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1. Introduction

Dynamic Logic has been introduced by V. R. Pratt [Pratt 1976] as a
formalism for reasoning about programs. Pratt has observed that Dynamic Logic
provides simple expressions for an assortment of familiar properties of programs:
equivalence, termination, partial correctness, and determinacy, for example,
However, there remains a general question of the extent to which other
interesting properties of programs can be expressed in the formalism.

One property whose expressibility in First Order Dynamic Logic (DL) has
been an open question, first suggested to us by M. J. Fischer, is the property of
"looping." A nondeterministic program is said to "loop" if its execution tree has
an infinite path. The concept of looping is a basic one in certain definitions of
total correctness of programs [Harel 1979, Dijkstra 1976, Greif-Meyer 1979,
Hoare 1978], and the desire for a formal system suitable for reasoning about
looping motivated the introduction of an augmented version of DL, called DL¥,
in which an assertion that a program loops is added as an explicit primitive
[Harel-Pratt 1978, Harel 1979].

In Section 3 we show that DL as originally formulated was in fact
powerful enough to express looping. Thus the introduction of DL* was not
necessary to obtain the desired expressive power. However, it is obvious, as we
observe in Section 2.3, that there is no single formula scheme of DL which
uniformly expresses looping of an arbitrary program. So the introduction of DL*
can still be justified on the ground that it provides such a uniform expression of
looping.




In Section 4 we study the expressive power of nondeterminism in the
context of DL. Since programs appear as syntactic objects within formulae of
DL, one can compare the expressive power of two versions of DL which differ
only in that one version uses nondeterministic programs while the other does not.
This comparison of expressive power is substantially different from the standard
problem of comparing the computational power of deterministic and
nondeterministic programs, not the least difference being that we can obtain
definite results. We prove that for formulas without quantifiers, allowing
nondeterministic programs increases expressive power. In Section 5 we consider
DL with programs containing "random assignment" statements and show that
expressive power is again increased,

2. Syntax and Semantics of DL

Briefly, DL is First Order Predicate Calculus augmented by a construct
<a>P with the meaning that there is an execution of program a after which P
holds. The class of programs we consider differs slightly from the class used in
[Harel 1979,Pratt 1976]. Specifically, our programs use if-then and while-do
constructs rather than set union and Kleene star. However, none of our proofs
depends on these differences in terminology. The definitions given in the
remainder of this Section are intended to make this paper self-contained.

2.1 Syntax of DL

The symbols used in the language of DL contain the usual assortment
of symbols from First Order Predicate Calculus: predicate symbols like p, q, r,
P1s - ; function symbols like f, g, h, fy, .., each with an associated nonnegative
integer arity; and the special symbols =, V, 3, ), (, and = . Zeroary function
symbols are called variables, and zeroary predicate symbols are called Boolean
variables. Typical variables are x, y, z, xj, ... , and typical Boolean variables are
Py Gy [y ... . In addition DL uses the pair of symbols < > (pronounced




"diamond"), and a few special symbols which are used in programs: :=, while, do,
if, then, true, false, and choice. Symbols which are strictly speaking not in the
language but serve to abbreviate formulae are v, =, » and [ ] ("box"). []is an
abbreviation for =< >-, just as V¥ is an abbreviation for =3 -,

Terms and atomic formulae are formed exactly as in First Order
Predicate Calculus with Equality. Formulge are also formed exactly as in First
Order Predicate Calculus except that <a> may be used in place of 3x, where « is

any program in a simple programming language to be defined below. Thus
formulae are characterized inductively as follows:

any atomic formula is a formula;

for any two formulae P and Q, variable x, and program a, the following
are formulae:

=P, (PvQ), 3xP, and <a>P.

Formulae of DL are characterized in the same way except that for
each program « there is a designated zeroary predicate symbol Loop, which

never appears in any program. (This is not the definition given for DLY in
[Harel-Pratt 1978], but it will be easy to verify that our definition is merely a
notational variant of theirs, and so both versions of DL* have the same
expressive power (cf. [Harel 1979]).)

Qur programs are familiar if-then-while schemes with the addition of a
choice-statement where choice(a,8) means nondeterministically choose to do
either « or §. The following BNF-description is a convenient way to define the
syntax of these programs.



<program> = <statement>; <program> | <statement>
<statement> ::= <assignment statement> | <if-statement> |

<while-statement> | <choice-statement>
<assignment statement> := <variable> := <term> |

<Boolean variable> := <test>
<if-statement> = if <test> then <program> fi
<while-statement> == while <test> do <program> od
<choice-statement> ::= choice(<program>,<program>)
<test> = <open formula of predicate calculus with equality> |
true | false .

We refer to this class of programs as while-programs. The formal definition of
their semantics will be given in Section 2.2.

It will be convenient to have a tree-representation of such programs. For
each program a we define a (rooted) tree T,. Informally, this tree T, is just
the flowchart of the program & unwound into an infinite tree in the obvious way
(see e.g. [Greibach 1975]). Nodes which correspond to a nondeterministic
choice (in the execution of a choice-statement) are labeled choice. More
precisely, T, is defined by induction on a as follows: If « is an
assignment statement, then T, is the tree in Figure 1, where the dashed arrow
indicates the root of T,

For a choice-statement, Tchuice(a ) is the tree in Figure 2.

For an if-statement, T;¢ B pen o 15 the tree in Figure 3.

For any two trees § and T, let SeT denote § with each leaf (i.e., Halt-
node) replaced by a copy of T. Then for a while-statement, Tonite B'doa od 15
the (unique) infinite tree which satisfies the equation & is the (unique) infinite
tree which satisfies the equation in Figure 4. If « is a list of statements

§1382;-i8k, then T, is the tree Tsl"Tsf""Tsk‘



2.2 Semantics of DL

2.2.1 Informal presentation

Note that what we have called while-programs are actually program
schemes, because they contain uninterpreted function and predicate symbols. By
giving an interpretation I to all those symbols (i.e. by defining a state), the
schemes are made into programs and it is obvious how to execute them. During
execution of such a program, the interpretations (values) of some symbols may

change. Thus, the execution of the statement x:=f(y) will in general change the
value of the symbol x.

