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Dynamic Algebras and the Nature of Induction

Vaughan R. Pratt

Abstract

Dynamic algebras constitute the variety (equationally defined class) of
models of the Segerberg axioms for propositional dynamic logic. We obtain the
following results (to within inseparability). (i) In any dynamic algebra * is
reflexive transitive closure. (ii) Every free dynamic algebra can be factored
into finite dynamic algebras. (iii) Every finite dynamic algebra is
isomorphic to a Kripke structure. (i) and (ii) imply Parikh’s completeness
theorem for the Segerberg axioms. We also present an approach to treating the
inductive aspect of recursion within dynamic algebras.
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Dynamic Algebras and the Nature of Induction

Vaughan R. Pratt

1. Motivation

In this section we motivate at considerable length the study of dynamic
algebras in general and the results of this paper in particular. This section
contains no material needed to follow the technical part of the paper, while
only sections 2, 4, and 5 are needed for completeness of the Segerberg axioms.

The class of dynamic algebras consists of all models of the Segerberg
axioms for PDL (propositional dynamic logic) [18]. It was first studied as a
class by D. Kozen [9] and the author [13,14], where it arose in connection with
the development of appropriate models for program logics, and more generally
logics of action [9,13,14]. The class includes many easily recognized
algebras. Parikh's completeness result [11] for Segerberg’s axioms is a
corollary of a nontrivial algebraic property of this class that we establish
below. The class can be considered the algebraic home of induction, in the
same sense that the class of groups can be considered the algebraic home of
invertible operations. Moreover the class offers an interesting partial
solution to the problem of defining regular algebras abstractly.

We now develop each of these motivational issues in more detail.

Logics of Action. Common to many logics of action [3,5,8,10,12,17] is some
notion of causality between actions and propositions, the idea that an action

can or will bring about a proposition. Thus we can expect to find in any model
of such a logic a set B of propositions and a set R of actions. B will as a

rule be closed under Boolean operations, say pVq and p’, with Hoare [8]
providing the exception that proves the rule, while R will be closed under
operations appropriate to actions, perhaps if-then-else and while-do, or

following [12], the regular operations of choice aUb, sequence a;b (or just
ab), and iteration a*.

Exactly how the concept of causality is modelled depends on what one
has in mind, but the notion we shall settle for here is that of the
possibility of an action bringing about a proposition, this possibility being
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expressed itself as a proposition. We shall view this construction formally as
a function O:RxB-B, so that O{a,p), or <a>p, or just ap, is the proposition
that action a can bring about proposition p.

- In addition we may have a function fest, :B-R, which maps
proposition p to an action p? whose purpose is to test the truth of p and
proceed just when p holds. We may also have a function converse, “:R-R,
which maps action a to the action of performing a backwards. In this paper we

shall ignore tests (for the sake of simplicity) and converse (because we do not
see how to treat it algebraically).

To summarize, a dynamic algebra consists of algebras @ = (B V ' ()
and # = (R U ; ¥), and an operation O:RxB+B. A dynamic algebra must also
satisfy certain equations, which we give in the next section.

Examples. The usual source of dynamic algebras in models of program logics is
the class KRI of Kripke structures. Given a set W (to be thought of as a set
of possible worlds or states), take B to be a nonempty set of unary relations

on W closed under union and complement, and take R to be a set of binary
relations on W closed under union, composition, and ancestral (reflexive
transitive closure). Define O:RxB+B so that ap = {u€W|IveW[(u,v)€a A

v€pl}, and require that B together with R be closed under ¢&. This is a

Kripke structure, and can be fairly easily seen to satisfy all the dynamic
algebra equations.

