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Abstract

Several papers over the past few years have investigated minimum execution time scheduling of unit
execution time (UET) task systems with resources. Because such scheduling problems are, in general,
NP-hard, a variety of heuristic methods for producing schedules have been studied, among them, critical path
scheduling. The strongest results to date have been for systems where there is no processor constraint. These
results may be utilized for systems with a processor constraint by treating the processors as an additional
resource. Unfortunately, in those cases where the number of processors is close to the number of resources,
this results in an upper bound which is somewhat misleading. In this paper we investigate the performance of

critical path scheduling for UET task systems with resources and a fixed number of processors. An upper

bound for the worst case performance of critical path scheduling is given. This bound depends both on the
number of processors and on the number of different resources. Moreover, we show that this is the best

possible (asymptotic) upper bound.

This work was partially supported by the National Science Foundation under Grant MCS78-05849.



L.1The Model

A UET task system with resources is a system .S = <7, €, m, s> where:
EE= {’1‘1, - Tn} is a set of tasks. Each task has an execution time of one unit.
2. { is a partial order specifying precedence constraints between the tasks.
3. There are m identical processors.

4. s is the number of different resources. It is assumed that s > 1, that there is exactly one unit of each
resource, and that each task may require any portion of that one unit for each resource.

For each task Ti and each resource v, Rv(Ti) specifies the portion of resource v required by task T; during its
execution. Moreover, Rmax(Ti) = max {RV(T i): 1<v<s}. R((T i) is the R,-value of task T, and Rmax(Ti)
is the R . -value of task T;. This notation is extended to a set of tasks B, with R/(B) =2 Ry(T)overall T
€ Band Rmax(B) = Z anax(T) over all T € B. For convenience, if B is empty, let Rmax(B) = 0. Finally, a
set of tasks B, is a legal set of tasks if for cach resource v, RMB <L

With respect to the precedence constraints, we have the following definitions; If T Tj, then Tj is a
successor of T;, and T, is a predecessor of Tj—. The level of a task in the precedence structure may be defined
as follows: If T, has no successors then level(T;)) = 1; otherwise, level(Ty)) = 1 + max{level(Tj): T < Tj}.
This notion can be extended to a sct of tasks B, by letting level(B) = max{]evel(Ti) : T, € B}

A list schedule for a task system with resources may be constructed as follows: [Initially, let I. be an
ordered list of the tasks. If a processor becomes available at time t, the list L is instantaneously scanned from
the beginning and thc first task T; (if any) which meets the following criteria is removed from 1. and assigned
to the available processor: 1. Each task IJ such that lJ < T}, has completed execution and 2. If | T rS]
represents the total resource requirements of all tasks cxecuting at time t, then for cach resource v, Lok
R(T}) < 1. This last requirement guarantees that the currently executing tasks do not require more than a
total of one unit for any resource. If there is no task in [. mceting the criteria then the processor is idle until
time t+1. If several processors become available simultancously, they are assigned tasks scquentially
beginning with the lowest numbered processor.

A critical path schedule is a special type of list schedule where the list has the property that for any two
tasks T; and ’l'j, if level(T3) > lcvel('!'j) then T; precedes iJ ‘
practical intcrest because they are applicable to any system having precedence constraints and are casy to

on the list. Critical path schedules arc of particular

construct.

There are a number of criteria for determining the quality of a schedule. In this paper we investigate the
problem of minimizing the total schedule length. We let w be the length of an arbitrary list schedule, let “ep
be the Iength of a critical path schedule and let w . be the length of an optimal schedule. A schedule of length

w is said to consist of time units Bl‘ B“J where Bt = {'l'j € T: task Tj exccutes at time t of the schedule}.

1.2 Rclation to bin packing

The problem we have described here may also be formulated as a bin packing problem. In that

interpretation, the '15's are items to be placed in bins Bl. B,. ..., under the constraint that no more than m

items are o be placed in any single bin, and for cach resource, the items in any single bin require no more



-3-

than one unit of that resource. In this case the objective is to pack the items into a minimum number of bins.

1.3 Background

Task systems with resources were first investigated by Garey and Graham([2,3]. They showed that for
systems with arbitrary task execution times, no precedence constraints, and m > 2 processors, w/w <
min{(m+1)/2, s+2-(2s+1)/m}, and that the result is the best possible. Garey and Johnson[5] have shown
that finding optimal schedules for UET task systems is NP-hard for the case of two processors, one resource
and precedence constraints restricted to be a forest, and for the case of three processors, one resource and no
precedence constraints. These results make the study of heuristic algorithms particularly important, since it is
unlikely that a polynomial time algorithm exists which computes minimum length schedules.