While-programs as defined above will always leave functions and
predicates of positive arity unchanged. However, later in the paper we consider
"array assignments", like f(x):=y, which do change the interpretation of function
symbols of positive arity. Thus there is no reason to distinguish function
symbols from variables, and we merge the standard concepts of a structure,
which provides an interpretation for all function and predicate symbols, and a
valuation, which assigns values to all variables, into the concept of a srate, which
gives interpretations of all symbols.

For any state I and program a, let a(I) be the set of states in which «,
when started in state I, can terminate. Let m(a) = {(IJ):Jea(I)}. This relation
m(a) captures the "input-output behavior" of the program a. Now to say that
after executing a starting in state I, it is possible to halt and have P hold true,
which we express in symbols as I=<a>P, is the same as saying that there is a
state Jea(I) for which P is true. (The assertion Jea(I) is of course equivalent
to the assertion (I,J)em(a). It will be convenient to have both m(a) and a(I)
defined, although one of them would clearly be sufficient.) The semantics of
formulae of forms other than <a>P are defined as in First Order Predicate
Calculus.

Looping of nondeterministic programs is a notion which is independent
of their input-output behavior, viz,, it cannot be defined in terms of the relation



m(a). For a program, a, define the predicate Loop, to be true in a state I, that
is I=Loop,, if the execution tree describing the possible computations of a
started in state I, has an infinite path.

2.2.2. Formal Definitions

A state | is a mapping of all predicate symbols, function symbols, and
(Boolean) variables to predicates, functions, and (truth) values on some domain
D. The mapping of predicates etc. to the symbols observes the arity of the
symbols: every k-ary predicate symbol p is assigned a predicate py on Dk, every

k-ary function symbol f is assigned a function f} from DK to D; in particular, for
k=0, every Boolean variable p is assigned a truth value py, and every variable x is
assigned a value xjeD. The symbol = is always interpreted as equality. Given
the values py, ... ,fy, ...  and xp, ... of all symbols p, ... ,f, ... , and x, ... , the
values tj of terms t and the truth values of all program-free formulae under I
are defined in the standard way. As usual we write I=P if a formula P is true
in state I, and =P if P is true in all states.

The execution tree T,(I) of a programe in a state I is obtained from
T, (defined in Section 2.1 above). It consists of the subtree of T, whose nodes
receive labels according to the following inductively defined procedure:

1. The root is labeled with the state I.

2. For any node which contains an assignment statement, if the node is
labeled J then its son is labeled by the state K which results from executing the
assignment statement in state J. Namely, K agrees with J on the interpretation
of all symbols except for the variable to the left of the symbol ":=" in the
assignment statement. The value in K of the variable to the left of ™:=" is the
value in J of the term to the right.

3. For any node containing choice, if the node is labeled J then both of its
sons are also labeled J (i.e,, nondeterministic choices do not change the state).



4. For any node containing a test B, if the node is labeled with a state
satisfying B, then the son pointed to by the arrow labeled true receives the same
state label, and the false son receives no state label. Symmetrically, if the state
label does not satisfy B, then the false son receives the same label and the true
son remains unlabeled.

Leta(I)={I: T, (1) has a leaf labeled J}, and define I=<a>P for an
arbitrary formula P iff there is a state Jea(l) and J=P. The definition of I=Q
for formulae Q not of the form <a>P is the standard inductive definition from

First Order Predicate Calculus. This completes the definition of the semantics
of DL.

For notational convenience we define m(a) for a program « to be
(@) : Jea D),
i.e. ae(I) is the set of states in which program « can terminate when started in
state I, and m(a) is the input-output relation of a.

Finally, we define the predicate Loop, to hold in a state I iff T, (I)
has an infinite path.

It is easy (and will be useful) to give an equivalent definition of Loop,,

by induction on the structure of a (cf. [Harel 1979, pp.92-93]). For all states I,
programs a, B, ¥, and tests B, we define:

If a is an assignment-statement then I=~Loop,;

if « is choice(8,y) then I=Loop,, iff IhfLoopﬁ " Laap %

if @ is 8;v then I=Loop, iff Ih(Laop v qﬂ}Laop )

if « is if B then B fi then I=Loop, lff I=(B A Loap )i

if « is while B do 8 od then I=Loop, iff IF{Lﬂfdf'Loopu V Global-Loop,,)
where
I=Local-Loop,, is defined by



"There is a finite sequence of states JpJy, ... ,J such
that I=J, J;, 1eB(J;) for all 0<i<k, J;=B for all 0<i<k,
and Jy=Loopg."

and I=Global-Loop,, is defined by

"There is an infinite sequence of (not necessarily
distinct) states

JoJ1s - such that I=J, and J;, 1€B(J;) and J;=B for all
igﬂ."