Another example, introduced in [13], starts with an alphabet £ and

takes B and R to consist of subsets of T¥UZ®, with B closed under union

and complement, R closed under union, concatenation, and Kleene closure, and B
and R closed under concatenation of a language a from R followed by a language
p from B to form ap (but not requiring the other way, pa). This class of
dynamic algebras, which we call LAN, is of interest in execution-sequence
semantics,

Yet another example starts with a given dynamic algebra 9’ = (B' #' ©O)
together with a finite set V (of dimensions or vertices) and takes B to be a
set of V-dimensional vectors over B’ closed under pointwise union and pointwise
complement, and R to be a set of VXV matrices over R’ closed under pointwise
union, matrix multiplication (using U’ and ;' for exterior and interior
operators respectively), and a form of star defined by Conway in [4]. Take ©
to be multiplication of a matrix times a vector (using V' and ©' for exterior
and interior operators respectively). This class of dynamic algebras, called
FLO, supplies a semantic basis for Floyd's method of labelling flowcharts; V
supplies the points labelled by elements of B’ .
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These and other classes of dynamic algebras were all shown in [13] to
have the same equational theory. The proofs varied considerably in degree of
difficulty. Obtaining an upper bound on the equational theory of the language
class required a subtle construction. And the upper bound on the theory of
Kripke structures was inferred from Parikh's completeness result for
Segerberg’s axioms, for which an intricate proof appears in [11]. One of our
results below implies Parikh's result.

Induction. Induction axioms such as those used in Peano arithmetic are often
looked on as an attempt to capture the minimal set satisfying certain closure
properties, such as containing 0 and being closed under successor. The
Loewenheim-Skolem theorem (any first-order theory with infinite models has
models of arbitrary infinite cardinality) dashes any hope of precisely
expressing such minimality with even an infinite set of first-order sentences.

Induction also appears in the Segerberg axioms, in a form which will be
seen to generalize mathematical induction. It too runs into difficulties,
admitting nonstandard models as discussed in [1] and [11].

Does this mean then that induction is just a crude proof-theoretic
approximation to a notion of minimality, with no sensible mathematical meaning
of its own? We answer this in the negative: the Segerberg axioms for *, which
amount to a generalization of mathematical induction and the axiom {0}UeIN €
IN for the natural numbers, capture precisely the mathematical notion of
reflexive transitive closure, of which the ancestral of binary relations is a
special case. This notion in turn also fails to capture the sort of minimality
we had in mind, as it must to account for the existence of nonstandard models.
However we at least have a sensible mathematical interpretation of induction.

The question then arises, what is it that induction fails to supply?
While we cannot offer a complete answer we do feel that continuity is usually
among our unspoken assumptions about the domains to which one applies
induction. For example when we express the axiom {0}JUsIN c IN we have in
mind that ¢ is a completely additive, hence continuous, function on the power
set of IN, that is, knowing how ¢ acts on singletons determines its behavior
on all other sets. And when f is a continuous function on a complete lattice,
the reflexive transitive closure of f is indeed V{fYji€N}, coinciding with

our intuition about the nature of reflexive transitive closure as encountered
in practice.

On the other hand we would also argue that continuity is often not
needed excepr for the sake of our intuition. For example Scott’s theory of
computable functions is founded on continuity, with the reasonable thesis that
all computable functions are continuous. Yet some quite basic parts of Scott’s
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theory work perfectly well for monotonic functions. A cornerstone of the
theory, the theorem that every continuous function on a complete partial order
has a least fixpoint, also holds for monotonic functions.

Another example is supplied by the second and main result of this
paper, that the Fischer-Ladner filtration method for Kripke models of PDL works
without appealing to continuity. The original construction dealt with binary
relations on W, which act as completely additive and hence continuous functions
on the power set of W. Our proof works for strict finitely additive functions.
Finite additivity, like monotonicity, is a property that can be captured not
only in a first-order way but with mere equations.

Regular Algebras. Another reason for studying dynamic algebras has to do

with the problem of defining regular algebras. Normally one would not
undertake a study of a class of algebras of type (Z # ©) without first
developing the algebraic theory of its components & and . Now while Boolean
algebras have been very well understood for nearly half a century, with the key
result appearing in 1935 [19], regular algebras remain relatively

problematical. Even their identity is open to debate.

