MTT/LCS/TM~158

SEMAPHCORE PRIMITIVES AND STARVATION-FREE
MUTUAL: EXCTISTON

Bugene William Stark

March 1980



Semaphore Primitives and Starvation-Free
Mutual Exclusion

by

Eugene William Stark

January, 1980

Copyright © Eugene W. Stark 1980

Massachusetts Institute of Technology

Laboratory for Computer Science
Cambridge, Massachusetts



%

Semaphore Primitives and Starvation-Free
Mutual Exclusion

by
Eugene William Stark

Submitted to the Department of Electrical Engineering and Computer Science
on January 18, 1980 in partial fulfiliment of the requirements
for the degree of Master of Science

Abﬁtract

Most discussions of semaphore primitives in the literature provide only an
informal description of their behavior, rather than a more precise definition. These
informal descriptions may be incorrect, incomplete, or subject to misinterpretation.
As a result, the literature actually contains several different definitions of the
semaphore primitives. The differences are important, since the particular choice of
definition can affect whether a solution to the mutal exclusion problem using
semaphore primitives allows the possibility of process starvation. This thesis attempts
to alleviate some of the confusion by giving precise definitions of two varieties of
semaphore primitives; here called weak and blocked-set primitives. It is then shown
that under certain natural conditions, although it is possible to implement
starvation-free mutual exclusion with blocked-set semaphores, it is not possible to do

so with weak semaphores. Thus weak semaphores are strictly less "powerful” than
blocked-set semaphores.

Thesis Supervisor: Irene Greif
Title: Assistant Professor of Computer Science

Key Words: parallel processes, mutual exclusion, semaphores, synchronization



= o
Acknowledgements

I am indebted to Carl Seaquist for many productive discussions during the
early stages of this work, and for discovering a key idea in the proof of Theorem
3.14. I would like to thank my thesis supervisor, Professor Irene Greif, for her
patience in reading drafts of this thesis. Thanks also to Russ Atkinson, Jeannette
Wing, and especially Jeff Jaffe and Craig Schaffert, for reading and commenting on
parts of this thesis at various stages along the way. Finally, I would like to thank
the National Science Foundation for providing fellowship support over most of the

period during which this research was conducted.




Table of Contents
Ahstra:t LA R RN N LR ‘.-l-‘-....I..'.""I'.ll--."'..I'.-l'..II.I.I"‘.‘-'.'.I...‘..f}."..‘.‘.‘ 2

Acknowledgements

L e T Ll LT I TTT I Ty 3

Table of Contents

e e o EEERERERNADBNE RN 4

ln Iﬂtrﬂd“ﬂtiﬂﬂ 'Ii‘lﬂbii|u||ilrlull.'lltu.‘||u|u|lnlnlnpqﬁti.-.-oilppjft...i--4...4tp-..n.t‘l..t&‘i-n.. 6‘

1.1 Various Informal Definitions of Semaphores veeecesssseesseesssssssssssssssesss 8
1.1.1 Binary Versus General Semaphores seeessesssssssssesssssssssssossssonses §
1.1.2 Blocked-Set and Blocked-Queue Semaphores «.oecessecsssessssessssnsses 9
113 Weak Semapliones «svisemiisiinsiciimiosoississirsissssossossssenssc 30
1.1.4 Yet Another Type of Semaphores «vvesessssresessancsncsssassssssessses 12

1.2 Starvation Properties of the Various Definitions «eessssscessesssecsssssssssss 13

1.3 Relative "Power" of the Types of Semaphores veecesssesresecsssessssnsassess 15

Lid:Gutline of Thess sivsisssssssasssrsrissssosissrsasorississintoronvnssvresvarsanse L6

2. A Definition of Starvation-Free Mutual EXcluSion veveseveescsscscsssscnsses 18
2.1 Patallél PIoprims scasssuisscscssevisesiiassissivesovansossdisisssirsisearnsesns 18
232 Bywteiis of Brocessts sisiiismninmasssimismmiimmnisa
2.3 How the Semaphore Operations Work cessesessesssessssssssssesssssssssssssens 30

2.3.1 'Weak Semaphiores csssasssssrssasssssssssssssnsnsssisonsssssssssssnasrane 30
2.3.2 Blocked-Set Semaphores vuceesesssssssssresssesssssssssssessssssssssses 30
2.4 Mutual Exclusion SYstems .sesessssescressssessesssssssssssesssessesesessossonse 32
2.5 Solutions to the Starvation-Free Mutual Exclusion Problem «seesesssesssesss 38

z-ﬁ COHE[I.!SEOI‘[ t--upa.|u||oaio}I"Itl'rl!I'ilIi!!vtrl-lIii'lllniiI---|i|luliilﬂltiif--tiiitil‘iiiiii! 40

3. Semaphore Primitives and Starvation-Free Mutual EXCIusion v.eeeesesseesss 41
30 A Semaphiore-Free Soliion wewcrassssssnscnsisiiisiiisssniisasasie 43
3.2 Restricted Classes of Mutual Exclusion SyStems veeesesssssssssessssssssessses 43

321 By WaltHR - cissssssisicsnivismisscssssiisssissssisisisaisissrviniccs 48
3.2.2 . Byntmetric Solutions  .eisiissrsissisisssssssivensssissvssonsessssscisnnes 45
F2.3 No MEmOLY. ceissinarssisrsissivssiarisissaniqsssrisvorsistssrneonnnonnnes 50
33 Summary of Resulls cocsinarsssorsrssisinsosssrsssssnisnseiossrsosrssensrsrnnnce. 51



5%

3.4 Every Semaphore-Free Solution Has Busy-Waiting seceessssssssssssassrsscsss 53
3.5 There Are No Semaphore-Free Symmetric Solutions «seeesssssssssssssssesese 33
3.6 Symmetric Weak Binary Semaphore Solutions With No Memory eseesssssss 59
3.7 Symmetric Weak General Semaphore Solutions With No Memory «seseesscs 63
3.8 More on Weak General Semaphore Solutions ssesssssssessssssssssessessessese 70

3.9 CGHCIHSiﬂﬂ vlnlvlnInvlnl11tiloittl-r'Illn-lllulvlll|-i¢t'lltiilIlllulli-viirill!lii-l!ilil‘ii"it! TS

4. Some Existence Results cvievesvesrscsssssssssssssssssssssssssnsssassssssssssnssonns 76

5. A Correctness Proof cccescssssssssssssnssssssssnssssssssssssssssnsnssssssssnsssssss 85

5.1 Informal Discussion of Morris’ SOIUtION sesesssssssasssssssassssresssssesseses 86
5.2 Morris’ Solution Presented in the Parallel Program Model ssssesssssnsensesss 88
5.3 Mutual EXCIUSION soecessscnssssnessanssssnsessesssssssssssssssosanssssssssssesase J0
5.4 Freedom From Indefinite POStPONEMENt +eeveesessnssersrssarsensressrsansases 94
5.5 Freedom From Deadlock eseeesessssssssessssssssssnssssssssnssssssssscssesesssse 90
5.6 Freedom From StArvation seeseessssesssssssssssssssasssssasseossssssnssassnne 105

5.6.1 Parallel Program HomomorphiSms vesessssessnssssssssansessanssssenes 106

5.6.2 Proof of Freedom From Starvation sesessssesssssssssescsorsrssscscess 113

5.? Cﬂﬂciusiﬂﬂ Y T Il i e R R e R R L L L SERBEERREES I 19

6. Summar}' And ConcluSion cessesssssssssssssssssssssssssssinsssssscsssssssssssscss 128

6.1 Summary of Accomplishments seecessessssssssssrisrsesssasssescssccnsssccesns 128
6.2 Directions for Further StUdy eesseessessssesssssssssssssssssssasssessssssasee 130
6.2.1 Possible IMprovements sesesssssssssssssssssssssessssssssssssssssssssess 130
6.2.2 Possible EXtENSIONS sesssesessssssrsserseansescssnsrrsrssessosssnsassesss 131

5.3 CoNClUSION sssssanssnsnsasassnssnsssssnsssassstssesssssssstsssstsssssssssssssnss 133

?’ A‘ppendix ------- ettt Lttt e L R R L R R R L R R R L L bt 134‘

7.1 Philosophy of the Presentation ssssesessssssccsssssncsnrssssssssssssssssneees 134
7.2 Proof OULHNe seeessoopsessssssssssssessssssssstosssossssasssssssssssrsesesesense 135
7.3 Inductive Step for the Auxiliary Invariants .veeesesssssssssssssssarsessseses 137
7.4 Remainder of the Inductive StEP sessssssssssassrressssssssessssnssssasassases 142

el OrerCES cuicessutssrsnsstrsasstsssssasssssssssssstsssssssssssnistssissssssssessssssss 165




1. Introduction

When a number of concurrently-executing sequential processes share data, it is
necessary to provide some mechanism for synchronizing the processes’ accesses to this
data, so that harmonious cooperation may be achieved. A large number of
synchronization primitives, or programming language constructs for expressing
synchronization, have been proposed and studied in the extensive literature that has
developed on this subject. The complexity of such synchronization primitives covers
a wide range: from low-level primitives such as indivisible fetch and store operations
on shared memory locations; through more powerful, but still rather low-level
primitives such as semaphores [DIJKS68] [DIJKST71), and conditional critical regions
[BRIN72a}; to constructs capable of expressing synchronization at a higher level, for
example monitors [BRINT2b), or path expressions [HABER75]. Each of these
constructs has been shown to be useful in solving various synchronization problems,
such as the "mutual exclusion problem", [DIJKS65] [DIJKS68], the "readers/writers"
problems [COURT71], and "bounded buffer" problems like that in [HABER72], to

name just a few.

The earliest, and perhaps the most extensively studied of these synchronization
problems is the mutual exclusion problem [DIJKS65]. This is the problem of
ensuring that the execution of certain critical regions of code in one sequential
process is not interrupted by the execution of similar regions of code in another

process. Critical regions are useful, for example, in a timesharing operating system



v,

when it is desired to manipulate system queues. These manipulations must not be
interrupted when the queue pointers are in an inconsistent state, or disaster may
result. It is possible to produce this mutual exclusion of critical regions using
indivisible fetch and store operations to shared memory locations as the only
mechanism for synchronizing between processes; and quite a number of solutions
based on this principle, for example [DIJKS65] [KNUTH66] [LAMPO74}, have been
devised. These solutions have the common property that processes synchronize via
"busy waiting"; that is, when two processes desire to execute in their critical regions
simultaneously, one of the processes waits by looping and testing shared memory
locations until the other process has completed execution in its critical region. Such
solutions are therefore wasteful in the sense that processor time is used for waiting,

instead of for more useful computation.

As a way of improving upon this situation, and of simplifying the solution of
the mutual exclusion problem, Dijkstra [DIJKS68] proposed the use of semaphores.
A semaphore is a special type of variable, shared between processes, that may be
manipulated only by two special operations, designated P and V. A semaphore
variable may take on only nonnegative integer values. One definition of the effect
of the semaphore operations is as follows: A process performing a P operation on a
semaphore variable s tests the value of s to see if it is greater than zero. If so, then
s is decremented and the process proceeds. The test and resultant decrement are
performed in one indivisible step. If the value of s is not greater than zero, the
process is said to become blocked on the semaphore s, and must wait to be signalled
by some process executing a V(s) operation. A process executing a V(s) operation
checks to see if there are any processes blocked on s. If there are blocked processes,
then one of them is signalled and allowed to proceed. If there are no blocked
processes, then s is simply incremented. The V(s) operation is assumed to be

performed in a single indivisible step. This definition appears to be the one intended



-8-

by Dijkstra in [DIJKS68], however, as we shall see, there are other, competing
definitions of the P and V primitives. Which definition is used affects subtle

properties of solutions to the mutual exclusion problem implemented with

semaphores.

One such subtle property is whether a solution allows the possibility of
starvation of one or more processes. Starvation occurs when one or more processes
attempting to enter their critical regions are delayed forever by a continuous stream
of other processes executing critical regions. The goal of this thesis is to investigate
how various definitions of the semaphore operations affect whether solutions to the

mutual exclusion problem implemented with semaphores allow the possibility of
starvation.

1.1 Various Informal Definitions of Semaphores

There has been a good deal of confusion in the literature regarding the
definitions of semaphore operations. Much of this has resulted from the fact that
often the effect of the semaphore P and V operations is merely described informally,
rather than specified precisely. These informal definitions may be incorrect,
incomplete, or subject to misinterpretation. In this section, several different
definitions of semaphores will be informally introduced. However, it will not be
possible to use these informal definitions in our formal investigation. The informal
definitions presented in this section are therefore intended only to serve as

motivation for their formal counterparts to be given in Chapter 2.

1.1.1 Binary Versus General Semaphores

We will distinguish, as is done by Dijkstra in [DIJKS68], between binary and
general semaphores. The discussion above gave a definition of general semaphores.
Binary semaphores are similar to general semaphores, except that the binary

semaphore variable may take on only the values zero and one. The effect of a



-9.

binary P operation on a semaphore variable s is identical to that of a general P
operation. However, to ensure that the value of the variable s never exceeds one, a
binary V(s) operation will simply set s to one, rather than incrementing s as is done
in a general V(s) operation. Note that if the value of a binary semaphore variable s

is one, which implies that there are no processes blocked on s, then execution of a
V(s) has no effect. ‘

1.1.2 Blocked-Set and Blocked-Queue Semaphores

Consider Dijkstra’s definition of general semaphores presented above. Processes
that are blocked within a P operation on a semaphore variable s are distinguished
from processes that have not yet examined the value of the variable s and hence
have not yet become blocked, in that the execution of a V(s) will cause a blocked
process to be selected in preference to a process that is not blocked. However, all
blocked processes are treated equally as far as being selected is concerned; no effort
is made to distinguish processes that have been blocked for a short length of time
from those that have been blocked for a longer period. The group of blocked
processes at any instant of time may therefore be modeled as a set, from which a V
operation chooses at random a process to be signalled. Let us call semaphores with
this type of blocking discipline blocked-set semaphores. It is also possible to define
blocked-queue semaphores, which are like blocked-set semaphores except that the
group of blocked processes is maintained as a guewe, instead of as a set. Processes
becoming blocked are placed at the end of the queue, and processes are selected for
signalling from the head of the queue. Both binary and general blocked-set and
blocked-queue semaphores may be defined.



-10-

1.1.3 Weak Semaphores

As was mentioned above, it appears that blocked-set semaphores are the type
that Dijkstra intended to define in [DIJKS68). In [DIJKS71] he indicates the
possibility of defining blocked-queue semaphores as well. Blocked-set semaphores
also appear to be the type used in [COURT71], [COURT72], [HABER72], and
[LIPTO73]. However, a third type of semaphore, much different than either
blocked-set or blocked-queue semaphores, is also found in the literature. This is the
type of semaphore that may be implemented with indivisible "test-and-set”
instructions as follows: A process attempting to perform a P operation on a
semaphore variable s executes a busy-waiting loop in which the value of s is
continually tested. As soon as s is discovered to have a value greater than zero, it is
decremented; the decrement and the immediately preceding test being performed as
one indivisible step. A V(s) operation simply increments s in an indivisible step. We
will call this type of semaphore a weak semaphore. The preceding definition is for
weak general semaphores, although it is possible to define weak binary semaphores as
well.  One of the results we will prove is that weak semaphores are indeed
significantly "weaker" than blocked-set or blocked-queue semaphores, when their

starvation properties are considered.

Definitions of weak semaphores equivalent to the definition above may be
found in [PRESS75), [SHAW74)], [KOSAR73). However, it is here that confusion
over the definitions of the semaphore operations becomes evident. The definitions
given in [PRESS75] are at best incomplete. Under the most straightforward
interpretation though, they appear to define weak semaphores. = Haberman
[HABERT76] criticizes [PRESS75] for this, and for presenting a definition of weak
semaphores without indicating the difference between this version and the
blocked-set semaphores defined by Dijkstra. '



2 1] -

Shaw [SHAWT74] first presents a definition of semaphores like that of
blocked-set semaphores given above, but then proceeds to show (incorrectly) how this
type of semaphores may be "implemented" with test-and-set instructions as
primitives. What actually results from this implementation is weak semaphores. In
addition, he shows how general semaphores may be simulated using binary
semaphores.  With the test-and-set implementation of binary semaphores, this
simulation is incorrect. Kosaraju [KOSAR73] points out the difference between
weak and blocked-set semaphores, and indicates the importance of this distinction;
however he believes Dijkstra’s definition in [DIJKS68] to define weak, rather than
blocked-set semaphores. Although Dijkstra's definition is rather vague, this belief
appears ill-founded, in view of the agreement between [DIJKS68], [DIJKST71],
[COURTT71], [COURT72], [HABER72], and [HABER76].

The behavior of the weak semaphore operations is most easily described using
the "busy-waiting” implementation, as was done above. However, it may seem
unreasonable that busy-waiting is used in the implementation of semaphores, which
are introduced partly because of the desire to avoid busy-waiting. It is also possible
to imagine non-busy-waiting implementations that produce the same abstract
synchronization behavior. For example, suppose that all processes are run in
time-shared fashion on a single processor. When a process initiates a P(s) operation
and discovers that the value of s is zero, it places itself in a list of processes waiting
on the semaphore s, and releases the processor. The system scheduler will not
reschedule processes waiting on s as long as s has the value zero. A process

performing a V(s) simply increments s, however rescheduling does nof necessarily

occur after the incrementation.



2.

We assert that the two informal definitions of weak semaphores presented
above, and the model of weak semaphores to be introduced in the next chapter,
define "equivalent" synchronization behaviors, that are essentially different from the
behavior of blocked-set and blocked-queue semaphores. This statement will not be
proved, since a suitable definition of "equivalence" is lacking, and it is beyond the
scope of this thesis to develop one. However, [KELLET76], [DOEPP76], and
[KWONG?78] indicate one way in which this might be done, with their discussions of

"abstract" semaphores and "implementations” of this abstract behavior.

1.1.4 Yet Another Type of Semaphores

The - definition of semaphores given in [COFFMT73] p. 68, while using
busy-waiting to implement a kind of weak semaphore, is somewhat different from
the other definitions discussed above in the following sense: His semaphore variables
may take on negative, as well as nonnegative, integer values. This in itself would
not be such an important difference, were it not for the way the negative values are
used to control processes performing a P operation. A process performing a P
operation first decrements the semaphore variable. It then loops until the value of
the variable is nonnegative. A V operation simply increments the value of the
semaphore variable. Therefore, if several processes attempt to perform P operations,
and cause the value of the semaphore variable to go well below zero, none of the
processes will be able to proceed until sufficient V operations have been performed
to make the value of the semaphore variable at least zero. At this point, all
processes that were waiting will be allowed to proceed. This is in contrast to the
other definitions presented above, where a V operation immediately allowed one
waiting process to proceed. We will not consider the type of semaphores defined in
[COFFMT73].



b

As a final indication of the confusion in the literature on semaphores, it is
interesting to note that all the sources above claim that their definitions define

"Dijkstra’s semaphore primitives".

1.2 Starvation Properties of the Yarious Definitions

The weak, blocked-set, and blocked-queue semaphore primitives defined above
have different starvation properties. To see why this might be true, let us see what
happens when each definition is used in a simple attempt to solve the mutual

exclusion problem. Consider a number of processes, each executing the following

Program:

semaphore s initially 1;

loop. <noncritical regiom>
P(s);
<critical region>
V(s
goto Joop;

Each process continually alternates execution between its critical region and its
noncritical region. In order to ensure that mutual exclusion of critical regions among
all the processes is obtained, the critical region is bracketed by a P(s5)-V(s) pair.
Since the value of the semaphore variable s is initially one, and a process desiring to
enter the critical region must first perform a P(s) operation, whenever some process
is in its critical region, the value of s is zero. Hence other processes attempting to
perform P operations and enter their own critical regions must wait. Mutual
exclusion is therefore obtained regardless of whether weak, blocked-set, or

blocked-queue semaphores are used.



g

Suppose that the semaphore operations are of the weak variety, and consider
the execution of two processes, process | and process 2. Suppose that process 1 finds
the value of s to be one, and proceeds into its critical region. Since the value of s is
now zero, process 2 is unable to complete its P(s) operation, and therefore waits
within the P operation for the value of s to become positive. Now suppose that
process 1 completes execution in its critical region, and performs the Y(s) operation,
setting s to one. Since we have assumed the semaphore operations to be weak,
process 2 does not complete its P(s) operation immediately, but must retest the
semaphore variable s (or be rescheduled). It is possible, if process 1 executes quickly
enough, for it to loop around and perform another P(s) operation, resetting s to
zero, before process 2 could get around to noticing that s ever had the value one,
This scenario may continue indefinitely, with the result that process 2 "starves"
forever within its P(s) operation. Note that this argument relies on the fact that, in
determining the behavior of a system of concurrent processes, we may make no
assumptions about the relative speeds of the processes, and must consider all possible

orders of executions of steps of the processes as equally likely.

Now, suppose instead that the semaphore operations are defined to be
blocked-set operations. The scenario described in the preceding paragraph is no
longer possible, since the execution of a V operation by process 1 immediately causes
process 2 to complete its P(s) operation. Since 5 is never set to one, it is not
possible for process 1 to complete another P(s) before process 2 finishes its critical
region and performs a V(s). However, although starvation is no longer possible with
two processes, with three or more processes it again becomes possible for a process to
wait forever within the P(s) while other processes successfully complete infinitely
many P(s) operations. The reason for this is that the blocked-set V operation selects
the blocked process to signal at random, and in particular, gives no preference to a

process that may have been blocked for a long time. This situation may be



% L 2

alleviated if blocked-queue semaphores are used. Blocked-queue semaphores impose a
FIFO discipline on the blocked processes, and hence any blocked process will be
allowed to proceed after a number of V operations that is at most equal to the

number of processes in the system.

1.3 Relative "Power" of the Types of Semaphores

The simple scenario just presented indicates that, although weak, blocked-set,
and blocked-queue semaphores are all able to implement mutual exclusion of critical
regions, the three types of semaphores are evidently not equivalent if the possibility
of starvation is taken into consideration. We will be interested in obtaining more
detailed information of this type about the relative "power" of the various kinds of
semaphore primitives. We will obtain this information by posing and answering
questions like: "Is it possible to implement starvation-free mutual exclusion with a
given kind of semaphore?" If the answer to this question is "Yes", then, "Can
natural constraints be imposed under which it is no longer possible to implement
starvation-free mutual exclusion?" and "Is it possible to distinguish between the
relative "power” of the various definitions of semaphores on the basis of the strength
of these constraints?" It turns out to be trivially possible to implement
starvation-free mutual exclusion with either blocked-queue binary or blocked-queue
general semaphores, under any of the constraints we will impose. We will therefore
concentrate our efforts on determining the differences in "power" between weak

binary, weak general, blocked-set binary, and blocked-set general semaphores.

The "flavor" of this investigation is similar to that of [BURNS79], where
solutions to the mutual exclusion problem are studied for a system of processes that
synchronize not with :emaphore operations, but with a general "test-and-set"
operation on a single shared variable. In that study, bounds are obtained on the
number of distinct values that this variable must be able to record, if solutions are

to exist to the mutual exclusion problem, and to the starvation-free mutual exclusion




|

problem.

The most important similarity between our study and that of [BURNS79] is
that in both, results are stated and proved asserting the existence or nonexistence of
solutions to the mutual exclusion problem satisfying various properties. In both
studies, existence results are proved by displaying a solution to the mutual exclusion
problem, and proving that it has the stated properties. Results asserting the
nonexistence of solutions are proved indirectly, by assuming the existence of a
solution satisfying the stated properties, and then inferring the existence of a

computation that contradicts one or more assumptions.

Another similar investigation was performed by Miller and Yap [MILLE77]. In
that paper, a model of parallel processes is presented, and used to formalize a
number of properties "desirable" for a solution to the mutual exclusion problem.
Under the assumption that a process may either fetch or store the value of a single
shared variable as part of a single indivisible action, they are able to establish some

lower bounds on the number of global variables required to implement

starvation-free mutual exclusion.

Lipton [LIPTO73] also investigates issues of the expressive "power" of various
types of semaphore-like synchronization primitives. However, his focus of study is
not restricted to the ability of the various primitives to implement mutual exclusion.
Instead, the synchronization primitives are distinguished on the basis of their ability

to implement various abstractly specified synchronization behaviors.

1.4 OQutline of Thesis

The remainder of the thesis is organized as follows: In Chapter 2 a model of
parallel computation called parallel programs will be introduced. This model is an
adaptation of similar models used by [KELLE76], [DOEPP76), and [KWONGT78].

We will need to make some restrictions on this rather general model, to reflect the



1T

fact that we are interested in modeling a specific type of parallel computation; that
is, a fixed number of sequential, deterministic processes that communicate via shared
variables, and that synchonize with semaphore operations. We will call this
restricted class of the parallel programs systems of processes. Certain systems of
processes, which we call mutual exclusion systems, model a set of processes that
alternate their execution between a critical region and a noncritical region. We will
define a solution to the starvation-free mutual exclusion problem to be a mutual
exclusion system that guarantees certain "desirable” properties, such as mutual

exclusion, freedom from deadlock, and freedom from starvation.

In Chapter 3 we will use the formal model presented in Chapter 2 to
investigate the relationship between the definition of semaphores and solutions to the
starvation-free mutual exclusion problem. The results proved in Chapter 3 will be
"negative" results which assert that under certain conditions, solutions to the
starvation-free mutual exclusion problem do not exist. In Chapter 4, actual solutions
to the starvation-free mutual exclusion problem will be exhibited in support of

complementary "positive" or "existence" results.

Chapter 5 and the Appendix are devoted to a correctness proof for what is
perhaps the most interesting of the solutions presented in Chapter 4. No other
solutions are proved correct, because the length of such proofs would be prohibitive.
In Chapter 5, three techniques for proving statements about parallel programs are
developed, and then applied in the proof. While the most interesting and intuitive
parts of the proof are presented in Chapter 5, the remainder, consisting largely of
tedious, mechanical verification, has been left to the Appendix. It is possible to
understand the arguments in Chapter 5 without reference to the Appendix. Finally,

Chapter 6 contains a summary of results, and suggests possible directions for future

investigation.



- 18-

2. A Definition of Starvation-Free Mutual Exclusion

If we are to make and prove statements that assert the nonexistence of
solutions to the starvation-free mutual exclusion problem under various constraints,
then we must precisely define the class of possible solutions. For this purpose, we
will use a model of parallel computation, called parallel programs, which is an
adaptation of those used in [KELLET76}, [DOEPP76}, and [KWONG78]. The parallel
program model is capable of modeling much more general classes of parallel
computation than will usually concern us, so a restricted class of parallel programs,
which we call systems of processes, will also be defined. We will further identify
certain systems of processes, termed mutual exclusion systems, which model a number
of processes that repeatedly alternate between a critical region and a noncritical
region. We will then define what it means for a mutual exclusion system to have the
mutual exclusion property, to be deadlock-free, free from indefinite postponement, and
starvation-free. A solution to the starvation-free mutual exclusion problem will be

defined as a mutual exclusion system that has these properties.

2.1 Parallel Programs

Keller [KELLET76], introduces a model of parallel computation, called a
transition system, which consists of a set of staftes, and a binary relation on those
states, called the rransition relation. A computation of the system is a sequence of
states; each state related to the next in the sequence by the transition relation.

Keller uses a graphical notation as a syntax for the definition of specific transition



-19 -

relations. These graphs, which he calls parallel programs, are a kind of labeled Petri
ners. Recall that an ordinary Petri net [HOLT70] is a bipartite directed graph in
which the two classes of nodes are called places and fransitions. At any given
instant, the places of a Petri net are marked with varying numbers of fokens.
Markings evolve through what is called firing the transitions. Briefly, a transition is
enabled if there is at least one token on each place that is its immediate ancestor.
An enabled transition may fire by removing one token from each of these ancestor

places, and adding one token to each of its immediate descendants.

The parallel programs we will be using are Petri nets whose transition nodes
have been labeled with an enabling predicate and an action function. Associated with
each net is a set of variables. The enabling predicate describes a condition on the
values of those variables. For a transition in a parallel program to be enabled, not
only must the token placement condition be satisfied, but the enabling predicate for
that transition must hold as well. The action function describes the change in the

values of the variables that takes place when the transition is fired.

The variables in our parallel programs will take their values in a domain of
values WAL, which contains the natural numbers, and all finite sets of natural
numbers. A natural number variable is a variable that always takes on natural
number values. Similarly, a ser variable is a variable whose value is always a finite
set of natural numbers. All variables in any parallel program presented in this thesis

will be either set variables or natural number variables.

Definition 2.1 - A parallel program T is a five-tuple, ('Ul--,r Scr, Q. g,
labelp), where:

(1) Op is a finite set of variable names.

2) Lp = (@, Ip, Qp) is a bipartite directed graph in which ®p,

the set of places, and 31-, the set of rransitions, are the two classes



-20 -

of nodes, and @p  (@p % Ip) U (p X @p) is the set of arcs.

(3) Qp is the set of states of T'. Each element g of Qp is a mapping
that assigns a natural number ¢(p) to each p € ®p, and a value
g(v) € VAL to each v € Up.

(4) The state g, is a distinguished element of Qp called the initial
state.

(5) The function labelp assigns to each t € Jp a pair of functions B,
and F,, where B Qp —> {true, false} is called the enabling
predicate, and Fp Qp > (Up —> VAL) is called the action
function for 1. The functions B, and F, have the property that if
¢ ¢ € Qp, and ¢(v) = ¢(y) for all » € U, then Bg) = B/q")
and F/q) = Flq").