2.3 The general problem of expressing looping in DL

Before we go into the technical details in the next section we wish to
point out that in our formulation of the problem of expressing Loop, in DL we
have made two apparently arbitrary choices, namely, our choice of while-
programs, a, and our definition of the associated trees To:

The definition of the semantics of <a>P makes sense for any syntactic
object @ which names a binary relation on states, although we have chosen to
restrict ourselves to the relations m(a) named by while-programs. However,
because the semantics of the statement <a>P depends only on the relation
associated with program a, as opposed to the syntax of «, there is no loss in
generality in our choice of while-programs compared to the class of regular
programs considered in previous studies [Pratt 1976, Harel 1979). In particular,
the relations definable by while-programs are precisely the "regular" relations
definable by regular expressions over the alphabet of statements and tests as in
[Pratt 1976, Harel 1979), or equivalently the relations definable by
nondeterministic flcwchart schemes over these statements and tests.
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We have chosen our while-program syntax in order to emphasize the
converse fact that looping is a property of programs, or more precisely a
property of the trees associated with programs, as opposed to just the relations
named by the programs. Thus, if the relations associated with a and a” are the
same, then by definition of the semantics of DL, a may be replaced by «” in
any formula of DL and the meaning of the formula remains unchanged. This
implies that there cannot be a single DL-formula F with a "program variable,"
say A, such that for any program a, the formula F with 4 replaced by &« would
express Loop, . To see this consider the two programs & and a’ where « is :
p:=false and a” is: p:=true; while p do choice(p:=true, p:=false) od.

These two programs « and a“ have the same semantics, i.e. m(a)=m(a”), and
are therefore "indistinguishable" to any formula F of the kind described. At the
same time they satisfy =-Loop, and =Loop,-.

We hope that the simple definition of T, from a will persuade the reader
that the question of whether T, has an infinite path accurately reflects the
intuitive idea that a "loops," that is, that one of the nondeterministic
computations by e may not terminate.

There may be some loss of generality in our particular definition of
T, Not all computation trees obtainable by similar, intuitively simple inductive
definitions aimed at defining looping for various classes of programs are in fact
obtainable as T, for while-programs «.l) However, our proofs that looping is
expressible in DL do not involve such a loss in generality, and in fact apply to
the more general class of regular trees whose edges are labeled with assignments
and tests. These can be defined as state transition trees of finite automata each
of which has as alphabet some finite set of assignments and tests.2) It is easily
seen that T, is regular for any while-program a, and we believe that any
sensible formulation of looping for while-programs, flowchart schemes, etc. will
naturally yield only regular trees.

Thus our result in its general form can be summarized informally as
saying that looping, i.e. having infinite paths, of regular trees is definable in
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regular DL. This naturally raises the question of what happens when we enrich
the class of programs and associated trees, e.g., we can ask whether looping of
context-free (or recursively enumerable) trees is expressible in context-free (or
recursively enumerable) DL (cf. [Harel 1979]). for that matter, we can ask
whether looping of r.e. trees is expressible in regular DL. The context-free case
and the r..e. tree in regular DL question remain open, although we conjecture
that the techniques developed below will extend to yield a positive answer in the
context-free case. In the case that r.e. programs are allowed, i.e., in r.e. DL, the
construction of formulas that express looping presents no difficulty: for each r.e.
program a there is another r.e. program § which, informally speaking, carries out
a depth-first search of the execution tree of a. Thus Loop, is equivalent to

(8] false.?) No such simple observation seems to settle the problem of expressing
looping in regular DL which we consider next.

3. Expressing Loop,, in DL and in DL with array assignments

In this Section we first show that for any while-program «a, the
predicate Loop, can be expressed by a formula of DL (Theorem 1). Then we
show that this remains true if we allow "array assignments" in while-programs
(Theorem 2). Note that Theorem 2 is by no means a corollary to Theorem 1.
Although allowing array assignments adds to the power of the language of DL,
it is also true that expressing Loop, for programs a with array assignments is a
more general problem than doing it for programs without array assignments.
Indeed our proof of Theorem 2 is quite different from our proof of Theorem 1.

3.1 Expressing Loop, in DL

The crucial part of the proof of Theorem 1 is a characterization lemma
about infinite, finitely branched "transition trees" (Lemma 1), which we prove
first. Transition trees are the kind of trees one gets by "unwinding" finite or
infinite "state transition diagrams," which are typically in the form of arbitrary
directed graphs. More formally, a transition tree T is a tree with labeled nodes
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which has the property that any two nodes with equal labels have isomorphic
subtrees, and sibling nodes have distinct labels. (Transition trees may have
infinitely many labels. It happens that regular trees mentioned in Section 2.3
coincide with transition trees with finitely many labels.) Tis finitely branched
if each node has only finitely many sons. We shall use deprh(n) to denote the
depth of a node n in T, with the depth of the root being 0; we shall use label(n)
to denote the label of a node n, Labﬂ'sT to denote the set of all labels occurring
in T, and Nodesp to denote the set of all nodes in T. For any leLabels let

min-depth(l) = min {depth(n) : neNodes A label(n)=l}

and similarly for max-depth. If there is no bound on the depths of occurrences
of /in T then max-depth(l)=o. We write max-depth(l)<= if max-depth(l) is
bounded.

For any transition tree T we define
A1 ={leLabelsy : 31" eLabelsy (max-depth(l) < min-depth(l’))}.

Note that if /eA 5, then / must not occur at arbitrarily deep levels in 7, i.e.
max-depth(l) must be defined.

Lemma I: A finitely branched transition tree T is infinite if and only if
(1) two nodes along some path in T have the same label,
or (i) Aqis infinite.

Proof:

L. It is easy to see that (i) and (ii) each imply infinity of T: If there is
a repetition of a label along a path in T, then by the definition of transition
trees, T contains a subtree which properly contains a copy of itself and hence is
infinite; and if A 1 is infinite then T is infinite because A 1 is a subset of the
labels occurring in T.

2. To show that T being infinite implies (i) or (ii) we assume
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(1) T is infinite, and
(2) (i) does not hold, i.e. no label repeats along any path in T,

and conclude that A  must be infinite,

Since T is finitely branched, Konig’s Lemma is applicable and (1) is
therefore equivalent to

(3) T contains an infinite path,
which together with (2) implies

(4) Labelsyis infinite.
Since T is finitely branched only finitely many labels can occur up to any given
depth. This together with (4) implies that "new" labels keep showing up at
arbitrarily deep levels, i.e.