The problem is that there has never been proposed a satisfactory
definition of an abstract regular algebra, in the sense that there are abstract
groups, abstract rings, abstract Boolean algebras, abstract lattices, and so
on. This is not for want of trying. One particularly notable effort in this
direction is Conway's book on regular algebras [4], where there appear five
candidates for a notion of regular algebra no one of which emerges as the
obvious favorite.

There are at least two technical obstacles to defining abstract regular
algebras. If we follow the tradition of defining such a class using equations,
as is done with groups, rings, lattices, Boolean algebras, etc., we might
settle for any system of equations that completely axiomatized the equational
theory of say the class of all algebras of binary relations closed under union,
composition, and ancestral (reflexive transitive closure of binary relations).
Happily this class has the same equational theory as that of all algebras of
languages closed under union, concatenation, and Kleene closure, suggesting we
are on the right track. Unhappily this equational theory is not finitely
axiomatizable [15], so we cannot simply give a finite list of equations as the
defining characteristics of a regular algebra.

Suppose however that we stiffen our upper lip and admit non-equational
axioms, as done in [16], or some collection of axiom schemata, as discussed
(inconclusively) in [4]. We would then have the class of those algebras that
satisfy the equations holding for all regular algebras of binary relations and



5

hence for all regular algebras of languages, i.e. the variety generated by
either one of those classes. A second difficulty now presents itself: there
exist algebras in that variety that satisfy a// these equations yet which
contradict our intuition about how a regular algebra should behave. The
essence of the following example appears on p. 102 of [4].

Take R = {1,2,3} and interpret both U and ; as max, so 1U2 = 1;2 = 2,
etc. Now one would expect 1¥ = 1, 2% = 2, and 3¥ = 3 in any reasonable regular
algebra in which U and ; behave in this way. In particular we have 2 = 2;2 =
2;2;2 = ... so that 2% = 2 would seem to be a foregone conclusion. Yet we may

take 2* = 3 instead without contradicting any equation of the regular theory of
binary relations!

To see this, let & be the regular algebra of all languages on some
alphabet that contain the empty string A and let h:/>{1,2,3} map {A} to 1,
all other finite languages to 2, and infinite languages to 3. Now h is a
homomorphism with respect to the above interpretations of the regular
operations on {1,2,3}, as may be verified, and homorphisms preserve equations,
so h(«f) satisfies all equations holding for regular algebras of languages.

We propose the following definition: a regular algebra is any set of
strict finitely additive functions on a Boolean algebra closed under the
operations of pointwise disjunction, composition, and reflexive transitive
closure. To make the class more abstract we may also take all algebras of
similarity type (R U ; *) isomorphic to such sets of functions. The resulting
class then consists precisely of the regular components of separable dynamic

algebras. Except for the issue of separability, this class is defined purely
equationally.

It will be apparent from Section 5 that this class includes all
relational algebras. It is easily seen that every regular algebra of languages
on alphabet Z is isomorphic to some relational algebra of binary relations on
W (take W = Z¥ and let language L correspond to the binary relation
{fu,uvju€Z* vel}), so the class also includes all language algebras.

*-Continuous Dynamic Algebras. Kozen's definition of a dynamic algebra is
not identical to ours. He imposes an additional condition, that a dynamic
algebra be *-continuous, namely that a* = UfallieN} with ; and ©
distributing over such unions.

Without *-continuity one can have dynamic algebras that are easily seen
not to be isomorphic to any Kripke structure. A simple example involving
INU{=} appears in Section 7. Thus the condition is well-motivated. However
Kozen, and more recently Trnkova and Reiterman, have exhibited *-continuous
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dynamic algebras that are not isomorphic to any Kripke structure, so although
this condition is necessary it is not sufficient to capture the abstract
essence of Kripke structures. It remains an open problem to find abstract

conditions that capture precisely those dynamic algebras isomorphic to Kripke
structures.

It is the intent of Kozen and the author to decide between them the
question of whether the term "dynamic algebra” should include *-continuity as
one of its requirements. In this paper dynamic algebras are assumed to form a
variety (equationally defined class), and we make use of properties of
varieties in deriving our results. As we argued earlier we do not see
continuity as an essential aspect of computational models, and prefer to say
"¥-continuous dynamic algebra" when we wish to include *-continuity as a
condition. (Note that continuity implies *-continuity but not conversely.)