If ¢ is a state, p is a place, and g(p) = , then we will say that there are k rokens at
place p in state ¢g. The latter part of condition (5) above states that enabling
predicates and action functions depend only upon values of variables, and not upon

the placement of tokens.

If T is a parallel program, and n € ®@p U Jp, then define input(n) to be the
set of all n’ € IPF U 311 such that (n', n) € er[- Similarly, define output(n) to be
the set of all n’ € @p U 51" such that (n, n’) € Qp.

Definition 2.2 - Let I' be a parallel program and suppose that ¢ € @p
and r € Jp. Then the nex state function nxi(g, f) is defined iff:

(1) g(p) > O, for all p € inpur(r)

(2) B/{q) = true
If nxi(g, 1) is defined, and ¢" = nx(q, 1), then the following relationships
hold between ¢ and ¢":



=]~

(3) ¢’(p) = q(p) — 1 for all p € (input() — output(r))
(4) ¢'(p) = q(p) + 1 for all p € (output(t) — inpur(1))
(5) g'(p) = q(p) for all p € input(f) N output(t) and for all
p & input(f) U outpui(r)
(6) ¢'(¥) = (F())(¥) for all v &€ Vp
If « is a finite sequence of transitions, then nxt(g, a) is defined by

composition in the obvious fashion.

If nxi(g, r) is defined, then we say that r is enabled in state ¢, and that

g’ = nxt(q, 1) is the result of firing transition r in state g.

Definition 2.3 - Let I' be a parallel program, and suppose that ¢y € el"*
A finite or infinite sequence of transitions @ = fpf; ... is called an execution
sequence from qq for T, with corresponding state sequence qpqy ... , if for
each i > 0, transition r; is enabled in state ¢ and ¢;,; = nxt(g; 1;). A
state ¢’ is reachable from a state g if there is an execution sequence § such
that ¢° = nxt(q, 8). An initial execution sequence is an execution sequence

from g,.

Definition 2.4 - Let I' be a parallel program. We say a transition f
affects a variable v if there exists a state g such that (F(g))(v) # ¢(v). We
say that r depends on v if there exist states ¢ and ¢’, with ¢’ identical to ¢
excePt' for the value assigned to v, such that either B/(g) # B/g") or
(F @) (¥') ## (F(g))(¥') for some variable v’ affected by 7.



-22 -

A pictorial representation of a parallel program is shown in Figure 2.1. Places
are denoted by circles, and transitions by horizontal bars. Each transition f is
labeled by a statement of the form when B do (v« s V) == F, where B is a
truth-valued expression describing the enabling predicate B, and the multiple
assignment (vg, .., v,,) := F describes the action function F,. We will follow the
convention that if r affects no variables, then the do part of the label of r will be
omitted, and if B, is identically true, then the when part will be omitted, unless this

would result in a completely unlabeled transition.

Keller shows how parallel programs may be used to model parallelism,
nondeterminism, and processes that fork and join. It is particularly convenient to
model the instruction counters of concurrently executing processes by positions of

tokens on the parallel program graphs, and we will do this, in fact, in the next
section.

2.2 Systems of Processes

For our purposes, it will be convenient to introduce some syntactic restrictions
on parallel programs. The reason for this is that we will be studying a rather
specific type of parallel computation: systems of a fixed number of sequential,
deterministic processes, which communicate via shared global variables, and
synchronize with semaphore operations. This restricted class of parallel programs

will be called systems of processes. Before giving the definition, though, some

motivational discussion will be helpful.

A system of N processes will be a parallel program whose graph consists of N
disconnected subgraphs. The ith subgraph is called the graph for process i. In any
reachable state, there will be exactly one token on the graph for process i, modeling
the position of the instruction counter for the ith process. To ensure that any

reachable state has a meaningful configuration of tokens, we require that in the



-

T do count:=1

e A

T2 when true T3 when count=3 do var:=var+l

B,

oRC

Figure 2.1 - Example of a Parallel Program



-24 -

initial state g, there be exactly one token in the graph for each process, and that
each transition have exactly one input place and one output place. This means that
firing a transition preserves the total number of tokens in the graph. Since graphs
for distinct processes are disconnected, tokens cannot "cross over" from one process

to another, and hence firing transitions preserves the single token in the graph for
each process as well.

The restrictions outlined so far ensure that a system of processes accurately
models a collection of N concurrently-executing sequential processes. Since we are
interested in deterministic processes, we would also like to exclude the situation in
which a process has more than one transition enabled in a given state. We will
therefore require that for any place p, the enabling predicates for transitions in

oulpui(p) be pairwise disjoint. We will make one minor exception in the definition
of blocked-set V operations below.

We also require of a system of processes that the set of variables be partitioned
into three subsets: a set of /ocal variables, a set of global variables, and a set of
synchronization variables. The set of local variables is further partitioned into N
subsets, with the ith subset called the set of local variables for process i. Transitions
in process j may not depend on or affect local variables for process f, if j 3£ i
Global variables may be depended on and affected by transitions in any process,
however, a single transition may depend on or affect, but not both, at most one
global variable. This models processes that access shared variables with indivisible
fetch and store operations. It is convenient, and results in no loss of generality, to

assume that the sets of local variables for any two processes are in one-to-one

correspondence.



- 25 -

Certain subgraphs of a system of processes will be identified as modeling

semaphore operations.

Definition 2.5 - Let I' be a parallel program, and let £ be a subgraph of
ﬂ:r. We will call £ a semaphore operation on the variable s if the
following hold:
(1) E has one of the forms shown in Figure 2.2 or Figure 2.3. The
subgraph £ will be called a weak/blocked-set, binary/general,
P/V operation, depending upon which graph it matches. The
subgraph E will then have a distinguished place, called the input
place, as indicated in the figures.
(2) Connections with the rest of the graph mr are made such that all
arcs from outside E into £ must terminate at the input place in E.
There must be no arcs from inside £ out except for those shown
in the figure, and there must be a unique place not in £, at which

all ares from inside Z out terminate.

Note that while transition labels in weak P(s) and V(s) operations mention
only the semaphore variable s, blocked-set operations make use of two additional
scheduling variables, whose names are formed by adjoining _en and _b/ to the name
of the semaphore variable; in this case to form "s_en" and "s_b/". The semaphore
variable s is a natural number variable, whereas s_en and s_b/ are set variables. We
prohibit any transition that is not in a semaphore operation from affecting or

depending on semaphore or scheduling variables.

Note that within the graphs for blocked-set semaphore operations, reference is
made to the process number i. It is important to recognize that / does nor represent

a parallel program variable; it only serves to indicate that the labels of transitions of



- 26 =

BINARY
O "input place"
P OPERATION when >0 do g:=5-1
“Jr

O “input place"

Y OPERATION do s:=1

GENERAL
O "input place”

whan =30 do s:=s-1

O “input place"

do s=s5+1

Figure 2.2 - Weak Semaphore Operations



P OFPERATION

when a>0
do s:=s-1

CENERAL
¥ OPERATION=

when s_bl= ¢

do si=s+1

S 17 S

"input place”

when s=0
do s_bl=s_blU{i}

"blocked place”

when ifs_en
do s_en:=s_en~{i}

"input place”

when 1€s_bl

do (=_bl, s_en)=
| GBI, senli2])

when 2¢s_bhl
do (s b, s_en)=
¥ (s_bl-{2}, s_eall{2}}

Fad
Y

when Nés_bl
do {s_bl, s_en):=
(s_bl-{N}, s_enU{N})

*For binary V operation, replace "do s:= s 4 1" by "do 5 := 1"

Figure 2.3 - Blocked-Set Semaphore Operations



- 2P

a blocked-set semaphore operation in process 3, for example, must contain the
numeral "3" in positions where "i" is used in Figure 2.3. The process number is used

for scheduling purposes within blocked-set semaphore operations; this is discussed in
more detail below.

The synchronization effect of the P and V operations is obtained through the
possibility that a process whose token is at a place within a P operation may have
no enabled transitions in a given state, and be forced to wait. We wish to require
that this type of waiting onlp occur within semaphore operations; therefore we
stipulate that if a place p is not within a semaphore operation, the disjunction of the

enabling predicates of transitions in oufput(p) must be identically true.

The above discussion is summarized in the following definition:

Definition 2.6 - A spstem of N processes is a parallel program I' that
satisfies the following restrictions:

(1) The graph Er.'r consists of N disconnected subgraphs
3:;1 = {0:'1{-, 5;1. ﬂfE-}, o &:F = {(FF, 51':', ﬂ;r), where Etf is
called the graph for process i.

(2) For each i, 1 < i < N, the set ﬁ’f‘ contains a distinguished place
p, called the starr place for process i, such that q{p) = 1, and
g(p) =0forall p’ e (Pfi with p* 5 p.

(3) If ¢ is a transition, then input(f) and output(f) contain exactly one
place each.

@ Vp = Lr + Gp + S, where Lt is the set of local variables,
Or is the set of global variables, and 8p is the set of
synchronization variables.  (The symbol "+" denotes disjoint
union.) The set of synchronization variables is partitioned into

the set of semaphore variables, and the set of scheduling variables.



-29.

The set 'BT' is partitioned into N subsets, .c;v, i .ﬂi—-ﬁr, where .ﬁf-
is called the set of local variables for process i. There is a
one-to-one correspondence between -ﬂ-f and -EIJ- for all 7 and j.

(5) Either all semaphore operations in Xp are weak, or all are
blocked-set, in which case we say that T' has weak or blocked-set
semaphores, respectively. The process number referred to within
each blocked-set semaphore operation must match that of the
process in whose graph the semaphore operation appears. If I' has
weak semaphores, then I' has no scheduling variables. If T' has
blocked-set semaphores, then cortesponding to each semaphore
variable s, are two scheduling variables, s_en and s_bl. Both s_en
and s_bl are set variables with initial value @.

6) If t € Sf;, then 7 must neither depend on nor affect any variable
in .ﬂ{-, for all j £ i If ris not part of a semaphore operation,
then ¢ must neither depend on nor affect any synchronization
variables. Also, either: (a) no global variables are affected or
depended on by £ (b) r depends on a single global variable, but
affects no global variables; or (c¢) t affects a single global variable,
but depends on no global variables.

(7) If p is a place not in a semaphore operation, and if ourput(p) =
iy o 4 Iy with k > 0, then the corresponding enabling
predicates H,!, _— B’.t are pairwise disjoint, and Bff V..V B’k is

identically true.

We will use superscripts when it is necessary to explicitly indicate the correspondence

between the sets -ﬂ-[\ and fT mentioned in condition (4) above. Thus, if ¥ € -c-;-
then v denotes the corresponding variable in .['T




-30-

2.3 How the Semaphore Operations Work

In this section we will discuss the way in which the graphs of Figure 2.2 and
Figure 2.3 model weak and blocked-set semaphore operations.

2.3.1 Weak Semaphores
Figure 2.2 shows the graphs for weak binary and weak general P and V

operations on a semaphore variable 5. A process whose token arrives at the input
place for a weak binary or weak general P operation must wait until a state is
reached in which the value of s is greater than zero. When this occurs, the
transition for the P operation may fire, decrementing the variable 5. A process
arriving at the input place for a weak V operation may proceed without waiting;
causing s to be set to one in the case of a weak binary V operation, or incremented
in the case of a weak general V operation. Note that there is no queueing or
priority mechanism included in the weak semaphore operations. In particular, a
process arriving at the input place for a weak P operation receives no guarantees
about how many processes will complete P operations on the same semaphore

variable ahead of it.

This definition seems to capture the important properties of the informal
definitions of weak semaphores given in Chapter 1. The most important of these is

the fact that a process performing a V(s) operation does not immediately cause a

waiting process to complete a P(s).

2.3.2 Blocked-Set Semaphores

The graphs, shown in Figure 2.3, for binary and general blocked-set P and V
operations on a semaphore s, differ from the corresponding graphs for weak
semaphores in several important respects. In addition to the semaphore variable s,
the gra.phs for the blocked-set operations refer to the scheduling variables s_en and

s_bl. The variable s_en is a set variable that represents the set of enabled processes



<At

for the semaphore s, and the variable s_bl is a set variable that represents the set of

processes blocked for s.

If the token for process 7 is at the input place for a blocked-set P(s) operation,
one of two things can happen, depending upon the value of s. If s is greater than
zero, the blocked-set P completes exactly as in the case of the weak P operation; by
decrementing the variable 5. However, if the value of s is zero, process i inserts its
process number into the blocked set s_b/, and the token for process i advances to the
blocked place. Process i may not proceed until some other process performing a V(s)
has transferred the process number i from s_b/ to s_en. When this occurs, process i

may remove the number / from s_en and proceed.

A process at the input place for a blocked-set V operation will do one of two
things, depending upon whether or not s_b/ is empty. If s_bl is empty, s is set to
one in the case of a binary V operation, or incremented in the case of a general V
operation. If s b/ is not empty, some process number j is selected
nondeterministically from s_bl, and is transferred to s_en. This has the effect of
enabling the blocked process j The nondeterministic selection is modeled by the N
transitions labeled "when j € s_b/ do (s_b/, s_en) := (s_bl—{ j }, s_enUf j )", for
1 < j < N, more than one of which may be enabled in any given state, depending
upon the contents of s_b/. Note that this is the only exception we will make to our

requirement that no process have more than one transition enabled in any state.

This definition of semaphores distinguishes blocked processes, whose tokens are
at the blocked place in some P operation, from processes that are not blocked. A V

operation gives blocked processes priority over other processes, however no further

distinction is made among blocked processes.



-3

2.4 Mutual Exclusion Systems

We wish to use the system of processes model in our discussion of mutual
exclusion. Not all systems of processes model a collection of processes attempting to
achieve mutual exclusion of critigal regions; therefore we must impose some further
restrictions on systems of processes. Systems in the resulting class will be called
mutual exclusion spstems. It will then be possible to formalize the notions of mutual
exclusion, absence of indefinite postponement, freedom from deadlock, and freedom
from starvation, as properties "desirable" for a solution to the starvation-free mutual
exclusion problem. In fact, we will define such a solution to be a mutual exclusion

system with these desirable properties.

Let us first see what are the important concepts to capture in the definition of
a mutual exclusion system. It is typical, in the literature, to present a solution to the
mutual exclusion problem as shown in Figure 2.4, where a program to be executed
by process i is displayed. This particular solution, attributed by Dijkstra to Joseph

M. Morris, is interesting in its own right, and will be discussed in detail in
Chapter 4.

In the program of Figure 2.4, process i executes in an infinite cycle, first
performing some computation in the "noncritical region", and then manipulating
some variables and semaphores in the "trying region". These manipulations
culminate in the entrance of the process into the "critical region". After completing
execution in the critical region, more manipulation of variables and semaphores is
performed in the "leaving region”, and the process returns to the noncritical region
to complete the cycle. It is access to the critical region that is being controlled by
the "synchronization code” in the trying and leaving region. In this solution, waiting
for other processes occurs only in the trying region; however it is possible to imagine

solutions in which a process might wait in the leaving region as well.



=3 -

blocked-set general semaphore g, b, m initially 1, 1, ;
global countl, count2, initially 0, 0,

(Program Executed by Process /)

loop: <noncritical region>
P(b);
countl = countl + 1;
V(b);
P(a);
P(b);
countl, count2 := count] — 1, count2 4+ 1
if countl > 0 then begin

(trying region) Y(b);
V(a)
end else begin
V(b);
V(m)
end;
P(m);

<critical region>
count2 = countd — 1;

(leaving region) if count2 > 0 then Y(m) else V(a);
goto loop;

Figure 2.4 - Typical Presentation of a Solution to the Mutual Exclusion Problem




o

The specific computations performed in the critical and noncritical regions are
irrelevant, as long as they do not "interfere" with the synchronization protocols of
the trying and leaving regions. However, it is usually assumed that critical regions
always terminate, although this is not required of noncritical regions. The program
of Figure 2.4 can be considered a "solution" to the starvation-free mutual exclusion
problem only if it works "correctly”, regardless of the order in which processes

terminate their noncritical regions.

We will attempt to capture these ideas as follows: A mutual exclusion system
will be a system of cyclic processes. Since the specific computation performed in the
critical and noncritical regions is irrelevant, these regions may be represented in the
mutual exclusion system by single places. We therefore require that each process
have two distinguished places, called the critical place and the noncritical place. The
remaining places in the graph are partitioned into the trying region and the leaving
region. Connections are made so that within a process, control always flows from
the noncritical place to the trying region, to the critical place, to the leaving region,
and back to the noncritical place, in that order. It is convenient to require that each

process begin execution with its token at the noncritical place.

For technical reasons, it is convenient to require that the connection between
the noncritical place and the trying region be made with a single transition, whose
enabling predicate is identically true, and which affects no variables. We also
require that the connection between the critical place and the leaving region be
made with a similar transition. As a result of these requirements, the graph for
process / in a mutual exclusion system will have the form shown in Figure 2.5. The
place NCP_i is the noncritical place for process i, CP_i is the critical place, and
NCT_¢ and CT_/ are the single transitions connecting the noncritical place with the

trying region, and the critical place with the leaving region, respectively. Let us



- 385

summarize the requirements we have made so far.

Definition 2.7 - A mutual exclusion system of N processes is a system of
N processes, where the graph for process i has the form shown in Figure 2.5
for 1 < i< N. As depicted in Figure 2.5, process i has two distinguished
places, NCP_i and CP_i, called the nencritical place and critical place,
respectively. The remainder of the graph for process i is divided into the
trying region, the leaving region and two distinguished transitions NCT_i and
CT_i/, that connect the noncritical place with the trying region, and the
critical place with the leaving region, respectively. We require that the

start place in each process be the place NCP_i.

If g is a state, and g(CP_f) = 1, then we say that process i is in the critical
region in state ¢. Similarly, we say that process i is in the noncritical region in state
g if g(NCP_i) = 1. If there is a place p in the trying region (resp. leaving region)
for process i such that g(p) = 1, then we say that process i is in the trying region

(resp. in the leaving region) in state g.

Not all execution sequences of a system of processes can be regarded as
modeling the execution of "real" processes. In particular, we are only interested in
execution sequences that satisfy the so-called finite delay property. The finite delay
property requires that one process in a system must not run infinitely slower than
another (fair scheduling), and appears to be necessary for any discussion of
starvation-free synchronization. This property is mentioned by name in [KELLE76),
[KWONG78), [MILLE77], and used in the definition of an "admissible schedule” in
[BURNS79]. The finite delay property will be incorporated into our model as part

of the notion of a "valid" execution sequence.




- 36 -

N
"start place” ICP_i "noncritical place”
N
NCT. i when true

trying

region

@; "eritical place”

CT.i when true

Figure 2.5 - Graph for a Process in a Mutual Exclusion System



.37 -

Definition 2.8 - Let @ = fyf; ... be an execution sequence for a mutual
exclusion system of N processes, and suppose that gpg; .. is the
corresponding state sequence. Then a is valid if it is finite, or for all 7,
1 < i< N, either
(1) for infinitely many j > 0, ¢ jis a transition for process i; or
(2) for infinitely many j > 0, process i is not enabled in state gjsor
(3) there exists kK > 0 such that for all j > k, process / is in the
noncritical region in state 95
We will say that a state sequence is valid if it is the state sequence

corresponding to a valid execution sequence.

Stated another way, for an infinite execution sequence to be valid, there can be
no process in either the trying, critical, or leaving region, which is enabled for
infinitely many consecutive states, but fires no transitions. One implication of this is
that a process whose token is at the input place for a weak P operation can starve if
there are infinitely many states in which the value of the semaphore is zero.
Another version of the finite delay property, which requires that a process fire
transitions even if that process is only enabled infinitely often, is discussed in
[KWONG78]. Kwong shows that if this stronger version of the finite delay property
is adopted then the possibility of starvation is eliminated in many situations. For
example, a process at the input place for a weak P operation would always be
required eventually to complete the P operation unless the value of the semaphore
variable were zero for infinitely many consecutive states. This means that
starvation-free mutual exclusion could be trivially implemented with weak
semaphores. Since this does not accurately model the intuitive properties of weak

semaphores discussed in Chapter 1, we reject this version of the finite delay property.




- 38 -

2.5 Solutions to the Starvation-Free Mutual Exclusion Problem
Our definition of starvation-free mutual exclusion will be complete once we
have formalized the properties "desirable" for a solution to the mutual exclusion

problem. The most important such property is the mutual exclusion property.

Definition 2.9 - A mutual exclusion system has the murual exclusion

property if there is no reachable state g, such that more than one process is

in the critical region in state g.

A solution to the mutual exclusion problem would be of no use if it allowed

the possibility of deadlock, which may be defined as follows:

Definition 2.10 - Process 7 in a mutual exclusion system is deadlocked in
a state g, if process i is in the trying or leaving region in state g, and there
is no finite execution sequence &, consisting only of transitions for processes
in the trying region, critical region, or leaving region, such that process i is
not in the trying or leaving region in state nxi(g, a). A mutual exclusion

system is deadlock-free if no process is deadlocked in any reachable state.

In the preceding definition, to show that a process 7 in the trying or leaving
region is not deadlocked in a given state, it is sufficient to construct a finite
execution sequence from that state which moves process 7 into the critical region or
noncritical region. The requirement that this execution sequence consist only of
transitions for processes in the trying region, critical region, or leaving region is a
consequence of our intuition that whether or not process 7 is deadlocked should not

depend upon whether a particular process j 5 i décides to leave the noncritical
region at any given time.



-39 .

Dijkstra [DIJKS66] requires of a solution to the mutual exclusion problem that,
"If two processes are about to enter their critical regions, it must be impossible to
devise for them such finite speeds, that the decision which one of the two is the first
to enter its critical region is postponed to eternity." This statement implies that the
system is free of a certain type of starvation. We will require that any solution to
the mutual exclusion problem have a somewhat stronger version of this property,
stated below. Although it seems reasonable to require that this property hold, it will

not be needed for any of the results proved in this thesis.

Definition 2.11 - A mutual exclusion system is free from indefinite
postponement if there is no valid infinite state sequence gpgy ... » with gg =
q;, such that for some & and all j > k no process is in the critical region in

state qf

The properties of mutual exclusion, freedom from deadlock, and freedom from
indefinite postponement will be required for all solutions to the mutual exclusion
problem. The additional property of freedom from starvation will be required for a
solution to the starvation-free mutual exclusion problem. The difference between
freedom from indefinite postponement and freedom from starvation is that the
former applies to infinite execution sequences in which, after a certain point, no
processes are in the critical region, whereas the latter is concerned with situations
where a process remains forever in the trying or leaving region, while other processes

execute infinitely many critical regions.

Definition 2.12 - A mutual exclusion system is starvation-free if there is
no valid infinite state sequence gpq; .. ,» With gg = ¢ having the following
properties:

(1) There is a process i such that for all k > 0, there is a m > k and




a4l

n = k with process i in the critical region in state gy and process
i not in the critical region in state -

(2) There is a process i" and a k* > 0, such that for all i=k,
process i" is in the trying or leaving region in state gj -

We may now define the term "solution to the (starvation-free) mutual

exclusion problem".

Definition 2.13 - A solution to the mutual exclusion problem for N
processes is a mutual exclusion system of N processes that has the mutual
exclusion property, is deadlock-free, and is free from indefinite
postponement. A solution to the starvation-free mutual exclusion problem is

a solution to the mutual exclusion problem that is starvation-free.

2.6 Conclusion

In this chapter, parallel programs were introduced as a rather general model of
parallel computation. A subclass of parallel programs, called "systems of processes"
was defined, and we saw how the various types of semaphores could be modeled.
Certain systems of processes, called "mutual exclusion systems", were identified, and
it was seen that mutual exclusion systems model the important aspects of a system of
processes competing for access to critical regions. Finally, we were able to use the
model to precisely define a "solution to the (starvation-free) mutual exclusion
problem". In the next chapter we will use these definitions in our investigation of

the relationship betweeen semaphore primitives and starvation-free mutual exclusion.



- 4] -

3. Semaphore Primitives and Starvation-Free Mutual Exclusion

With the definitions of the previous chapter behind us, we may now proceed to
the main task of this thesis: the investigation of the starvation properties of the
various types of semaphores. The kind of question we will be attempting to answer
is, "Can we solve the starvation-free mutual exclusion problem, using a particular
type of semaphores?' Let us qualify this somewhat, by noting that it is trivial to
produce a solution to the starvation-free mutual exclusion problem for N < 2
processes; therefore we assume throughout this chapter that N > 2. With this
qualification in mind, we discover almost immediately that it is possible to solve the
‘starvation-free mutual exclusion problem without using semaphores at all. The
solution that illustrates this is due to Knuth [KNUTH66] and will be discussed in
the next section. If we are to obtain any interesting information about the "power"
of binary and general, weak and blocked-set semaphores with respect to their ability
to solve the starvation-free mutual exclusion problem, then it appears that we must

modify our question somewhat.

Knuth’s semaphore-free solution to the starvation-free mutual exclusion
problem has two properties that might be deemed "undesirable” if found in solutions
using semaphores. We will term these two properties busy-waiting and asymmetry.
Knuth’s solution has busy-waiting because processes synchronize by looping and
testing shared variables, rather than by becoming blocked. The solution is

asymmetric because the program text executed by each process in the system




-42 -

depends explicitly on the process number. That is, the programs executed by the
processes are not textually identical, as is usually the case in solutions that use
semaphores. Note that the notion of symmetry intended here is quite strong.
Precise definitions of busy-waiting and symmetry will be given later in this chapter.
We will restrict our attention to symmetric mutual exclusion systems, and mutual
exclusion systems with no busy-waiting. @We will show that there are no
semaphore-free symmetric solutions, and no semaphore-free solutions without
busy-waiting. Furthermore, under these restrictions, differences in the "power" of

the different kinds of semaphores will also become apparent.

The results proved in this chapter will be so-called "negative" results, which
assert that certain classes of mutual exclusion systems contain no solutions to the
starvation-free mutual exclusion problem. In Chapter 4, solutions will be exhibited in
support of complementary "positive" results, which assert the existence of solutions in
certain classes. The combination of negative and positive results will give us a

somewhat clearer picture of the differences between the types of semaphores.

This chapter is organized as follows: After briefly examining Knuth’s
semaphore-free solution in the next section, we will proceed to the precise definition
of symmetry and busy-waiting. A third property, no memory will also be defined.
The assumption of "no memory" is natural in conjunction with the assumption of
, symmetry. Following the definitions will be a summary of the results of this chapter

and the next. The remainder of this chapter will consist of the precise statement

and proof of the negative results.



R

3.1 A Semaphore-Free Solution

Knuth's semaphore-free solution to the starvation-free mutual exclusion
problem is displayed in Figure 3.1. It should be noted at this point that for purposes
of understandability and compactness of presentation, any mutual exclusion system
we discuss will be presented in an algorithmic notation similar to that of Figure 3.1.
The reason we need the graphical notation of parallel programs at all is because our
discussion will most often be at the level of single "atomic" state changes, and it is
quite convenient to associate these state changes with the transitions of a parallel
program. It should be a straightforward task for the reader to translate a mutual
exclusion system presented in an algorithmic notation to the corresponding graphical
form. When performing such a translation, care should be taken to be sure that
each transition depends on or affects at most one global variable. Note also that
although the program of Figure 3.1 uses a global array variable control, we have no
provision for array variables in the parallel program model. The N-lot array control
must therefore be replaced with N global variables, for example control_I,

control_2, ... , control_N. The local variable j in Figure 3.1 may be eliminated by

"unwinding" the loops.

For our purposes, the salient features of Knuth's solution are: (1) it has
busy-waiting, since a process waits by looping in the trying region, and repeatedly
examining the array control; and (2) it is asymmetric, since the program text

executed by process i makes explicit reference to the process number i.

3.2 Restricted Classes of Mutual Exclusion Systems

We now turn to the precise definition of busy-waiting, symmetry, and no
memory.



global array control[1:N] initially 0;
global k initially 1;

(Program Executed by Process i)

local j
loop:  <noneritical region>
L0 controfli] := 1,
LI for j:= k step -1 until 1, N step -1 until 1 do
begin if j = / then goto L2;
if controflj] % O then goto LI
end;
L2: controlli] :== 2;
for j:= N step -1 until 1 do
if (j £ 1) A (controllj] = 2) then goto LO:
<critical region>
k:=if i=1 then Nelse i — 1;
controlli] := 0,
goto loop;

Figure 3.1 - Knuth’s Solution to the Starvation-Free Mutual Exclusion Problem



o

3.2.1 Busy-Waiting

As mentioned above, any solution to the mutual exclusion problem that has no
semaphore operations must use busy-waiting to achieve synchronization. This is not
difficult to prove, and we will do so presently, however we must first have a precise
definition of "busy-waiting". The characteristic feature of a solution that uses
busy-waiting is that no a priori bound may be placed on the amount of computation
that a process may perform in the trying or leaving region. We attempt to capture

this intution in the following:

Definition 3.1 - A mutual exclusion system has busy waiting if for any
M > 0, there is a process i, numbers m and n, and an initial execution
sequence /ply ... with corresponding state sequence ¢pgy .- » such that:
(1) For all j, with m < j < nm, process i is in the trying or leaving
region in state ¢ f
(2) The number of f,, f, s - » I, that are transitions for process i

is at least M.

Let NBW be the class of all mutual exclusion systems that do not have
busy-waiting. Since one of the reasons semaphores were introduced is to avoid the
waste of processor time that is associated with busy-waiting, restricting our attention

to solutions in NBW seems like a reasonable thing to do.