In this regard, Garey, ct.al.[4] show, for arbitrary list schedules and UET task systems with resources, that
w/w, < sw, + /2 + 1ifm > n. They also show that this bound is the best possible. In [8], Lloyd gives
tight bounds for w/w, when m 2> 2 under aslightly different model.

For critical path schedules and UET task systems with resources, Garey, et.al.[4] show that “’cp/"’o <
17s/10 + 1 when m > n. Moreover, this result is essentially the best possible. When m 2> 2 (the problem
we study), Yao[9] shows that "’cp/‘“’o < min{ m, 2 + 2s - (2s+1)/m }. Comprehensive surveys of
scheduling results may be found in [1,6].

In this paper we investigate critical path scheduling of UET task systems with resources which have a

processor constraint (i.e. m > 2). We give an upper bound for the worst case of the ratio w_,/w,,. Morcover,

we show that this is (asymptotically) the best possible upper bound. ?

It has been noted that results associated with task systcms with no processor constraints can be applied to
systems with processor constraints, merely by treating the processors as an additional resource. That is, given
a system with s resources and a processor constraint, apply the results as if this was a system with s+1
resources and no processor constraint. However, from an intuitive viewpoint, this approach is suspect, since
processors are not "just another resource”. The processor resource possesses certain characteristics that are
not shared by resources in general. In particular, every task requires exactly one unit of the processor
resource. The processor resource, then, is unique, in that a task may not require just any portion of the
resource, as was assumed for resources in general. At least intuitively, there is no reason to belicve that
treating the processors as an additional resource will result in accurate worst case bounds.

Our results tend to support this intoition. Consider the bound of “’cp/""o < 17s/10 + 1 for the no
processor constraint case. When applied to systems with a processor constraint, this bound becomes “’Cp/“’o
< 175710 + 27/10. This can be combined with the result of Yao[9] to yicld a composite bound of "’cp""o <
min{m, 2 + 2s - (2s+1)/m, 17s/10 + 27/10} for m > 2. 'This composite bound contains the best available
information for dealing with the processor constraint case. Unfortunately, depending on the relationship of s
and m, even this composite bound may be quite different from the best upper bound. For example, when
s> 6and m = 1.8s + 2, this bound indicates that “’cp/“’u < 17s/10 + 27/10. 'The bound that we give shows

that “’cp/‘"o < 14s/10 + 3/2. 'T'he difference between the two bounds is 3s/10 4+ 6/5 -- a value which grows

lincarly with s. In percentages, the composite bound in this casc is too large by over 21 percent. In all cases

where m 2 s+ 1, our bounds improve over the composite result.
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2, Weighting Functions
In this scction we state the main thcorem, bricfly outline the proof of that theorem and describe three
"weighting functions” which play a key role in the proof. The main result of this paper is:
Theorem 1: If § = <7, {, m, s> is a UET task system with resources where s 2 landm > 2, then
“’cp/"’os m if 2<m<s+1
(s+m+1)/72 if s+1<m<2s+1
(4s+m+3)/4 if 234+1<m<8/3+1
(14s+m+9)/10 if 8/3+1<m<3s+1
2+17s/10-(3s+1)/m if 3s + 1 <mandm > 10
2+5s/3-(8s/3+1)/m if 3s + 1 < mand m< 10

2.1 Proof Qutline

Consider any critical path schedule for the task system S. The time units of that schedule may be divided
into three sets: those time units where the final task of each level executes, those where all of the processors
are utilized and those where at least one processor is idle due solely to resource constraints. Call these path,
full and resource time units respectively. The proof follows by bounding the number of time units of each
type. The number of path time units is bounded by the length of an optimal schedule. The number of full
time units can be bounded using the length of an optimal schedule and the number of tasks exccuted in
resource and path time units. The number of resource time units can bounded by the use of a "weighting
function",

A weighting function W, is a mapping from the interval [0, 1] to an interval [0, x], where the x depends on
the particular weighting function. We extend the functional notation to tasks and let W(T) = W(Rmax('n)'
Morcover, if B is a set of tasks, then W(B) = Z W(T) over all T € B. (Our use of weighting functions is
motivated by and draws upon the work of Garey, ct.al. [4]). Given a particular weighting function and a set of
resource time units, the average weight associated with each of those time units can be bounded below (this
lower bound will be 1). Morcover, by cxamining an optimal schedule, the total weight associated with all
tasks exccuting in resource time units can be bounded above. Combining these two bounds gives an upper
bound on the number of resource time units. The main result then follows from the upper bounds on the

numbers of path, full and resource time units.