2. Definitions

Dynamic Algebras. The similarity type of the class DYN of dynamic algebras
is((BV."0) (RU;X*) ©) Dynamic algebras satisfy the following PR
equations. We abbreviate a;b to ab, <adp to ap, (p'Vq)’ to p-q, and pVq = q
to p<q.

1. @ Boolean algebra 3. (aubp=apV bp
2a. a0=0 4.  (ab)p = albp)
2b. a(pVq) = ap V aq Sa,b. pVaa¥*p < a¥p < pVa*(ap-p).

DYN is a variety (equationally defined class). Hence it is closed
under homomorphisms, subalgebras, and direct products; it has free algebras;
and every equational identity of dynamic algebra may be proved from instances
of the above axioms using only the fact that equality is a congruence relation
(completeness of equational logic).

Content of the * Axioms. Axioms Sa,b are less transparent than their
fellow axioms, but can be restated more succinctly as follows.

Let a'p = {q]pVaq<q}. Then axiom 5a says that a*p € a!p. Let uS
be the minimum element of § if it exists (as opposed to AS, the meet of S,
which need not be in §). We propose the following alternative to 5a,b.



o 8 a¥p = u(a'p).
Lemma I. 5a,b are equivalent to §'.

Proof. (»). Assume 5a,b. 5a asserts that a¥p € a'p. Now consider an
arbitrary q € a'p, so p £ q and aq £ q. Then

a¥p < a¥q (a¥p V a*q = a*(pVq) = a*q)
< qVa*(aq-q) (axiom 5b)
= qVa*0 (q€ap=aq<q
= q (axioms 2a and 1).

(«). Assume a*p = u(a'p). Then a*p € alp, so 5a holds. For 5b it
suffices to show that pVa*(ap-p) € a'p, since a¥p < q for any q € a'p. We
" have

p V a(pVa*(ap-p)) = p V (a(pVa*(ap-p))-p) (axiom 1)
= p V ((apVaa*(ap-p))-p) (axiom 2b)
< p V (ap-p V aa*(ap-p) (axiom 1)
< p V aX(ap-p) (axiom 5% B

Inseparability. When ap = bp for all p in B we write a b and say that a
and b are inseparable. In a separable dynamic algebra (SDA) inseparability
is the identity relation on R [9]; SDYN denotes the class of SDA's.

Lemma 2. Inseparability is a congruence relation.

Proof. Suppose a = a" and b 2 b". Then for all p in B, (aUb)p = ap V bp =
a"p V b"p = (a"Ub")p, whence aUb = a"Ub". Similarly we can show ajb = a";b".
Finally, for all p in B, a*p = u(a'p) = u(a"lp) = a"*p, so a¥ = a"*. 1

Boolean-trivial dynamic algebras have only one Boolean element. & is
a subdirect product of algebras .:afl when there exist onto homomorphisms
h; />, whose product is injective. (So & is isomorphic to a subalgebra
of the direct product of the o's.)

Lemma 3. Every dynamic algebra 9 is a subdirect product of a separable and
a Boolean-trivial dynamic algebra.

Proof. Divide Z by = to get the separable algebra, and collapse & to a
point to get the Boolean-trivial one. The product of the corresponding natural
transformations (the two homomorphisms from & that yield each of these
quotients) is clearly injective. B
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Our own preference in studying dynamic algebras is to consider the
separable ones first and generalize the results to other dynamic algebras via
Lemma 3. A more direct assault could omit any mention of separability.

Actions as Functions. A separable dynamic algebra may be viewed as a set of
functions on a Boolean algebra, with O interpreted as application. Thus the
content of axioms 2-5 is that R consists of strict (2a) finitely additive (2b)
functions closed under pointwise disjunction (3), composition (4), and the

operation that maps function a to the function mapping p to p(a'p) (5. 3,4,5
define the three regular functionals.