3.2.2 Symmetric Solutions

Another benefit of using semaphores to solve the mutual exclusion problem is
that we obtain the ability to produce symmetric solutions. The notion of symmetry
we are concerned with here is that of exact textual identity of program text when
this text is presented in an algorithmic fashion as in Figure 3.1. It is possible to

imagine weaker notions of symmetry, under which Knuth’s program would be



R

regarded as symmetric. An example of such a weaker notion would be to regard a

program as symmetric if given the process number i, it is possible to compute the

program text to be executed by process i.

Finding an appropriate definition of symmetry is somewhat complicated by the
fact that although the motivation for the definition comes from comparing the
algorithmic presentation of the program text for each process, we must make the
definition in terms of the graphical notation of mutual exclusion systems. In the
algorithmic notation, the queueing discipline of the semaphore operations is not made
explicit, and therefore it is reasonable to define symmetric mutual exclusion systems
to be those in which the code for all processes is textually identical. In the graphical
notation however, the use of the process number within blocked-set semaphore
operations is explicit, and therefore it is not possible for the graphs of two different
processes, including the labels of the transitions, to be identical, as long as
blocked-set semaphore operations are in use. We do not wish to consider a mutual
exclusion system as asymmetric if the only difference between processes is the
process number used for queueing purposes within blocked-set semaphore operations.
Another reason why the definition cannot be made in this way is that whereas
transitions in process / refer to one set of local variables, the transitions in process j
refer to another. We do not wish to consider the system asymmetric if the only
difference between processes i and j is that wherever process i refers to the local

variable ¥, process j refers to the corresponding local variable .

On the other hand, the definition of a symmetric mutual exclusion system must
include the proviso that the local variables of one process have the same values in
the initial state as the local variables of any other process. If this were not the case,
then in the initial state, the local variables of each process could encode a process

“identity". This identity could then be used by a process to select between different



' [

synchronization protocols. Thus, although the solution would be superficially
symmetric, in essence it would be asymmetric. These ideas are incorporated into the

following definitions:

Definition 3.2 - Processes / and j in a mutual exclusion system I' are
structurally identical if there is a graph isomorphism from 51':1“ to Ef; that

preserves the gritical place, the noncritical place, and semaphore operations.

We will indicate corresponding places and transitions in structurally identical
processes by following a notational convention in which the process numbers are used
as superscripts to the variables denoting the places and transitions. Thus, if ¢/ and ¢
denote a place and transition in process i, then p/ and # denote the corresponding

place and transition in the structurally identical process j.

It is convenient to define when two states "look the same" to some process in
a mutual exclusion system. Informally, this occurs when the token for the process is
at the same place in its graph in both states, and all global variables and variables
local to the process have the same values in one state as they do in the other.
Related to the concept of two states "looking alike" to a single process is the notion
of a single state that "looks alike" to structurally identical processes in a system.

The following definition captures both of these ideas.

Definition 3.3 - Suppose processes i and j in a mutual exclusion system T'
are structurally identical. If ¢ and g are states, then we say that g looks
to process i as q" looks to process j (written ¢ =; ¢’} if:

(1) For al! 7 € ®p, ¢(7) = ¢'(P)

(2) For all v e G, ¢(v) = ¢'(¥)

(3) For all ¥ e -ﬂ]f': g(v¥) = ¢'(¥)




- 48 -

If ¢ 7~; 9 then we say that state ¢ looks alike to processes { and j. If
g =; 9 then we say ¢ looks like ¢’ to process i.

Note that for any processes i, j, and &, and states ¢ q,and g";
M g=q
) g=q'iffqg" = ¢
() If g =i g and ¢’ ~x ¢ then g =, ¢"

Two structurally identical processes i and J will be said to be similar if each
transition (' in process i has the "same effect” as the corresponding transition # in
process j. If r and ¥ are both transitions in a semaphore operation, then "same
effect” is defined by condition (1) of Definition 3.4 below. Condition (1) states that
the only difference between the labels of £ and # is that wherever ¢ refers to the
process number /, transition # refers to the process number j Condition (2) defines
"same effect" if ¢ and # are not part of semaphore operations, and states that the
two transitions must have similar effects when fired from states that look the same.

Note that similarity of processes is an equivalence relation,

Definition 3.4 - Two structurally identical processes / and Jj in a mutual
exclusion system I' are similar if for each pair ¢ € 5{- and ¢ g 3{- of
corresponding transitions, either:
(1) Both  and ¢ are part of semaphore operations, and there exist
functions B: N % ﬂl" ~> {true, false] and F: N X ﬂr —>
(Op > VAL) such that for all states g
(a) Bi(q) = B(i, )
(b) B,i(g) = B(j, q)
(c) Filq) = FUi, q)
(@) Fylg) = F, g)
or (2) Neither ¢ nor # is part of a semaphore operation, and for all



gz

states ¢ and ¢ such that ¢ =, ¢":
(a) Bi(q) = B,i(q)
(b) (FA@)(¥) = (Fyi(g"))(v) for all v € Gp
(©) (FAP)¥) = (Fi(gN(¥) for all ¥ € Ef-

The following lemma is the basic property of similar processes, upon which we

will base most of the results of this chapter.

Lemma 3.5 - Suppose processes i and j are similar processes in a mutual
exclusion system I'. Let f be a transition for process i, not part of a
semaphore operation, and suppose that ¢ and ¢ are states such that ¢ =
g'. If r is enabled in state g then ¢ is enabled in state ¢’, and
nxi(g, r) =; nxi(q’, ).

Proof - Suppose ' is enabled in state g¢. This means that the token for process i is
on the input place for transition r in state ¢. By the fact that ¢ = g’y and since
processes i/ and j are similar, and hence have isomorphic graphs, we know that the
token for process j must be on the input place for transition # in state ¢'. By
Definition 3.4 we know that B(q) = B(¢’), and hence transition # is enabled in
state ¢’. Using Definition 2.2 and the fact that processes i and j have isomorphic
graphs we have that

(1) (nxr(g, H)(P) = (nxi(g’, H)(P) for all p € P
In addition, Definition 3.4 implies that

(2) (nxt(g, ))(v) = (nxt(q’, £))(y) for all v € gl"'

(3) (nxi(g, £)(¥) = (nxi(g’y H)(¥) for all ¥ € Sp.
Hence nxi(q, 1) =i nxt(q’, ¥). B




- 50 -

Definition 3.6 - A mutual exclusion system is symmetric if for every two

processes / and j

(1) Processes i and j are similar

(2} q; ,‘=J q;

We will denote the class of all symmetric mutual exclusion systems by S¥M.

3.2.3 No Memory

We will see in Chapter 4 (Example 4.3) that restricting our attention to
NBW N SYM gives us no more resolution of the differences between the types of
semaphores than if we examine the larger class NBW. The reason for this, which is
the central idea behind Example 4.3, is that any asymmetric solution to the
starvation-free mutual exclusion problem in NBW may be used to construct a
symimetric solution that is also in NBW. This construction requires the introduction
of an additional semaphore variable, and an additional local variable in each process.
Processes use the additional local variable to "remember" information about their
synchronization history while they are in the noncritical region. We will say that a
mutual exclusion that does nor use local variables in this way has no memory and use

NM to denote the class of all such systems. The precise definition of "no memory"

may be given as follows:

Definition 3.7 - A mutual exclusion system I' has no memory if for each
process i, local variable v for process i, and reachable state ¢ such that

process { is in the noncritical region in state ¢, g(¥) = g,(v).

That is to say, whenever a process is in the noncritical region, its local variables have
the same values as they do in the initial state g;- It is obvious that this implies that

the local variables cannot be used to "remember" information about past

synchronization history.



]

Although there is no apparent reason why having no memory is a property of
particularly "good" solutions to the mutual exclusion problem, it is pointed out in
[BURNS79] that practically all solutions to the mutual exclusion problem in the
literature have this property. We will see later on that within the class SYM n NM,
weak binary semaphores are strictly "weaker" than blocked-set binary semaphores,

when their ability to implement starvation-free mutual exclusion is compared.

Note that it is not interesting to impose the requirement of no memory unless
we also require symmetric solutions. This is because, in the absence of the
assumption of symmetric solutions, global variables may be used to "simulate" the
effect of local variables, by assigning each process some "private" global variables,
which it alone can access. State information local to each process may then be
stored in these variables. The requirement of symmetric solutions prohibits private
global variables, since each process in a symmetric solution must access global

variables in the same way as any other process.

3.3 Summary of Results

The results of this thesis are summarized below:

(1) If no restrictions are placed on the set of mutual exclusion systems allowed
as scg]utinns, then the starvation-free mutual exclusion problem can be
solved without semaphores (Section 3.1).

(2) There are no semaphore-free solutions to the mutual exclusion problem in
either SYM or NBW (Theorems 3.8 and 3.12). That is, requiring solutions
either to be symmetric or to have no busy-waiting is sufficient to eliminate
semaphore-free solutions.

(3) There exists a solution in NBW to the starvation-free mutual exclusion
problem using either weak binary or weak general semaphores (Example
4.2). Although this solution is asymmetric, a simple transformation yields a
solution in NBW N SYM (Example 4.3). This solution, however, is nof in




e

NM. Thus, although requiring solutions to be symmetric and have no
busy-waiting eliminates the possibility of semaphore-free solutions, it does
not rule out solutions that use weak semaphores.

(4) There exists a solution to the starvation-free mutual exclusion problem in
NBW N SYM N NM, using either blocked-set binary or blocked-set general
semaphores (Example 4.1). Thus the requirements of symmetry and no
busy-waiting do not rule out solutions that use blocked-set semaphores
either.

(5) There are no solutions to the starvation-free mutual exclusion problem in
S¥YM n NM, which use weak binary semaphores (Theorem 3.14). In
conjunction with (3), this result shows that although either weak binary or
weak general semaphores can be used in a solution to the starvation-free
mutual exclusion problem that is symmetric and has no busy-waiting, it is
necessary to use "memory" to accomplish this. Together with (4), this
result shows that weak binary semaphores are strictly "weaker" than either
blocked-set binary or blocked-set general semaphores.

(6) There are no solutions to the starvation-free mutual exclusion problem in
NBW n SYM N NM, that use weak general semaphores (Theorem 3.17).
However, there is a solution for two processes in the larger class SYM n
NM (Example 4.4). Although it is unknown whether a solution exists in
this class for more than two processes, any such solution must make use of
local variables (Theorem 3.21). Thus, although weak general semaphores
are slightly more "powerful" than weak binary semaphores, they are still

strictly "weaker" than either type of blocked-set semaphores.

Figure 3.2 summarizes the results concerning the existence, in various restricted
classes of mutual exclusion systems, of solutions to the starvation-free mutual

exclusion problem using each of the four types of semaphores. A "Y" entry in the



-53-

table indicates the existence of a solution, an "N" indicates that no solution exists.
The "2" indicates that a solution for two processes is known to exist, although
whether a solution exists for more than two processes is an open question. Four of
the eight possible combinations of NBW, SYM, and NM are omitted from Figure 3.2.
The reasons are the following: The unrestricted case is covered by (1) above; NM
and NBW 1 NM are eliminated by the observation in the previous section that
requiring no memory is useless unless symmetric solutions are also required; and
finally, it was previously observed that any solution in NBW may be transformed

into a symmetric solution, thus eliminating case NBW N SYM.

Let us now proceed to the statement and proof of our results.

3.4 Every Semaphore-Free Solution Has Busy-Waiting
If @ = fgf; .. is an execution sequence for a parallel program, then let
seq(ex, i, j) denote the subsequence f;f;, s .. i1 ofa,ifi>jorAifi=j Ifais

infinite, then let seg(a, i, ©) denote the infinite suffix r;t;, 7 ... , of a.

Theorem 3.8 - Every semaphore-free solution to the mutual exclusion

problem has busy-waiting.

Proof - Let I' be a semaphore-free solution to the mutual exclusion problem. By
Definition 2.7, all processes are in the noncritical region in the initial state for T'.
Since T' has no semaphores, every process has exactly one transition enabled in any
reachable state. There is therefore a unique infinite initial execution sequence e« for
process 1, and it is easily seen that « is valid. (An execution sequence for process 1
is defined as an execution sequence consisting solely of transitions for process 1.)
Because I' is assumed deadlock-free, it follows that a contains a finite prefix

&,y = seq(a, 0, m), such that process | is in the critical region in state nxi(g,, a,,)-




-54 -

NBW - - NBW

- SYM SYM SYM

- - NM NM
Weak Binary TIRER : Y N N
Weak General - X X 2 N
Blocked-set Binary | 'S Y Y Y
Blocked-set General | ¥ ¥ Y b ¢

Figure 3.2 - Relative "Power’ of the Various Semaphore Primitives



- 55.

Now, corresponding to each n > 0 is a unique finite execution sequence 8, of
length n, such that B, is an execution sequence for process 2 from nxi(q,, a,y)-
Hence for any n, the sequence a, 8, is a valid initial execution sequence for I'. By
the structure of the graph for process 2, and by the assumption that I' has the
mutual exclusion property, process 2 must be in the trying region in state
nxt(q,, &,,seqB,, 0, j)) for all jwith 0 < j < n. Since n may be chosen arbitrarily
large, I" has busy-waiting. §

3.5 There Are No Semaphore-Free Symmetric Solutions

It was mentioned above that any solution to the mutual exclusion problem in
SYM must use semaphores. The proof of this statement (Theorem 3.12) below
depends in an essential fashion on an important property of symmetric mutual
exclusion systems, which states that under certain conditions, two similar processes
may execute in "lock-step” fashion, alternating the firing of corresponding transitions
in their respective graphs. Each of the two processes executing in this way is
"unaware" of the presence of the other. In fact, in some situations it is possible for
two processes to execute in lock-step all the way from their noncritical regions to
their critical regions. This hints that the idea of lock-step execution might be used
as a technique for showing that a mutual exclusion system does not have the mutual

exclusion property.

In this section, we will formalize the notion of lock-step execution of two
processes, and will then apply it in the proof of Theorem 3.12. Before we can do

this, however, we must prove a slightly generalized version (Lemma 3.10) of Lemma
3:5.

Definition 3.9 - Let i and j be structurally identical processes in a mutual
exclusion system T, and let ¢ and ¢’ be states. Let UV c Gp u -ﬂf- We
say that g =, ¢" except possibly for variables in Vif:




- 56i-

(1) (%) = ¢'(P) for all /' € Pp
(2) g) =g’ forall ve Gp —V
(3) g(¥) = ¢'(¥) for all ¥ € £p — V.

Lemma 3.10 - Let / and j be similar processes in a mutual exclusion
system I'. Let ¢ be a transition for process i, not part of a semaphore
operation, and let ¢ and ¢" be states such that ¢ = g’ except possibly for
variables not depended on by . If £ is enabled in state g, then ¢ is

enabled in state ¢', and nxi(g, r) =, nxi(q’, ¥) except possibly for variables
not affected by 1.

Proof - Suppose ¢ is enabled in state ¢. By Definition 3.4, transitions £ and ¢
affect and depend on the same global variables. In addition, a local variable ¥ € 31:
is affected (depended on) by ¢ if and only if v/ is affected (depended on) by #. Let
90 91 - » 4, be a sequence of states, with 99 = ¢ and ¢, 7/~ @ such that for
0 < 7/ < n, state g; is identical to 9;. except for the value of a single variable not
depended on by . Such a sequence can be constructed since the set of variables not
depended on by # is finite. By Lemma 3.5, / is enabled in state g, and
nxt(g, r) =; nxi(qp #). Now, by Definition 2.4, for 0 < i < m:
(1) B,i(g;) = B(g;,); and
(2) (Fuig)(v) = (Fi(g;.))(¥) for all variables v affected by #.
Hence B/i(q") = B,i(g,) = true, and for all variables v affected by 7, (FalgN(v) =
(F(gp)(¥) = (nxt(q,, #))(¥). Therefore, ¢ is enabled in state ¢’, and
(3) (nxe(g’, PN() = (nxi(g, D)) = (nxe(g, A))(¥) for all v € Gr affected
by ¢; and
(@) (nxt(g’, D)) = (nxt(gp D)) = (nxi(g, D)) for all ¥ € L affected
by 7.



o

Hence nxi(qg, 1) =i nxt(q’, ¥) except possibly for variables not affected by . B

If processes J and 2 in a mutual exclusion system are similar, and if
a = [{jf} ... is an execution sequence for process 1, then let alt(a, i, j) denote the
sequence ({1}, it 1 .. f}_‘rfj-_f, if j > i, or A, if j =i The following lemma
formalizes the notion of lock-step execution. Although it requires that the sequence
of transitions to be executed in lock-step include no transitions that are part of

semaphore operations, this restriction will be eased in Lemma 3.15.

Lemma 3.11 - Let I" be a mutual exclusion system of N > 2 processes,
and suppose processes 1 and 2 in I' are similar. Suppose further that a =
tpt} - 1,7 is an execution sequence for process 1 from a state gp with
corresponding state sequence gpq; . ¢,y If g9 /=, 9o then the execution
sequence f = ali(a, 0, m) is also an execution sequence from g provided
that « contains no transitions that are part of semaphore operations. In
addition, if g, = nxt(gp B), then ¢, =, Gp» 9 /=~; 9pp and

9 () = @, (s) for all semaphore variables s.

Proof - Suppose a contains no transitions that are part of semaphore operations.

The proof is by induction on the length of a.
" Base: 1f a = A then the Lemma holds trivially.

Induction Step: Suppose the Lemma holds for all sequences of length less than m,
for some m > 0, and suppose a is of length m. Then application of the inductive
hypothesis to the prefix seg(a, 0, m-1) of a shows that alt(a, 0, m-1) is an execution
sequence from gp If g, ; = nxtgp altla, 0, m-1)), then ¢, ;1 =, Im-p

Im-1 =1 G- 04 G py_1(8) = q,y,_;(s) for all semaphore variables s.




LTI

To complete the proof, we will show that alt(a, m-1, m) = Lt J is an
execution sequence from ¢, 5, and if ¢, = nxfq,. 5 t.t3) then
Im =2 9m and ¢, =, 9m- Note that since g, ;(s) = Gm-7(s) for all
semaphore variables s, and r_,;'l_ jand 1 7 do not affect any semaphore variables by

hypothesis, it must be the case that ¢ m(s) = Gy (5) for all semaphore variables s.

Since ¢,,. ;1 /=, Gm.p by Lemma 35 ) ; is enabled in 9m-p» and if
G m-] = NXHG s f;;’.,.h;}. then ¢, ; =, g, The remainder of the proof is split

into two cases, depending upon whether "ri:— 7 affects a global variable or not.

Case 1: 1If 1] _; affects no global variables, then 9m-]1 7=~; 9m-;- Hence, by
Lemma 3.5, 1], ; is enabled in state ¢ m-1» and if g = nxt(q,, 5 17 ;), then
9m 7=~; 9m-;- Furthermore, since 1, _, affects no global variables, neither does
{m-g» and hence ¢, =, ¢, 1 =, g, Thus since ¢,, =, Im-1 204 G0y /=,
gy We have that g, =, ¢,.

Case 2: 1If 1, ; affects a global variable g, then neither tpy-7 Mor t7_; can depend
on any global variables. Hence ¢, ; =, ¢,,.; except possibly for variables not
depended on by r,},_;. But then by Lemma 3.10, H,; is enabled in state ¢,,_;, and
if g,y = nxt(q 1 t,.1) then g, =, g, 1, except possibly for the values of
variables not affected by r,{,_;. This means that ¢, (g) = q m-1(g) and since g is
the only global variable affected by t,f,_f, we know that ¢, =, 9.1 =, On
That is, even though 1, ; affects g, when fired from state ¢ m-] it assigns the same
value to g as transition /), ; did when fired from state ¢ m-]- Also, if v € -Blf- is
not affected by ¢, _; then ¢, (V) = Im-1V) = g (¥) = Im-1(V) =
9 m-1(v") = g (v)). Hence g, =, .1, and therefore g, =1 9m B



- 50.

Theorem 3.12 - Every solution to the mutual exclusion problem in SYM

uses semaphores.

Proof - Suppose I' is a solution to the mutual exclusion problem that is in SYM but
uses no semaphores. As in the proof of Theorem 3.8, there is an initial execution
sequence a,, = Ijhth .. 1 s for process 1, such that process 1 is in the critical
region in state g,, = nxt(q,, a,,). By Definition 3.6, g, ,=, ¢,. Application of
Lemma 3.11 shows that 8 = alt(a, 0, m) is an initial execution sequence for T, and
that if ¢, = nxt(q,, B), then ¢, =, 4, 30d ¢, =, G, But this means that
processes 1 and 2 are both in the critical region in state ¢,,, a contradiction with

the assumption that I' has the mutual exclusion property. B

3.6 Symmetric Weak Binary Semaphore Solutions With No Memory

In this section we will show that there are no symmetric solutions to the
starvation-free mutual exclusion problem that use weak binary semaphores, and have
the "no memory" property. Before proving this statement (Theorem 3.14), we must
first introduce Lemma 3.13, which gives conditions relating two states gg and ¢
sufficient to ensure that an execution sequence from g is also an execution sequence
from ¢y Lemma 3.13 applies only to mutual exclusion systems with weak binary
semaphores, however later on we will state a version (Lemma 3.16) applicable to

systems with weak general semaphores.

When we discuss systems with weak semaphores, note that we may, without
confusion, make the statements "transition r is a P operation on a semaphore
variable s", or "transition r is a V(s) operation". This is because each weak
semaphore operation contains only a single transition. Also note that in a system

with weak semaphores, there are no synchronization variables other than semaphore

variables.



- 60 -

Lemma 3.13 - Let ' be a mutual exclusion system with weak binary
semaphores. Suppose a« is an execution sequence for process 1 from a state
90 If g is a state such that 90 /=; 90 and if gp(s) > gg(s) for all s €

Sp, then a is an execution sequence from g0 as well.

Proof - Note that it suffices to prove the Lemma for finite sequences a, since if a
is infinite, then application of the finite case shows that any finite prefix of &« is an

execution sequence from ¢, and hence a itself is an execution sequence from ¢,

The proof for the finite case is by induction on the length of a. However, it is
convenient to prove a somewhat stronger result, namely in addition to proving that «
is an execution sequence from g, we will show that if 9m = nxt(gp a) and g, =

nxi(q g @), then gy, =, ¢, and ¢, (s) > gy (s) for all s € 8pn.

Base: If @ = A, then the result holds trivially.

Induction Step: Suppose the result holds for all sequences of length less than m, for
some m > 0, and suppose a = 1ol ... I, 7 1s of length m. Then application of the
inductive hypothesis to the prefix seg(a, 0, m-1) of & shows that seg(a, 0, m-1) is an
execution sequence from ¢ and if Im-1 = nxi(gp seg(e, 0, m-1)) and Im-1 =
nxi(q g seq(a, O, m-1)), then g, ; =, Im-1 and g ;(s) > Gm-7(s) for all 5 €
Sp. It remains to be shown that fm-1 i enabled in state ¢, _;, and if g,, =
nXqp_ s t1n-p) and g, = nxNqG p_ps L) then Om =; 9m and g ,,.(s) > 9 (8)
for all s 51- The proof of this is split into three cases, depending upon whether

17 1s a P operation, a V operation, or neither.

Case I: Transition t,,_ 7 is neither a P operation nor a ¥ operation. Then Lemma
3.5 shows that r,, ; is enabled in state 9m-; and that g, =, Gm Since 1, ;
affects no semaphore variables, we know that for all s € 81, g () = g, 1(9) >



- 6] -

G- 1(5) = Gp(5).

Case 2: Transition f,,_; is a V operation on a semaphore variable 5. Then 1,,_; is
enabled in state g,,_; because 7, ; is enabled in state ¢, 1, Gpy-7 /~=; 9 m-» and
the enabling predicate of a weak V operation is always true. Now 1,,,_; affects only
5 and hence ¢, =, ¢, Also g,,(5) =1 = ¢,,(5) and for all s € 8p with s 5% 5
we know that ¢,,(s) = q,,_1(s) = qp,_j(5) = g,,,(s).

Case 3: Transition f,, ;is a P operation on a semaphore variable 3. Then 7,,,_; is
enabled in state q,,_; if ¢,,_;(5) > 0. But since 7,,_; is enabled in state -1 We
know that g, ;(5) > 0. Since g,,_;(5) = g, ;(5), we know that Gm-73) > 0 as
well. Since 7, ; affects only 5 we have that ¢, =, ¢,, and that for all s € 31‘
with s # 5 ¢,,(s) = ¢,,(s) as in Case 2. In addition ¢,,(3) = ¢, ;(5) — 1 =
Im-105) — 1 = g,,(3). §

Theorem 3.14 - There is no solution to the starvation-free mutual

exclusion problem in §YM N NM that has weak binary semaphores.

Proof - Suppose I' is a solution to the starvation-free mutual exclusion problem that
is in SYM n NM. Suppose further that I' has weak binary semaphores. We will
construct an execution sequence for I' that starves process 2. Since this contradicts

the assumption that ' is starvation-free, we conclude that I' cannot exist.

Now, the assumption that I' is deadlock-free may be used to show that there is
a unique infinite initial execution sequence a for process 1, in which process 1 enters
and exits its critical region infinitely often. Let gpg; .. be the state sequence
corresponding to a. Define the indices ncry, nery, ... , and crp, cry, ... as follows:

(1) Let ncry = 0, and let cry be the least j > 0 such that process 1 is in the

critical region in state 95



<62

(2) For each i > 1 let ncr; be the least j > cr; ; such that process 1 is in the

noncritical region in state 95 Similarly, let cr; be the least j > ner; such

that process 1 is in the critical region in state g

Let us first show that for each i > 0, seq(a, nery cry) contains at least one P
operation. To see this, suppose there were no P operations in seg(a, nery crp) for
some i. Because T is in SYM N NM, we know that processes 1 and 2 are similar,
and that ncr, =2 Incr; Application of Lemma 3.11 shows that alt(a, ncrj, cr;) is
also an execution sequence from q”";’ and that if ‘?r':rf = mfr{q"c,; alt(a, ncry, cry))
then q‘:—"; = q{".n and ‘T::.'r, =1 Yer; Hence processes 1 and 2 are both in the
critical region in the state qé’;‘ a contradiction with the assumption that I' has the

mutual exclusion property.

Thus each seg(a, ncrj, cr;) must contain at least one P operation. Let the
indices p, py, ... be defined so that r;;i is the first P operation in seg(a, ncr;, cr)),
and let s; be the corresponding semaphore variable. Since 81- is finite, but there are
infinitely many s; there must be one semaphore variable 5, such that s; = § for
infinitely many /. Let k be the least i for which s; = 5. We will now show that
B = seq(a, 0, ncrp)alt(a, ncry, pp)seq(a, py, ©0) is an initial execution sequence for T'
that starves process 2.

Obviously seg(a, 0, ncrg) is an initial execution sequence for I'. Now
seq(ee, ncry, py) contains no P operations and q,mi = qrm,.i. Application of
Lemma 3.11 shows that alt(a, ncry, pg) is an execution sequence from state ncr,:
In addition if q;',* = ""”{‘?ncrk' ali(a, ncry, py)), then qi._.* =3 q;,i and ﬁ’k =19,
Thus both processes 1 and 2 are at the input place for a P(5) in state q;,*. In
addition, all semaphore variables have the same values in state q;,k as they do in
state state qpi. Lemma 3.13 therefore shows that seg(a, Pja ©) is an execution

sequence from ¢ 4;’:: for I'. Thus f is an infinite initial execution sequence for T'.



B

To show that f starves process 2, note that process | enters and exits its
critical region infinitely often in B, while process 2 remains forever in the trying
region at the input place for a P(5). Since seg(a, pj, o) contains infinitely many
P(5) operations, and each P(3) sets § to zero, process 2 is disabled infinitely often in
8. The sequence f is therefore a valid execution sequence in which process 2 starves.

This contradicts the assumption that I' is starvation-free, and we conclude that T

cannot exist. &

3.7 Symmetric Weak General Semaphore Solutions With No Memory

Theorem 3.17 in this section shows that any weak general semaphore solution
to the starvation-free mutual exclusion problem that is in S¥YM N NM cannot be in
NBW. Before we can prove this though, we need versions of Lemmas 3.11 and 3.13

that apply to execution sequences containing weak general semaphore operations.

Recall that Lemma 3.11 gave conditions under which two similar processes
could execute a sequence of transitions in lock-step. However, Lemma 3.11 only
applies if the sequence of transitions contains no tranmsitions that are part of
semaphore operations. This is too restrictive for systems with weak pgeneral
semaphores, since even semaphore operations can be executed in lock-step, as long as

the values of the semaphore variables are "great enough." Lemma 3.15 below makes

this idea precise.

If « is a finite sequence of transitions for a mutual exclusion system with weak
general semaphores, and if s is a semaphore variable, then define the index of a with
respect to s, denoted ind(s, a), to be the number of P(s) transitions in @ minus the
number of V(s) transitions in a. The notion of the index of a sequence of
transitions is useful for the following reason: If g is a state, @ is an execution
sequence from ¢, and s is a semaphore variable, then (nxit(g, a))(s) =
g(s) — ind(s, a).