2.2 Two important properties
In this section we introduce two properties of weighting functions.
Definition: Weighting function W has Property A, if:
Given atask T' and a nonempty sct of tasks I3 such that:
Riax(M 2 R (T) forcach T€ Band R, (T*) > 1- Rpax(B)
then W(B) > 1.
Definition: Weighting function W has Property B, if:
Given asct of time units {By, .., B} witht > L and Y = U!_, B, such that:
Forcvery task T € Bi' 1<i<t and cveryj, 1 <j<i, Rmu('l‘) >1- Rmaxmj)’
then there exists a task T* € Y, such that W(Y - {1%}) > t-1.
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Intuitively, Property A states that given a set of n tasks in which the total resource requirements of the tasks
exceeds one, then the total weight of the largest n-1 tasks is at least one. Property B will be used to obtain a
lower bound on the average weight associated with a resource time unit.

Lemma 1: If W is a weighting function which has Property A, then W also has Property B.

Proof
Assume that W is a weighting function which has Property A, and let {By, ..., BL} be a set of time units
withY = U%z 1 Bi such that for every task T € By, 1<i<tandeveryj, 1 <j<ji Rmax(T) >1- Rmax(Bj)'
We want to show that there exists a task T* € Y such that W(Y-{T*}) > t-1. Without loss of generality,
assume that W(B;) <1 for each time unit B;, 1 i<t The proof is by induction on t.

If t = 1 the lemma is immediate, so suppose that t > 2. Consider time units B;_; and B,. Let X be any
task in B,. Then Rmax(x) >1- Rmax(Bt-l)' Moreover, for any task T € (B U {X}, Rmaxm >1-
Rmax(Bt-l U {X} - {T}). In particular, let Z be a task in (Bt-l U {X}) with a minimal Rmax-value. From
Property A, it follows that W(B,_; U {X}-{Zh 2 L

Now consider the set of time units {B], ..., By}, where Bj = B for 1 <i < t2,and By ) = {Z}.
LetY' = U&z% B;. By induction, there exists a T* € Y', such that W(Y '-{T*}) > t-2. Thus, W(Y -
{T*H> W' -{T*}) + WB_ U {X}-{Zh 22+ 1=¢L -

2.3 The Weighting Functions

Three weighting functions are used in the proof of the main theorem. Three functions are used, as
opposed to just one, due to varying requirements with respect to the weights assigned in various parts of that
proof. Weighting function W has the property that if a) + ay < 1, then Wl(al) + Wl(az) <ES5.
Morcover, values of a 1 and ay exist such that W(a l) + Wl(“z) = 1.5. A similar statcment can be made
about weighting function W, and the value 1.6. Weighting function W3 has the property that if ay + ... +
a, <1, then W3(a1) + .+ W3(an) < 1.7. These propertics play a critical role in cstablishing various
scgments of the upper bound.

For cach of the three weighting functions which we introduce, we give two major results. First, we give an
upper bound on the weight of a legal set of tasks. As a corollary to this result we give an upper bound on the
weight of any set of tasks drawn from the task system which we are considering.  Both of  these bounds
depend upon the cardinality of the set of tasks being considered. These results will allow us to bound the total
weight of the tasks exccuting in resource time units.  Sccondly, we show that the weighting function has
Property B.

2.3.1 The First Weighting Function

Definition: Wl(a) = 0 ifa=0
174 if a€(0,1/4]
172 if a€(1/4.1/2]
1 if a€(1/2,1]
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Lemma 2: If B is a legal set of tasks, then W1(B) < min{ (|B|+s)/2, (|B|+4s)/4}.
Proof

Recall that B is a legal set of tasks if for each resource v, the total usage of v by the tasks in B does not

exceed one.

Partl:letX = {T€B: Rinax(T> 172} and let x = [X]. Since for each resource v, there is at most one T
€ B, such that RV(T) > 172, it must be that x < s. Moreover, if Rmax(T) > 1/2 then Wl(T) = 1. Each
task T € (B - X) has Rmax(T) < 172, hence W(T) < 172, Thus, Wl(B) is bounded above by max[x +
(IB|-x)/2] such that x < s. This maximum occurs at x = s. Therefore, Wi(B) <'s + (IBl-9)/2 =
(|B]+s)/2.