(5) {min-depth(l) : leLabelsp} is unbounded,
which together with the definition of A - implies

(6) Aq 2 {leLabelsT: max-depth(l)<w}.

(In fact, A = {/eLabelsy : max-depth(l)<=}, but we do not need this fact.) We
finish the proof by showing that

(7) vdeN 3leLabelst (d=max-depth(l)).

To prove (7), let deN and L ; = {/abel(n) : neNodes N depth(n)=d.
Define a relation < on LabelsT by

IKI” iff there is a path from the root in T along which / occurs after
(i.e. deeper than) /*.
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By the definition of transition trees, the relation < is transitive, and by
assumption (2) it is loop-free, hence a partial ordering. So there is a (not
necessarily unique) maximal element in the finite set L ie. there is a label
leL 4 which does not occur on any path below any of the labels in L Since Ly
contains the labels of all the nodes of depth d, label / does not occur below
depth d. Hence max-depth(l}<d, and because leL ; we have max-

depth(l)=d. O

Lemma 2: Let T be a finitely branched transition tree. Then Aris
infinite iff

(8) Aqez A VieA 1 3I'eA 1 (max-depth(l) < min-depth(1”)).

Proof: Clearly, (8) implies that A ris infinite. Conversely, assume Aris
infinite, and let / be any element of Ap Then max-depth(l) < , since
otherwise /¢A 1 Since T is finitely branched, there are only finitely many labels
I””eLabelsT with max-depth(l) > min-depth(l’*). Since A 7 < Labelsand A ¢
is infinite, there must be a label (in fact, infinitely many labels) /*eA T with
max-depth(l) < min-depth(l”). O

Theorem I: For each while-program a there is a DL-formula equivalent to the
predicate Loop,,.

Proof: We define the desired formula L, inductively following the inductive
definition of the semantics of Loop, given at the end of Section 2.2. The only
problem lies in translating the definitions of Local-Loop, and Global-Loop,, into
DL-formulae when a is while Bdo 8 . For Local-Loop,, this is actually easy to do
assuming, by induction, that we can express Loopg. Namely, as the reader can
verify, Local-Loop,, is equivalent to

< choice(p:=true, p:=false); while (pAB) do §; choice(p:=true, p:=false) > (BnLﬂ) s

where p is a Boolean variable not occurring in «.
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Global-Loop,, poses a harder problem. In fact we shall only show how to
express Global-Loop, under the assumption that Local-Loop,, does not hold, i.e.,
we shall prove

Lemma 3: There is a DL-formula GL,, such that
=(Local-Loop, v (GL, = Global-Loop,)) .

Note that for such a formula GL,, (Local-Loop, v Global-Loop,) is equivalent
to (Local-Loop, vV GL,) . Assuming Lemma 3, we can thus define the desired
formula L following the inductive definition of the semantics of Loop, given at

the end of Section 2. This finishes the proof of Theorem 1 except for a proof of
Lemma 3. O

Proof of Lemma 3: For any program a of the form while B do § od and any
state I, consider the smallest tree S,(I) whose root is labeled by I and which has
an edge from a node labeled J to a node labeled K iff J=B and Ke8(J).
(Intuitively, S,(I) is obtained from T, (I) by ignoring all the steps "inside" any
pass through §, recording entire passes through § as single nodes.) Note that
Global-Loop, is equivalent to S,(I) having an infinite path, with the states Jod1s

. mentioned in the definition of Global-Loop, being the labels along that
infinite path.

Claim: $,(I) is a transition tree, and if I= ~Local-Loop,, then §,(I) is finitely
branched.

Proof of Claim: By the definition of S,(I), the number of sons of a node and

their labels are determined solely by the label of the node. This makes S,(I) a
transition tree.
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If I==Local-Loop,, assume that §,(I) has a node with infinitely many sons.
Let J be the label of such a node. Then the program « can enter that state
after some number of passes through B and on the next pass through § can
reach infinitely many different states. Hence, since Tﬁ(.l) is finitely branched, it
must have an infinite path, i.e. Jt-Loupﬁ, which implies by definition that
I=Local-Loop,. This finishes the proof of the Claim.

This Claim makes Lemmas 1 and 2 applicable and we can finish this
proof by defining GL, so that I= GL, iff

(A) Two nodes along a path in §,(I) have the same label
or

(B1) (Asa{n#z
and

(B2) VKEAS‘,(I} ELEAS“(I} (max-depth(K) < min-depth(L)) ),

for all states I where S,(I) is finitely branched. This is just a "programming
exercise” in the language of DL, which we carry out by gradually rewriting (A),
(B1), (B2) into DL-formulae. For notational convenience, let vy, ... , vg be all the
Boolean variables of &, and let vg_ 1, ... » Vg4 be all the other variables of a.
For any state I, all the states in S_(I) differ at most in the values of v{,..., Voo
and we can therefore identify each state in S (I) by the s+m-tuple of these
values. We call the s+m-tuple (v{, ... , Vg,ry) @ "state variable" and denote it by
V. We shall use other state variables, denoted by J, K, K%, V“ etc., in various
places. These are s+m-tuples of variables, all of which are pairwise different and,
except for vy, .. y Vg are different from all symbols in a. Tests like V=] and
assignments like L:=K are abbreviations for

lejI Ao M vszjs A v5+1=js+1 A A v5+m=js+m

and

ly=kyi 1=kgi i gy m™=Keem
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respectively. For any state variable J, let a;, 8, and By stand for a, § and B
with each v; replaced by Jp 1€igs+m. Again, Lt p be a Boolean variable not
occurring in « and let BUZZ be the program while true do x:=x od.

As a first refinement of the above formula we get

(A”) (< choice(p:=true, p:=false);
while (p A B) do 8; choice(p:=true, p:=false) od;
if =B then BUZZ fi;
V/:=V;
8;
choice(p:=true, p:=false);
while (p A B) do B; choice(p:=true, p:=false) od> V=V*)
v
(B1l") (3K (KEASE{I}}
P4
(B2%) VK HL((Keksa{I}) = (Lehsum A max-depth(K) < min-depth(L)))).