- 64 -

Lemma 3.15 - Let ' be a mutual exclusion system of ¥ > 2 processes
which has weak general semaphores, and suppose processes 1 and 2 in I' are
similar. Suppose further that @ = fj¢] ... 1, ; is an execution sequence
for process 1 from gp, with corresponding state sequence gpg; ... g,y If
90 /~, 9p then the execution sequence § = al(a, 0, m) is also an
execution sequence from ¢, provided that for all s € Sp and 0 < j<m,
qgls) — 2-ind(s, seg(a, 0, j)) = 0. In addition, if ¢, = nxt(gp ), then
Im =2 9m 9m =, Gpp and for all s € 31-. 9 m(8) = gp(s) — 2-ind(s, a).

Proof - Suppose that for all s 51- and 0 < j < m, qg(s) — 2+ind(s, seg(a, 0, j)) =
0. The proof is by induction on the length of a.

Base: If @ = A then the Lemma holds trivially.

Induction Step: Suppose the Lemma holds for all sequences of length less than m for
some m > 0, and suppose a is of length m. Application of the inductive hypothesis
to the prefix seg(a, 0, m-1) of a shows that alt(a, 0, m-I) is an execution sequence
from gg If ¢, ; = nxt(gqp alt(a, O, m-1)), then g, 1 =, Gpy.7 204 G 1 =,
@p-7- In addition, for all s € SI‘* 9 m-1(8) = ggls) — 2ind(s, seg(a, 0, m-1)).

To complete the proof, we will show that alt(a, m-1, m) = tg,_jt7_; is an
execution sequence from q,,_;, and if g, = nxf(q, 1 tmis) then ¢ =, ¢,y
and ¢,, /=, 9, In addition, we will show that ¢ m(8) = go(s) — 2-ind(s, &) for all

s € Sp.

There are three cases, depending upon whether £}, ; (and hence 13, ;) is a P

operation, a V operation, or neither.

Case I: Transition 1}, ; is not part of a semaphore operation. In this case, an

application of Lemma 3.11 completes the proof.



654

Case 2: Transition r,;,_ 7 is a V operation on some semaphore variable 5. Since the
enabling predicate of a V operation is always true, it is clear that f;;:-ff;fa-f is an
execution sequence from ¢,,_; Now, tp,.] and t3,_; affect only the semaphore
variable 5. It therefore follows easily that ¢, =, ¢,y and ¢, =, ¢ m- The effect
of executing 1.,_jt2_; is simply to increment § twice. Hence for all s € 8p with
5 5% 5 q(s) = g 1(8) = qg(s) — 2+ind(s, seq(a, 0, m-1)) = qgls) — 2+ind(s, a).
Also g (5) = g () + 2 = qos) — 2+ind(, seqla, 0, m-1)) + 2 = ¢g(5) —
2+ind(s, a).

Case 3: Transition 1}, ; is a P operation on some semaphore variable 5. Now, by
assumption gp — 2¢ind(, a) > 0 But since g¢,,./6) = g9 —
2+ind(3, segla, 0, m-1)) = g9 — 2.ind(5, &) + 2, we have that ¢,,_;(5) = 2. But
this means that 17, f2_ is an execution sequence from ¢, ;. Since ty.g and
17, affect only 3, we know that ¢, =, ¢y, and ¢, =, gy 35 in Case 2. Also
as in Case 2, ¢ ,,(s) = gg(s) — 2+ind(s, &) for all s € 8p with s 5 5. Finally, ¢,,(3)
= G, (5) — 2 = qgs) — 2eind(s, seqla, 0, m-1)) — 2 = qg(§) — 2indG, a). B

Lemma 3.16 - Let T’ be a mutual exclusion system with weak general
semaphores. Suppose a is an execution sequence for process 1 from a state
g. If ¢’ =, q and if ¢'(s) — ind(s, seqe, 0, j)) = O for all s € 8p and

0 < j < length(a), then a is an execution sequence from ¢° as well.

Proof - The proof, which is quite similar to the proof of Lemma 3.13, is left to the
reader. B

Theorem 3.17 - Any solution to the starvation-free mutual exclusion
problem that has weak general semaphores and is in SYM N NM, also has

busy-waiting.



- 66 -
The construction in the proof of this theorem is somewhat more involved than
those that have appeared so far, and it will be convenient first to separate out some

reasonably independent ﬁarts of the proof as Lemma 318, Lemma 3.19, and
Corollary 3.20.

For the remainder of this section, let T' be a solution to the starvation-free
mutual exclusion problem that has weak general semaphores and is in S¥YM N NM.
Let @ = r{r} ... be the (unique) infinite initial execution sequence for process 1, and
let the indices ncrj, nery, .. , and Cry €rp, ... be constructed as in the proof of
Theorem 3.14. Let go9y - be the state sequence corresponding to the execution
sequence a. If s € SI‘? then let #P{s}ﬁ- J) denote the number of P(s) operations in
the subsequence seg(e, i, j) of a. Let ind(s, i, j) abbreviate ind(s, seg(a, i, M.
Define val(s, i, j) = g{s) — 2+ind(s, i, j). Intuitively, val(s, i, j) represents the value
that the semaphore variable s would have if processes 1 and 2 were to execute the

"lock-step" execution sequence alf(a, i, j) from state q;

We will now investigate some properties of the execution sequence a. The
intuition behind Lemma 3.18 below is that if processes 1 and 2 begin executing in
"lock-step" from state q”“';' for some i > 1, then there must be some P operation
before both processes reach the critical region, where the processes are forced to
"split up".

Lemma 3.18 - For each i > | there exists a number split, which is the
least j, ncr; < j < erp, such that rj- is a P operation on some semaphore s
with val(s, ncr; j) < 2. Moreover, if §; denotes the semaphore variable on
which r;Fﬁ"; operates, then val($; ncry, split) = 1.

Proof - If val(s, ncry, j) > 2 for each j with ner; < j < cry and rj; a P operation

on some semaphore variable s, then we could apply Lemma 3.15 to show that



- 67 -

alt(a, ncry, cry) is an execution sequence from g,... Since this means that processes
1 and 2 would both be in the critical region in state ”x’(‘fncr; all(a, ncry cry), it
must be the case that there is at least one j with ner; < j < crj and fj aP
operation on some semaphore s, such that val(s, ncry j) < 2. Let split; be the least

such j, and let §; be the corresponding semaphore variable.

It remains to be shown that val($; ner;, split}) % 0. Suppose the contrary. By
the construction of split; in the preceding paragraph, we know that val(s, nerj, j) = 0
for all semaphore variables s and all j with ncr; < j < split; We may therefore
apply Lemma 3.15 to show that ali(a, ncr, split;) is an execution sequence from
‘-'?ncrf: Furthermore, if we let q:’F"f’; = "-’"(‘?ncr; ali(a, ncrp splity)), then
'?ispﬁr‘.(ff} = (. But processes 1 and 2 are both at the input place for a P(5;) in
state ‘F;Pf”,-’ and hence are deadlocked. This is a centradiction, and we conclude

that val(§, ncry split;}) =1 as asserted. §

Processes 1 and 2 can execute the sequence alt(a, ncr;, split;) from Iner, before
being forced to split up, but there is no guarantee that process 1 will be able to
continue alone unhindered. We would like an answer to the question of how far it
is "safe" for processes 1 and 2 to execute in lock-step from Tner; if process 1 is then
to continue alone unhindered. The answer to this question depends upon how great

the values of the semaphore variables are in state Tncr; and is given by Corollary
3.20 below.

Lemma 3.19 - Let i > 0 and let ¢: 8p > N, with the property that g£s)
= c(s) for all j = ner; Then there exists a number safe, which is the
least j, ncr; < j < split; such that transition r. is a P operation on some

J
semaphore variable s, and ind(s, ncry j) = c(s).

Proof - It suffices to show the existence of one such j, We break the proof into



three cases.
Case 1: ind(Sp ncrp, split}) = o($)). In this case, let j = split;and s = §;.

- Case 2: ind($ ncr, split) < c(§). By the definition of split; we know that
val($;, nery, splity) = qnm(!,-} — 2eind($} ner;, split;) = 1, and hence

(1) qﬂcr_l:f’-) — fﬂd{fﬁ nery IF!H'I = fna‘(fﬁ ncry, .i'pl'HI] + 1
Since dP”’; is a P($;), we know that '?spﬂr., +1(8) = ?:pfff‘“i) = 1> «($;). Hence

o(§) < quﬁ&(fﬂ -1
= g,m;{f,-} — ind($ nery split) — 1
= ind($}y nery, splity), by (1)
< (), by the assumption defining Case 2

This is a contradiction, and we conclude that Case 2 is impossible.

Case 3: ind($p nery split) > o(§). Let I(j) abbreviate ind($; nerp j) and let the
predicate Q(j) be true iff I(j) < c(§;). Since I(ncr) = 0 we know that Q(ncry) is
true. Now, suppose Q(j) is true for some j with ner; < j < cr;. If r} is not a P(§),
then Q(j+1) is true. If 1} is a P(8), then Q(j+1) is false iff J(j) = o(8)). Since
Q(split) is false and Q(mcr;) is true, this means that there must be a j with
ner; < j < split;, such that fj- is a P(§;) and I(j) = ind($ ncry j) = o($). This
completes the proof. ¥

Corollary 3.20 - If norp < j < safe, and if ¢ J =
nx((qpe,, alt(a, nerj j)) then seg(a, j, ) is an execution sequence from ¢

Proof - The Corollary is proved by an application of Lemma 3.16 after observing



- 69 -

that for all s € 8p, ¢(s) > ¢{(s) — ), and for all k > j gfs) — ind(s, j B =
cls). B

Proof of Theorem 3.17 - We will show that I' has busy-waiting by showing the
- existence of a semaphore variable 5 such that for any M > 0 there is an m > 0 with
#ps(nerpy, cry) > M. This will be accomplished as follows: We will show the
existence of a sequence of functions cg, ¢y, ... mapping &p to N such that:
(1) For all i = 0, ¢; < cj,p, where ¢; < ¢;,; is defined to mean that for all
semaphore variables 5, ¢{s) < ¢;,(s), and strict inequality holds for at

least one s.

Since there are only a finite number of semaphore variables, property (1) implies
that there must be a semaphore variable § such that c{(5) increases monotonically
with increasing /. We will show in addition the existence of a sequence of natural
numbers A(0), k(1), ... , with the properties:
(2) Forall i = 0, for all j > nCrkfip and for all semaphore variables s, qj(s) =>
c{s).
(3) For any n there is an m > n such that #P{i}{m’k{m » Tk(m }) = €,(3)

Properties (2) and (3) show that T' has busy-waiting, since given M > 0 we may
choose n such that c,(5) = M, then select m > n so that #P(i}{"”'k(m » Tk(m J) =

Cppy(3).

We now turn to the inductive construction of the functions (> and numbers

k(7).

Base: Define k(0) = 1, and let cy(s) = 0 for all s € si" Obviously, for all j >
nergqg)and all s € 8p, qs) = cgls).




0 =

Induction Step: Suppose for some i > 0 we have a function ¢; and number k() such
that for all j > nery ) and all s SI‘* qj(s} = cfs).

Lemma 3.19 and Corollary 3.20 show the existence of safey;p such that f =
alt(a, nCri iy .fafekm}swq(a, safekm @) is an execution sequence from q"""ﬁm for T'.
In 8, process 1 executes infinitely many critical regions while process 2 remains in
the trying region, at the input place for a P operation on some semaphore, call it ¥
If 8 were valid, then we would have a contradiction with the assumption that I' is
starvation-free. Hence 8 must not be valid. The only way for this to occur is if
there exists A(i+1) > k(i) such that q}(?;} > 0 forall j> ACTk(isd p where q} =
"ﬂ(q’“”km' alt(e, Acrkip :afekﬁ))seq{a, safexqp J))-  But since q}{’.s'*,-} > 0 and
q}(?;} = qj(?.",-} — ¢{3;) we have that ﬁ[?,-} = c{¥) + 1. Define ¢;, j(s) = c{s)
for all s € 8p with s 3¢ ¥; and define ¢iof(¥) = ¢(5) 4 1. This completes the
construction of ¢; ; and k(i+1) from ¢; and (7).

It is easy to see that the c; and k(i) defined in this way have properties (1)
and (2). To see that (3) holds as well, let § be the semaphore variable, whose
existence was argued above, such that ¢{5) increases monotonically with increasing .
It must be the case that for infinitely many i, 5 is the semaphore ?.’_,-. Since for eac}!
such i/, ind(, ncr k(i safekw) = ¢{5), and since #P{;.}(ncrkﬂ safekm} >
ind(s, nCri iy .rafekm}, property (3) holds as well. §

3.8 More on Weak General Semaphore Solutions

We have seen that any solution to the starvation-free mutual exclusion problem
that has weak general semaphores and is in SYM N NM, must also have
busy-waiting. In Chapter 4, we will actually exhibit such a solution for the special
case of two processes. Although it is unknown whether this solution extends to the
case of more than two processes, we conclude this chapter with a result that shows

that such a solution must make use of local variables.



i

Theorem 3.21 - Any solution to the starvation-free mutual exclusion

problem that has weak general semaphores and is in SYM N NM, must

contain local variables.

Proof - Suppose I' is a solution to the starvation-free mutual exclusion problem,
that has weak general semaphores and is in S¥YM N NM. Let us inherit all the
notation of the previous section pertaining to the execution sequence a« for T.
Suppose, to obtain a contradiction, that T' has no local variables. We will construct

an execution sequence for T' that starves process 2.

From among the numbers k(0), k(1), ... defined in the proof of Theorem 3.17,
select numbers m(0) < m(l) < .. , such that #P(i}{”f’mﬁ} saf‘emﬁ}} <
#p ()T minlp mfem.-’hf}] for all i > 0. Let a; = seg(a, ncrpy, gp safemﬁ)). Thus
the m(i) are chosen to make the number of P(5) operations in a; a monotonically

increasing function of /.

I . ;

Let @, be the set of all 1 € Jp such that r appears in a; and ¢ is a P
operation. Call the pair (1, t") a link in a; if ¢ and 1" are both in ﬂmﬁ} and ryt’ is a
subsequence of a; such that ¥ contains no P operations. The set of all links in a;

e = aaliibaged, of i ul ,
forms a chain x; = (1 ; f,.}){rrz, frj} {rH, ‘rj}' where Rl S 7 < T2 < -
< rj < safep iy Let B, be the set of all distinct links in # ;.

Now, by the construction in the proof of Theorem 3.17, given ¢ = 0 there
exists i > 0 such that the length of the chain =; is greater than or equal to c. If we
define ® = /im sup (Bm(r'} as i ---> oo, then there exists C > 0 such that i > C
implies that x; is composed solely of links in (. Because the number of P
operations in «; is a menotonically increasing function of i, this means that chains of
arbitrary length may be formed from links in B. However, since the total number

of transitions in 31-, and hence the total number of distinct links is finite, it follows




-T2

that B must contain a eycle y = (ugy up)(up uy) ... (ug.p» ug), of length k. In the
sequel, suppose all subscripts of u to be reduced modulo k: that i is, let w; = w; o k
for all /.

The remainder of the proof consists of the following:

(1) From among the numbers m(0), m(1), ... y select n(0) < n(1) < ..., such
that up € ﬂ’nrﬂ ) and for each i > 0 the link (u; u;, ) is in (Bnr’h I

(2) Select ay, ay .. , and by by .. , with nerpg) < bp < safe, n(0)
and ncrpm) < @ < b; < safeny) for each i > 0, such that r’ = up r[, =
Ui, j» and there are no P operations in seq(a, ai+l, b). That |s. for each i
>0, r" and r£ are the endpoints of the ith link (modulo %) in the cycle x.

We will then show that the sequence

8= seq{q, 0, ncrnl(aj)ﬂff(ﬂ, ﬂfrﬂrﬂ ) ﬁﬂ}.ﬂ'&}{ﬂ’, bo. a f)
al(a, ay, bp)seg(a, by, ay) ... al(a, a by)segle, by a;.p) ..

is an execution sequence for T' that starves process 2. The situation is diagrammed
in Figure 3.3

The selection of the aj b, and n(7) is performed inductively as follows:

Base: Choose (from among the m(7)) n(0) > C such that uy € an(ﬁ) and define by
so that nery ) < by < safe,) and ré, = ugp Since by < safe,) we Ty, 408
Lemma 3.15 to show that

B = seqla, 0, nCrp(o J)m'r(a, nerp(op bg)

is an initial execution sequence for I', and Corollary 3.20 to show that seg(a, by, o0)
is an execution sequence from nxi«(q,, By). If ¢ ‘;’u = nxi(g,, B ), then process 1 is at



S

DO | |
PRAEAHAAN | |
neT 1 (0) by Pp0) ©rL0)
| | 9. 0. 0.0.9.4 |
| | DLKAKANAN |
) Po1) by 8 mer, )
| BOOCK] | |
| PLAKAHAAANA] | |
nern(2) L) by Pn(2) Tn(2)
| | DOOOOEA |
| | POOOOA |
Tn(3) Pn(3) bg ag neT, (2

> (Execution Sequence o)

mg Processes 1 and 2 execute in "lock-step™

Figure 3.3 - Diagram for Proof of Theorem 3.21



7q4 -

the input place for transition rgﬂ in state ¢} , and ¢ é,ﬂ =29h -
o 0

Induction Step: Suppose, for some { > 0, we have chosen n(i) and b; such that
nCcrpm) < b; < safep ) and rj,; = u; Suppose further that we have shown that g jis
an initial execution sequence for T', such that if ¢ b = nxi(q,, B;), then process 1 is
at the input place for transition fj, in state qﬁ, and '?b = ‘?b Finally, suppose
that seg(a, b;, ) is an execution sequence from '?b for T. We now wish to

construct a;, s, by, n(i+1), and 8;, ;.

If seq(e, by, o0) were a valid execution sequence from ¢ b' then we would have
a contradiction with the assumption that T' is starvation-free, since process 2 would
be left at the input place for 1§, which is a P operation on some semaphore, call it
s while process | enters am:; exits its critical region infinitely often. Hence
seq(a, b;, o) must not be valid. The only way this can happen is if there exists
n(i+1) > n(r) such that s > 0 for all j> ncrpgivqp Since each link in the cycle
x appears in infinitely many (3, we may assume n(i+1) to be chosen so that (up
i) € B, 7p Now, let a;,; and by, ; be chosen to satisfy:

() nerpging) < 8jpp < by < safen(ig)

@ tq, =

O L

(4) There are no P operations in seg(a, @i+l by g)
We are assured that aj,p and b;, ; may be chosen in this manner by the way we
selected n(i+1).

Let & = seg(a, by a;, 7). Since & is a prefix of seg(a, b;, ©0) we know that § is

an execution sequence from qj, Let q:z = nxe‘(qrb, $). Now, in state ¢ a,,

process 1 is at the input place fm' tranmtmn r’ » which is a P operation on s;.

:+."

Also, process 2 is at the input place for transition f. But ré,f = ".u: = u; by
[

construction, and since I' has no local variables, this means that ¢ ;.‘._H =
T



«TH -

By the way n(i+1) was chosen, we know that ¢, I{Sf) — ind(sp r:rw) > 0.

Qe Ty

from g, . Since the sequence alt(a, a;, ;+l1, by, ;) contains no P operations,
i+l

Lemma 3.15 shows that al(a, a;, j+1, by, ;) is an execution sequence from g, P
i+

Hence q, (s) = 2. The sequence t; 2 is therefore an execution sequence
i+J

Define 8, ; = Balt(a, a; p, bi, ).

It is not difficult to see that if qé,m = nxt(g,, B;,7), then for all s 5 s5; and
all j = b, p, qrb'_”{s} — ind(s, bi p J) = qi,i(s} — ind(s, by j) = 0. Also, by the
way n(i+1) was chosen, q_._i,f”{sf) — ind(sp bip ) = ¢ ,_F,r_(.rf-) — ind(sy bp ) —1 =0
for all j = b;,;. Hence Lemma 3.16 shows that seg(a, b, ;, ©) is an execution

sequence from ¢, . This completes the induction step.
i+]

Thus we have proved that B is an execution sequence for I'. In addition, B is
valid since processes 1 and 2 each have infinitely many transitions in 8. However,
process 2 remains forever in the trying region while process 1 enters and exits its
critical region infinitely often. Hence f starves process 2, a contradiction, and we
conclude that I' must have local variables. §

3.9 Conclusion

In this chapter we presented a number of results that shed some light on the
"power" of weak semaphore primitives, when used to implement starvation-free
mutual exclusion. The "negative" results of this chapter are most interesting when
viewed in relation to the complementary "positive" results to be presented in the

next chapter. Let us proceed now to the statement of these results.



4. Some Existence Results

In the last chapter we examined various classes of mutual exclusion systems,
and were able to show that within some of these classes, weak semaphores are not
sufficient to implement starvation-free mutual exclusion. In particular, there are no
solutions to the starvation-free mutual exclusion problem that use weak general
semaphores, in the class NBW n SYM n NM, and there are no solutions using weak
binary semaphores even in the larger class SYM 1 NM. To obtain a more complete

picture of the situation, we should ask whether there are any solutions at all using

1 O o

mutual exclusion Systems we have been examining. The answers are interesting, and

are the subject of this chapter.

This chapter is organized as a series of "examples", in which a candidate
solution to the starvation-free mutual exclusion problem is presented, along with an
informal argument that it has the stated properties. Only one of these solutions
(Example 4.1) will actually be proved correct, and the reason is that the correctness
proof for just this one example requires all of Chapter 5 and the Appendix.

Example 4.1 - The mutual exclusion system described by Morris’ program
in Figure 2.3 is a solution to the starvation-free mutual exclusion problem
which is in NBW n SYM n NM. Although the solution is shown using



-T1 -

blocked-set general semaphores, blocked-set binary semaphores work just as

well.

Discussion - Note that this solution, combined with Theorems 3.14 and 3.17, shows
that either blocked-set binary or blocked-set general semaphores are more "powerful”

than weak semaphores, as far as their ability to implement starvation-free mutual

exclusion is concerned.

A proof of correctness for this solution is the subject of Chapter 5 and the
Appendix. Note that such a proof requires that the algorithmic presentation in
Figuré 2.3 be translated into graphical form, and this is done in Chapter 5. It
should be possible, however, for the reader to mentally verify that the algorithmic
presentation of Figure 2.3 indeed represents a mutual exclusion system in NBW N

SYM n NM. No graphical translations will be provided for any of the other
examples of this chapter. '

Example 4.2 - The mutual exclusion system described by Figure 4.1 is a
solution to the starvation-free mutual exclusion problem which is in NBW.
Although the solution is shown using weak binary semaphores, in fact it

makes no difference what type of semaphores are used.

Discussion - Note that this solution is nor in SYM, since explicit use is made of the
process number /. Example 4.3, though, shows how this solution may be transformed
through the addition of one semaphore variable and one local variable in each

process, to a solution that is in SYM, but not in NM.

The solution works as follows: When process i enters the trying region, the
first thing it does is to indicate its presence by setting the variable flagdi] to true.

The process next tests the global variable empiy to find out if any other processes




-78 .

are in the trying or critical regions. If emply is true, indicating that there are no
other processes, process i remembers this by setting its local variable first to true. It
then proceeds directly to the critical region. If there are other processes, first

remains false, and process / executes a P(semli]) to await its turn in the critical
region.

When process i enters the leaving region, it resets flagdi] to false, indicating
that it is no longer interested in executing in the critical region. It then examines
the array flags to determine the next process to execute in the critical region. The
global variable nexr is used as a roving pointer to ensure the fairness of this
selection. The selected process is signalled via a V(sem[j]) operation, and process i
exits the leaving region. If all the entries of flags are false, no process is presently

interested in executing a critical region, and the variable empty is reset to true.

The semaphore murex has a dual purpose. First, it ensures mutually exclusive
access to the variable empty. Second, it prevents the possibility of the deadlock
situation where a process in the leaving region finds all entries of flags to be false,
but before it can set empry to true, a process in the trying region reads it, and then
waits at the P(sem[i]) for a V(sem|]]) that may never occur.

It should not be difficult to convince oneself that the correctness of the

solution does not depend upon what type of semaphores are used.

Example 4.3 - Any solution to the starvation-free mutual exclusion
problem may be transformed into a symmetric solution through the
addition of a single semaphore variable and a local variable in each process,
as shown in Figure 4.2. The resulting solution, however, is not in NM.

Discussion - In particular, applying this transformation to the solution of Figure
4.1 shows that there is a solution in NBW n SYM, using any type of semaphores.



.79 .

global integer nmexr initially 1;

global boolean empty initially true;

global boolean array flags{1:¥] initially false;
weak binary semaphore mutex initially 1;

weak binary semaphore array sem[1:N] initially O;

(Program Executed by Process 1)

local boolean first;
local integer j;
loop:  <noncritical region>

flagdi] := true;

first := false; -

P(murex);

if empiy then begin
empiy := false;
first ;= true

end:

Y (murex);

if - first then P(sem(i]);

<critical regiom>

flagdi] ;= false;

P(mutex);

for j= next 4+ 1 to Nstep 1, 1 to next step 1 do
if flagsj] then begin

next := j,
V(sem[j]);
goto out
end:
empty := true;
out: V{mutex);
goto loop;

Figure 4.1 - Asymmetric Solution With No Busy-Waiting



- 80 -

Figure 4.2 shows how the N trying regions and N leaving regions of the given
solution may be combined into a single trying and leaving region that is run by all
processes in the transformed solution. The semaphore murex/ is shown as a weak
binary semaphore in Figure 4.2 to be consistent with Figure 4.1, however when
applying this transformation to an arbitrary solution, the semaphore murex] should

be of the same type as the semaphores in the given solution.

The transformed solution operates as follows: The first time each process
enters the trying region, its local variable ident has the value zero. The process then
"picks a number" by assigning the value of procno to ident, and then incrementing
procno. Each process thus obtains a unique value of ident, which it then uses to
select among the N different trying and leaving region protocols. It is important to
note that "picking a number" occurs exactly once per process, the first time that
process enters the trying region, and is not performed on subsequent visits to the
trying region. Thus even though the semaphore mutex] is a weak semaphore, there

is no possibility of starvation.

It is easy to see that the transformation does not introduce the possibility of
busy-waiting. Since the program text run by one process is identical to that run by
any other process, the transformed solution is symmetric. The only thing that
distinguishes one process from another is the value of the variable ident. The
correctness of this solution depends crucially on the fact that it uses "memory". As
in Example 4.2, it is not difficult to see that the correctness of the transformed

solution does not depend upon the type of semaphores used.

Example 4.4 - The mutual exclusion system described by Figure 4.3 is a
solution to the starvation-free mutual exclusion problem for two processes,

which uses weak general semaphores, is in SYM N NM, but is not in NBW.



- 81 -

global integer procno initially 1;
weak binary semaphore mutex! initially 1;

(Program Executed by Process 1)
local integer iden initially 0;

loop:  <noncritical region>
if ident = 0 then begin
P(mutexI);
ident 1= procno;
procno := procno + 1;
V(mutexI)
end;
if ident = 1 then <Execute Trying Region for Process I>
else if ident = 2 then <Execute Trying Region for Process 2>

else if ident = N then <Execute Trying Region for Process N>
<critical region>

if ident = 1 then <Execute Leaving Region for Process I>
else if ident = 2 then <Execute Leaving Region for Process 2>

else if ident = N then <Execute Leaving Region for Process N>
goto loop;

Figure 4.2 - Construction of a Symmetric Solution From an Asymmetric Solution




g3 -

Discussion - Note that this resuit, coupled with Theorem 3.14, shows a sense in
which weak general semaphores are strictly more "powerful” than weak binary
semaphores. Dijkstra [DIJKS66) claims that general semaphores are "superfluous"
given binary semaphores as primitives. At least for weak semaphores, if wé are
concerned about the properties of symmetry and no memory in our solution, this is
not the case. This also explains why any attempt to implement weak general
semaphores with weak binary semaphores, such as that in [SHAW74], must either

introduce asymmetry, violate the "no memory" property, or fail.

The operation of the solution in Figure 4.3 may be visualized in the following
way: Think of the semaphore variable sem as being a bag that contains a number of
pebbles. If both processes are in the moncritical region, then the number of pebbles
in the bag is 2-cycle — 1. To enter the critical region, a process must remove cycle
pebbles from the bag by executing cycle P(sem) operations in the trying region.
Mutual exclusion is therefore ensured, since there is always one less than the number
of pebbles needed for both processes to enter the critical region simultaneously. In
the leaving region, a process increments cycle and then returns cycle 4 1 pebbles to
the bag. Thus, each time the leaving region is executed, cycle is increased by one,
and the total number of pebbles is increased by two. Note that the fact that the
total number of pebbles is constantly increasing ensures that a process may not

starve at the weak P(sem) operation in the trying region while the other process

repeatedly executes critical regions.

Ignoring for the moment the P(wair) operation in the trying region, since a
process, for example process 1, cannot starve at the P(sem) operation while process 2
repeatedly executes critical regions, the only way for process 1 to remain forever in
the trying region is if it continually loops back to tloop. Since process 1 removes a
pebble from the bag each time around the loop, process 2 must be repeatedly adding



T

pebbles to the bag and also repeatedly incrementing cycle. Now, when process 1
entered the trying region, it recorded the value of cycle in its local variable savecycle.
Each time around the loop, it checks to see if the current value of cycle exceeds
savecycle by more than LIMIT. If so, then process 2 has gotten "too far ahead” of
process 1. Upon noticing this, process 1 sets the global variable haltflag and its local
variable /halr to one. When process 2 sees that haliflag is one, instead of continuing
to execute critical regions, it performs a P(wair). Process 1 is now free to enter the
critical region at will. The local variable /halt is used so that process 1 does not
itself become halted because haltflag is one. When process 1 executes the leaving

region, it resets haltflag to zero, and signals process 2 with a V(wair).

