the seqs which are provided for in

the program, then a regular program is one for which the corresponding set of
seqs is regular.

Programs with recursive calls are the same as context free programs,
i.e., the set of seqs is context free. The most general class of programs we
shall consider here is the class of recursively enumerable programs, where
any r.e. set of seqs is allowed. We note the important fact that in an r.e.
program an infinite (r.e.) set of distinct tests can occur, whereas in regular
or context free programs, the set of distinct tests is finite, though of course
each test may occur in infinitely many seqs. Finite test DL (denoted DLg,

from now on) will be DL with the sole restriction that only finitely many
distinct tests have occurrences in (the seqs of) any one program scheme. Oof
course it is permitted that a particular test has infinitely many occurrences

in the seqs of some program scheme. Finite test DL includes both regular DL
and context free DL as sublanguages. Moreover it also includes atomic-test
r.e. DL. Since most programs considered in the literature use atomic tests,
results about finite test DL will have general application. Note that in both
cases we shall consider rich test versions of DL.

We shall also consider two variations of the well known infinitary
language Lwl’w, see [1,10]. The language Lgif’w is like the

predicate calculus but certain infinite disjunctions are allowed. (CK stands
for "Church-Kleene".) Precisely, if Ag,Aj,... is an r.e. sequence of

formulas of Lglf o then

Va,

i .
is also a formula of Lglf o Of course an infinite disjunction is
b)

true iff at least one of the disjuncts is true.

The other language, bounded alternation L%II(- denoted
1

Lya is a sublanguage of L%If’w obtained essentially by restricting

formula formation so that there is a fixed finite bound on the number of

4

alternations of existential and universal quantifiers. We show the following
results connecting these languages with various versions of DL.

(1) Rich test r.e. DL (from now on denoted DL, with/without random
and/or array assignments is equal in expressive power to LSII(O (Theorem 1,

section 2).

(2) Both regular and context free (rich test) DL are strictly weaker in
expressive power than DL _, (corollaries to Theorem 2, section 3).

In obtaining result (2) above, we shall show (Theorem 2) that the
language Ly, cannot distinguish between the ordinal w® and w®-2.

Since LSII{ o can define any recursive ordinal up to isomorphism, it
y A

can certainly define w®, and hence Ly, ¢ LSIIC e

We further prove that DL, is no more expressive than Lya S0 it
follows from (1) that DL, is strictly weaker than DL, We already
remarked that regular and context free DL are special cases of DLg,, and
result (2) now follows.

The fact that »® is indistinguishable from w*2 by formulas of
DL¢, provides an explicit example of a limitation on the expressive power of

even these powerful logics of programs. We remark that the above ordinals
arise naturally in various contexts. For example, consider the set of all
polynomials p, q with integral coefficients under the ordering p < q iff p(x)

< q(x) for all sufficiently large x. This is a well ordering of type w®.

If we take two copies of this well ordering and put them end to end we get a
well ordering of type w®-2.

1.Basic Definitions.

Definition 3: We define the notions: instruction, seq, program, and
Jormula of DL_, by simultaneous recursion using (A)-(D) below. If (C) is

used instead of (C) then we get the corresponding notions for DLg,.

(A)Instructions:

]
a) If y is a variable and tis a term then
y « t is an assignment.
For example, x « f(g(y,x),2) is an assignment.

(b) If g is an n-ary function symbol, x{,X9,...,Xp
are variables, and t is a term, then

8(X1,e.0X) « tis an array assignment.
(¢) If y is any variable then
y « ? is a random assignment.
(d) If A is any formula then
A? is a fest.

An instruction is either an assignment, an array assignment, a
random assignment, or a test.

(B) A seq is a finite sequence of instructions.

(©) A program is an r.e. (recursively enumerable) set _of segs.

Note: For DLg, we shall modify (C) to

(C) Let .Z be a finite set of tests and let « be an r.e. set of seqs

such that for all seqs S in @, only the tests in Z occur in 8.
Then a is a (finite test) program.

(D)Formulas:

(a) An n-ary relation symbol R followed by n terms is an atomic
formula. (Equality is admitted as a binary relation.)

6

(b) If A,B are formulas, x is a variable, and « is a program, then
—A, (AVB), (3x)A, and <ad>A
are formulas.

A formal definition of the semantics of DLre (which includes
DL&) is described in [3] and [7].

Definition 4: We define the formulas of Lgll{w‘

(a) Every atomic formula is a formula of LSII{ .

(b) If A is in LSII(o and x is a variable, then
(3x)A and —A are formulas of LSII{:@.

(c) If {A] >0} is a recursive enumeration of formulas of LSK o then
: CK
YAi is a formula of L @0

(Condition (c), "recursive enumeration”, presupposes that we have a uniform way
of assigning Godel numbers to the formulas. Such techniques are well known,
(9], and we shall not repeat the details here. Given such an enumeration, a
sequence of formulas is recursive iff there is a recursive function which
enumerates the corresponding Godel numbers.)