Full Dynamic Algebras. The full dynamic algebra on the Boolean algebra

% has for R the set of all strict finitely additive functions on &. R is

closed under the regular functionals; we shall verify only the case of finite

additivity of a*. We have pVq V a(a*p V a*q) < a*p V a*q, whence

a*p V a*q € al(pVq), so a*(qu) < a¥p V a¥q. Conversely we have a*(pVq)
= u(al(pVq)) = ulalp N a'q) 2 ulalp) V ulalg) = a*p V a¥q.

Word and Free Algebras. The word algebra of a given similarity type

generated by X consists of all terms of that similarity type with variables
drawn from X, The free dynamic algebra (resp. free SDA) generated by Dg

= ByUR,, is the quotient of the word algebra of similarity type DYN generated
by Dg with the congruence relating all terms identically equal in DYN (resp.
SDYN). Variables ranging over generators will be written in upper case, namely
P,Q,A,B. Every map from the generators of a free (separable) dynamic algebra

to the elements of a (separable) dynamic algebra extends to a homomorphism from
the whole free algebra. (To see this easily for SDA's, assume By is

nonempty.)
3. * is Reflexive Transitive Closure
(This section is not needed for the sequel.)

Ordinarily one thinks of reflexivity and transitivity as properties of
binary relations. If we consider the binary relation f on the set W to be a
completely additive function £2Wa2W (f(S) for arbitrary S ¢ W is
determined by f{{s}) for singletons {s} ¢ W via f{8) = U{f({s})]s€W}) then
- we may define f to be reflexive when I < f (I the identity function) and
transitive when f2 < f. (We are using the usual induced order on functions
with range some poset, namely f < g when f{ix) < g(x) for all x.)

Following the algebraic approach of [2], we may define a closure
operation on a poset R to be any reflexive monotonic idempotent function on R.

Now take R to be the set of all completely additive functions on 2V, The
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above induced order on R further induces an order on functions on R (needed for
“closure” to be well defined for functions on R). The closure operation on R
with fixpoints the reflexive transitive elements of R is then reflexive

transitive closure, as the reader may verify.

We now propose that these definitions be generalized to encompass
arbitrary functions on arbitrary posets. In particular reflexive transitive
closure generalizes to any closure operation whose fixpoints are the set of
reflexive transitive elements of the domain of the closure operation, regular
algebras in this paper.

The reflexive transitive closure of binary relations is often called
the ancestral in non-computer-science circles. We suggest that "ancestral" be
used on those occasions where it is necessary to distinguish reflexive
transitive closure of binary relations from the more general closure operation.
Such occasions will not arise for those who would not contemplate applying
“reflexive transitive closure” to anything but binary relations.

Theorem 4. In an SDA ¥ is reflexive transitive closure.

Proof. First we show that ¥ is a closure operation on R.

Reflexivity. p < a¥p, so ap < aa*p < a*p, for all p, whence a < a* on B,
sol < * onR.

Monotonicity. If a < b then for all p, blp ¢ a'p, whence u(a'p) < u(b!p),
thus a¥p < b¥p, so a* < bX,

Idempotence. a*p = u(ala¥p) = aXaXp, so a*p € a¥'p. But if q € a*!p,

p £ q, so a¥p £ a¥q < q, whence a¥p = u(a¥!p) = a**p.

Second we show that the fixpoints of * are the reflexive transitive
elements of R. Observe that a necessary and sufficient condition for a to be
reflexive and transitive is that for all p, pVaap < ap, i.e. ap € alp. So
if a is a fixpoint of ¥, ap = a¥p € a'p. Conversely if ap € a'p then
a*p = u(a'p) < ap. We showed ap < a¥p above, so a*p = ap. B

4. Factoring Free SDA’s

We now show that every free SDA is a subdirect product of finite SDA's.
This result generalizes Fischer and Ladner's finite model theorem to other than
completely additive dynamic algebras.

FL-sets. An FL-set is a Boolean subset F of an algebra of similarity type DYN
such that
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~PVg  €F =+pqg €F
p' €F »p €F
ap €F.. .28 €F
(aUb)p € F - apbp €F

(ab)p €F =+ albp) €F
a¥p €F =»aa¥p €F

FL(X) is the least FL-set containing X. In word algebras FL preserves
finiteness [9]. .