The interesting and novel feature of this solution is the way in which
continually increasing the number of pebbles in the bag prevents a process from
starving at a weak P operation. Note that this means that no a priori bound may
be placed on the length of time a process may spend in the trying region; indeed, as
the system ages, the length of the trying and leaving region protocols becomes longer

and longer! Thus this solution is not in NBW, although it is in SYM N NM.



weak general semaphore sem,wair initially 1, 0
global cycle, haltflag initially 1, O:

(Program Executed by Process i (1 < i < 2))

local savecycle, count, Ihalt initially 0, 0, 0;

loop:  <noncritical regiom>
savecycle := cycle,
tloop:  P(sem);
count := count 4+ |;
if count = cycle then goto crir;
if /halt = 1 then goto tloop;
if cycle — savecycle > LIMIT then begin
haltflag = 1;
thalt := 1
end;
if haltflag = 1 A Thalt = 0 then P(wail);
goto rloop;
crit: <critical region>
cycle := cycle + 1;
if /halt = 1 then begin
thalt := 0,
haltflag := 0
V(wair)
end;
for savecycle := cycle + 1 step -1 until 1 do V(sem);
count = savecycle = 0
goto loop;

Figure 4.3 - Two-Process Solution with Weak General Semaphores



e T

5. A Correctness Proof

In Example 4.1, the mutual exclusion system of Figure 2.3 was proposed as a
blocked-set general semaphore solution, in NBW n SYM n NM, to the starvation-free
mutual exclusion problem. In this chapter this solution will be proved correct. It is
left to the reader to verify that if the blocked-set general semaphore operations are
replaced with blocked-set binary semaphore operations, then the arguments to be

presented in this chapter hold essentially unchanged.

The most outstanding feature of the proof is its length, and this is the reason
why correctness proofs for other solutions proposed in this thesis have been omitted.
It is surprising what lengthy formulas seem to be necessary to prove a handful of
properties about a short program. The presentation of the proof has been guided by
the philosophy that, as much as possible, the portions of the proof that actually
contain intuition about the operation of the solution should not be obscured by
tedious details of verification that might well be performed by a machine. For this
reason, the proof has been divided between this chapter and the Appendix. This
chapter contains the portions of the proof in which intuition is required, and the

remaining mechanical details are given in the Appendix.

Due to a lack of well-established techniques for proving properties of parallel
programs, a detailed discussion of the three techniques we will be using is

prerequisite to the proof itself. The three techniques are the induction principle, the



- 86 -

well-founded set method, and the parallel program homomorphism method. The
induction principle and the well-founded set method are adaptations of techniques
used in [KELLE76] and [KWONG78]. The notion of a parallel program
homomorphism is hinted at in [DOEPP76]. Parallel program homomorphisms allow
us to abstract away from irrelevant details, and it is this property that permits a
clean separation of the mechanical verification parts of the proof from the more

important, intuitive parts.

The outline for this chapter is as follows: Before we may prove anything
about the mutual exclusion system of Figure 5.1, we must first perform a translation
from the algorithmic notation of Figure 5.1 to the graphical notation of the mutual
exclusion system model. The induction principle will be used to prove that the
system has the mutual exclusion property, and the well-founded set method will be
used to ‘prove the system free from indefinite postponement. The proofs that the
system has the mutual exclusion property and is free from indefinite postponement
are quite easy. To verify that the system is deadlock-free and starvation-free is
much harder. Freedom from deadlock is proved with the help of a rather lengthy
tnvariant, which is a predicate true for all reachable states. Intuition must be used
to construct this invariant, however once constructed, the actual proof of invariance
is strictly mechanical, and is left to the Appendix. To simplify the proof that the

system is starvation-free we will use a parallel program homomorphism to eliminate

details that obscure the properties of interest.

5.1 Informal Discussion of Morris' Solution

Before proceeding with the formal discussion, let us examine informally the
operation of the system of Figure 5.1. Execution of this system proceeds in two
phases. In phase one, the semaphore m is zero, and processes exit the noncritical
region, enter the trying region, and filter down to the P(m) operation, where they

become blocked. In phase two, the semaphore a is zero; preventing new arrivals



L

blocked-set general semaphore g, b, m initially 1, 1, O;
global countl, count2, initially 0, 0;

(Program Executed by Process i)

loop:

<noncritical region>

P(b);

countl = countl + 1;

V(b);

P(a);

P(b);

counti, count2 := counti — 1, count2 + 1
if count] > 0 then begin

V(b);

V(a)
end else begin

V(b);

V(m) ;
end;
P(m);

<critical region>

count2 := count? — 1;

if count2 > O then V(m) else V(a);
goto loop;

Figure 5.1 - Morris’ Solution to the Starvation-Free Mutual Exclusion Problem




-8B

from passing the P(a) operation in the trying region. Processes waiting at the P(m)
operation are allowed to enter the critical region one-by-one. When there are no

more processes waiting at the P(m), phase one begins again. Thus mutual exclusion

is maintained by the semaphore m.

The most interesting aspect of this solution is the way in which freedom from
starvation is achieved. The key ideas are the following: (1) As long as processes
continue to execute, the system will continue to alternate between phases one and
two; (2) The system can only switch from phase one to phase two if the set of
processes blocked on the semaphore & has recently been emptied. System execution
changes from phase one to phase two at the instant a process at the conditional
statement in the trying region discovers that count] = 0. The hardest part of the
solution to understand is why a process discovering that count] = 0 may conclude
that the set of processes blocked on the semaphore & has recently been emptied, and

hence that it is safe to allow processes to execute in the critical region.

5.2 Morris’ Solution Presented in the Parallel Program Model
Figure 5.9 at the end of this chapter displays the graph for the ith process in
the mutual exclusion system that results when the program of Figure 5.1 is

translated into graphical form. Throughout this chapter, we will refer to this mutual

exclusion system as Z.

The set Gy of global variables for 2 contains two variables, count! and count?.
There are nine synchronization variables in Sz: the three semaphore variables a, &,
m, and the corresponding set variables a_bl, a_en, b_bl, b_en, m_bl, m_en. The ith
process has one local variable, loc_i. The initial state for £ assigns the value zero to
all local variables, all global variables, and semaphore variable . Semaphore

variables @ and b have initial value one, and all set variables have initial value @.



- 80 -

The graph for the ith process in I contains 34 4 7N transitions, where N is
the number of processes in the system. However, for our purposes it will never be
necessary to distinguish between the N transitions that model the nondeterministic
selection of a process from the blocked set in a V operation. For this reason, in
each V operation, these N transitions have all been given the same name. The
names for the transitions in the graph for process i/ in £ are: NCT_i, TT1_j ... ,
TT30_i, CT_i, and LT1_j, .. , LT9_i. Transitions NCT_i and CT_i connect the
noncritical region to the trying region, and the critical region to the leaving region,
respectively. Transitions TT1_i, ... , TT30_i are the trying region transitions ("TT"
stand§ for "trying transition") and transitions LT1_j, ... , LT9_f are the leaving region
transitions ("LT" for "leaving transition"). Because of the symmetry of the system,
we will usually not be interested in distinguishing between transitions in different
processes. It will therefore be convenient to speak, for example of "transition YE3%;
as if there were only one such transition, rather than one in each process. Used in
this way, the phrase "transition TT3" means, roughly, "transition TT3_i, for some

)

process 1.

Due to space considerations, statement labels have been omitted from
transitions LT4_j, LT5_i, LT7_i, and LT8_i in Figure 5.9(h). However, since these

transitions are part of V operations, it should be obvious what the labels should be.

There are twenty-seven places in the ith process. The noncritical place is
NCP_i and the critical place is CP_i. The trying region places are numbered
TP1_i, ... , TP20_i, and the leaving region places are LP1_j, ... , LP5_i. It will be
convenient to assign names to various important sets of places, and this is done in
Figure 5.2. The names of these sets are supposed to be somewhat mnemonic; their
meanings are as follows: NCR and CR stand for "noncritical region" and “critical

region", respectively. TPi is the ith place in the trying region, and LPi is the ith




- 90 -

place in the leaving region. TR and LR stand for "trying region" and "leaving
region", respectively. MUTEX] and MUTEX2 stand for "mutually exclusive regions"
one and two. It will be seen later that at most one process at a time can be at a
place in the set MUTEXI, and similarly for MUTEX2. WAITA and WAITM are the
sets of places where processes wait to pass the P(a) and P(m) operations,

respectively, and WAITBI and WAITB2 are the sets of places where processes wait
to pass the two P(b) operations.

It will be convenient to introduce the following notation: If E is an expression
involving variables or names of places in a parallel program, then let [E](g) denote
the value obtained by evaluating the expression E in state g. For example, if
g(a) = 1 and ¢(b) = 2, then [a + b](q) = 3. If 8 is a set of places, and i is a
process number, then define the predicate [i at 8](q) to be true iff the token for
process i is at a place in & in state ¢. Also, let [ |8 ](¢) denote the total number of
tokens residing at places in & in state g. Let en(a) abbreviate the expression "a > 0
V a_en # @", and similarly for en(b) and en(m). Note that if [en(a)](g) is true, then
the semaphore a is "enabled” in state ¢ in the sense that either a process at the
blocked-place for a P(a) is enabled to proceed, or a process arriving at the input
place to a P(a) may complete the P operation without becoming blocked. Finally, if

v is a set variable, then let [card(v)](g) be the number of elements in the set g(v).

‘5.3 Mutual Exclusion

Now that the problem of nomenclature is out of the way, we may begin
proving properties of £, The first proof technique we will use is called the induction
principle, for proving invariant assertions about the state of a parallel program. An
assertion is simply a predicate on states. If I' is a parallel program, and if P is a
predicate over ﬂr-, then we say that P is invariant for T' iff P(q) is true for any
reachable state g. The induction principle is presented here in a form essentially

identical to that of [KELLE76]; where it is argued that the induction principle for



-9 -

NCR = {NCP_1, NCP_2, ..., NCP_M}
CR = [CP_1,CP_2,..,CP_M
TPi = {TPi_1, TPi_2, .., TPi_N}, for 1 <i <20
LPi= {LPi_1,LPi2,..,lPiN},for 1 <i<5
TR = U3, 7Pi
LR = U}y LPi
MUTEXI = U}_; TPi
MUTEX2 = uldg TPiu TPI7
WAITA = TP6U TP7
WAITM = TPI9 U TP20
WAITB] = TP2

WAITB2 = TP8U TP9

Figure 5.2 - Useful Names for Various Subsets of Py




.97 .

proving properties of parallel programs is a natural generalization of the inductive

assertion technique of [FLOYD67] for proving properties of sequential programs.

Induction Principle - Let I' be a parallel program with initial state ¢,,
and let P be a predicate over ﬁI" If P(g,) is true, and if P(g) implies

P(nxt(q, 1) for all ¢ ﬂr and all r € 51- enabled in state g, then P is
satisfied by any reachable state of T'.

We can apply the induction principle immediately to prove that £ has the
mutual exclusion property. In this and subsequent discussions, phrases such as
"[Bl(g) is true" and "B is true in state ¢" will be used interchangeably, to avoid

unpleasant repetition.
Claim 5.1 - The system Z has the mutual exclusion property.

Proof - Let sum abbreviate the expression |CR| + |[LR] Let

excl = excl; A excly A excl 3 where

excly = (sum > 0 = -en(m))
excly= sum < 1

excl3= m<1Acardim_en) <1A(m>0-> m_en=0)

Then we claim that [exc/] is invariant for Z. Note that if this is true, then £ has the
mutual exclusion property, since the invariance of [exe/] implies the invariance of
[CR < 1]. The invariance of [exc/] will be proved by the induction principle. Note
that we are unable to use the induction principle to prove the invariance of

[ICR| < 1] directly; we have had to strengthen the predicate before the proof will go
through.



)

It is obvious that [excl)(g,) is true. Let g be a state satisfying [exc/], let f be a
transition enabled in state g, and define ¢' = nxt(g, r). We must show that
[excl)(q") is true. Consider first excl;. Since [exc/)(g) is true, then the only
transitions ¢ that could possibly make excl/; false in state ¢" are TT28 and TT30.
However, since exclj is true in state g, firing TT28 or TT30 from state ¢ is
guaranteed to make en(m) false in the resulting state ¢". Hence excly is true in

state ¢ .

Now, exc/, can only be false in state ¢" if sum = 1 in state g and TT28 or
TT30 is fired. But since exc/j is true in state g, [sum = 1](¢) implies [~en(m)](q),
which means that TT28 and TT30 cannot be enabled when sum = 1.

Finaily, exc/3 can be false in state ¢" only if transition LT4 or LT5 is fired
from state g. However, for either of these transitions to be enabled in state g, we
must have sum = 1 in state ¢ and hence [-en(m)](g) must be true. Now,
[~en(m))(g) is by definition true iff [m = 0 A m_en = @)(g) is true. Therefore,
firing LT4 or LTS causes either [m = 1](¢") to be true, or [card(m_en) = 1](¢") to
be true, respectively. In either case excl 3 is true in state g’ and the Claim is proved.

8

The predicate [exc/] was rather simple, and the proof of its invariance was
easy, since it was easy for us to see that only a few transitions in Z could affect its
truth. To prove that T is deadlock- and starvation-free will require a much more
complicated predicate, the invariance of which implies the invariance of excl. In the
Appendix we will see that nearly all transitions in £ can affect the truth of this
predicate, and it therefore would be better if the large number of cases were

checked by machine, instead of by hand.



-94 .-

5.4 Freedom From Indefinite Postponement

It was noted that the induction principle is a natural parallel program
generalization of the inductive assertion technique of [FLOYD67] for proving
properties of sequential programs. The well-founded set method presented in this
section can be considered a natural parallel program generalization of Floyd’s
technique for proving termination of sequ'entiai programs. The version presented
here is not only useful for proving that an execution sequence is finite, but may be
applied to infinite execution sequences as well. For example, we will show that no
process in a system of processes may fire an infinite number of transitions without

leaving an acyclic part of its graph. This in turn will be used to show that T is free
from indefinite postponement.

Versions of the well-founded set method similar to this one may be found in
[KELLET76] and [KWONGT78].

Well-Founded Set Method - Let I' be a parallel program and (W, <) a
well-founded set (one that has no infinite decreasing chains). Let a be a
finite or infinite execution sequence for I', with corresponding state
sequence goqy ... . Let £ Qp > "W, and P be a predicate over Qp such
that for all states ¢, and all transitions ¢ enabled in state g, if P(g) and
P(nxt(g, 1)) are true then flnxi(q, 1)) < flg). Let W be the set of all
J = k such that f[qrj_,,f} < f{qj). Then either U is finite, or there exists
Jj = ksuch that P{qj} is false.

An important special case that we shall encounter is when (W, <) is the

natural numbers under the usual ordering.



Ok

As an application of the well-founded set method, we will now prove that Z is
free from indefinite postponement. We will make use of the following obvious

result, for which a proof is given only to illustrate the use of the well-founded set
method.

Observation 5.2 - Let T' be a system of N processes, and let Z be an
acyclic subgraph of the graph for the ith process. Then there is no infinite
execution sequence a from some state g for I', containing infinitely many
transitions for process i, such that if gpg; .. is the state sequence
corresponding to &, then for all j > 0 the token for process i is at a place

in £ in state ¢ i

i :
Proof - Suppose there were such a sequence a. Let W= ﬁ’r, the set of places in
the graph for process i. Since Z is a directed acyclic graph, we may define an

ordering < on "W as follows: If p and p’ are places in T', then

(1) p< p’ if p’ is a predecessor of p in E.

(2) p and p’ are incomparable under < if either p or p is not in E.

Let P(g) be true iff the token for process i is at a place in £ in state g, and define
flg) = p if the token for process i is at place p in state . It is clear, if ¢ is a state,
t is a transition for process i enabled in state g, and ¢' = nxt(g, 1), that P(g) and
P(q’) imply that flg’) < flg). By the well-founded set method, if « contains
infinitely many transitions for process i, then there exists j > k such that P(qi) is

false. This is a contradiction and the Observation is proved. [
Claim 5.3 - I is free from indefinite postponement.

Proof - Suppose not. Then there is a valid infinite initial execution sequence a for




-96 -

Z, with corresponding state sequence goq] - + such that for some k and all j > k no
process is in the critical region in state q; Since the number of processes is finite,
there must be some process i, such that a contains infinitely many transitions for
process i. Now, by the structure of the graph for process / in a mutual exclusion
system, a process that executes infinitely many transitions without entering the
critical region must either remain forever in the trying region, or forever in the
leaving region. But, since the trying and leaving regions of I are acyclic, process i
may not remain forever in the trying region or forever in the leaving region, by the

previous Observation. This is a contradiction, and the Claim is proved. g

5.5 Freedom From Deadlock

We have seen that T has the mutual exclusion property and is free from
indefinite postponement. In this section, we will show that I is deadlock-free. This
will be done by showing that from any reachable state, we can construct an
execution sequence that removes all processes from the trying and leaving regions.
The key property we need for this is that in any reachable state of T with at least
one process in either the trying or leaving region, there is some process in either the

trying or leaving region that has an enabled transition.

To prove this property, we will prove the invariance of a rather lengthy
predicate [inv}, which encompasses most of the interesting statements about T that
can be formulated as invariant assertions. The reason this predicate is so
complicated is that it is not possible to use the induction principle to prove very
many short statements of interesting properties of £. Instead, these short statements

must be strengthened by conjoining additional terms before the proof will go
through.



.97 .

The construction of the invariant [inv] is based on the following observation:
the reachable states of Z may be classified according to the configuration of tokens
on the graph. Although the fact that there are twenty-seven places in the graph for
the ith process implies that there are 27 different configurations of tokens, for our
purposes large classes of configurations may be regarded as "equivalent", reducing the
total number of "different" configurations to thirteen. The classification of the
reachable states into these thirteen categories was reached by a process of trial and
error, requiring the use of intuition about the operation of the system Z. A
classification of states into less than thirteen categories is too weak for our purposes.
The thirteen categories are defined by the predicates [conf}, for 1 < i < 13, where

the expressions conf; are given in Figure 5.3.

Note that the [conf;] are pairwise disjoint, meaning that no state can satisfy
more than one of the [conf]. If we can show (which we will) that every reachable
state g satisfies exactly one of the [conf}], then it is interesting to see that the mutual
exclusion property of £ is immediate. This is because a process can be in the critical
region in state ¢ only if [conf;,](g) is true. However, this means that |[CR| = 1 in

state ¢, and hence there can never be more than one process in the critical region in

any reachable state,

Corresponding to the predicates [confj], which define the thirteen categories of
reachable states, are thirteen additional predicates [vbls;, which describe the values
of the variables of T in each of the categories. That is, if ¢ is a reachable state that
satisfies [conf;] for some /, then g also satisfies [vb/s;]. Stated another way, we assert
the invariance of the predicate iv}if (conf; A vbls)). The expressions vbls; are
defined in Figure 5.4. Tne expression procnotcounted abbreviates 3/(i at WAITBI A i
€ b_en). The quantifier used here, as well as any others we will use, ranges over

process numbers, and is hence bounded by N.




confy; =
conf, =
conf; =
confy =
confs =
confg =
confz =
confg =
confg =
confrg=
confry =
confyy =

confrz =

-08 -

\MUTEX1| = 0 A [MUTEX2 = 0 A |TPI6) = O A |TPI§ = 0 A
ICRl=0A|LR =0

IMUTEXI| = 1 A |MUTEX2 =0 A |TPI6) =0 A |TPI§ =0 A
ICRl=0A|LR =0

IMUTEXI| = O A |WAITA > O A [WAITBZ = 0 A [MUTEX2 =1 A
|TPI6| =0 A |TPIS =0 A|CRl=0A|LR|=0A|[TPIA=0

IMUTEXI| = O A |WAITA| > O A |WAITB2 = 0 A [MUTEX2 = 0 A
|TPI6| =1 A |TPI8§ =0 A |CR|=0 A |LR| = 0

IMUTEX| = O A [WAITA = | A |WAITB2 = 0 A [MUTEX2 = 0 A
ITP16) =1 A|TPI§ =0 A|CRl=0A|LR =0

IMUTEXI| = 1 A |WAITA > O A |WAITB4 = 0 A MUTEX2 = 0 A
|TP16) =1 A |TPI8 =0 A |CR| =0 |LR| =0

IMUTEXI| = O A |WAITA = 1 A |WAITBZ = 0 A MUTEX2 = 0 A
|TP16| =0 A |TPI§ =0 A|CRI=0A LR =0

IMUTEX1| = O A |WAITA = O A |WAITB4 = 1 A MUTEX2 = 0 A
|TP16) = O A |TPI§ =0 A|CRl=0A|LR| =0

IMUTEXI| = O A |WAITA = 0 A |WAITB2 = 0 A MUTEX2 = 1 A
\TP16 =0 A |TPI§ =0 A|CRi=0AI|LR|=0 A |TPI5 =0
\WAITB2 = O A [MUTEX2 = O A |TPI6|=0 A |TPI§ =1 A
ICRl=0A|LR =0

|WAITB2l = 0 A |MUTEX2 = O A |TPI16| = O A |TPI§ = 0 A
|WAITM| > OA|[CRI=0A|LR| =0

\WAITB2 = 0 A IMUTEX2 = 0 A |TP16l= 0 A |TPI§) =0 A
ICRl=1A|LR|=0

\WAITB2 = 0 A [MUTEX2 = 0 A |TPI6 =0 A |TPI§ = O A
ICRI=0A|LR =1

Figure 5.3 - Reachable States of £ Classified Into Thirteen Categories



- 99 .

vblsy = (WAITBA = 0 — (en(a) A (IWAITA = 1 - procnotcounted))) A
(IWAITB2 = 1 = (=en(a) A (|WAITA = 0 — procnotcounted))) A
(IWAITM| > 0 — (|WAITBI| + |WAITA + |WAITB2 > 0)) A
en(b) A =en(m)

wbls, = (|WAITB2 = 0 - en(a)) A (WAITBZ = 1 — -en(a)) A -en(b) A
HE'H(M)

vbls 3 = -en(a) A —en(b) A -en(m)

vblsy = (WAITA = 1 — procnotcounted) A -en(a) A en(b) A -~en(m)
vblss = -procnotcounted A —en(a) A en(b) A ~en(m)

volsg = -en(a) A ~en(b) A -en(m)

vbls7 = =procnotcounted A en(a) A en(b) A —en(nt)

vblsg = =procnotcounted A ~en(a) A en(b) A =en(m)

vblsg = -en(a) A -en(b) A ~en(m)

vblsjo= (MUTEXI| = 0 — en(b)) A

(MUTEXI| = 1 — =en(b)) A ~en(a) A ~en(m))
I-‘ba'lj‘” = {LHUTEXJ'I =0 = en(b)) A

(IMUTEXI| = 1 = -en(b)) A ~en(a) A en(m))
}b.l'rsz = (lﬁfUTEXII =0- E'ﬂl:b]} A

(IMUTEX]| = 1 = =en(b)) A =en(a) A —en(m))

(IMUTEXIl|=1 - -en(b)) A =en(a) A -en(m)) A
(LP4 > 0 = |WAITM > 0) A (LP5 > 0 = |WAITM| = 0)

Figure 5.4 - The Expressions vbls;




- 100 -

Before a proof by the induction principle will go through, it is necessary to
further strengthen the invariant by conjoining the predicate [awx], where
aux = aux; A auxy A .. A auxy;, and the definitions of the aux; are given in
Figure 5.5. The predicates [aux], ... , [aux3), and [aux 10b - » lauxyjz] express
relationships that are true in any system that uses blocked-set semaphores. The
predicates [auxyl, .. , [auxg] state that no execution sequence may contain two -
consecutive P operations on the same semaphore without an intervening V operation.
This is why the general semaphores may be replaced with binary semaphores without
any detrimental effect. The remainder of the [aux;] express some mutual exclusion

conditions that are enforced by the system, and also relate the values of the variables

countl and count2 to the positions of tokens.

The "two-phase" nature of the execution of the system is reflected in the
definitions of the thirteen categories. During phase one, the system state satisfies
one of [conf], ... , [conf 70} System states during phase two are characterized by
the predicates [conf;;), ... , [conf 73] Before the system state may change from
phase one to phase two, the system must enter a state satisfying [conf; o).
Transitions between states in the various categories are made in such a way that a
state satisfying [conf;g] can only be entered by passing through a state satisfying
[confg] in which there were no processes blocked at the first P(b) in the trying

region. This is the key property that makes the system starvation-free.

Claim 5.4 - The predicate [in¥] is invariant for 2, where
inv = v“ =y (conf; A vbis)) A aux.

Proof - by the induction principle is given in the Appendix. All the intuition about
the system I has gone into the construction of the predicate [inv], what remains is
simply tedious verification that could be done by machine. If ome has a good

intuitive understanding of the system Z, the invariance of [inv] should seem plausible



GHII —]
ﬂ'h'xz —
G’H’I} =
{Iﬂ.'l.'4 =
ﬂ'ﬂ.l'j =
{.'.'H.Té =
ﬂ'ﬂ'.l':r =
GHIS —
IHLT.; =
GH.TIQ =
G'H.Tj"; =
ﬂ'h'.rfz —
ﬂ'h‘.‘t’f} =
-’IH’.TI!J —
ﬂl.".l'fj =
G'H.I‘rﬁ ==
GHII? —
GIJ'.I'IS —
ﬂlf.l';g =

ﬂ'ﬂ'rzg =

ﬂtf.rzj =

- 101 -

a>0- (aen=@ A a_bl = @)
b>0- (b_en=@ A b_bl = @)

m>0- (m_en=g Am_bl=9)
a=<l

b<1

m=1

card(a_en) < 1

card(b_en) < 1

card(m_en) < 1

vi(i at TP7 & (i € a bl v i € a_en))

Vi(i at TP2UTP9 & (i € b_bl v i € b_en))
Vi(i at TP20 & (i € m_bl v i € m_en))
~3i(i € a_bl A i € a_en)

-3i(if € b_bl A i € b_en)

-3i(i € m_bl A i € m_en)

|WAITB2 < 1

IMUTEX]| < 1

count] = |TP5| + |TP6 + |TPA + |TP8 + |TP9 + |TPIQ + |TPI1|
Vi(i at TP4UTPII = loc_i = countl)
count2 = |TPI4] + |TPIS| + |TPI6 + |TPIA + |TP18 + |TPI9 +
|TP20| + |CR| + |LPI| + |LP2

Vi(i at TPI3ULP2 — loc_i = count2)

Figure 5.5 - Auxiliary Invariants



- 102 -

at this point without the proof in the Appendix. g

We are now in a position to prove that T is deadlock-free.

Claim 5.5 - If g is a reachable state for Z, such that no process is in the
critical region in state ¢, but at least one process is in the trying or leaving
region in state g, then there is a transition enabled in state ¢ for some

process in the trying or leaving region.

Proof - Since ¢ is a reachable state for Z, by Claim 5.4 we know that [inv](g) is
true. We split the proof into cases, depending upon which one of the predicates
[conf; A wbls;] is true in state g. Since we will be concerned in the sequel only with
the single given state ¢, no confusion can result if we omit the square-bracket

notation. Thus we will write "conf; is true" to mean "[conf 1)(q) is true”.

Case I: conf; A vblsy is true. Now, if there are any processes anywhere in the
trying or leaving regions except at TPI, WAITBI, WAITB2, WAITA, or WAITM,
then we are done, since those processes always have enabled transitions. Otherwise,

vbls; implies that en(b) is true, meaning that either 6 > 0 or b_en 3 @.

Subcase la: If ben $# @ then by aux j1 Wwe know that
3i(i € b_en A i at TP2UTP9). This in turn implies that a process at TP2 or TP9
is enabled.

Subcase 1b: If b > 0, then by aux 2 we know that b_en = b_bl = &, and hence
|TP2UTPY = O by aux;;. If there is a process at either TP/ or TP then that
process is enabled, otherwise |TPIUWAITBIUWAITB2 = 0. Since we assume
that there is at least one process in the trying or leaving region in state g, this
means that there must be a process at either WAITA or WAITM. Since it follows
from vbls; that WAITM > 0 implies WAITA > 0, we conclude that WAITA > 0.



- 103 -

Since |WAITB2 = 0, we know that en(a) is true by vbls ;- Therefore, either
a> 0oraenz @ Ifa>0, then by aux; and aux;p, there is a process at
TP6 and that process is enabled. If aen 5 @, [TP7] > 0 by aux;p and
therefore a process at TP7 is enabled.

Case 2: confy A vblsy is true. By confy |[MUTEXI| > 0. A process at MUTEX]

always has an enabled transition.

Case 3: confz A vbls; is true. By confy [MUTEXZ > 0. A process at MUTEX2

always has an enabled transition.

Case 4: confy A vblsy is true. By confy, [TPI6| = 1. A process at TPI6 always has

an enabled transition.

Case 5: confs A vblss is true. By confs, [TPI16) = 1. A process at TPI6 always has

an enabled transition.

Case 6: confg A vblsg is true. By confg, IMUTEXI| = 1. A process at MUTEX]

always has an enabled transition.

Case 7: confy A vblsy is true. By wbls3 en(a) is true, which in turn implies that
either a > 0 or a_en 3£ @.
Subcase 7a: 1f a > 0 then aen = @ A a bl = @ by aux;, and conf implies
|WAITA = 1. By auxjp we have that [TP6 = 1, and hence a process at TP6 is
enabled.