Part2:LetX = {TeB:R,,(T)>1/2}, letx = [X|, let Y = {T € B: 1/4< Rpax(T) <172} andlety =
[Y]. Similarly to Case 1, we deduce that x < sand y < 3s - 2x. Morcover, if R ax(T) > 172 then
Wi(T) = landif 174 <Ry, (T) < 172 then W(T) = 1/2. Eachtask T & (B- X - Y) has R (D&
174 and W{(T) < 1/4. Thus, W (B) is bounded above by max{x + y/2 + (|B|-x-y)/4] such thatx <'s
andy < 3s-2x. This maximum occursatx = y = s, so W1(B) < s + s/2 + (|B|-25)/4 = (|B[+4s)/4.0

Corollary 1: Given aset of tasks Y C 7, then W1(Y) < min{ (Y| +56,)/2, (Y] +4sw0)/4 1
Proof

(5]
Let Bl, ..B ' be the time units of an optimal schedule restricted to the tasks in Y. Then, Y = U : g 1 B.
o

Y0
Part 1: By Lemma 1, cach Wy (B,) < (IB;|+5)/2. Thus, Wy(Y) < 3 2 (IBil+s)/2 =

swo/2 +29 1 [Bl/2 = ([Y]+50,)/2.

w
Part 2: By Lemma 1, cach W (B)) < (1B +4s)/4. Thus, W1(Y) S 2, 2 (IB;|+4s)/4

= (Y| +4s0,)/4. O

Lemma 3: Weighting function W has Property B.
Proof
By I.emma 1, it is sufficient to show that W, has Property A. Consider a task T and a nonempty set of
tasks B, such that R___ (T) > Rmax(T‘) for cach 'I' € B and Rmax(T') >1- Rmux(m' We want to show
that Wy(B) > 1.
If Rmax(n > 1/2 for any T € B, then the lemma is immediate, so suppose R
B. lmeax(T') =0thenR_. . (B) 2 1, hence WI(B} 2> 1, sosupposc R
Case I: R, (T") €(0, 1/4]
Then I{mm(ll) > 3/4. Since forcach T e B,0< Rmax('l‘) < 172, we have that |B| > 2. Morcover, for T €
B, Wo(1) is cither 174 or 172, If |B| 2> 4, then the lemma is immediate. 1f [B] = 3 then at least one of
the tasks has an R .. -value exceeding 174, hence it has a weight of 1/2. The other 2 tasks have weights
of at least 174, "Thus. Wy(B) > 1. If [B] = 2, then both of the tasks in B must have R
exceeding 174, hence they have weights of 1/2, and Wl(i}) =1l

max

max(T) £ 172 foreach T €

(Tr+>0.

max max

max*vulms



Case 2: R ., (T') €(1/4,1/2]
Then R,.,(B) > 1/2. Hence IB| > 2, since R, (T) < 172 for each Te B. Since for each T € B,
Ryay(D > Ry, (T*), we have: Ry (T) € (174, 1/2] and Wy(T) = 1/2 for T € B. Thus, Wy(B) =
Bl/2> 1 |

2.3.2 The Second Weighting Function

Definition: Wo(a) = 0 ifa =10
10/100 if & € (0, .092]
157100 if & € (092, .136]
20/100 if & € (.136, .182]
25/100if & € (.182, .204]
30/100 if a € (204, .250]
40/100 if o € (250, .296]
457100 if @ € (296, .318]
50/100 if a € (.318, .364]
55/100 if & € (.364, .408]
60/100 if & € (.408, .500]
1 ifa€(500,1]

The following two lemmas and corollary about Wz arc proven in the appendix.
Lemma 4: If B is a legal set of tasks, then WZ( B) < (|B|+14s)/10.

Corollary 2: Given a set of tasks Y C 7, then W4(Y) < (IY]+14sw )/10.
Lemma 5: Weighting function W, has Property B.

2.3.3 The Third Weighting Function

Definition: Wy(a) = (6/5a i « €[0,1/6]
©/5)a - 1710 if a€(1/6,1/3]
(6/5)a + 1710 if a€(1/3,1/2]
(6/5)a + 4710 if a€(1/2,1)

This is the weighting function defined in Garey, ct.al[4]. In that paper the following corollary and lemma

about W 3 are proven.

Corollary 3: Given asct oftasks Y C 7, then W3(Y) < 175;.:0/10.

lLemma 6: Given 0 < a < 172, and a set of tasks B = {T}, ..., T} with n > 2, such that Rax(1) 2
Rpax(T) > a@and a > 1-R .. (B). then W;3(B) > 1.