We now replace every subformula of the form “CEJLSE(I}" by
INeLabel. -depth(C in-depth
eLabe 55, (1) (max-depth(C) < min-depth(N))

and then replace every subformula of the form "max-depth(C) < min-depth(D)"
by

- <y>(C=C’ A D=D")

where ¥ is a program which searches the tree S (I) for an occurrence of D with
an occurrence of C at an equal or greater depth. The program ¥ performs this
search by first running two copies, a- and ap - of & for an equal number of
passes through their while-statements thereby setting C” and D” to labels
occurring at the same depth. Then % runs ac- for zero or more extra passes
through its while-statement, thereby setting C* to a label occurring at least as
deeply as D”. Specifically, the program « can be taken to be
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C =V:

D" :=V;

choice (p:=true; p:=false);

while (p A Bo- A By/) do (B~ ; By i choice (p:=true, p:=false) od;
choice (p:=true; p:=false);

while (p A Bg- ) do B/ od.

Finally we replace all subformulae of the form "INeLabelsg ()" by <é> where §
[+ 4
is the program

N=V;
choice(p:=true, p:=false);
while (p A By) do By; choice(p:=true, p:=false) od.

All these substitutions preserve meaning, a claim whose verification we leave to
the reader. The resulting formula is the desired formula GL,. This finishes the
proof of Lemma 3. O

We conclude immediately

Corollary I: For every DL*-formula there is an equivalent DL-formula.

3.2 Expressing Loop, in DL with array assignments

Array assignment statements are of the form <term> := <term>.
Execution of an array assignment statement, say of f(ty, ... ,t}) = t, changes the
interpretation of f at the single point specified by the values of t1y - sty The
definitions of T, and T,(I) from Section 2 can readily be modified to account
for this. Specifically, if a node of T,(I) contains the statement f(ty, ... ,t}) =t
and is labeled by a state J then its son is labeled by the state K which agrees
with J on all interpretations except that fg((tg - o{tp)y) = t;. We denote this

version of DL by DLarrays'
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Theorem 2: For each while-program « (with array assignments) there is a
DLa”ayE-farmuIa L, such that L, is equivalent to Loop,.

Proof: As in the proof of Theorem 1 the only difficulty lies in expressing the
predicate Global-Loop, for a of the form while B do § od. This, however, is the
end of the analogy between the two proofs. The reason why the techniques
from the proof of Theorem 1 do not work here is the fact that the states which
can be reached by an unbounded number of repetitions of § cannot any longer
be described by the values of a bounded number of variables. Repeated array
assignments may change the values of function symbols of positive arity at some

unbounded number of points. Hence a new approach is needed, which we now
outline.

First we define for each program a and state I the set Domy(a) = { ty : t
is a term formed from symbols that occur in « }. Clearly, execution of while B
do § od starting in state I cannot "produce" any values not in Domy(a) and hence

cannot change any k-ary function at points outside {Dam:{u)}k. Finiteness of
Domy(a) can be expressed in DLarraﬁ by a formula Fin, (Lemma 4). This

allows us to split the task of expressing Global-Loop,, into two parts, according
to whether Domj(a) is finite or infinite.

When Domj(e) is finite then Global-Loop, can be expressed by a formula

L‘Ei“ of lI.iﬁLzu.l.E},5 which, informally speaking, says that "a can be executed in
such a way that it enters the same state just before two different passes through
" (Lemma $5).

When Domy(«) is infinite we can express Global-Loop, by a formula

Lait“f of DLarrays which, informally speaking, says "For all n>0, if there are n
different elements in Domy(a) then 8 can be executed n times and B is true
before each of these repetitions of 8" (Lemma 6).

With the formulae from the three lemmas, Global-Loop,, can then be
expressed as
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(Finy A LE®) v (~Finy A Li0f) .

We finish this proof of Theorem 2 by formulating Lemmas 4,5, and 6,
and indicating their proofs.

For the proofs of Lemmas 4-6, let f be a unary function symbol,
ViZyZ(yZ], --- De variables and let p and q be Boolean variables, none of which
occurs in a. Let x be a variable which does occur in @. For any state I, define
R(I) = I{fﬂ(zo}}I : 020}, where f is the n-fold composition of f with itself. In
what follows Ry will serve as "storage device," holding finite portions of Domy(a)

in a "circular chain" zy = f(z) = fz(zo} % ... # fM(zg) = z,,

Lemma 4: For each while-program & (with array assignments) there is a
DLa”a},s-formula Fin, such that for all states I, I=Fin, iff Domj(a) is finite.

Proof: We construct a program FREE, which nondeterministically builds up
Ry to comprise an arbitrary finite subset of Domp(a). FREE, does this by
entering into R¢ the values of variables from « and also entering the values, at
arguments that are already in Ry, of function symbols from a. To write out
FREE, in a concise way, let SET, for any variable z be an abbreviation for

=Ly q-=true;
while q do z:=f(z); choice(q:=true, q:=false) od.

Thus, SET,, is a program which sets z to an arbitrary value from Ry.
For any k-ary function symbol h in a, k>0, let APPLY}, be the program

SETZI; e SETzk"'

v:=h(zq, . 42p)i z:=f{zo);
while (z#z A z=v) do z:=f(z) od;
if z=v then f{v):=f{zﬁ); f(zo}:=v; p:=true fi.

Assuming that Ry is in the form of a circular chain as described above, this
program APPLY}, picks k random values from Rg, applies h to those values,
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checks if the value thus obtained is not yet in R¢, and, if it is not, enters the
value into Ry, preserving the form of a circular list, and sets a flag p to true
whenever a new value is entered into Rs. For zeroary function symbols h, i.e.
for simple variables, the first line of the above program APPLY}, is empty and
the second line reads "v:=h".