The semantics of LSII{@ is very much like that of first order logic.
? 5
A state satisfies the r.e. disjunction A, iff it satisfies at least one
i
of the disjuncts. Finite disjunction need not be introduced separately as it
is a special case of the r.e. disjunction.
Definition 5: We define L4 bounded alternation LEII(Q as
?

follows. For each n, let L, L'n be the following sets of formulas:
(a) Ly = all atomic formulas,

(b) L', = closure of L, under negation and r.e. disjunctions,
(¢} L, = the closure of L' under existential quantification.

Then Lba — %JlL"

2.The expressive power of DL .. In this section we show that
DL_, with or without array assignments and with or without random

assignments, is equivalent in expressive power with LEII(o
’

. 1CK
Lemma I: Lwl,w = B
" Prooft We want to define a map ¢ from LSII{’Q to DL, such that

for all formulas A of Lglf o A holds in precisely the same states in

which #(A) does. We define ¢ by induction on the complexity of A.
(1) If A is atomic, then ¢(A) = A,
(2) ¢(mA) = ~¢(A), and ¢((INA) = (3x)$(A),

(3) IfA= \-/Ai’ let « be the program whose seqs are of length
i

one and consist of precisely the set of tests d»(Ai)? . Then
$(A) = <adtrue. B

Note that the proof of Lemma 1 did not use array assignments or random
assignments. '

Now we show that DL, with random assignments and array assignments

is no more expressive than Lgll{w. This will show that DL,

with/without random and/or array assignments is equally expressive as L?"Il(""'

: CK
Lemma 2: DL, < L“’l""'

Proof: We define a map ¢ from DL, to Lgll(w. We shall also
need a map 5, for each program a of DL, from L%If,w to itself.

Since programs and formulas are interdependent, n, and ¥ are defined

together. Intuitively, na(A') provides a translation for <adA, if A’
provides a translation for A.

8
L. (1) If A is atomic, then Y(A) = A,
(2) ¥(=A) = "(A), and Y((3XA) = (IY(A),
(3) Y(Ka>A) = 1,(V(A)) where 1, is defined below.
ILI. (1) If 8 is an instruction then

(a) If B is x « t then ng(A) is the formula obtained by replacing x by
t in A. Bound variables are renamed if necessary to avoid conflicts.

(b) If 8 is B?, then nﬂ(A) is Y(B)-A,

() If B is x « ?, then nglA) is (I0A,

(d) If 8is glu) «t

(8 could be a more complicated array assignment; we use this
case for illustration), then first rewrite A so that all terms are of
height at most one, and terms of height one occur only in equalities.
For example, R(g(f(x))) becomes

(3y)32)(R(y) Ay = gl2) A z = f(x)).

Note that this converts atomic formulas into more complex formulas and
maps A to an equivalent formula A'.

Now every subformula y = g(v) of A’ is replaced by
(v=uAy=t)V(viuAy-=gw).
The resultiﬂg formula is qﬂ(A).
(2) If 8 is a seq B3 By then

ﬂﬂ(A) = ﬂﬂl(ﬂaz(...ﬂﬁm(m...).

9
(3) If B is a program whose seqs are {8}, then
(A) =\/ (A).
ﬂﬁ ; ﬂﬂi

The proof that A and Y(A) are equivalent is straightforward and
we omit it.B

We have now proved

Theorem I: Rich test r.e. DL with or without array assignments and/or random

assignments is equally expressive as LSIIC o
b}

Remark: We point out that regular DL with random assignments and the

operator Ioopsa (see [41,[7]) cannot be reduced to LEII{Q. This is

because well-ordering cannot be defined in LEII(’& [5].

But if < is a linear order on some set, and if &« is the program
*
X+ fhlyehy<xtxey
then loops, holds iff < is not a well order.

3.Expressive power of DLg,. In this section we show that DLg, is no

richer than Ly, and that L, is strictly less expressive than LSI;@. Thus,

CK
DLg; £ Ly, < Lwl,w DL

This shows that DLy, is strictly less expressive than DL ..
Since both regular and context free DL are included in DL¢,, we get as a

corollary that regular DL and context free DL are strictly poorer in expressive
power than DL_..

Lemma 3: DL, { Ly, Proof The proof is quite like that of
Lemma 2 of Section 2 and we omit it.

See [9] for the definition of recursive ordinals.

Lemma 4: For each recursive ordinal « there is a formula Aa(c,d) of
Lglf’w such that the structure (D, <, ¢, d) satisfies A (c,d) iff
< is a linear order on D,
¢ < d, and
the open segment (c,d) has order type a.