For any subset X of an algebra we let G(X) denote the subalgebra
generated by X. In the following G will be used only to close Boolean subsets
under V and '. In Boolean algebras G preserves finiteness, and in word
algebras G preserves being an FL set. Homomorphisms commute with G, i.e.
hG(X)) = G(h(X)).

Theorem 5. Every free SDA is a subdirect product of finite SDA's.

Proof. It suffices to show that for any finite Boolean subset A of the free

SDA I there exists a homomorphism f from 9 injective on A such that f9D) is
finite and separable. For if we take g to be the product of such f's over say

all doubletons A ¢ B, g will clearly be injective on B. For a # b in R, ap

# bp for some p in B, so gla)g(p) = glap) = glbp) = glblg(p), so gla) = glb),
whence g is also injective on R.

Let 9" be the word algebra generated by Dy, the generators of 9,
with h: 9"+ the onto homomorphism fixing Dy Choose finite A" ¢ B"

satisfying h(A") = A. Let &' be the full dynamic algebra on G(h(FL{A"))),
clearly finite. Let f:P»9" be the homomorphism which fixes ByNB', sends

By-B' to 0, and sends A € Ry to the function on B' that maps p to
A{qeB’|Ap<q); flA) is strict and finitely additive (exercise) and so in R'.

We now show that f fixes B'. Note that B' = G(h(FL(A")) = hG(FL(A™)).
We abbreviate G(FL(A")) to G". All inductions will be performed on the
structure of elements of R", B", or G", justifiable since D = h(D") and B’ = h(G").
We shall denote elements of B",R" by =,a, and write p,a for h(r),h(a)
respectively. We write a!'p for a'p N B. It will help to think of R and R’
as consisting of partial functions on B; in this way © and ©' may be viewed
as the same operation, namely application. '

Claim (i). For all a € R and p € B', fla)p 2 ap.
Claim (ii). For all axr € G", f{a)p = ap.
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Both proofs proceed by induction on the structure of « in R". We
prove (i) explicitly; for (ii) replace 2 by = throughout the proof of (i).

flA)p = A{qeBAp<q} 2 Ap.

flaUb)p = fla)p V flb)p 2 ap V bp = (aUb)p.
flab)p = fa)flb)p 2 abp. '
fla¥X)p = u(f(a)!'p) 2 ula'p) = a¥p.

Only the 2 in the argument for * should present any difficulty. In
claim (i) we have fla)q 2 aq for all q in B, by induction, so f{a)!'p € a!'p
¢ a'p. In claim (ii) a*r € G", so aa*r € G", so fla)a¥p = aa¥p < a¥p,
so a*p € fla)!'p, so w(f(a)!'p) < a¥p.

Claim (iii), our goal: For all p € B/, fp = p.
We proceed by structural induction on » in G".

fP) =P (h,f fix generators in G",B)

flpVqg) = fip)Vflg) = pVq

flpY =(®p)' =p

flap) = f(a)f(p) = ap (claim (ii) and induction) ®&

5. Kripke Structures

A Kripke structure is a subalgebra of the dynamic algebra of all
completely additive functions on a power set. Kripke structures supply
intuitively satisfying models for dynamic logic, and hence serve as a benchmark
for completeness of axiomatizations of dynamic logic.

Theorem 6. Every finite SDA & is isomorphic to a Kripke structure.

Proof. By finiteness & is isomorphic to a power set while & consists of
completely additive functions, whence & is a subalgebra of the dynamic algebra
of all completely additive functions on Z. 1

Completeness of Segerberg’s Axioms. Every SDA is a homomorphic image of a
subdirect product of Kripke structures, by Theorems 5 and 6. Hence the
equational theory of SDA's includes all Kripke identities. So by Lemma 3 the
Boolean equational theory of dynamic algebras includes all Boolean Kripke
identities. Parikh’s completeness theorem for the Segerberg axioms then
follows from the completeness of equational logic.
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6. Recursion

R. Ladner has pointed out [conversation] that what one might call
context-free PDL has a non-r.e. theory. (The exact details of the syntax of
such a programming language do not matter here, but one could adopt the
least-fixed-point operator as done in [7].) Indeed the set of identities of
the form aP < bP is not r.e., or we would have a method of enumerating the set
{(G,GILGISIAGY)} of pairs of context-free grammars one of whose languages
is included in the other, a familiar non-r.e. set.