Subcase 7b: If a_en 5 @ then TP7 > 0 by aux;q and hence a process at TP7 is
enabled.

Case 8: confy A vblsy is true. By vb!s?, en(b) is true, which in turn implies that



- 104 -

either b > 0 or b_en 5% @.
Subcase 8a: 1f b> 0 then b_en = & A b bl = & by auxy, and confg implies
|WAITB2 = 1. By auxj; we have that |[TP§ = 1, and hence a process at TP§ is

enabled.

L]

Subcase 8b: If b_en # @ then |[TPZ + |TP9 > 0 by aux;;, and hence a process
at TP2 or TP9 is enabled.

Case 9: confg A wblsg is true. By confg we know that |[MUTEX2 = 1, and a
process at MUTEX2 always has an enabled transition.

Case 10: confyg A vblsyp is true. By conf;p we know that |TPI§ = 1, and a

process at TPJ/§ is always enabled.

Case 11: confypy A vblspy is true. By vblsy; we know that en(m) is true, which in
turn implies that either m > 0 or m_en 3 @.
Subcase Ila: If m > O then m_en = @ and m_bl = @ by auxj and conf;;
implies |WAITM| > 0. By aux;; we have that |[TP/9 > 0, and hence a process
at TPI9 is enabled.

Subcase 11b: 1f m_bl 3 @ then |TP20l > 0 by aux;; and hence a process at
TP20 is enabled.

Case 12: confyy A whlsyy is true. This case does not arise, since the truth of
confyy is in contradiction with our assumption that no process is in the critical

region in state gq.

Case 13: confy3 A vblsy is true. By confy 3, we know that |LR| > 0, and a process
at LR always has an enabled transition.



- 105 -

Since any reachable state must fall under one of Cases 1-13, the Claim is proved. B
Claim 5.6 - The system Z is deadlock-free.

Proof - Let ¢ be an arbitrary reachable state for Z. We will show that Z is
deadlock-free by constructing an execution sequence a from g, such that there are no

processes in the trying or leaving region in state nxt(q, a).

Define ay = A. Now suppose for some i > 0, that «; is an execution sequence
from g. If there are no processes in the trying or leaving regions in state nx/(q, a;),
then set @ = a; and we are done. Otherwise, by Claim 5.5, there is a process in the
trying or leaving region with an enabled transition f. Define a; ; = a;f; This
construction eventually terminates, since if it did not, that would imply the existence
of an execution sequence in which some process fires infinitely many transitions
without exiting the trying and leaving regions; a contradiction with the fact that the

trying and leaving regions in Z are acyclic. §

5.6 Freedom From Starvation

At this point, we could use the well-founded set method directly on the system
Z to prove that there are no execution sequences in which starvation occurs.
However if we were to perform the proof in this way, we would quickly encounter
difficulty due to the large number of details which would obscure the important
points of the proof. Examples of such details are the exact values of variables and
semaphores. The property of freedom from starvation is a statement about the
movement of tokens during an execution sequence; the exact values of semaphores
and variables are only important inasmuch as they serve to determine the movement
of the tokens. It would be better if we could suppress such detail from our proof.

The notion of a parallel program homomorphism serves this purpose.




- 106 -

5.6.1 Parallel Program Homomorphisms

A parallel program homomorphism from a parallel program T' to a second
parallel program I'* is a mapping from the state set of T' to the state set of I'. This
mapping has the property that initial execution sequences are preserved: for any
initial execution sequence a of I', there is a corresponding initial execution sequence
a’ of T". However, since the parallel program homomorphism in general maps many
states of T' into a single state of I'', the sequence a’ may be shorter than @. The
usefulness of parallel program homomorphisms derives from the fact that they allow
us to "abstract" away from irrelevant details of T', and focus our attention on I'’, in

which the properties of interest are more clearly displayed.

Definition 5.7 - Let I' and T'' be parallel programs. A mapping /4 from
Qr to @p+ is a parallel program homomorphism if the following hold:
(1) If g, is the initial state for I', and g, is the initial state for I'’,
then h{qf] =g,
(2) For any reachable state ¢ and transition ¢ for ' enabled in state
g, if h(nxt(q, 1)) # h(g), then there exists an unique transition ¢’
in T'" such that h(nxt(g, 1)) = nxt(h(g), t').

Definition 5.8 - Let & be a parallel program homomorphism from I' to
I'". Define the mapping image; from initial execution sequences of T' to
initial execution sequences of I'* as follows:
(1) imagey(A) = A
(2) Suppose a is an initial execution sequence for T, ¢ = nxi(q,, «),
and ( is a transition enabled in state g¢. Then:
(a) If A(nxt(g, 1)) = h(g), then imagey(af) = imagey(a).
(b) If A(nxt(g, 1)) # h(g), then imagey(al) = imagep(a)t’,



- JOT =

where ¢ is the unique transition of I'" such that
h(nxi(g, 1)) = nxt(h(g), ).

Suppose / is a parallel program homomorphism from I' to T'". Suppose P and
R are predicates on execution sequences of I' and I'', respectively, such that if a is
an initial execution sequence for T' then R(imagey(a)) implies P(a). The "parallel
program homomorphism method" simply states that if we can show that every initial
execution sequence for T'' satisfies R, then we know that every initial execution

sequence for T' satisfies P. This is the idea we will use in proving that Z is

starvation-free.

Figure 5.6 shows the graph of a new parallel program A, which is a
"condensed” version of Z, in the sense that unimportant details of the execution of Z
are suppressed in A. Note that A is mor a system of processes. After defining a
parallel program homomorphism 4 from Z to 4, we will be able to replace proofs of
properties of Z by simpler proofs of corresponding properties of A. Another benefit
of this approach is that a clean separation may be made between the intuitive parts

of the proof, presented in this section, and the mechanical details, which are left to

the Appendix.

The variables of A are ncr, tpl, waithl, mutexI, waita, waitb2, mutex2, tpl6,
tpl8, waitm, cr, Ir, and pnc. The places of A are CP1, CP2, CP3, CP4, CP5, CP6,
CP7, and CP8. The initial state r, for & (we will use the letter "r" to denote states,
and "u" to denote transitions of A) assigns the value one to places CP1 and CP8, the
value N to the variable ncr, and the value zero to all other places and variables.
Each horizontal bar in Figure 5.6 stands for one or more transitions of A, and is
labeled to correspond with the list of statement labels in Figure 5.7. For example,

the horizontal bar labeled "1a" in Figure 5.6 actually stands for seven distinct




- 108 -

transitions, whose statement labels are "1a-1" to "1a-7" in Figure 5.7.

Figure 5.8 defines a mapping /& from states of Z to states of A. Note that if ¢
is a state of Z, then the values of the variables ncr, 1pl, ... of A in state h(g) equal
the number of processes whose tokens are at places in NCR, TP], ... , respectively, in
Z. This reflects the idea that only the configuration of tokens is important in

proving freedom from starvation; the exact values of variables and semaphores are

unimportant.

In any reachable state of A, there are two tokens on the graph. One token is
always on place CP8. The firing of transitions 8a-1 or 8a-2 models a process in 2
leaving the noncritical region and entering the trying region. The second token in A

is always on one of places CP1-CP7 in A. The position of this token reflects which
of the conf; is true in Z.

Claim 5.9 - The mapping & is a parallel program homomorphism from Z
to A.

Proof - is in the Appendix. §

It is important, if we are to use A to discuss the starvation properties of Z,

that the mapping image; preserve infinite execution sequences. This is the content

of the next Claim.

Claim 5.10 - If « is an infinite initial execution sequence for Z, then

imageyp(a) is also infinite.

Proof - Suppose @ = fgf; ... is an infinite initial execution sequence for Z, with
corresponding state sequence gopg; ... . Then, since there are only a finite number of

processes in Z, there must be an / such that process i has infinitely many transitions



= I8 -

B

r i N _'\||
off
2a 1b
= el
3b @ 1c
> M=o =,
\
2b
1%
s
£ :
3a
o T
ih
1d @ 5a
s
5
5b
Th @ Ga
~
Y
6h
*
. \ Tk

Figure 5.0 - The Parallel Program A

>




la-1:
la-2:
la-3:

la-4:
1a-5:

la-6:

la-7:
1b:

le:

2a-1:
2a-2:

da-4:
4a-5;

- 110 -

when waita > 0 A waith2 = 0 do (waita, waith2) := (waita — 1, 1)
when 1p] > 0 A mutex] = 0 do (1pl, mutex]) := (tpl — 1, 1)

when waithl > Q0 A mutex] = Q
do (waitbl, mutexI) := (waithl — 1, 1)

when waith2 = 1 A mutex2 = 0 do (waith2, mutex2) := (0, 1)

when mutex] = 1 A ~(waita = 0 A waith] = 0 A waith? = 0)
do (mutexl, waita) := (0, waita + 1)

when mutex2 = 1 A 1pl6 =0 A
~(waith! = 0 A waila =1 A waith2 = 0) do (mutex2, tp16) := (0, 1)
when 1pI6 = 1 do (1pl6, waitm) := (0, waitm + 1)

when mutex2 = 1 A 1pl6 = 0 A waith] = 0 A waita= 1 A
waith2 = 0 do (mutex2, tpl6) := (0, 1)

when mutex] = 1 A waita = 0 A waithl = 0 A waith2 = 0
do (mutexl, waita) := (0, 1)

when ipl > 0 A mutex] = 0 do (1pl, mutexI) := (1pl — 1, 1)

when waith] > 0 A mutex] =
do (waithl, mutexl) := (waith] — L, 1)

when pl6 = 1 do (1pl6, waitm) := (0, waitm + 1)
when waita = 1 A waith2 = 0 do (waita, waith2) := (0, 1)
when (pl > 0 A mutex] = 0 do (1pl, mutexI) 1= (1pl — 1, 1)

when waitb] > 0 A mutex] = ()
do (waithl, mutex]) := (waithl] — 1, 1)

when waith? = 1 A mutex2 = 0 do (waith2, mutex2) := (0, 1)

when 1pl > 0 A mutex] = 0 A 1pI8 # 0
do (tpl, mutexl) := (1p] — 1, 1)

when waith] > 0 A mutex] = 0 A 1pl8 £ 0
do (waitbl, mutexi) := (waithl — 1, 1)

when mutex] = 1 do (mutexI, waita) := (0, waita + 1)
when mutex2 = 1 A tpI8 = 0 do (mutex2, 1pl18) := (0, 1)

Figure 5.7 - Statement Labels for Transitions of A



4b:
4c-1:

4¢-2:

Ba-3:

Ta-1:
Ta-2:

Ta-3:
Ta-4:

Tb:
Te:

- 111 -

when pl8 = 1 do (1pl8, waitm) := (0, waitm + 1)

when p] > 0 A mutex] =0 A tpl§=0
do (tpl, mutexl) := (ipl — 1, 1)

when waith] > 0 A mutex] = 0 A r_ir.h? =0
do (waitbl, mutexI) := (waith] — 1, 1)

when tp] > 0 A mutex] = 0 do (tpl, mutex]) := (1pl — 1, 1)

when waithl > 0 A mutex] =0
do (waithl, mutexI) = (waithl — 1, 1)

when mutex] = 1 do (mutexl, waita) := (0, waita 4 1)

when wairm > 0Acr=0
do (wairm, cr) := (waitrm — 1, 1)

when p] > 0 A mutex] = 0 do (tpl, mutex]) := (1pl — 1, 1)

when waith] > 0 A mutex] =0
do (waithl, mutex]) = (waith] — 1, 1)

when mutex] = 1 do (mutexl, waita) := (0, waita + 1)
when cr=1 A Ir=0do (cr, Ir) := (0, 1)
when 1p] > 0 A mutex] = 0 do (tpi, mutex]) := (tp] — 1, 1)

when waith] > Q0 A mutex] =0
do (waithl, mutex], pnc) := (waithl — 1, 1, 0)

when mutex] = 1| A waithl = 0 do (mutexi, waita) := (0, waita 4+ 1)

when mutex] = 1 A waith] > 0
do (mutexi, waita, pnc) := (0, waita + 1, 1)

when Ir = 1 A waitm > 0 do (Ir, ncr) := (0, ncr + 1)

when Ir = 1 A waitm = 0 A (mutex] > 0 v (waita =1 - pnc = 1))
do (/r, ncr) == (0, ncr 4+ 1)

when Ir = 1 A waitm = 0 A mutex] =0 A waita= 1 A pnc =0
do (Ir, ncr) == (0, necr + 1)

when ncr > 0 do (ner, tpl) := (ner — 1,.1p1 + 1)
when tpl > 0 do (1pl, waithl) := (1pl — 1, waithl + 1)

Figure 5.7 - Statement Labels for Transitions of A (cont.)




- 112 -

(h(g))(ner) = (INCR| + |LPG + |LP7)(g)
(h(g))(ipl) = (|TPI|)(q)
- (h(@))(waitb1) = [|WAITBI[)(g)
(h(g))(murex]) = [MUTEXI|)(g)
(@) (waita) = [|WAITA](q)
(A(@))(waith2) = [\WAITB2)(g)
(h(g))(mutex2) = [IMUTEX2|(q)
(M @)tpi6) = (|TPI6])(q)
(A(@)(1p18) = [[TP18](q)
(A(g))(waitm) = [|WAITM](q)
(H(g))(er) = [ICR| + |TP21[)(q)
(A(g))(Ir) = [ILR(q)

((q))(pnc) = if [conf} 3 A procnotcounted)(q) then 1 else O
(M(@P)NCP1) = if [conf; v confy V conf3 V confy v confgl(g) then 1 else O
(h(g))(CP2) = if [confs)(g) then 1 else O
(h(g))(CP3) = if [conf7](¢) then 1 else 0
(h(q))(CP4) = if [confg v confg v conf 10)(g) then 1 else 0
(h(g))(CP5) = if Iranff 7)(g) then 1 else 0
(h(¢))(CP6) = if [conf;,](q) then 1 else 0
(A(@))(CP7) = if [conf3l(g) then 1 else O
(M(g))(CP8) =1

Figure 5.8 - The Mapping # From ﬁz to ﬂd



- 113 -

in @. Since the trying and leaving regions in the graph for process i are acyclic,
process i must pass from the noncritical region to the trying region infinitely often in
a. There must therefore be an infinite sequence 0 < k; < kj < ..., such ‘that for
all j > 1 process i is in the noncritical region in state '?Rj’ and process i is in the
trying region in state q_;‘ +J- Define ﬁ* = seg(a, 0, kj) Since U’{Wz L) ner) =
“'{‘?i N(ner) — 1 3£ (h{‘?fc Y)(ncr), there must be a uniquely determlned transition u Ji
of ﬁ such that rmage;,{ﬁ ﬂc} = rmageh(ﬂ }u Since there are infinitely many
numbers Jl there are mfl!'lttﬂ]j' many corresponding uj in imageg(a), and hence

imagey(a) is infinite. B

5.6.2 Proof of Freedom From Starvation

We will now prove several properties (Claims 5.11-5.18) of the parallel program
A. Each of these properties implies the truth of a corresponding property of Z,
however the properties are much easier to state and verify for A. Claims 5.11 and
5.12 describe some simple invariants on the state of A. Claims 5.13 and 5.14 are
statements about A that imply the "two-phase" nature of the execution of Z. Claims
5.15-5.18 show that in any infinite execution sequence for Z, no process can wait
forever at any of the P operations in Z. In view of the finite delay property and the

fact that the trying and leaving regions in I are acyclic, this implies that Z is

starvation-free.

Claim 5.11 - [CP1 4 CP2 4+ CP3 + CP4 + CP5 4+ CP6 + CP7 = 1] is

invariant for A.

Proof - by the induction principle. Note that (r)(CP1) = 1, and (r)(CPi) = 0 for

2 < i< 7. Itis easy to verify that no transition of A changes the total number of
tokens on places CP1-CP7. §



- 114 -

Claim 5.12 - [ner + 1pl + waithl + waita + waith2 + mutex2 + tpl6
+ 1p18 + waitm + cr + Ir = N] is invariant for A.

Proof - by the induction principle is easy. B

Claim 5.13 - Let @ = wgu; ... be an infinite initial execution sequence for
A, with corresponding state sequence rory - - Let Py(r) be the predicate
[CP1 + CP2 + CP3 + CP4 = 1], and let Py(r) be the predicate
[CP5 4+ CP6 + CP7 = 1]. Then for any k> 0

(a) there exists an @ > k such that Py(r,) is true; and

(b) there exists an @’ > k such that Py(r,) is true.

Proof - of both statements (a) and (b) is by the well-founded set method.

(@) If Py(ry) is true then let a = k. Otherwise, by Claim 5.11 we know that Px(rp)
is true. Let (N, <) be the well-founded set consisting of the natural numbers under
the usual ordering, and define the function f from @ to N by:

Ar) = [NV — (waitm + (NDer + (VD2 + (V4D Pner +
(N1 pI + (N41)Pwaith] + (N+1)0mutext + (N4+1) waita))(r)

By Claim 5.12, flr) = 0 for all reachable states 7. By examination of the
labels of the transitions of 4, it is straightforward to verify that for any state r, and
transition « for A enabled in state r, Pyr) and Py(nxt(r, u)) imply that
fnxt(r, u)) < flr). By the well-founded set method, there must therefore exist
a > k such that Py(r,) is false. But by Claim 5.12 this means that Py(rp) is true.
Thus (a) is proved.

(b) The argument for (b) is entirely analogous, with the roles of P; and P,
interchanged, and the function f defined by:



- 115 -

AP = [NV — (pl + (N+Dwaits] + (N+1)2mutex] + (N+1)3waita
+ (M DHwaik2 + (VD mutex2 +  (N4+1)8(plo+1p18) +
(N4+1) waitm))(r) @

Claim 5.14 below is a somewhat strengthened version of Claim 5.13.

Claim 5.14 - In the situation of Claim 5.13, for any k > 0:
(a) there exists an @ > & such that [CP1 + CP3](rp) = 1; and
(b) there exists an a" > k such that [CP5)(r,) = 1.

Proof - (a) By Claim 5.13, we may select @ and b, with k < b < g, such that
P5(rp) and Py(r;) are true, where the predicates P; and P, are defined as in Claim
5.13. Since every path in the graph of A from places CP5-CP7 to places CP1-CP4
must pass through either place CP1 or CP3, we may choose @ so that
[CP1 + CP3](r,) is true. (b) By Claim 5.13, we may select ¢" and b’, with
k < b" < a’, such that Py(ry) and Py(r,’) are true. Since every path in the graph
of A from places CP1-CP4 to places CP5-CP7 must pass through place CP5, we may
choose a’ such that [CP5)(r,) = 1. §

Claim 5.15 - In the situation of Claim 5.13, for any k there is an a > k
such that (r,)(waith2)= 0.

Proof - We split the proof into cases, depending upon which of
(rg)(CP1), .., (rp)(CP7) equals one.

Case 1: (rp)(CP1) = 1. By Claim 5.14, there is a b > k such that (rp)(CP5) = 1.
Examination of the graph of A shows that for this to occur, u, must be either the
transition labeled "1b" or "l¢" in Figure 5.6, for some number g, with k < a < b.

But for either transition "l1b" or "Ic" to be enabled in state r, requires that




- 116 -

(r)(waith2) = 0.

Case 2: [CP2 + CP3|(rg) = 1. By Claim 5.14, there is a b > k such that
(rp)(CP5) = 1. Examination of the graph of A shows that for this to occur, u,
must be one of the transitions labeled "1b", "Ic", or "3a", for some g, with k < g

b. But then for u, to be enabled in state rq requires (r,)(waith2) = 0.

Case 3: [CP4 4 CP5 + CP6 + CP7](rg) = 1. By Claim 5.14, there exists a k' > k
such that [CP1 + CP3)(rz) = 1. But then either the argument of Case 1 or Case 2
applied with k" in place of k shows the existence of a > k', with (r)(waith2) = 0.
&

Claim 5.16 - In the situation of Claim 5.13, for any k there is an a > k
such that {ra)(wafm} = {.

Proof -

Case 1: [CP1 + CP2 4+ CP3](ry) = 1. By Claim 5.14, there exists b > k such that
(rp)(CP5) = 1. This can only happen if U 4.7 is the transition labeled "3a" in Figure
5.6, for some number g, with k < a < b. But this means that (rp)(waita) = Q.

Case 2: [CP4 + CP5 + CP6 + CP7)(rp) = 1. By Claim 5.14, there exists k' > K
such that [CP1 4 CP3](ry) = 1. Application of the argument of Case 1 with
k = k' now shows the existence of a > k' with (rg)(waita) = 0. §&

Claim 5.17 - In the situation of Claim 5.13, for any k there is an a > &
such that (r )(waitm) = 0.



<1175

Proof -

Case I: [CP5 + CP6 + CP7](rg) = 1. By Claim 5.14, there exists b > k with
[CP1 + CPB]{rb} = 1. But this means that u, is either the transition labeled "7c"
or "7d" in Figure 5.6, for some number g, with k < a < b. For either transition

"7c" or "7d" to be enabled in state r, it must be the case that (rp)(wairm) = 0.

Case 2: [CP1 + CP2 4 CP3 + CP4](rg) = 1. By Claim 5.14, there exists k" > k
with (r;-)(CP5) = 1. Application of the argument of Case 1 with k replaced by &’

now shows the existence of g > k" with (r)(waitm) = 0. §

Claim 5.18 - In the situation of Claim 5.13, for any k there is an a > k
such that (rg)(waithl) = 0.

Proof -

Case I: [CP1](rz) = 1. By Claim 5.14, there exists b > k with [CP5](rp) = 1. This
means that w, is either the transition labeled "1b" or "Ic" in Figure 5.6, for some

number @, with kK << @ < b. For either of these transitions to be enabled, we must
have (r)(waithl) = 0.

Case 2: [CP5 + CP6 + CP7)(ry) = 1. By Claim 5.14, there exists k" > k with
. [CP1 + CP3](ry) = 1. We may assume, without loss of generality, that k’ is the
least such number.
Subcase 2a: 1f [CP3](ry) = 1, then there must be an g, with kK < a < k' such
that u, is the transition labeled "7d" in Figure 5.6. For transition "7d" to be
enabled, it must be the case that (r)(waithl) = 0.

Subcase 2b: 1f instead, [CP1](rp) = 1, then application of the argument of Case



- 118 -

1, with & replaced by k', shows the existence of @ > k" with (rp)(waitbl) = 0.

Case 3: [CP2 4 CP3 4 CP4](r;) = 1. By Claim 5.14, there exists k" > k with
[CP5](rg~) = 1. Application of the argument of Case 2 with k replaced by A" now
shows the existence of @ > k" such that (r )(waith]) = 0. §

Claim 5.19 - The mutual exclusion system Z is starvation-free.

Proof - Suppose not. That is, suppose there is a valid infinite initial execution

sequence a for Z, with corresponding state sequence gpg; ... , such that:

(1) There exists a process i such that for all k > 0, there is an @ > k and an
a’ > k with process i in the critical region in state ¢, and process / not in
the critical region in state ¢, and

(2) There is a process i and a k' > 0, such that for all j > k" process i’ is in

either the trying or leaving region in state g

Now a must contain only a finite number of transitions for process i’. If this
were not true, then process i’ could not be in the trying or leaving region for all j >
k', since these regions are acyclic. Since a is assumed valid, there must be some n
such that for all j > n, process i’ has no enabled transition in state 9; This in turn

implies that for all j > n, the token for process i’ is at one of the four places TP2,
TP7, TPS, or TP20 in state 95

Let 8 = imagep(a). Since a contains infinitely many transitions for processes
in the trying and leaving regions, § is infinite by Claim 5.10. Suppose § has
corresponding state sequence rgry .. . Then, by Claims 5.15-5.18, for any m there
exist a; ay a3 and ag > m such that (rai}{waflbf} o= (raj)(waffﬂ) =
{rajj{waf'ra) = (rﬂ,‘}(wr'rm} = (. But by the definition of A, this implies the
existence of aj, a) a3 and ay > n, with [TPJ]{%;} = [TF?](qa;) =



- 119 -

[TPP]{-:;G;} = [TFZO](qa;} = 0. This is a contradiction, and we conclude that «
cannot exist and that Z is starvation-free. §

5.7 Conclusion

That the system of Figure 5.9 is a solution to the starvation-free mutual

exclusion problem is a direct consequence of Claims 5.1, 5.3, 5.6, and 5.19.



"noncritical place”

when b>0
do b=h-1

- 120 -

TTL i

=)

NCT_i

TP3_i

when true

TT23 | when b=0

do b_bl=h_blU{i}

TT33 | when i€h_en

do b_en:=b_en-{i}

do loc_iz=countl

Figure 5.9(a) - Morris' Solution in Graphical Form



when b_bl=§
do bimbsl

when a>0
do a=a-1

- 121 -

do countl=loc_i+l

v AN VE ‘]
TT6 i TT7.i when 1¢b_bl
do (b_bl, b_en)=
/—/ \{J (b.bl-{1}, b_eaU{1})
T3 when 2¢b_bl
" do (b_bl, b_en}=
! Y (bbl-{2}, b_enl{2})
-
Lo
. TT7. when Né¢b_bl
do (b_bl, b_en)=
(b_bl-{N}, b_enUiN})
P{a)
TTS. i TT9 i when a=0
do a_bl=a_blUfi}
TT10.i | when i€a_en
do a_ent=a_en-{i}

T

Figure 5.9() - Morris' Solution in Graphical Form




- 122 -

when b>0

hen b=0
do b=b-1 inciey

do b_bl=b_blli{i}

TT13.i | when i¢h_en
do b_en=b_en-{i}

P10_j

TT144 | do loc_i=countl

TTI15. | do countl=loc i-1

Figure 5.9(c) -'Morris‘ Solution in Graphical Form



Sl B e

P12,

TTi64 | do leci=count2

)

et

TT17 | do count2:s=loc_i+l

P14
& Y
when countl>0 TT18. TT23 i | when countl=0
E F

Figure 5.9d) - Morris’ Solution in Graphical Form




when b_bl=
do h=h+1

when a_bl= @

do ama+l

- -

E
Vib)
2 X N
TT19.4 TT20.i when 1€b_bl
&'ﬂ {h....]'-'l].; h_'ﬂn]F
(G & {(b_bl-{1}, b_enl{1})
TT20 i when 2¢b_bl
G do (b_bl, b_en)=
— VT bl berti)
y
L]
'
» TT20_i when Neéb_bl
do (b_bl, b_en)=
(b_bl-{N}, b_enU{N}
P16_i
Via)
N A )
TT21. TT22. when 1€a_hl
do {a_bl, a_enk=
— ] R, ettt
TT22 i when 2¢€a_hl
do (a_bl, a_en):=
— Yo (abl-{2}, a_enll{2})
[
s \;_)/
..|
e ITT22. when Néa_bl
do (a_bl, a_en)=
(a_bl-{N}, a_enU{N})
.\
G

Figure 5.9(e) - Morris’ Solution in Graphical Form



~ 125 -

when b_bl= ¢ TT24.1 TT25.1 when 1¢b_bl

do b=h+1 do (b_bl, b_en)=
,-'—'. f:' (b_bl-{1}, b_enlU{1})

TT25. when 2€b_bl
J» do (b_bl, b_en)=
- (b_bl-{2}, b_enU{2})

N

TT25.1 when Néb_bl
do (b_bl, b_en)=
(b_bl-{N1, b_enU{N})

P18
Vim)
2 =S Tl
when m_bl=@ TT26_i TT27.i when 1€m_bl
do mm=m+1 do (m_bl, m_enk=
/—/ \f) (m_bl-{1}, m_enU{1})
TT27.i when 2¢m_bl

/_'7— J do (m_bl, m_enk=
{(m_bl-{2}, m_enU{2})

Lan st

TT273 when Ném_bl
do {m_bl, m_en):=
{rm_bI-IN}, m_enU{N}}

Figure 5.9(f) - Morris” Solution in Graphical Formn




- 126 <

G H
4
=

when m>0 TT28

do m=m-1

(m)

TT29.i | when m=0

do m_bl=m_blU{i}
)

TT30.i | when ifm_en
]
or

do m_en=m_en-{i}

itical place”

Y
CT. when true

)

LT1d | do loc_i=count?

N\
LT2.

do {(count2, loc_i)=
{loc_i-1, 0)

Figure 5.9(g) - Morris’ Solution in Graphical Form



- 127 -

@)

N

LT3

when count2>0

LT4i

LTs3
N
LTS5

LT6i

when count2=0

' @ Via)

LT3

Figure 5.9(h) - Morris' Solution in Graphical Form

VR

LT8.

LTE.i

" g

LT8. i




- 128 -

6. Summary and Conclusion

In this chapter, the accomplishments of this thesis will be summarized, and
then some possible directions for further study will be outlined.

6.1 Summary of Accomplishments

This thesis set out to investigate the relative "power” of semaphore
synchronization primitives, with respect to their ability to implement starvation-free
mutual exclusion. Before this investigation could be performed, it was necessary to
provide precise definitions of the different types of semaphore primitives, and of the
starvation-free mutual exclusion problem. For this purpose, the parallel program
model of computation was introduced. Certain parallel programs, which model a
number of concurrently executing sequential processes mmmunica.ting via shared
memory locations and synchronizing with semaphore operations, were identified and

given the name "systems of processes”. Four different types of semaphore primitives

were defined using the system of processes model.