A straight-forward consequence of L.emma 6 and the definition of W 3 (used to handle [B| = 1 and Rmax(’l‘ )

> 1/2) is that W3 has Property A, hence:

l.emma 7: Weighting function W3 has Property B.
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3. The Main Result

In this section we complete the proof of Theorem 1. Assume that a UET task system with resources S =
<T, £, m, s> is given. Let @ep be a critical path schedule and let w, be an optimal schedule for this system,

‘The time units of W, are partitioned into the following three sets:

P={B;¢ "’c; (Vj > Dllevel(B;) > level(Bj)]}
= {Biewcp :|B;l = mand B; ¢ P}
H = {B; ¢ Wep* |B;| < m and B; € P}
The time units in P are path time units, those in F are full time units, and those in H are resource time units.
Clearly, Wep = [P| + |F] + [H].
LetQ={TeT:Te B;and B; € H} (i.e. Q consists of all tasks executing in resource time units of

).
cp
Clearly, |P| < w, and |[F | < @, - [Pl/m - |Q]/m. The number of resource time units |HJ, can be bounded by

use of the following lemma (adapted from a lemma given by Garey, et.al.[4]).
Lemma 8: If W is a weighting function which has Property B, then there exists a sct of tasks Q' C 7T with
IQ'| = |QIsuch that |[H] < W(Q").
Proof
Assume that W is a weighting function which has Property B. Let k be the maximum level of any task in 7,
For cach level /| 1 < / < k, there is one time unit B, € P with level(BI) =1l LetT ; be any task in BI with
level(T)) = L Morrover, for cach level , 1 << k, define the following two sets:
A;={B;eH:level(B) = }}
L;= {T:level(T) = /and (3B; € AY[T € B} U {TI}'
Thus, A I contains all of the resource time units where the highest level of any task executing in the time
unit is /. Likewise, L[ contains task Tj and all level / tasks exccuting in a resource time unit where the
highest level of any task exccuting in the time unit is . Figure 1 shows the correspondence between L!, Tl
and A 2
Consider any set Ay We claim that there exists a task X,e I.such that W(I,! - {X!}) > V\ﬂ- ]f|/\]|
= 0 then the result is immediate, so assume that IA[I 2 tlet By, B[AII be the time  units in Ap

For cach Bi €A 3 let Bi = Bi N l,!. There is one B; for cach Bi' and cach B; contains at lcast one

' [AG '
task. Also, let B|A/|+1 = {'l‘[}. Notc that Ui__,f Bi — L[. Morcover, cach Bi contains only level

[ tasks.
Now consider any Bi and B;, with j<i. lct T be any task in B;. When T was scheduled all tasks

with levels larger than / must have alrcady been scheduled in time units prior to Bj. Moreover, the
only tasks alrcady scheduled in time unit Bj were level [ tasks. Thus, T was not scheduled to execute

in Bj due solely to resource constraints imposed by the level / tasks in Bj. This means that for'T' € B;,
(rN>1-R (lij: ) for all j <i. 'Thus, the B: s forma st of time units for which the conditions

R max max i)



FIGURE 1: An example of the sets AZ and LZ’ and the task T

28
7

Assume that B_ has a level of 7 and is a path time unit. This means
that the task in B_ of the highest level has level 7, and that all
tasks executing in time units after B8 have levels less than Z.

Some unmber of time units immediately preceding BB also have a level
of 7. Assume that these are time units B B 6° and B The set
The set A consists of these 4 time units Tge set L consists of

all of the level . tasks which execute in these 4 timé units, along

with task TZ'

A = {Bé, Bss Bgs 37} level(Bi) =1« foril =4, 5, 65 L8
B8 is BZ in this instance
_ifﬁr/””_ﬂ__:::;level L tasks
B B v B " B \ B

N ' W ’Q}_u ' I

tasks of levels other than 7 - all of these
are lower level tasks

B&’ BS’ B6, B7 are resource time units and B8 is a path time unit

L, = {T: level(T) = 7 and T is in a time unit in AZ} U {TZ}

The tasks in the non-shaded portions of B,, B s B and B, are
. 4 6 8
the tasks in LZ'



-10-

given in the definition of Propcrt); B ?old. Then, since weighting function W has Property B there
A
exists a task X j€ L (since L ;= / Bi )such that W(Ll -{X [}) 2 A ,I and the claim is proved.