Let APPLY, be a program which nondeterministically chooses a function
symbol from « to "apply." If hy, ... )b, are all the function symbols in a,
including variables, then APPLY, is the program

chuict(APPLth,chuim(APPLYh gt ,chnlce{APPLth,ﬁPPLth) e Iy

and FREE, is the program

zg=x; f(zg)=zy
p:=true;
while p do p:=false; APPLY, od.

Any execution of FREE, in a state I has the effect of making Ry into a finite
subset of Domy(a), and, conversely, for each finite subset of Domp(a) containing
X1 there is some execution of FREE, which makes Ry into that finite subset of

Domy(e). Hence we can express finiteness of Domy(a) by the following formula
Fin_:

bt
<FREE_,> CLOSED,

where CLOSED,, stands for the formula
[p:=false; APPLY ] -p,

which asserts that Ry is closed under application of function symbols (including

zeroary function symbols, i.e. variables) from a«. This ends the proof of Lemma
4. O
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Lemma 5: For each while-program « (with array assignments) of the form while
B do B there is a DLy, cformula £ such that for all states I, if Domy(a) is

finite then I=(Global-Loop, = Lfim),

Proof of Lemma 5: Define the tree S4(I) as in the proof of Lemma 3. As
mentioned in the proof of Lemma 3, I=G‘:"abaf-£.aapn is equivalent to Sq(D
having an infinite path, with the states JgJ1» - mentioned in the definition of
Global-Loop,, being the labels along that infinite path. If Domy(a) is finite then
there are only finitely many different states (labels of nodes) in 8,(I). This is so
because execution of 8, no matter how often repeated, cannot change the values
of any k-ary function symbols, k>0, on arguments outside (Daml(a}}k and it
cannot set those values to anything outside Domy(a). Hence, under the
assumption that Domy(«) is finite, S,(I) has an infinite path iff there is a
repetition of a state along some path. The existence of a state which is repeated
along some path in S,(I) can be expressed by a formula Lg“' of DLarrays' again
under the assumption that Domy(a) is finite. We finish this proof of Lemma 5

by showing how to construct such a formula Lgi“.

As in the proof of Lemma 3, let V be a vector of all the variables of «a,
Boolean and others, and let V* be a vector of new symbols matching the types
of symbols in V. Let H=(hy, ... }h,) be a vector of all the function symbols in a
of positive arity and let H*=(h", .. shy”) be a matching vector of new symbols.
Let V*:=V, V’=V, H":=H, H"=H stand for componentwise assignments and
equality. (Obviously, lZZlII‘..m.l.a}‘rs does not provide for the assignments and tests
between whole functions we are using here, and we may not use such wholesale
assignments and tests in the final formula Lgm.} The assertion that a state
repeats along a path in §,(I) can then be expressed as
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< choice(p:=true, p:=false);

while (p A B) do §; choice(p:=true, p:=false) od;
if then BUZZ fi;

V7:=V; H :=H;

B;

choice(p:=true, p:=false);

while (p A B) do B; choice(p:=true, p:=false) od>
(V=V’ A H=H") .

This formula is entirely analogous to the formula (A*) in the proof of Lemma 3,
except that now, due to the presence of array assignments, functions as well as
simple variables are subject to change and consequently have to be remembered
(H":=H) and later compared (H"=H).

As already pointed out, DLarrays does not provide any means for assigning
and comparing whole functions. But note that the program a obviously cannot
change the values of functions on arguments outside Domy(e). Hence it would
suffice to have both the assignments and the comparisons between functions
restricted to arguments from Domy(a). In addition, remember that we are
assuming that Domp(a) is finite. If we assume that R((I) = Domy(a), then we
can express equality of two k-ary function symbols h and h” on arguments from
Domy(e) by the following formula EQUAL(h,h"):

[SETZI; ey SETZk] (h(zi. ,zk}=h"(11, ,Ik}) .

Let EQUAL,(H,H") to be the conjunction of the formulae EQUAL(h;h;”),
1<i<r.

Assuming similarly that Re(I)=Domy(a) and Domy(a) is finite, it is
straightforward to write a program, ASSIGN(h,h”), which uses k nested loops to
run k variables through all possible k-tuples from {Daml(a)}k and assigns the
value of h to h” on all those arguments. Let ASSIGN,(H’,H) be the program
ASSIGN(h;“,h1); ... ;ASSIGN(h,",h).
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The desired formula Lf“ can now be written as

<FREE,> (CLOSED, A
<choice(p:=true, p:=false);
while (p A B) do B; choice(p:=true, p:=false)od;
if =B then BUZZ fi:
V’:=V; ASSIGN_(H’ H);
8;
choice(p:=true, p:=false);
while (p A B) do B; choice(p:=true, p:=false)od>
V=V’ A EQUAL_(H,H"))).

Note that the initial portion "<FREE,> (CLOSED, A .." in the above formula
allows us to assume that ReI)=Domj(a) and Dam{a} is finite when ASSIGN,, is
executed and EQUAL,, is evaluated. m]

Lemma 6: For each while-program a (with array assignments) of the form
while B do 8 there is a DLa”a},S-fnrmula L;“f such that for all states I, if
Domy(e) is infinite then

I=(Global-Loop ,= LinF).
Proof of Lemma 6: Let L;“f be the formula
{FREEE] {zlr=f{zo); while {zﬁszl} A B do (8; zy:=f(z¢) od> z1=z(

with FREE, as in the proof of Lemma 4.