Systems of processes with a particular structure could be regarded as modeling
several sequential processes attempting to synchronize access to critical regions. For
these systems, which we called mutual exclusion systems, the properties of mutual
exclusion, freedom from deadlock, freedom from indefinite postponement, and
freedom from starvation were defined. Since these four properties seemed to capture

the essence of the intuitive idea of starvation-free mutual exclusion, we defined a



- 129 -

solution to the starvation-free mutual exclusion problem to be a mutual exclusion

system with these properties.

After completing the underlying definitions, it became possible to proceed with
the formal investigation. The first discovery was that semaphore operations are not
needed to solve the starvation-free mutual exclusion problem -- global variables with
"atomic" read and write operations are powerful enough by themselves. Because of
this, it was found to be impossible to learn anything about the relative power of
semaphore primitives, unless further restrictions were imposed on the class of mutual
exclusion systems. The properties of symmetry and busy-waiting were identified and
given precise definitions. It was proved that the classes of symmetric mutual
exclusion systems and mutual exclusion systems with no busy-waiting contain no

semaphore-free solutions to the starvation-free mutual exclusion problem.

A npumber of "negative" results about weak semaphore solutions to the
starvation-free mutual exclusion problem were proved in Chapter 3. These results,
coupled with the "positive" results of Chapter 4, show that weak semaphores are
indeed "weaker" in a certain sense than blocked-set semaphores. In addition, it was
shown that under certain conditions, weak binary semaphores are strictly less

powerful than weak general semaphores.

In Chapter 5 a blocked-set semaphore solution to the starvation-frce mutual
exclusion problem was proved correct. There appeared to be no short, elegant way
to perform this proof. On the contrary, rather long formulas, and tedious
verification of many cases were required. What made the proof manageable was the
use of the induction principle and the notion of a parallel program homomorphism to

make a clean separation of the mechanical parts of the proof from the intuitive

parts.




- 130 -

6.2 Directions for Further Study

There are a number of ways in which the work presented in this thesis might

be improved upon or extended. We will first examine some possible improvements,
and then take a look at extensions.

6.2.1 Possible Improvements

One place where improvement might be made is in notation. At times during
the writing of this thesis, there seemed to be just too many things to name. This
problem, which seems to be common to other attempts at formal modeling of
concurrent processes, may be due to the fact that all discussion takes place at a very
low level, at which each minute step of every process must be explicitly represented
(and named). No convenient way has been discovered to raise the level of discussion
to a higher level, with consequent reduction in the number of details. It is difficult
to tell how much of the complexity is inherent in the highly interactive nature of the

computations being discussed, and how much could be avoided through better

techniques.

There is no good reason why the finite delay property and the fact that a
process may have noncritical regions that do not terminate should be intertwined in
the definition of valid execution sequences. The fact that in this thesis the critical
and noncritical regions have been "collapsed" down to a single place leads to this
unintuitive combination of two unrelated notions. Intuitively, the finite delay
property applies to processes with nontrivial critical and nonecritical regions. Perhaps
a formulation of the mutual exclusion problem that somehow retained the idea that
critical and noncritical regions in general have more than one place would admit a

better definition of valid execution sequences.



- 131 -

The definition of systems of processes and mutual exclusion systems by making
syntactic restrictions on parallel program graphs is not entirely satisfactory. Since
graphs are not very "nice" to work with, these restrictions did not turn out to be
especially elegant. Perhaps there is a cleaner formulation of the model that avoids
some of these problems. It is interesting to note that the results proved in Chapter 3

seem to express truths that are somewhat independent of the details of the model

used.

6.2.2 Possible Extensions

There are a number of questions left unanswered by the work presented here.

The most obvious ones involve straightforward extensions of the results proved in
Chapter 3.

(1) It is unknown whether there is a symmetric solution, using weak general
semaphores and with no memory, to the starvation-free mutual exclusion problem for

more than two processes.

(2) It would also be interesting to examine semaphore-free solutions in more detail.
Unanswered questions here are: How many global variables are required to
implement starvation-free mutual exclusion for N processes? It is not difficult to
show that two processes require at least two variables, and it seems intuitive that the
number of variables should increase monotonically with the number of processes, but
how can this be proved?  Semaphore-free solutions must be asymmetric.
Consequently, such solutions are always presented in "parameterized” form; that is,
the program run by process i depends upon the number i. The question arises: must
these solutions also be parameterized by the total number of processes NV as well? It
seems as though it might be possible to use the "lock-step" construction to prove that
this must be the case. For the "lock-step” construction to be applicable to

asymmetric solutions requires increasing the number of processes in the system large




- 132 -

enough to "match-up" initial segments of execution sequences for various processes.

(3)  Intuitively, weak semaphores, should be the "weakest" at implementing
starvation-free mutual exclusion, blocked-set semaphores somewhat "stronger” and
blocked-queue semaphores the "strongest”. This intuition is borne out by the fact
that in each of the solutions presented in this thesis, weak semaphore operations may
be replaced by blocked-set operations, and blocked-set operations may be replaced by
blocked-queue operations, and the solution remains correct. However, it is not at all
clear that this is true in general. The reason is that replacing semaphore operations
in the manner described, "restricts”" the set of execution sequences of the system in a
certain sense. While it can be shown that the new mutual exclusion system has the
mutual exclusion property, is free from indefinite postponement, and s
starvation-free if these properties held for the original system, it is not so obvious
how to show that "restricting" the set of execution sequences of a mutual exclusion
system does not introduce the possibility of deadlock. Thus, based on the results of
this thesis, we are unable to justify our intuition that weak, blocked-set, and

blocked-gueue semaphores may be linearly ordered by their expressive power.

(4) There are other unanswered questions that are not quite so clearly defined. For
example, when are two definitions of semaphore operations "equivalent"? This
question is important in determining the generality of the results of this thesis. An
interesting possibility for future research, which might answer this question, is the
development of what might be called a theory of specification and implementation of
parallel programs. In such a theory, synchronization behavior would be specified by
a parallel program, along with some additional restrictions on the set of execution
sequences of that program. These additional restrictions may be necessary since
there are interesting constraints, such as the finite delay property, on the execution
sequences of a parallel program that cannot be enforced within the parallel program.



-133 -

A second parallel program would be said to implement the abstract behavior
specified by the first if there were a suitable parallel program homomorphism from
the second program to the first. This idea is quite similar to the notions of

"abstract” synchronization primitives and their implementations discussed in
[DOEPP76].

One of the goals of such a theory would be the ability to treat synchronization
constructs as primitive at one level of abstraction, and to consider their possible
implementations at another level. For example, at one level it might be useful to
consider several possible implementations of weak semaphore operations, and to prove
that the implementations actually satisfy the specifications of the behavior of weak
semaphores. At a higher level, it should be possible to treat weak semaphores as
primitives, and use them to implement starvation-free mutual exclusion. At yet a
higher level, the starvation-free critical regions would themselves be used as
primitives, perhaps for implementing a more complicated synchronization scheme,
such as hierarchical locks in a database system. It should be possible to treat each

of these different levels of abstraction with the same methods.

6.3 Conclusion

The major contribution of this thesis is that it brings the murky issues of
"fairness” often mentioned in the synchronization literature into sharper focus. The
attempt at precise definitions of the various types of semaphores, while perhaps
imperfect, helps to clear up confusion that has resulted from informal discussion. In
the literature, many pages have been, and continue to be spent in arguments over
whether one program solves or does not solve a particular synchronization problem.
Often such arguments are useless, since precise specifications are lacking, for the
synchronization problem itself, and for what it means to "solve" that problem. It is

hoped that this thesis makes a small step toward the resolution of this difficulty.




- 134 -

7. Appendix

The purpose of this Appendix is to give details of the proofs of Claims 5.4 and
5.9, which state that the predicate [inv] is invariant for Z, and that the mapping h is

a parallel program homomorphism from I to A.

7.1 Philosophy of the Presentation

There is an unfortunate difficulty that arises with proofs about programs, and
especially with proofs about parallel programs. In ordinary mathematics, the proof
of a theorem simultaneously provides both an argument for the correctness of the
theorem, and intuition into why the theorem is correct. In proving properties of
programs, often all or most of the intuition about why the program is correct goes
into constructing the set of statements to be proved. Once this set of statements has
been constructed, the proof of the program simply consists of the listing of the set of
statements, and an often lengthy, mechanical verification of their truth. The result

is that the understanding of the program has been divorced from the actual
correctness argument.

This is the case with the proofs to be presented here. The constructions of the
invariant [inv], the parallel program A, and the mapping 4 require an understanding
of the operation of the system Z. Once inv, A, and A have been constructed, what
remains to be performed is simply a tedious, mechanical verification. It is necessary
to perform this verification to make sure that inv, A, and A have been defined



- 135 -

correctly, however this wverification is something that may be performed by a

machine, and is not at all interesting to read.

The inductive step in the proof of the invariance of [inv] is divided into
thirteen major subproofs, corresponding to each of the thirteen disjuncts of inv.
Each major subproof is divided into forty-one minor subproofs, corresponding to the
forty-one transitions in the graph for the ith process in Z. This results in a total of
five hundred thirty-three statements to be verified. Most of these statements are
trivial to prove, however the difficulty, at least for a human verifier, is not in the
actual production of the proofs of the statements, but in differentiating the

statements that are trivial to prove from the ones that really require substantial

inferences.

In this Appendix, the following philosophy is therefore adopted to guide the
presentation: Due to the large number of cases, the only way to raise the reader’s
level of confidence in the proof to an acceptable level is for him to actually verify
each of the statements, either by hand or by machine. An acceptable level of
confidence will nor be achieved simply by reading a proof. The arguments here are
therefore intended not to comprise a complete "readable" proof, but to indicate
where major inferences are required; making it a reasonably short step to a complete

formal verification with a suitable theorem-proving program.

7.2 Proof Outline

Recall that a proof by the induction principle of the invariance of the
predicate [inv] requires: (Base) that [in¥] be shown to hold in the initial state; and
(Induction Step) a proof that inv holds in state nxt(q, 1), under the assumption that ¢
is enabled in state g and that inv holds in state ¢. The mapping A can be shown to
be a parallel program homomorphism from Z to A by: (Base) showing that A(g) =

r; and (Induction Step) showing, under the assumption that r is enabled in state g,



- 136 -

either that h(q) = h(nxi(g, 1)) or that there exists a unique u such that h(nx1(q, 1))
= nx(/i(g), ). The similar structure of the proof of the invariance of [inv] and the

proof that A is a parallel program homomorphism from T to A makes it possible for
them to be performed simultaneously.

The base of both proofs is trivial; that is, it is easy to see that [inv)(g,), and

that h(q,) = rr We will therefore concentrate our efforts on the induction step

only. -

Let E be an expression that defines a predicate [E] on states. We will say that
a transition 1 affects E if t affects any of the places or variables appearing in E.
Recall that inv = vl;l ; (conf; A vwbls}) A aux. There are comparatively few
transitions that affect aux, and it will therefore be convenient to treat separately the
part of the proof involving aux. This is done in Section 7.3, where it is proved that
if [aux](g) is true, and r is enabled in state g, then [aux)(nxt(g, () is true. Many
more transitions affect v!:lf (conf; A vblsy), and therefore for the proof that this

predicate is true in state nxt(q, ) to be feasible, some further organization is

required.

As discussed in Chapter 5, a state g satisfying [inv] must satisfy exactly one of
confy, ... , confps. Firing a transition in Z may be viewed as a progression from a
configuration of tokens in one of the thirteen categories to a configuration in
another. If we know, for example, that state ¢ satisfies [conf 7h then in proving that
[inv](g) implies [inv](nxt(g, f)), we may use information about the configuration of
tokens in state g to reduce the number of transitions ¢ that must be considered. For
example, since no processes are in the leaving region in any state g that satisfies
[conf;], we need not be concerned about any transitions ¢ in the leaving region, since
these transitions cannot be enabled if [conf 7] is true, and hence the implication to be

proved is trivial.



137

We divide the proof into thirteen major subproofs, corresponding to each of
the thirteen different configurations of tokens. In the ith subproof, we assume that
q is a state satisfying [conf; A vbls; A aux], and attempt to show that if ¢ is an
arbitrary transition enabled in state g, then nxt(q, 1) satisfies [v],-i 7 (confi A vblsp].
Note that to do this, we need only show that nxi(g, r) satisfies [conf; A vbls;] for
some 1 < i/ < 13. It will not be important to distinguish between transitions in
different processes, and since there are forty-one transitions in the graph for each

process, we have the forty-one minor subproofs mentioned above.

Note that if in addition we show that either A(g) = h(nxi(g, 1)), or there is a
unique transition u of A such that h(nxt(g, 1)) = nxt(h(g), u), then we will have also

shown that / is a parallel program homomorphism from Z to A.

7.3 Inductive Step for the Auxiliary Invariants

In this section, we will show that if ¢ is a state satisfying [inv], ¢ is a transition
enabled in state g, and g’ = nxi(q, 1), then [aux)(g") is true. This will be done in
the following way: Recall that aux = aux; A .. A auxp; Let us say that {
falsifies aux; if [aux;)(g’) is false. Note that a transition cannot falsify aux; unless it
affects it. Treating each aux; as a separate case, we will list the transitions that

affect aux; and show for each one that aux; is not falsified.

(1) Case aux;: The only transitions that affect the variables a, a_en, or a_bl, and
hence the only transitions that affect qux; are TT8, TT9, TT10, TT21, LT7, and LT8.
(a) Transition TT8 can only cause a to become zero, and therefore cannot falsify
aux I
(b) Transition TT9 is enabled only if g(a) = 0, and hence even though firing it
causes a_bl to be nonempty, ¢'(a) = 0, and hence aux is true in state ¢".
(c) Transition TT10 is only enabled if a_en is nonempty in state g. By [aux;](¢)
this means that g(a) = 0 and hence that ¢'(a) = 0, since TT10 does not



- 138 -

affect a.

(d) Since transitions TT22 and LT8 do not change the value of a or the total
number of elements in a_b/ U a_en, they do not falsify aux 7

(e) Transition TT21 is enabled only if confy, confs, or confg is true in state q.
This in turn means that either vbls 4, vblss, or wblsg is true in state g, and
hence that [~en(a)](g) is true. Since TT21 is enabled only if ¢(a_bl) = @, even
though TT21 increments a, it does not falsify auxy, since ¢'(abl) =
q'(a_en) = @.

(f) Transition LT7 is enabled only if conf 73 1s true in state ¢. This in turn means
that vbls;; is true in state g, and hence that em(d) is false in state g.
Therefore a_en = @ in state ¢, and since m_b/ must be empty for LT7 to be

enabled, transition LT7 does not falsify aux I

(2) Case aux 2° The only transitions that affect aux yare TT1, TT2, T13, TT6, TT7,
TT11,TT12, TT13, TT19, TT20, TT24, and TT25.

(a) Firing either TT1 or TT11 can only cause b to become zero, and hence cannot
falsify aux .

(b) Transition TT2 or TT12 is enabled only if ¢(b) = 0, and hence even though
firing one of them causes b_b/ to become nonempty, ¢'() = 0, and hence
aux , is true in state ¢’.

(c) Transition TT3 or TT13 is enabled only if b_en is nonempty in state ¢. By

[aux5)(g) this means that g(b) = 0 and hence ¢'(b) = 0, since neither TT3 or
TT13 affects b.

(d) Since transitions TT7, TT20, and TT25 do not change the value of b or the
total number of elements in b_b/ U b_en, they do not falsify aux 2

(e) Transition TT6 is enabled only if |[MUTEXI| = 1 in state ¢. Examination of
inv reveals that this only occurs when en(b) is false in state g. Also TT19 and
TT24 are enabled only if [MUTEXI| = 1 in state ¢, which also implies that



- 139 -

en(b) is false in state g. Since for TT6, TT19, or TT24 to be enabled in state

g requires that b_bl = @, neither of these.transitions can falsify aux,.

(3) Case auxy: This can only be affected by transitions TT28, TT29, TT30, LT4,
and LTS.

(a) Firing transition TT28 can only cause m to become zero, and therefore cannot
falsify aux 3.

(b) Transition TT29 is enabled in state g only if g(m) = 0, and hence even though
firing it causes m_bl to become nonempty, ¢'(m) = 0, and hence auxj is true
in state ¢

(¢) Transition LTS is enabled in state ¢ only if m_en is nonempty. By [aux 3]{4)
this means that g(m) = 0 and hence ¢'(m) = 0, since LTS does not affect m.

(d) Since TT30 does not change the value of m, or the total number of elements in
m_bl U m_en, it does not falsify aqux 3

(e) Transition LT4 is enabled in state ¢ only if conf}3 1s true in state g. This
means that vbls 73 must be true in state g, and hence en(m) is false. Thus
m_en is empty in state g. Since for LT4 to be enabled requires m_bl/ to be

empty in state g, we see that LT4 cannot falsify aux ;.

(4) Case auxy: Transitions TT8, TT2l, and LT7 affect auxy Transition TT8
decrements g, and therefore cannot falsify auxy. It is easily verified by examination
of inv that TT21 and LT7 are enabled only if en(a) is false in state g. But this
implies that g(a) = 0. Hence ¢'(a) = 1, and aux is not falsified by TT21 or LY?.

(5) Case auxg: Transitions TT1, TT6, TTL1, TT19, and TT24 affect auxg. The

arguments are similar to those of case (4).

(6) Case auxg: Transitions TT28 and LT4 affect auxs The arguments are similar
to those of case (4).



= 140 -

(7) Case auxy: Transitions TT10, TT22, and LT8 affect the variable a_en, and hence
affect aquxy  Transition TT10 decreases the number of elements in a_en, and
therefore cannot falsify aux; Examination of inv shows that TT22 and LT8 are
enabled in state g only if en(a) is false in state g, and hence only if ¢(a en) = @.

Since these transitions add exactly one element to q_en, they therefore cannot falsify

aux 7-

(8) Case auxg: Transitions TT3, TT7, TT13, TT20, and TT25 affect the variable
b_en, and hence affect auxg. An argument similar to that in case (7) shows that

these transitions do not falsify auxg.

(9) Case auxg: Transitions TT30 and LT5 affect the variable m_en, and hence affect

auxg. An argument similar to that in case (7) shows that these transitions do not

falsify auxg.

(10) Case auxjp: Transitions TT9, TT10, TT22, and LT8 affect aux;; Transitions
TT22 and LT8 do not change the elements in a_en U a_b/, and hence do not falsify
aux o Transition TT9 inserts a process number into a_b/, but at the same time the
token for that process enters place TP7. Similarly, transition TT10 removes a process
number from a_en, but at the same time removes the corresponding token from TP7.

Thus transitions TT9 and TT10 do not falsify aux ;4

(11) Case aquxy;: Transitions TT2, TT3, TT7, TT12, TT13, TT20, and TT25 affect

aux ;. An argument similar to that in case (10) shows that these transitions do not
falsify aux;.

(12) Case auxyy: Transitions TT29, TT30, and LT8 affect aux;; An argument

similar to that in case (10) shows that these transitions do not falsify aux; .



- 141 -

(13) Case auxjpz: Transitions TT9, TT10, TT22, and LT8 affect aux;; Now,
transitions TT22 and LT8 simply transfer a process number from a_b/ to a_en, and
therefore cannot falsify aux;; Transition TT10 removes an element from a_en, and
therefore cannot falsify auxjj either. Finally, TT9 cannot falsify aux;j 3 either, since
by [aux;ql(g) a process whose token is at place TP6 in state g cannot have its

process number in q_en in state ¢.

(14) Case aux;y: Transitions TT2, TT3, TT7, TT12, TT13, TT20, and TT25 affect

auxpg.  An argument similar to that of case (13) shows that none of these

transitions can falsify aux .

(15) Case aux; 5 Transitions TT29, TT30, and LT5 affect aux;s. An argument

similar to that of case (13) shows that none of these transitions can falsify auxs.

(16) Case auxjs: Transitions TT8, TT10, and TT13 affect aux;s However,
transition TT13 decreases the number of processes at WAITB2, and hence does not
falsify aux;s Also, for transition TT8 or TT10 to be enabled, we must have that
en(q) is false in state g. Examination of inv reveals that this can only happen when
|WAITB2 = Q in state g, and hence TT8 and TT10 do not falsify awx 4 either.

(17) Case aux;s: Transitions TT1, TT3, TT6, and TT7 affect auxy,; However,
transitions TT6 and TT7 decrease the number of processes at MUTEXI, and hence
cannot falsify aux;7 Also, for transition TT1 or TT3 to be enabled in state g, we
must have that en(b) is false in state g. Examination of inv reveals that this can

only happen if |MUTEXI| = 0 in state g, and hence TT1 and TT3 do not falsify

aux ;7 either.

(18) Case aux;g: Transitions TT5, ... , TT15 affect aux;g. However, aux;g is

obviously not falsified by transitions TT6, ... , TT14, since these transitions change




-0

neither |TP5] + .. + |TPIlJ| nor the variable countl. Although transition TT5
increases |[TPJ| + ... + |TPlI| by one, for TT5 to be enabled in state ¢ means that
there is at least one process at TP4 in state g, and hence by [aux;g](g) we know
that loc_i = countl in state q. Therefore firing TT5 also increases count/ by one,
and does not falsify aux;e. Similarly, although TT15 decreases |TP5| + ... + |TP/1 1],

firing that transition also decreases count], and therefore does not falsify qux 18

(19) Case aux;g: Transitions TT4 and TT14 affect qux 79 but oh';'inusly do not
falsify it.

(20) Case auxyp: The argument here is similar to that of case (18).

(21) Case auxy;: The argument here is similar to that of case (19).

7.4 Remainder of the Inductive Step
‘ In the previous section, we showed that if ¢ is a state satisfying [inv], 1 is a
transition enabled in state g, and ¢" = nx(g, 1), then ¢’ satisfies [aux]. To complete
the proof of Claims 5.4 and 5.9, we must show, under the same assumptions, that ¢’
satisfies [V];‘l! (conf; A vbls)), and that either h(gq) = h(g’), or there is a unique
transition w of A such that A(g’) = nxt(h(q), u). As previously mentioned, the proof
will be split into thirﬁ:ea major subproofs, where in the ith subproof the additional
assumption is made that [conf; A vbis](g) is true. Each of these subproofs will be

divided into forty-one minor subproofs; one for each of the forty-one transitions in

the graph for process /.

The statements to be proved are summarized in tabular form in Figure 7.1.
There are four columns in Figure 7.1. The "INDEX" column assigns an identifying
index to each case for reference purposes. These indices are of the form N1-T(-N2),
where N1 is a number from one to thirteen indicating the major subproof to which

the case belongs, and the minor subproof is indicated by T, which is a transition



- 143 -

name. The parentheses indicate that the third field N2 is optional. This field is

present only when a further division into subcases must be made; more will be said
about this below.

To see how each row of the table indicates a statement to be proved, let us
use the row with index 2-TT6-1 as an example. The index indicates that we are to
assume that [confy A vbls; A aux)(q) is true, and consider the firing of transition
TT6. The "Additional Assumptions" column contains a set of additional assumptions
about the state ¢ which we also make. In this case, the additional assumptions are
that [|WAITA| + |WAITBI| 4+ |WAITB2 > 0)(q) is true. Note that the rows with
indices 2-TT6-1 and 2-TT6-2 represent a partitioning of minor subproof 2-TT6 into

two disjoint cases, defined by the "Additional Assumptions" information.

The "New Conf" column contains the entry "1", which indicates that we are
to show that, under these assumptions, if transition TT6 is enabled in state ¢ and
q" = nxt(q, TT6), then [conf; A vbls;)(g') is true. If the "New Conf" column for
row 2-TT6-1 contained a hypen "-" instead of a "1", then we would be required to

show instead that transition TT6 could not be enabled in state ¢ under the stated

assumptions.

Finally, the transition of A named in the "A Trans" column of Figure 7.1
indicates the unique transition u of A such that h(g") = nxt(h(g), v). In row
2-TT6-1, this transition is "la-5". The complete transition label may be found by
looking up "la-5" in Figure 5.7. A hyphen in the "A Trans" column indicates that

we are to show /(q) = A(g’), and hence there is no corresponding transition v of A.

Note that many minor subproofs, for example 1-TT4, are not listed in Figure
7.1. This is because it is immediately obvious that transition TT4 cannot be enabled

in any state in which conf; is true, and therefore need not be considered further. A




Z
ly]
£
®)
L=
=3

B ot B o 1e B B B b =] e ] = B B Ml—ill—llmHuml—ll—lMI—lMp—ll

- 144 -

A Trans Additional Assumptions
8a-2
la-2
8a-2
1a-3
la-1
la-1
la-4

la-4

8a-1

8a-2

1a-5 |WAITAHWAITBIHHWAITB2 > 0
le-1 |WAITA-HWAITBIFHHWAITB2 = 0
la-5 \WAITAHWAITBIHHWAITBZ > 0
le-1 |WAITA-HWAITBIHHWAITB2 = 0
la-1

la-1

Figure 7.1 - Exhaustive List of Cases



Index
I-NCT
3-TTI1
3-TT2
}TT3
3-TTS8
3-TTO9
3-TTI10
3-TT14
3-TTI1S
3TTI16
3-TTI17
J-TTIS8
3-TT19-1
3-TT19-2
3-TT20-1
3-TT20-2
3-TT23
3-TT28
3-TT29
3-TT30
3-LT9
4-NCT
4-TT1
4-TT2
4-TT3
4-TTS8
4-TT9
4-TT10
4-TT21
4-TT22
4-TT28
4-TT29
4-TT30
4-LT9

- 145 -

New Conf A Trans Additional Assumptions

3 8a-1

3 8a-2

3 :

3 =

3 .

3 g

3 -

3 "

4 la-6 |WAITA| 5 1 v |WAITBI| # 0
5 1b-1 |WAITA = 1 A |WAITBI = 0
4 la-6 |WAITA 5 1 v |WAITBI| £ 0
5 1b-1 |WAITA = 1 A |WAITBI| = 0
3 :

3 "

4 8a-1

6 la-2

4 8a-2

6 1a-3

4 >

1 la-7

1 la-7

4 -

4 -

Figure 7.1 - Exhaustive List of Cases (cont.)




Index
5-NCT
5-TT1
5-TT2
5-TT3
5-TT8
5-TT9
5-TTI10
5-TT21
5-TT22
5-TT28
5-TT29
5-TT30
5-LT9
6-NCT
6-TT1
6-TT2
6-TT3
6-TT4
6-TTS5
6-TT6
6-TT7
6-TT8
6-TTO
6-TT10
6-TT21
6-TT22
6-TT28
6-TT29
6-TT30
6-LT9
T-NCT
7-TT1
7-TT2
7-TT3

- 146 -

¢
=
2

A Trans Additional Assumptions
8a-1
2a-1
Ba-2
2a-2

2b-1
2b-1

8a-1

8a-2

la-5
1a-5

la-7
la-7

8a-1
3b-1
8a-2
3b-2

quqa-axrmuum-hhdxmrm-mm-m-qq-mlﬂ\mﬂ‘tﬂ’l
]

Figure 7.1 - Exhaustive List of Cases (cont.)



e, GO DD WO 1 D00 00 D0 O Moo~ ~

oo

L' = SRR Y = B

i

onf A Trans Additional Assumptions
Ja-1

la-1

8a-1
4c¢-1
Ba-2
d¢-2
4a-1

4a-1

8a-1

Ba-2

Figure 7.1 - Exhaustive List of Cases (cont.)




Index
10-NCT
10-TT1
10-TT2
10-TT3
10-TT4
10-TT5
10-TT6
10-TT7
10-TT8
10-TT9
10-TT10
10-TT26
10-TT27

10-TT28 .

10-TT29
10-TT30
10-LT9
11-NCT
11-TTI
11-TT2
11-TT3
11-TT4
11-TTS
11-TT6
11-TT7
11-TT8
11-TT9
11-TT10
11-TT28
11-TT29
11-TT30
11-LT9
12-NCT
12-TT1

- 148 -

New Conf A Trans Additional Assumptions

10
10
10
10
10
10
10
10

10
11
11

10
10
12
11
11
11
11
11
11
11

11
12
11
12
11
12
12

8a-1
4a-2
8a-2
4a-3

da-4
d4a-4

Jb-1
5b-1

8a-1
6a-1

Figure 7.1 - Exhaustive List of Cases (cont.)



- 149 -

Index New Conf A Trans Additional Assumptions
12-TT2 12 8a-2
12-TT3 12 ba-2
12-TT4 12 -
12-TTS 12 -
12-TT6 12 ba-3
12-T17 12 6a-3
12-TT8 -

12-TT9 12 -
12-TTI10 -

12-TT28 -

12-TT29 12 -
12-TT30 -

12-CRT 13 6b-1
12-LT9 12 -
13-NCT 13 8a-1
13-TT1 13 Ta-1
13-TT2 13 Ba-2
13-TT3 13 Ta-2
13-TT4 13 -
13-TT5 13 -
13-TT6 13 Ta-3
13-TT7 - 13 Ta-3
13-TTS§ -

13-TT9 13 -
13-TT10 -

13-TT28 -

13-TT29 13 -
13-TT30 -

13-LTI 13 -
13-LT2 13 -
13-LT3 13 .
13-LT4 11 Tb-1
13-LT5 11 Tb-1
13-LT6 13 -

Figure 7.1 - Exhaustive List of Cases (cont.)



- 150 -

Index New Conf A Trans Additional Assumptions

13-LT7-1 1 Te-1 IMUTEXI| = 0 A (WAITA = 1 - procnotcounted)
13-LT7-2 2 Te-1 IMUTEX1| > 0

13-LT7-3 7 7d-1 IMUTEXI| = O A |WAITA = 1 A -~procnotcounted
13-LT8-1 1 Te-1 IMUTEXI| = 0 A (WAITA = 1 - procnotcounted)
13-LT8-2 2 Te-1 IMUTEXI| > 0

13-L.T8-3 3 7d-1 IMUTEXI| = 0 A |WAITA = 1 A -~procnotcounted
13-LT? 13 -

Figure 7.1 - Exhaustive List of Cases (cont.)