It follows that there can be no r.e. axiomatization of such a theory.
Thus we cannot expect to find nice equations like 5a,b on which to base an
algebraic theory of recursion. If there is any algebraic structure to be found

it must be sought in other places than finite or even effectively given sets of
axioms.

Our purpose here is to propose another way of looking at recursion,
essentially the way Scott looks at it. Our advice is in effect to divide
recursion into two parts that inhabit separate theories, one of which is PDL.
One quite reasonable way to carry out a recursive calculation is really
iterative: repeatedly expand al/ procedure calls simultaneously. The
expansion itself is a finite process; it is only the repetition of the
expansion that must be iterated indefinitely. The finite expansion process can
be described by some other theory than PDL, just as must be done for assignment
(since the theory of PDL plus assignment is non-r.e.).

What this means in practice is that one reasons about one's recursive
procedures on the one hand an expansion at a time, and on the other hand in
connection with the process of repeated expansion. Consider the canonical
example of a problem that "must" be solved recursively, the Tower of Hanoi
problem. (Ignore the iterative solution that moves the smallest disk clockwise
on every other move.) This can easily be viewed iteratively by describing how
to convert a solution for n disks into one for n+1 disks, a process with no
iteration if a "solution" is represented as the obvious 3x3 matrix of strings

of moves. The conversion can then be iterated to obtain the solution for the
given number of disks.

The iterative part of this factoring is already dealt with in dynamic
logic. The expansion part should be incorporated into a separate logic.

This factoring will not in general capture the whole theory of
recursion, particularly if the theory dealing with expansion is recursive or
even r.e. However the foregoing remarks about the intractibility of the theory
of recursion show that we must content ourselves with such approximations in



13

practice. The particular approximation we propose is in our opinion both
natural and useful in practice.

7. Models of Induction

With the definitions and results behind us we may augment the
discussion of Section 1 with some more technical remarks.

We first remark on a relationship of the * axioms to the Peano axioms.
Consider the dynamic algebra of all completely additive functions (binary
relations) on the power set of IN, and let a be successor, satisfying a(S) =
{s+1]s€S}. With a little Boolean manipulation axiom 5b can be seen to be
exactly the principle of mathematical induction, usually expressed as
©(0) A Vxlo(x)-(x+1)] » Vxe(x). If in addition p is taken to be {0}
then a*p = IN and 5a is seen to be the statement that IN contains O and is
closed under taking successor. These two components of the Peano
axiomatization of arithmetic can in this way be seen to correspond to the ¥
axioms. (The Peano axioms that prevent successor from cycling do not play a
role in dynamic algebra.)

Of course the above example is not the only model of arithmetic, which
is well known to have nonstandard models. The nonstandard models of PDL
discussed in [1] and [11] seem at variance with Theorem 4, which says that the
Segerberg axioms define ¥ to be reflexive transitive closure. The paradox is
resolved by the observation that reflexive transitive closure need not always
satisfy aX = U{alllF-IN} If we modify the example of the previous paragraph
by taking all strict finitely additive functions on INU{«}, defining =+1 = <,
and taking a(8) = {s+1[s€S}U{=||S}==} then a*{0} = INU= whereas
Ufalli€iN} = IN.

If however we take only the continuous functions on INU{~} then we
exclude the above function a, and it is easily shown then that
aX = Ufalli€N} no matter which continuous function we take a to be. This
suggests that our intuition about reflexive transitive closure tacitly assumes
continuity. Thus we could attribute the origin of nonstandard models of the
Segerberg axioms to their failure to deal with continuity rather than with X,
which we have shown to be captured exactly.
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