. i=1
Finally, let Q" = (QU {T;: 1< /<k})- {X;: 1 < /< k}. Clearly, |Q' = |Ql.
S H = 2o 1A < 3K Wy ) < W@, since UK _ @-{Xphcaq. O

From Lemma 8, it follows that given a particular weighting function W* which has Property B, there exists a
setof tasks Q' C T'such that [Q'| = [Q] and [H| < WX(Q").
Thus, Wep = [Pl + |F| + H| < |P| + (wo-in/m-lQi/m) + W*Q"'), and with a reordering of terms,
wcp < @g +PIL-L/m) - [QU/m + W*Q'). (D
There are six cascs to consider based on the relative values of s and m.
Casel: 2 <m<s+1
Then @ep < mw,, since at least one task must execute during cach time unit of W
Case2:s+1 <m<2s+1
Let W, be the weighting function W*, By Corollary 1, Wl(Q )<]Q’ I+Sw0]/2 e [|Q|+5w0]/2. Thus
from (I), “ep < wy + [PI(1-1/m) - |Q)/m + [|Q|+5w0]/2 = (1 +s/2w, + [P(1-1/m) + [Q|[1/2 - 1/m].
But, 172 - 1/m > 0 and Q] < me, - |P|. Hence, @ep < (1+s/2)w0 + |[Pl(1-1/m) + (maw, - [PP[1/2 -
1/m] = [(s+m)/2)w,, + [PI/2 < [(s+m+1)/2]e, since [P| < w5 '
“’cp/“’o < (+m+1)/72.
Case3:2s+1<m<8/3 +1
First assume that m > 4. Let Wl be the weighting function W*.  Then by Corollary 1, Wl(Q') <
Q'] +4S“’u}/4' Similarly to Case 2, we derive from (1) that “’cp/‘" o S (4s+m+3)/4.

Now assume that m < 4. The only combination of s and m to lic in this range is s=1 and m=3. But, from

'

Case 2 (since the assumption that m < 2s+1 was not used in that proof), ‘*’cp/‘"o < (s+m+1)2 =
(4s+m+5)/4 whens=1and m=3.

Casc4:85/3 + 1 <m< 3s+1
First assume that m > 10. let W, be the weighting function W*. "Then by Corollary 2, WH5Q') <
[1Q*[+14sw J/10. Similarly to Casec 2 we derive from (1) that “’Cp/"’o < (l14s+m+9)/10.
Now assume that m < 10. The only combination of s and m to li¢ in this range iss=3 and m=9. But, from

Case 3, w /“’o < (4s+m+3)/4 = (14s+m+9)/10 when s=3 and m=9.

cp
Casc5:3s+1 <mandm > 10
First assume that Q| > 3sw,,. Let W3 be the weighting function W*. Then by Corollary 3, Wi@Q') <
175w, /10. "Thus, from (1). acp < wy + [PI(1-1/m) - [Q)/m + 17s60,,/10. But-|Q| < -3sw, and |P| < W
50w, S w0y + wy(1-1/m) - 35w /m + 1750,/10 = @[ 2 + 175/10 - (3s+1)/m].
Now assume that [Q] < Jsw . let Wy be the weighting function W*. ‘Then by Corollary 2, W,5(Q') <

[Q'[+14sw,)/10 = [IQ] + 1456)/10. Thus from (1), Wep £ @y + IPII-1/m) - |QI/m + [IQ] +
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14sw /10 = w1 + 14s/10] + [P|(1-1/m) + IQI[1/10 - 1/m]. But1/10 - 1/m > 0, |Q| < 3sw, and [P| <
wy Hence, agy < wgfl+145/10] + wg(1-1/m) + 3sf1/10 -1/m] = wgf2 + 175/10 - Gs+1)/m],

Thus, “"cp""o <2+ 17s/10- (3s+1)/m.

Casc6:3s+1 <mandm<10
First assume that |Q| 2> (8s/3)w,. Let W; be the weighting function W*. Then, by Corollary 2, W»(Q')

<[Q'] + 14swo]/ 10. Similarly to Case 5 we derive from (I) that "’cp/ wo <2+ 58/3-(8s/3+ 1y/m.