- 131 -

similar observation holds for all other missing cases.

The verification, for each row in Figure 7.1, that [mnfj]{q’) is true for the

number j indicated in the "New Conf" column, is trivial. It is also not difficult to

verify for each case that either h(q) = h(g") or h(g") = nxt(h(q), u), where u is the

transition indicated in the "A Trans" column. Consequently, these two arguments

are left to the reader. The only part of the argument for each case that requires

substantial inference is showing that [vb:'sj](q’} is true for the number j indicated in

the "New Conf" column. These arguments are presented below.

1-NCT:

1-TT1:

1-TT2:

O = L

Transition NCT does not affect vbls;.

Of the terms in vbls;, namely |WAITA|, |WAITBI|, |WAITB2, |WAITM),
en(a), en(b), en(m), procnotcounted, the only one that is affected by
TT1 is en(b). If we can show that [-en(b))(g") is true, then the truth
of vbls; in state ¢" follows directly from the truth of vbls; in state g,
and the fact that only en(b) is affected by TT1. Now, for TT1 to be
enabled in state g, we must have ¢(b) > 0. Because [aux))(¢g) and
lauxs)(q) are true, we know that ¢(b) = 1, and that glb_en) = @.
Since ¢'(b) = g(b) — 1 = 0, we have that [-en(b)](¢") is true.

The only terms in vbls; affected by TT2 are procnotcounted and
|WAITBI. Now, TT2 increments |WAITBI|, and therefore |WAITBI| +
|WAITA| + |WAITB2 is greater than zero in state ¢’. Also, although
firing TT2_i moves the token for process i to WAITBI, this cannot
falsify procnotcounted, since TT2 does not change b_en, and by
[aux ;;)(q), the number i is not in b_en in state ¢.

Of the terms in vblsy, the only one affected by TT3 is en(b). However,
TT3 can be enabled in state ¢ only if g(b_en) ¢ @. But by [aux](¢)
and [auxg](g) we know that there is exactly one element in b_en in




1-TTS:

1-TTY:
1-TT10:

1-TT1I:

1-TT12:
1-TT13:

- 152 -

state ¢ and that ¢(b) = 0. Since firing TT3 removes an element from
b_en, we have that [-en(b))(¢") is true. The truth of vbls; in state ¢’
now follows from the truth of vbls; in state ¢ and the fact that only
en(b) is affected by TT3.

Since aux; and auxy are true in state g by hypothesis, and since for
TT8 to be enabled in state ¢ requires g(a) > 0, it must be the case
that g(a) = 1 and g(a_en) = @. Since TT8 decrements g, [-en(a))(g")
is true. In addition, by [auxel(g) and [vbisj](g) we know that
|WAITBZ = 0 in state ¢g. Since firing TT8 increments |WAITB2) we
know that [WAITBZ = 1 in state ¢". Since TT8 affects only the terms
en(a) and |WAITB2, it is clear that vbls; is true in state ¢,

Transition TT9 does not affect vbls .

The fact ;hat en(a) is false in state ¢’ follows from [aux @),
[aux7)(g), and from the fact that for TT10 to be enabled in state q
requires g(a_en) # @. The rest of the argument is identical to case
1-TT8.

For TT11 to be enabled in state g, it must be the case that g(b) > 0
and |WAITB2 > 0 in state g. Hence, by [vbls;)(g) it must be that
[~en(a) A en(b) A -~en(m))(q) is true. Since TT11 does not affect en(a)
or en(m), we only need to show that en(b) is false in state g’. But this
follows from [aux; A aux 5l(¢) as in case 1-TT1.

Transition TT12 does not affect vbls;.

For TTI3 to be enabled in state ¢, it must be the case that
g(b_en) # @, and |WAITB2 > 0 in state g¢. Hence, by [vblsfl(g) it
must be that [~en(a) A en(b) A -en(m))(g) is true. Since TT13 does
not affect en(a) or en(m), we only need to show that en(b) is false in

state ¢". But this follows from [aux; A auxgl(g) as in case 1-TT3.



1-TT28:

1-TT29:
1-TT30:

1-LT9:
2-NCT:
2-TTl:
2-TT2:
2-TT3:
2-TT4:
2-TTS:
2-TT6-1:

- 153 -

Impossible since TT28 cannot be enabled in state g if [-en(m)](q) is
true.

Transition TT29 does not affect vbls;.

Impossible since TT20 cannot be enabled in state g if [-en(m)](g) is
true.

Transition LT9 does not affect vbls;.

Transition NCT does not affect vbls;.

Impossible since TT1 cannot be enabled in state ¢ if [~en(b))(¢g) is true.
Transition TT2 does not affect vbls).

Impossible since TT3 cannot be enabled in state g if [-en(b)](¢) is true.
Transition TT4 does not affect vbls).

Transition TTS does not affect vbls;.

We must show that [vbls;](g") is true. Note first that since TT6
increments b, en(b) is true in state g’. Transition TT6 increments
|WAITA|, and so |WAITBI| 4 |WAITA| + |WAITBZ is greater than zero
in state ¢'. Transition TT6 does not affect en(m), en(a), or |WAITB2Z,
It therefore remains to be shown that |WAITBZ = 0 -
(|WAITA = 1 = procnotcounted)) and |WAITB2 = 1 — (|WAITA = 0
—» procnoicounted)) are true in state g’

By the assumption distinguishing case 2-TT6-1 from 2-TT6-2,
one of |WAITA, |WAITBI, or |WAITB2 > 0 in state ¢g. If
|WA4ITB2 > 0 in state g, and hence in state ¢, then since
[IWAITANg") > O, [vbls;l(g") is satisfied. Otherwise, if [[WAITBZ)(q)
= (), then there are two cases: either [|[WAITA|(g) > 0 or [|[WAITA(q)
= 0. In the first case, [vbls;](¢") is satisfied since |[WAITA)(g") > 1.
In the second case, it must be that |WAITBI| > 0 in state g. By the
truth of qux;; in state g, and the fact that for TT6 to be enabled in



2-TT6-2:

2-TTT:

2-TT8S:
2-TT9:
2-TTI10:
2-TT1l:

2-TT12:
2-TT13:

2-TT28:

2-TT29:
2-TT30:

2-LT9:
3-NCT:
3-TT1:

- 154 -

state ¢ requires g(b_bl) = 0, we know that [procnotcounted](q’) is true.
Hence [vbls;)(¢’) is true.

We must show that [vbls7|(¢') is true. The truth of en(a), en(b), and
-en(m) in state ¢  is easily shown as in case 2-TT6-1. Since
|WAITBI)] = 0 in state ¢ by the assumption distinguishing case
2-TT6-2, and TT6 does not affect |WAITBI, we have that
[~procnotcounted)(q’) is true, and hence [vbls7}(¢") is true.

Firing TT7 adds an element to b_en, so we know that [en(b)](g") is
true. Since TT7 can be enabled only if ¢(b_bl) # @, we know from
laux;;)(g) that |WAITBI| + |WAITB2 > 0 in state ¢. Proving that
vblsy is true in state ¢" may now be done as in case 2-TT6-1.

This case is similar to 1-TT8.

Transition TT9 does not affect vbls).

This case is similar to 1-TT10.

Impossible since TT11 cannot be enabled in state g if [-en(b)](g) is
true.

Transition TT12 does not affect vbls,.

Impossible since TT13 cannot be enabled in state g if [-en(b))(g) is
frue.

Impossible since TT28 cannot be enabled in state g if [~en(m)](q) is
true.

Transition TT29 does not affect vbls,.

Impossible since TT30 cannot be enabled in state g if [-en(m)](g) is
true.

Transition LTS does not affect vbls).

Transition NCT does not affect vbis;.

Impossible since TT1 cannot be enabled in state g if [~en(b)](g) is true.



3-TT2:
ATTH:
3-TTS:
3-TTS:
3-TTIO:
3-TTl4:
1 TT15:
3-TT16:
3TTIT:
3-TTI1S:
3-TT19-1:

3-TT19-2:

3-TT20:

- 133 -

Transition TT2 does not affect vbls ;.

Impossible since TT3 cannot be enabled in state g if [-en(b)](g) is true.
Impossible since TT8 cannot be enabled in state g if [~en(a))(g) is true.
Transition TT9 does not affect vbls;.

Impossible since TT8 cannot be enabled in state g if [-en(a)](g) is true.
Transition TT14 does not affect vbls ;.

Transition TT15 does not affect vbls;.

Transition TT16 does not affect vbls 3.

Transition TT17 does not affect vbls;.

Transition TT18 does not affect vbls 3

The truth of [vbls3)(¢) implies that en(a) and en(m) are false in state
g, and these terms are not affected by TT19. The truth of [-en()](g")
may be established by an argument similar to that of case 1-TT1. If
|WAITA| 5 1 in state g, then [vbls )(¢") follows easily. If |[WAITBI| 5%
0 in state g, then by the truth of aux;; in state ¢, and the fact that
for TT19 to be enabled in state g requires ¢g(b_b/) = &, we know that
procnoicounted is true in state ¢, and hence in state ¢". Therefore
[vbls4)(g’) is true.

\‘.;e may establish [~en(a) A en(b) A -en(m)])(g") as in case 3-TT19-1.
Since |WAITBI| = 0 in state g, and hence in state ¢, we know that
procnotcounted is false in state ¢', and therefore that [vb/ss)(q’) is true.
For TT20 to be enabled in state g, it must be the case that g(b_bl) #
@. By the truth of aux;; in state g, and because [conf3](¢) implies
that [WAITB2 = 0 in state g, we have that Vi((/ at TP2) « i € b_bl)
is true in state ¢. The effect of firing TT20 is to remove an element
from b_bl and transfer it to b_en. But this means that procnotcounted

is true in state ¢". The remainder of the proof of [vbls4)(¢") is done as



3-TT2%:

3-TT28:

3-TT29:
3-TT30:

LT
4-NCT:
4-TTI:
4-TT2:
4-TT3:
4-TTS8:
4-TTS:

4-TT10:

4-TT21:

4-TT22:

4-TT28:

4-TT29:
4-TT30:

- 156 -

in case 3-TT19-1.

Impossible, because conf; true in state ¢ means that [MUTEX2 = 1 in
state g. By the truth of aux;g in state g, we know that therefore
g(countl) > 0, and hence TT23 cannot be enabled in state g.

Impossible because TT28 cannot be enabled in state g if [~en(m)](q) is
true.

Transition TT29 does not affect vbls;.

Impossible because TT30 cannot be enabled in state g if [~en(m)](g) is
frue,

Transition LT9 does not affect vbls;.

Transition NCT does not affect vbls,.

Verifying [-en(b)](¢") may be done as in case 1-TT1.

Transition TT2 does not affect vbls,.

Verifying [-en(b))(¢") may be done as in case 1-TT3.

Impossible since TT8 cannot be enabled in state g if [~en(a)](g) is true.
Transition TT9 does not affect vbls,.

Impossible since TT10 cannot be enabled in state ¢ if [~en(a)](q) is
true.

Procnotcounted is not affected by TT21. Since TT21 increments a, we
have that en(a) is true in state ¢". Finally, |WAIT4 > 0 in state ¢ by
confy, and is not affected by TT21.

Similar to case 4-TT2l, except that [en(a)](¢g") is verified by noting
that TT22 adds an element to a_en.

Impossible since TT28 cannot be enabled in state g if [-~en(m)](g) is
true.

Transition TT29 does not affect vblsy.

Impossible since TT30 cannot be enabled in state ¢ if [~en(m)](q) is



4-LT9:
5-NCT:
3-TT1:
5-TT2:
3-TT3:
5-TTS:
3-TTY:

5-TT10:

5-TT21:
5-TT22:
5-TT28:

3-TT29:
5-TT30:

- 157

true.

Transition LT9 does not affect vbisy.

Transition NCT does not affect vblsg.

We may verify [~en(b)](g") as in case 1-TTL.

Transition TT2 does not affect vblss.

We may verify [-en(b)](g") as in case 1-TT3.

Impossible since TT8 cannot be enabled in state g if [~en(a))(g) is true.
Transition TT9 does not affect vblss.

Impossible since TT10 cannot be enabled in state g if [-en(a)](g) is
true,

Since TT21 increments q, [en(a)](g’) is true.

Since TT21 adds an element to a_en, [en(a)](g") is true.

Impossible since TT28 cannot be enabled in state g if [~en(a)](g) is
true,

Transition TT29 does not affect vblss.

Impossible since TT30 cannot be enabled in state g if [~en(m))(q) is
true,

Transition LT9 does not affect vblss.

Transition NCT does not affect vblsg.

Impossible since TT1 cannot be enabled in state g if [~en(b)](g) is true.
Transition TT2 does not affect vblsg,

Impossible since TT3 cannot be enabled in state g if [-en(b)](g) is true.
Transition TT4 does not affect vblsg.

Transition TTS does not affect vblsg.

Since TT6 increments b, en(b) is true in state ¢'. Since confg is true in
state ¢ we know that |WAITA > 0 in state ¢ and hence that
|WAITA| > 1 in state ¢". Therefore vblsy is true in state ¢’.




6-TT7:

6-TT8:

6-TTO:

6-TT10:

6-TT21:

6-TT22:

6-TT28:

TT29:
6-TT30:

6-LT9Y:
7-NCT:
7-TT1:

7-TT2:
7-TT3:

7-TT8:
T-TT9:
7-TT10:

- 158 -

Similar to case 6-TT6 except that [en(b)](¢") is true because TT7 adds
an element to b_en.

Impossible since TT8 cannot be enabled in state g if [~en(a)](g) is true.
Transition TT9 does not affect vblsg.

Impossible since TT10 cannot be enabled in state ¢ if [~en(a)](q) is
true.

|WAITB2 = 0 in state ¢, and is not affected by TT21. Since TT21
increments q, en(a) is true in state g.

|WAITB2 = 0 in state ¢, and is not affected by TT22. Since TT22
adds an element to a_en, en(a) is true in state g.

Impossible since TT28 cannot be enabled in state g if [~en(m)](q) is
true.

Transition TT29 does not affect vblsg,

Impossible since TT30 cannot be enabled in state ¢ if [~en(m)](g) is
true.

Transition LTS does not affect vblsg,

Transition NCT does not affect vbls.

We may verify [-en(b)](¢") as in case 1-TT1. Also, by [conf7)(q),
|WAITB2| = 0 in state ¢ and is not affected by TT2. Since en{a) is
true in state ¢ and is not affected by TT2 we have that vbis 2 is true in
state g’ |

Transition TT2 does not affect vbls 5.

The argument is identical to that of case 7-TT1, except that
[~en(b)](g") is verified as in case 1-TT3.

We may verify [-en(a)](¢") as in case 1-TTS8.

Transition TTS does not affect vblsy.

We may verify [-en(a)](¢") as in case 1-TT10.



7-TT28:

7-TT29:
7-TT30:

7-LT9:
8-NCT:
8-TT1:

8-TT2:
8-TT3:

8-TT1l:
8-TTl12:
§-TT13:
8-TT28:

8-TT29:
8-TT30:

8-LTO:
9-NCT:
9-TTI:
9-TT2:
9-TT3:
9-TT14:

- 159 -

Impossible since TT28 cannot be enabled in state g if [~en(m)](q) is
true.

Transition TT29 does not affect vbls7.

Impossible since TT30 cannot be enabled in state g if [-en(m)}(q) is
frue.

Transition LT9 does not affect vbls7

Transition NCT does not affect vblsg.

We may verify [~en(b)](¢") as in case 1-TT1. Also, |[WAITBZ = 1 in
state g by [confgl(g), and TT1 does not affect |WAITB2. Hence
[vbls;)(g’) is true.

Transition TT2 does not affect vblsg.

The argument is identical to that of case 8-TTl, except that
[—en(b))(g") is verified as in case 1-TTJ.

We may verify [~en(b)](¢") as in case 1-TT11.

Transition TT12 does not affect vblsg.

We may verify [~en(8))(¢’) as in case 1-TT13.

Impossible since TT28 cannot be enabled in state g if [-en(m))(q) is
true.

Transition TT29 does not affect vbisg.

Impossible since TT30 cannot be enabled in state ¢ if [~en(m)](g) is
true.

Transition LT9 does not affect vblsg.

Transition NCT does not affect vblsg.

Impossible since TT1 cannot be enabled in state ¢ if [~en()])(g) is true.
Transition TT2 does not affect vblsg.

Impossible since TT3 cannot be enabled in state ¢ if [~en(b)](q) is true.
Transition TT14 does not affect vbisg.




9-TT15:
9-TT16:
9-TTI17:
9-TT18:

9-TT23:

9-TT24:

9-TT25:

9-TT28:

9-TT29:
9-TT30:

9-LT9:
10-NCT:
10-TTI:

10-TT2:
10-TT3:

10-TT4:
10-TT5:

- 160 -

Transition TT15 does not affect vblsg.

Transition TT16 does not affect vblsg.

Transition TT17 does not affect vblsg.

It is impossible for TT18 to be enabled in state g, since [confg)(g)
implies [(MUTEXI| + |WAITA + |WAITB} = 0l(g), and hence
[aux ;g)(g) implies that g(countl) = 0. '

Transition TT23 does not affect vblsg.

IMUTEXI| = 0 in state ¢, and is not affected by TT24. We may
verify [en(b))(¢) using [aux)(g) and [aux 51(9).

The argument is identical to that of case 9-TT24, except that
[en(b))(q") is verified using [aux 2l(g) and [auxg)(q).

Impossible since TT28 cannot be enabled in state g if [~en(m)](q) is
true.

Transition TT29 does not affect vblsg.

Impossible since TT30 cannot be enabled in state ¢ if [~en(m))(q) is
true,

Transition LT9 does not affect vblsg.

Transition NCT does not affect vwbls 10

By [vwbls;ol(q) and [aux 77(@), TT1 can only be enabled if
IMUTEXI| = 0 in state ¢. Firing TT1 then increments IMUTEXI|.
We may show that en(b) is false in state ¢’ with an argument like that
in case 1-TT1.

Transition TT2 does not affect vbls 10

The argument is identical to that of case 10-TTI, except that
[~en(b))(g") is verified as in case 1-TT3.

Transition TT4 does not affect vbis 10

Transition TT5 does not affect vbis 10



10-TT6:

10-TT7:
10-TTS:
10-TTS:
10-TT10:

10-TT26:
10-TT27:
10-TT28:

10-TT29:
10-TT30:

10-LTY:
11-NCT:
11-TT1:
11-TT2:
11-TT3:
11-TT4:
11-TTS:
11-TTé:
11-TT7:
_ 11-TTS:
11-TT9:
11-TT10:

- 161 -

Although TT6 decrements |MUTEX]|, it also makes en(b) true in state
g', and hence [vbls;ol(g) is true.

Similar argument to that of case 10-TT6.

Impossible since TT8 cannot be enabled in state g if [~en(a)](g) is true.
Transition TT9 does not affect vbls;p

Immpossible since TTID. cannot be enabled in state ¢ if [-en(a)](g) is
true.

Since TT26 increments m, en(m) is true in state g’

Since TT27 adds an element to m_en, en(m) is true in state ¢'.
Impossible since TT28 cannot be enabled in state ¢ if [-~en(m)](q) is
true.

Transition TT29 does not affect vbls;p

Impossible since TT30 cannot be enabled in state g if [~en(m)](g) is
true.

Transition LT9 does not affect vbls;p

Transition NCT does not affect vbls; ;.

The argument for this case is similar to that of case 10-TT1.

Transition TT2 does not affect vbls; ;.

The argument for this case is similar to that of case 10-TT3.
Transition TT4 does not affect vbls;;.

Transition TT5S does not affect vbls; ;.

The argument for this case is similar to that of case 10-TT6.

The argument for this case is similar to that of case 10-TT7.

Impossible since TT8 cannot be enabled in state g if [~en(a)](g) is true.
Transition TT9 does not affect vbls; ;.

Impossible since TT10 cannot be enabled in state g if [~en(a)](g) is

true,




11-TT28:
11-TT29:
11-TT30:
11-LT9:
12-NCT:
12-TT1:
12-TT2:
12-TT3:
12-TT4:
12-TTS5:
12-TTé6:
12-TTT:
12-TT8:
12-TT9:
12-TTI10:

12-TT28:

12-TT29:
12-TT30:

12-CRT:

12-LTY:
13-NCT:
13-TT1:
13-TT2:

- 162 - -

We may verify [-en(m)](¢") using [aux 31(9) and [auxg)(q).

Transition TT29 does not affect vbls 11

We may verify [-en(m))(¢") using [aux 3)(¢) and [auxg)(g).

Transition LTS does not affect vbls .

Transition NCT does not affect vbls 12

The argument for this case is similar to that of case 10-TT1.

Transition TT2 does not affect vbls; .

The argument for this case is similar to that of case 10-TT3.

Transition TT4 does not affect vblsy .

Transition TT5 does not affect vbls .

The argument for this case is similar to that of case 10-TT6.

The argument for this case is similar to that of case 10-TT7.

Impossible since TT8 cannot be enabled in state ¢ if [~en(a)](q) is true.
Transition TT9 does not affect vbls 12

Impossible since TT10 cannot be enabled in state g if [~en(a))(q) is
true,

Impossible since TT28 cannot be enabled in state g if [~en(m))(q) is
true.

Transition TT29 does not affect vbls 12

Impossible since TT30 cannot be enabled in state g if [~en(m)](g) is
true.

Since |[LP4) = 0 and |[LPS5] = 0 in state ¢, and this is not affected by
CRT, vbls; 3 is true in state q.

Transition LT3 does not affect vbls .

Transition NCT does not affect vbls; S

The argument for this case is similar to that of case 10-TT1.
Transition TT2 does not affect vbls; 3



13-TT3:
13-TT4:
13-TE5:
13-TT6:
13-TT7:
13-TT8:
13-TT9:
13-TT10:

13-TT28:

13-TT29:
13-TT30:

13-LT1:
13-LT2:
13-LT3:

13-LT4:
13-LT5:
13-LT6:

13-LT7-1:

- 163 -

The argument for this case is similar to that of case 10-TT3.

Transition TT4 does not affect vblsj 3.

Transition TT5 does not affect vbls; ;.

The argument for this case is similar to that of case 10-TT6.

The argument for this case is similar to that of case 10-TT7.

Impossible since TT8 cannot be enabled in state g if [~en(a)](g) is true.

Transition TT9 does not affect vbls; 3.

Impossible since TT10 cannot be enabled in state g if [~en(a)](g) is
true,

Impossible since TT28 cannot be enabled in state g if [~en(m)](g) is
true.

Transition TT29 does not affect vbis; ;.

Impossible since TT30 cannot be enabled in state g if [-en(m)](q) is
true.

Transition LT1 does not affect vblsy ;.

Transition LT2 does not affect vbis; 3.

Even though |LP4] becomes positive in state ¢', by the truth of
[aux0)(g) and [conf;3)(g) we know that for LT3 to be enabled in
state g requires |WAITM) > 0 in state g, and therefore in state g¢".
Hence [vbls;3l(g") is true.

Since LT4 increments m, en(m) is true in state ¢".

Since LTS adds an element to m_en, en(m) is true in state g".

Even though |LPS becomes positive in state ¢, by the truth of
[aux 0)(¢), and [confy3)(q) we know that for LTE to be enabled in
state ¢ requires |WAITM] = 0 in state ¢, and therefore in state ¢’
Hence vblsj 3 is true in state ¢

Since LT7 increments a, en(a) is true in state ¢’. By the assumptions




13-LT7-2:

13-LT7-3: .

13-LT8-1:

13-LT8-2:

13-LT8-3:

13-LTY:

- 164 -

defining this case, |MUTEXI| = 0 in state g, and hence en(b) is true in
state ¢g. Since en(b) is not affected by LT7, en(b) is true in state ¢° as
well. |WAITB2 = 0 in state ¢, and is not affected by LT7. For LT7
to be enabled in state ¢ we must have |LP5] > 0, and hence |WAITM|
= 0 in state ¢, and in state ¢. Under these conditions, [vbls;}(¢") is a
direct consequence of [vbls; ;](g).

Since by the assumptions defining this case, [MUTEXI] > 0, we know
from [vbls;3l(g) and [aux;;|(g) that en(b) is false in state g. Since
en(b) is not affected by LT7, it is false in state ¢" as well. That
|WAITB2 = 0 and en(a) are true in state ¢’ may be argued as in case
13-LT7-1.

Since by_the assumptions defining this case, procnotcounted is false in
state ¢, and since procnotcounted is not affected by LT7, it is false in
state ¢° as well. That en(b) and en(a) are true in state ¢° may be
argued as in case 13-TT7-1.

Similar to case 13-LT7-1, except that en(a) is true in state g because
LT8 adds an element to a_en.

Similar to case 13-LT7-2, except that en(a) is true in state g because
LT8 adds an element to q_en.

Similar to case 13-LT7-3, except that en(d) is true in state g because
LT8 adds an element to q_en.

Transition LT9 does not affect vbis; ;. .



[BRIN72a]
[BRIN72b]

[BURNS79]

[COFFMT73]
[COURT71]

[COURT72]

[DOEPP76]

[DIJKS68]

[DIJKST1]

[DIJKS65]

- 165 -

References

Brinch Hansen, P, "A Comparison of Two Synchronizing
Concepts,"” Acta Informatica 1, (1972), pp. 190-199.

Brinch Hansen, P., "Structured Multiprogramming,” CACM 15,7
(1972), pp. 574-578.

Burns, J.E, et al, "Data Requirements for Implementation of
N-Process Mutual Exclusion Using a Single Shared Variable,"
Georgia Institute of Technology Report GIT-ICS-79/02, May
1979.

Coffman, E.G., and Denning, P.J.,, Operating System Theory,
Prentice Hall, 1973.

Courtois, P.J., F. Heymans, D. Parnas, "Concurrent Control with
"Readers’ and "Writers’," CACM 14, 10 (1971), pp. 667-668.

Courtois, P.J.,, F. Heymans, D. Parnas, "Comments on ’'A
Comparison of Two Synchronizing Concepts by P.B. Hansen’,"
Acta Informatica 1 (1972), pp. 375-376.

Doeppner, T.W., "On Abstractions of Parallel Programs,” Eighth
ACM Symposium on Theory of Computation,” 1976, pp. 65-72.

Dijkstra, E.W., "Cooperating Sequential Processes,” in
Programming Languages, F. Genuys (Ed.), Academic Press, 1968,
pp. 43-112.

Dijkstra, E.W., "Hierarchical Ordering of Sequential Processes,"
Acta Informatica, 1, (1972), pp. 115-138.

Dijkstra, E.W., "Solution of a Problem in Concurrent



[FLOYD67]

[HABER72]

[HABERT75]

[HABERT76]

[HOARE74]

[HOLT70]

[KELLE76]

[KNUTHG66)

[KOSAR73]

[KWONGT78]

- 166 -

Programming Control," CACM 8,9 (1965), p. 569.

"Assigning Meanings to Programs,” in Mathematical Aspects of
Computer Science, American Math. Soc., 1967.

Habermann, A.N.,, "Synchronization of Communicating Processes,"
CACM 15, 3 (1972), pp. 171-176.

Habermann, A.N., "Path Expressions," Carnegie-Mellon University,
1975.

Habermann, AN, "Review of Article by Leon Presser on
Multiprogramming Coordination,” Computing Reviews 29,788
(April 1976), pp. 150-151.

Hoare, C.AR., "Monitors: An Operating System Structuring
Concept,”" CACM 17,10 (1974), pp. 549-557.

Holt, A., and Commoner, F., "Events and Conditions", Record of
the Project MAC Conference on Concurrent Systems and Parallel
Computation, June, 1970, pp. 3-52.

Keller, R.M., "Formal Verification of Parallel Programs," CACM
19,7 (July 1976), pp. 371-384.

Knuth, D.E., "Additional Comments on a Problem in Concurrent
Programming Control," CACM 9,5 (1966), pp. 321-322.

Kosaraju, S.R., "Limitations of Dijkstra’s Semaphore Primitives
and Petri Nets," Johns Hopkins University Computer Science
Report No. 25, 1973.

Kwong, Y., "Livelocks in Parallel Programs,” Mc. Master
University Technical Report 78-CS-15.



[LAMPO74]
[LIPTO73]

[MILLE77]

[OWICK73]
[PRESS75]
[SHAWT4]

[WODONT72]

- 167 -

Lamport, L., "A New Solution of Dijkstra’s Concurrent
Programming Problem," CACM 17,8 (1974), pp. 453-455.

Lipton, R.J., "On Synchronization Primitive Systems," PhD thesis,
Carnegie-Mellon University, (1973).

Miller, R.E. and CK. Yap, "Formal Specification and Analysis of
Loosely Connected Processes,” IBM Research Report RC6716,
(1977).

Owicki, S.S., "Axiomatic Proof Techniques for Parallel Programs,"
PhD thesis, Cornell University, (1975).

Presser, Leon, "Multiprogramming Coordination,” Computing
Surveys 7,1 (March 1975), pp. 21-44.

Shaw, A.C, The Logical Design of Operating Systems, Prentice
Hall, 1974, p. 78.

Wodon, P., "Still Another Tool for Synchronizing Cooperating
Processes," Carnegie-Mellon University Report, (1972).