10
Proof: First define A', by recursion on a:
(D If a = 0, then A’, (c,d) = c<d A = (In)cexcd),
(2) if @ = B+1, then A’ (c,d) = (32)(A'ﬂ(c,z) A Aly(z,d)),

(3) if &« = lim {8;} where {8;} is a recursive sequence of the
ordinals < «, and A’ B; is the corresponding sequence of formulas,

then A’ (c,d) = (Vz)(c<z(d "VAa (c,2) A "(VVZ)(C<z<d - "'AB (¢,2)).

Finally A (c,d) is A’ (c,d) A B where B is the conjunction of the
axioms for a linear ordering.B

We now adapt the technique of Ehrenfeucht-Fraisse games [2] to Lba
to show that Lemma 4 fails for Lba

Definition 6: Let D be the set of all ordinals less than «® and G be the

set of all ordinals less than w®+2. We define for i€IN the relation
=; between n-tuples from D and n-tuples from G by recursion on i. Let

815,60, be in D and ¥1»7q bein G

(1) (81,0008) =6 (71,---;711)
iff for all j, k < n,

Gj < &y iff 7j <
(2) (61;;--3611) %1 (71""’711)

iff for all m 2 1 and all §'19ese ' in D there exist ' P
in G such that (8150 én, 61, r) =, (71, ,vn,'r {reee Y)
and vice-versa with D, G interchanged.

).

Lemma 5: Let AlXqeeyX) € L'i and (61,...,6n) g (71""’711

Then A(&I,...,Gn) holds in (D, <) iff Aly(yeesy
holds in (G, <).

)

Proof: Clearly true if i = 0.

For the inductive step notice that the transition from Li to
L1+1 is purely truth functional. Thus if (61, -,¢,) and

11

(¥ {,--»7)) satisfy the same formulas of L;,;, then they satisfy the
same formulas of L' ;. :

Hence to prove the result for L', ; it is enough to show it for

0

So suppose (81,---,8,) Z;,1 (¥ {oess¥g)s A 8 of the form
(ayl'"33"m)B(xl""’xn’yl""’ym) where B € L’i. Suppose now that
A(d{,...,8,) holds. Then there exist §'y,...,8', € D such that
B(Sl,...,sn,é'l,...,6'm) holds. Now by definition of =, 4,
there exist ¥'{,...,¥'y, such that (61,...,6n,5’1,...,6'm)

S (Y eV oo)

Hence, by induction hypothesis, B(yl,...,-yn,'y'l,...,qr'm) holds,
and hence (Byl...Bym)B(-y1,...,7n,y1...ym) holds.&

To proceed further we use certain basic facts about ordinal addition.
If m < n then oMwl=ef, For example, (03 +w2sw+l) + (2+@2+7) =

©3+02.2+0:2+7; the w+1 is absorbed by the following 2. Nonetheless,
given ordinals a < B, there is a unigue ¥ such that a+y=8. We shall
write vy as B-a. For convenience, define 8-a to be 0 if & 2 8.

Moreover, given an ordinal «, and i > 0, we can write a uniquely in
the form

- i. i.1| . een
azofro Ry >0y
where § is an ordinal and ng_y,...,np are natural numbers.

Definition 7: For any ordinal @ and i > 0, the i-normal form of a,
written [Jaf];, is

ol + mi‘l'ni_l " stillg) if 840, and
wi--l.ni-_1 + e g, if 8= 0.
Let [lafly be zero if @ = O and one if a>0.

Definition 8 Let 61,...,8n € D and 7).,y € G. Then for
i€,

12
@108 = (e
iff
(D) 185-8¢ll; = lly vyl for all jk <, and

(2) if &;, ¥ are the least elements of their respective n-tuples then

830 = I ;

Lemma 6: If (61,...,6n) = (71,...,7n), then (51,...,6n) g (71"“’711)'

Proof: By induction on i.
(1) Def.8(1) implies Def.6(1) in the case i=0, since & < B iff IB-aflg = 1.

(2) Suppose true at i. To show at i+1, let us simplify notation by looking at
the case n=2 and say that (61,62) =l (71,72) 81 < 82, and

71 < vy Suppose that we are given additional elements (v’ sy 0
G; we shall find (6'1, ') in D such that (8;,87,8'(,....8,)

= (1YY 1 O Then we will have, by induction hypothesis,
that (81,65,8'1,-..,8") L N A T ST p T, S0 that
(81,99) =4 (71,72) as requlred

Now the new #' fall into three groups. Those less than 71 those

greater than 7, and those between ¥y and 7. Consider for instance the
last group.