Now assume that |Q| < (8s/3)w . Let W be the weighting function W*. Then by Corollary 1, W1(Q"') <

IQ '1+4sw0]/4. Similarly to Case § we derive from ([) that “’cp/“’o <2+ 5/3-(8/3 + 1)/m.
a

This completes the proof of Theorem 1.
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4. The Achievable Bounds

In this section we show that the upper bound given in Theorem 1 is (asymptotically) the best possible
upper bound. For each possible combination of s and m, we cxhibit a UET task system with resources, S =
<T, <, m, s>, a critical path schedule for that system, and an optimal schedule for that system such that the
ratio ""cp/‘"o is arbitrarily close to the appropriatc upper bound. As in Theorem 1, there are six cases to
consider based on the relationship between s and m. The constructions that we use in the six cases are
similar, but not identical. They make use of task systems which differ primarily in the resource usages of
certain tasks in the system. The overall precedence structures of these systems are the same, as are the
resource usages of several of the tasks. Thus, before proving each of the lemmas, this general task system
structure is introduced. The aspects of the system which are the same in all cases are specified. We indicate
which parameters will be specified within the proofs of the individual lemmas. We also sketch optimal and

critical path schedules for this general system. The exact nature of these schedules will, of course, depend

upon the values assigned to the unspecified parameters within the proofs of the individual lemmas.

4.1 A general task system structure
Assumec thats > 1and m > 2, with m > s+1, arc given (in the next section we will indicate how to handle
the case of m < s). Integers x and z are to be specified later, as is €, a positive constant. Consider a task
system S“l with the following tasks:
L1 for1 <i<x, suchthat Ry(1);) = eand Ry(D;) = Oforv=1.
2 BO such that RI(BO) = land RV(BO) =0forvs]l.
3. Byfor1 <i<s, such that Ry(B;) = 1 and R,(Bj) = Oforv =i
4. C; for 1 <i<'s. These tasks require no resources.
5. A} forl<i<sandl <j<z For v#i, RV(A';) = 0. The usage of resource i by cach task A} (its
Ri-valuc) will be specified later (it will be a non-zero requirement).  Tasks Ai. ’Aal: are called
This task system has the following precedence constraints:
L Forl <i<x1,D;<Dj ;. Moreover, D, <Cj.
2 For0<i< sl B<B jand B¢ Al r1<j<a
3 Forl<i<sland1 <j<zA<Ciyy.
4. Forl Si<s1.G<C e
The precedence structure of this system is shown in Figure 2.
Assuming that the constants x, z and e have been specified, consider the following schedule for S* (Figure

3a): In the first s+1 time units exceute the B-tasks. In the next x time units execute the D-tasks on processor
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FIGURE 2: The general task system structure used for the lower bounds.

1

B0 Dx
i &Aﬁ [
i <§%
—~== |

L T ]

The non-zero resource requirements of these tasks are:
Each D-task requires € of resource 1.

BO requires all of resource 1.

Bi requires all of resource i.

i 8
Each A -task requires a non-zero portion of resource 1.
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m, and cxccute all of the A-tasks on the other m-1 processors. In the final s time units exccute the C-tasks.
Such a schedule has length x + 2s + 1. The assumption that the A-tasks can all be executed in time units
s+2 through x+s+1 depends only on the number of A-tasks (which is sz) and on the resource requirements
of the A-tasks - no precedence constraints are involved since after task B exccutes in time unit s+1, all of the
A-tasks are available for exccution. In each of the results using this general task system, the value z and the
resource requircments of the A-tasks are specified so the A-tasks can indeed be executed in just x time units
on m-1 processors and so the total requirement for resource 1 during each of those x time units does not
exceed 1 - e. This last condition is needed since each of the D-tasks requires e of resource 1.

Now consider the critical path schedule for S* generated from the following list: (D-tasks, By C;.
Al-tasks, Bl' C2. Az-tasks, _— Bs—l’ CS, AS-tasks, Bs)' In this schedule, (Figure 3b) the D-tasks execute in
the first x time units, then B() and Cl execute in the next time unit, followed by the execution of the Alﬁtasks.
After those tasks have executed, Bl and C2 execute, followed by the execution of the Az-tasks, and so on.
Eventually, B._; and Cs execute, followed by the execution of the AS-tasks. In the final time unit B
executes. Assuming that the Ai-tasks are assigned the same resource requirements for resource i, as the
Al-tasks are assigned for resource 1 and that they are scheduled identically to the Al-tasks, this schedule has

length Wey =X + 5+ 1+ sG(Al), where G(Al) is the length of the schedule for the Al-tasks.