To understand why the above formula Li“f has the desired property,
note that it can be paraphrased as follows: No matter what finite subset of
Domy(a) one puts into the circular chain Rf ("[FREE_]"), it is always possible to
execute at least as many passes through § as there are elements in RAI) (to be
precise, minus one). The variable z; is used to count the passes through 8 by
moving along the chain of Ry. This finishes the proof of Lemma 6 and
Theorem 2. O
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The proofs of Theorems 1 and 2 do not depend on what tests are
allowed in while-programs. Hence they carry over without change to the version
of regular DL defined in [Pratt 1976, Harel 1979] where tests can be any
formulae of First Order Predicate Calculus, as well as to the version of DL
called "rich-test" DL in [Harel 1979] where the syntax of tests is defined
inductively to allow any DL-formulae as tests.

4. Deterministic versus nondeterministic DL

In this Section we show that in the absence of quantifiers the
expressive power of DL decreases if we restrict ourselves to deterministic while-
programs. A while-program is deterministic if it does not contain any choice-
statements. A DL-formula is deterministic if all the programs it contains are
deterministic.

Theorem 3: There is a quantifier-free DL-formula for which there is no
equivalent quantifier-free deterministic DL-formula.

Proof: A partial state specifies a domain D and an arity-respecting
assignment of partial functions and predicates on D to function and predicate
symbols. We now let L], ... denote partial states as well as states and let fl
denote the function or predicate assigned by I to the symbol f.

A partial function or predicate f | is an extension of f iff f restricted to
the domain of f; is equal to fy. The extension is finite iff domain (f 1)=
domain (f;) is finite. We say that a partial state J is a (finite) extension of a
partial state I iff f} is a (finite) extension of fy for all symbols f.

If I is a partial state and F is a DL-formula, we say that I satisfies F, in
symbols I=F, if J=F for all states J which extend I. Finally, we say that I
determines iff I=F or I=-F.

The main part of the proof rests on the following lemma.
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Lemma 7: Let F be a quantifier-free deterministic DL-formula. For any
partial state there is a finite extension which determines F.

Assuming Lemma 7 for a moment, we can complete the proof of Theorem
3 by considering the following formula F:

<p:=true; while p do x:=f(x); choice(p:=true,p:=Ffalse) od>
[p:=true; while p do x:=f(x); choice(p:=true,p:=false) od ] q(x) .

Let I be a partial state whose domain is the integers and such that f] is the
successor function, x;=0, and the domain of qj is empty. For states extending I,
the formula F is equivalent to the assertion (3In>0)(vm>n)q(m), whose truth is
obviously not determined by any partial interpretation of q with finite domain.
Hence no finite extension of I determines F, and therefore F cannot be
equivalent to any quantifier free deterministic DL-formula.

Proof of Lemma 7. The proof is by induction on the structure of F. The
cases in which F is atomic, a conjunction, or a negated formula follow easily.
Suppose F is of the form <a>G, and let I be a partial state. There are two
possibilities.

First, suppose that there is no extension of I on which & halts, i.e., a(J) =
@ for all states J which extend I. Then I already determines the truth value of
<a>G, viz., false.

So we may assume that there is some state Iy extending I such that & halts
started in state Ip. More precisely, because « is deterministic we may assume
that T, (Iy) consists of a single path from the root to a halt node. Now,
because the path is finite and the tests are quantifier-free, the outcomes of the
tests on this path depend on the values in I of only a finite number of terms.
Thus there is a finite extension Iy of I which ensures that « will behave as
though it were started in I, That is, let g be the program consisting of the



27

successive assignment statements on the path in Tq(g). Then for any state J
extending I;, we have a(J) = ap(J).

It follows that there is a partial state, which for obvious reasons we call
a(I1), such that if a state J extends I, then aqg(d) = {J7} for some J* extending
a(I1), and conversely if J” is a state extending ap(I1), then {J} = ag(d) for
some state J extending Ij. Moreover, f] | differs from f, odp) at only finitely

many arguments, for all symbols f.

Now by induction, there is a finite extension I of ap(I{) which determines
G. Let I3 be the partial state such that f13 restricted to the domain of fIl is

equal to fj ¢ and f13 restricted to domain (f] 3) - domain (fy 1) is equal to flz for

all symbols f. Then I3 is a finite extension of I} which determines <a>G, as the
reader may verify. 0O

It is worth pointing out that Lemma 7 does not depend on our restriction
to while-programs. It depends only on two facts about the programs under
consideration: first, the truth value of any test can be determined by a finite
extension of any given partial state, and, second, in any terminating computation
of a program only finitely many evaluations of tests are performed. Thus
Lemma 7 and Theorem 3 would remain true if we considered programs a
described by trees T, which are not effectively generable; it would also remain
true if we allowed tests to be quantifier-free deterministic DL-formulas
themselves; and it would remain true if we allowed array assignments or, for
that matter, even assignments of whole functions to function symbols by a single
statement. Naturally, it would break down if we introduced assignments of
random values to variables (cf. Section 5) since such assignments can obviously
simulate nondeterminism.

The proof of Theorem 3 works equally well for Propositional Dynamic
Logic ("PDL", cf. [Pratt 1976, Harel 1978]). We only need to choose F to be
the formula -c:a*}[a*}q and interpret the symbols a and q to mean "x:=f(x)" and
“q{x)"-
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Theorem 4: There is a PDL-formula for which there is no equivalent
deterministic PDL-formula.

We conjecture that even in the presence of quantifiers,
nondeterminism adds to the expressive power of deterministic DL, although we
expect the proof to be more complicated in this case.

5. Random assignments versus quantifiers

We let x:=? denote assignment of an arbitrary "random" value to the
variable x. Formally, m(x:=?) = {(IJ) : s = s; for all symbols s=x}. It is easy to
see that assignments of random values from the domain make quantifiers
superfluous in DL: instead of 3x we can use <x:=7>, cf. [Harel 1979]. Similarly,
random assignments can replace choice-statements. Random assignments can
however be used in more powerful ways:

Theorem 5: The predicate "(x,y) is in the reflexive transitive closure of the
binary relation R" cannot be expressed in DL without random assignments. It

can be expressed in DL with random assignments.