We know that 73 - 71 has the same i+l form as 82 - 81. Either

it begins with w1 or it does not. If not, é, - &, is exactly equal

to ¥y - vy and we can find exactly matching elements in D. If so, recall
that »i*! contains o copies of i. This enables us to choose the & as
follows. Suppose that '3 and 7'5, in that order, are the new 4’ between
v and 7. To find the corresponding &', let 6'3 be 61+||7'3-71|]i and

let &5 be &3+llv's~"3ll;- It is readily checked that in that

case we will still have §'5¢8, and that lI65-8"5fl; = llro=v'sll;:

(In general we requuire the following easily established fact
connecting the function ||-|; and ordinal addition: suppose I8l =

llalli,; and B = 8+.. +ﬁ then there exist ay,...,.« such that
= aphsag and for all i<p, "aj“i = uﬂ]"l)

13

We can deal with the other two groups, the ¥’ that are less than
v1, and those that are greater than v, in a similar way. One extra
property is needed in the last case, namely, that «®-a and ©®+2-a can

only equal 0?2, ®, or O as « ranges over all ordinals. We omit
the details. B

Theorem 2: Any closed formula of Ly, that holds in (0®, <) holds in

(0®-2, <) and vice versa.

Proof: For all i, the zero-tuple of w® is =; to the zero-tuple of w®2,
This is because Definition 8 of =; holds vacuously. Now apply Lemma 6.0

Corollary: Both rich test regular DL and rich test context free DL are
strictly weaker in expressive power than rich test r.e. DL.

Proof: This follows immediately from Theorem 2 above together with Theorem 1
and Lemmas 3 and 4.8

The fact that Ly, < Lgll{,w could also be proved by
standard model theoretic methods [1] if we notice that Ly, only contains

formulas of LG, whose ordinal height is less than w?. However we

have preferred to give a proof that proceeds directly and yields an explicit
example of the difference in their expressive power.

4 .Further Results

We briefly note a few further results which we do not have time to
elaborate here.

We saw in Section 2 that DL, does not change in expressive power if

array assignments or random assignments are included. However, this is not
true for regular DL. In particular there is a formula A of regular DL with

array assignments and random assignments such that A holds in a state s iff the
domain of s is finite.

Such a formula is constructed by the following method: we construct, by
means of array assignments and random choices, a function which, by repeated
compositions, forms a loop that covers a// the elements in the universe.

Clearly such an attempt can succeed iff the domain is finite. The formula A
merely says that such an attempt can succeed.

14

The same technique which allows constructon of the formula which

defines finiteness can be extended to show that any ordinal less than ©® is
definable up to isomorphism in regular DL with random and array assignments.
In fact, it allows us to show that DL with array and random assignments is
actually equivalent to weak second order predicate calculus. We conjecture
that the latter is strictly less expressive than Lia:

However a formula defining finiteness cannor be obtained if either
array assignments or random assignments are left out. This is a joint
result with K. Winklmann.

These and related results will be elaborated in a later paper.

Notes

1. This research was supported in part by NSF grants numbered MCS77 19754 and
MCS79 10261.

2. Laboratory for Computer Science, MIT, Cambridge, Mass.

3. Mathematics Department, Boston University, Boston, Mass.

References

(1] J. Barwise, Back and forth through Infinitary Logic, Studies in Model
Theory, Mathematical Association of America, 1973.

[2] A. Ehrenfeucht, An Application of Games to the Completeness Problem for
Formalised Theories, Fundamenta Mathematicae 49, pp. 129-141,

(3] D. Harel, First .Order Dynamic Logic, Lecture Notes in Computer
Science 68, Springer, New York, 1979.

(4] D. Harel and V. R. Pratt. Nondeterminism in Logics of Programs, 5t4
Annual Symposium on Principles of Programming Languages, January 1978,
203-213.

[5] J. Keisler, Model Theory for Infinitary Logic, North Holland 1971.

[6] A. Meyer, Ten Thousand and One Logics of Programming, EATCS Bulletin, to
appear 1980. ‘

15

{7l Meyer, A.R. and K. Winklmann, On the Expressive Power of Dynamic Logic,
Proc. of the 11th Annual ACM Conf. on Theory of Computing, Atlanta,
Ga., May 1979, 36 pp.

[8] V. Pratt, Semantical Considerations in Floyd-Hoare Logic,
Proc. 17th IEEE Symp. on FOCS, 1976, pp. 109-121.

(9] H. Rogers, The Theory of Recursive Functions, McGraw-Hill, 1967.

2igod sicanC Yo towoT avieesiqxd st a0 anemldaiW 3 bns H A 1 o34
sraslrs, mrvugmed Yo viosdT no Aned MO lounsh MLl s
".‘;z'\";. '.?;g_ﬁ

aR]

2l

2igod s1scH-byold ni zaoitsishiznol lssiusise 1078
ASI1-R01 qq o701 ZDOR no qinq2 AL

JH-weiOoM anotong® siwe® Yo sl a1 o

L]
A

'Lf"é, {i(. .{'1'\

[

o]
%
[

e

A
y e
S

r g o
o L3
H [0}

=TI