The choice of this kind of predicate is due to V. R. Pratt. A simplification
of an earlier proof of the second author is due to M. Paterson.

Proof: With random assignments the predicate "(x,y) is in the reflexive
transitive closure of the binary relation R" can be expressed as

<z:=T7; while x2y A R(x,2) do x:=z; z=7 o0d> x=y.

To show that the same predicate cannot be expressed without random
assignments, we first prove two lemmas.

Define two programs & and 8 to be eguivalent if m(a) = m(8). Call any
while-program which does not contain any function symbols of positive arity a
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shuffle program. (Such programs can only "shuffle" the values of variables but
cannot "create" any new values during execution.) A while-program is while-free
if it does not contain any while-statement.

Lemma 8: Any shuffle program « is equivalent to some program of the form
if C then BUZZ fi; v

where 4 is a while-free shuffle program.

Proof: Let xq, ... X be the variables of @. In the absence of function
symbols, the program & can only "shuffle" the values of xy, ... ,x; around but it
cannot "create” any new values. Formally this means that for all states I and J,
where J is the label of some node in T, (I), we have {(x{), . o(xp)g} 2 {(xp

o Ay J}."'} This can be proven easily by induction on the trees T,(I). For any
shuffling s of values among Xy, ... ,x, (which could be formalized as a mapping
from {1, ... ,n} to itself), whether T,(I) contains path from the root to a halt
nodes whose execution results in the shuffling s is determined by the values of
all predicate symbols from a on arguments from {(x{)y, ... /(xy)y}s simply because
the outcome of all the tests in T is determined by these values. Hence there is
a test Cg which is true in state I iff T (I) contains a path which accomplishes
the shuffling s. Using these formulae Cj, it is straightforward to write the
desired while-free program +. Similarly, there is a test C, namely the
conjunction over all s of ~C,, which is true in state I iff a(I) = @ a

Now observe that for a program & of the form described in the Lemma 8,
the formula <a>P is equivalent to =~ C A <y>P. By techniques from [Pratt
1976], if « is a while-free program then there is a first order formula which is
equivalent to <y>P. This implies the following

Lemma 9: Let R be a DL-formula which does not contain any function symbols
of positive arity. Then there is a program-free DL-formula, i.e. a first order
formula, which is equivalent to R.
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To finish the proof of Theorem 5, assume that some DL-formula Q expresses the
predicate x,y) is in the reflexive transitive closure of R." Consider states which
have the integers as domain, interpret the predicate R(u,v) as the successor
predicate u+1=v, interpret every predicate symbol except R and = as being true
on all arguments, and interpret all function symbols of positive arity as identity
functions on the first argument. Note that in such states, the predicate "(xy) is
the the reflexive transitive closure of R" is equivalent to the predicate x<y.
Consider the formula Q” obtained from Q by (recursively) replacing each term
of the form f(ty, ... ,ty), k>0, with its first argument, t;, and by replacing with
true each atomic formula containing a predicate symbol other than R. In states
of the kind we are considering, this formula Q” is equivalent to Q. By Lemma
9, there is an equivalent first order formula Q’“. If we replace in this formula
Q7’7 each term of the form R(u,v) by u=v+l, we obtain a formula of the First
Order Theory of Successor which expresses the predicate x<y. But it is well-
known that this predicate cannot be expressed in the First Order Theory of
Successor. ]

Theorem 5 holds for a much wider class of programs than just the while-
programs we are considering. First, we can generalize the structure of the trees
T, by allowing any trees whose edges carry labels from a finite set of
assignment statements and tests. This generalization covers "context-free" and
"r.e." DL (cf. [Harel 1979]) as well as versions of DL where the trees T, are not
effectively generable. Second, we can expand the set T of tests allowed in the
programs. For example, Lemma 9 and consequently Theorem 5 hold for "rich-

test" DL, where tests are inductively defined to be DL-formulae themselves, cf.
[Harel 1979).

6. Other Results and Open Problems

The results reported above are part of a study of the comparative expressive
power of different versions of DL. Related results which will be reported in
subsequent papers reveal, for example, that DL with array assignments and DL
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with random assignments are incomparable in expressive power, and
consequently, both are strictly less expressive than DL with both array and
random assignments which is equivalent to one formulation of Weak Second-
Order Predicate Calculus. If we permit a very generous notion of program,
namely r.e. programs with infinitely many "rich" tests (cf. [Harel 1979]), then
the corresponding version of DL is equivalent to the constructive segment of the
infinitary language L 10" This latter result was obtained by the first author in

collaboration with Rohit Parikh.

The major open problem concerning the topics discussed in this paper is the
expressive power of nondeterminism in the presence of quantifiers (cf. Section
4). As mentioned, we conjecture that nondeterminism adds to the expressive
power of DL even in the presence of quantifiers.

Another open question similar to the problem of expressing looping is
whether the "intersection" operator, of Algorithmic Logic [Rasiowa 1977,
Salwicki 1970] can be expressed in DL. The meaning of the Algorithmic Logic
formula NaP was originally defined only for deterministic programs a, and there
are at least two different sensible ways to extend its meaning to nondeterministic
programs. We can define NaP to be equivalent to ¥n>0 <a®>P, where a®
stands for the n-fold repetition of &. It is still an open question whether or not
vn20 <a®™>P can be expressed in DL, with or without array assignments. A
different and perhaps more natural extension of the meaning of NaP to
nondeterministic programs « is achieved by defining naP to be equivalent to
Global-Loopg with 8 = while P do a od. (See Section 2.2 for a definition of
Global-Loop.) Again we do not know if this predicate is expressible in DL, with
or without array assignments.
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