P
In the individual proofs which follow, several things are done. First, the values of x, z and e are specified,

and the remaining resource requircments for the A-tasks are given. We then show that the A-tasks can be
exccuted on m-1 processors in x time units with the total requirement for resource 1 by the A-tasks, in cach of
those x time units, not exceeding 1 - . This establishes that w ) < x + 25 + 1. The value of G(Al) is then

derived by analyzing a particular list schedule for the Al-tasks, establishing that Wep Zx+s+1+

sG(Al). The lower bound for the worst case of W, /mo is then obtained by combining the bounds for @

p 0
and Wep: O

4.2 The Simple Cases

Lemma 9: If2 < m<s + 1, then w,

/ w, can be arbitrarily close to m.

P
Proof

Assume that there are only m-1 resources. That is, assume s = m-1. (i.c. in the task system used to show
that the upper bound of m may be approached arbitrarily closcly, the tasks require only the first m-1
resources). ‘The next lemma shows that in this case (i.c. m > s+1), that “’cp‘, w,, can be arbitrarily close to
(s+m+1)/2. But,if m = s+1, then (s+m+1)/2 = m. O
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Lemma 10: Ifs+ 1 <m<2s +1 then "’cp/"’o can be arbitrarily close to (s+m+1)/72.
Proof
Letc = (m-s-1)/s. Let x be a positive integer such that x = 0 mod 2s, let z = [1+c]x and let e < 1/12.
Now consider the task system S* as specified in the previous section, using these values of x, z and . The
remaining resource requirements of the A-tasks are:
Foreachi,1 <i<s,
x of the Al-tasks haveran R;value of 172 + ¢
cx of the Al-tasks have an R;-value of 1/2 - 2e.
Note that for each i, we have specified resource requirements for exactly x + cx = l+ckx =z Ai-tasks.
As desired, in total there are zs = (m-1)x A-tasks.

As noted in the previous section, w, <X + 25 + 1 provided all of the A-tasks can be executed on m-1
processors in just x time units, with the total requirement for resource 1 by the A-tasks in each time unit not
exceeding 1 - e. This can be done by executing the following tasks at cach of those x time units (Figure
4a): Foreachi, 1 <i<s,an Al-task with an R;-value of 1/2 + & executes. This utilizes s processors at
each time unit. Morcover, for cs = m-s-1 values of i, an Al-task with an Rj-value of 1/2 - 2¢ executes.
Since m-1 A-tasks execute per time unir';, all of the A-tasks can be executed in x time units. Note that for
each i, there are (1-c)x time units in which one Ai-task executes and there are c¢x time units in which «wo
Al-tasks execute. Moreover, the total requirement for each resource during each time unit does not exceed
1-e. Therefore, w, <x +2s+ L

Also as noted in the previous section, for critical path schedules, @ep Zx+s+1+ sG(Al), where
G(Al) is the length of a particular list schedule (which we are about to specify) for the Al-tasks. Consider
the following schedule for the Al-tasks (Figure 4b): In the first cx/2 time units two Al-tasks with
Rl-valucs of 172 - 2¢ execute. These time units are followed by x time units in which one AI-task with an
Ry-value of 172 + & exccutes per time unit.  Note that in cach of the first cx/2 tme units the total
requircment for resource 1is 2(1/2 - 2¢) = 1 - 4e. During the execution of these time units the smallest
resource requirement of any unexccuted Al-task is 1/2 - 2¢, a valuc which exceeds 4e. This means that
none of the Al-tasks which execute later in the schedule can cxecute in these time units. This assures that
the schedule we have described here is a valid list schedule.  Thus, G(Al) = cx/2 + x, and @ep ZX+s
+ 1 + sfex/2 + x] > x(m+s+1)/72.

e “’cp/“’u 2 (x(m+s+1)/2)/(x+2s+1)

limit, _, o9 wcp/wo = (m+s+1)/2. O
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FIGURE 4: The schedules used in Lemma 10.

1 Al—task 2 Al-tasks
2 +¢ '+ ¢
3 - 2¢
(1-e)x cxX

4a) An optimal schedule - for each other resource v, AY—tasks execute
(in a similar manner) with these Al-tasks.

2 Al—tasks 1 Al-task
2 - 2 e
§—2€

cx/2 X

4b) The schedule used for G(Al). These tasks execute alone.

In each of the above figures, the values inside of the boxes indicate the
R,-values of the tasks executing in those time units. The values under the
boxes indicate the number of time units where tasks with those particular

Rl—values execute.
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Lemma 11: If2s + 1 <m<8s/3 + 1, then “’Cp/“’o can be arbitrarily close to (4s+m+3)/4,
Proof

Letc = (m-2s-1)/s and let ¢ = max{0, M'og [(1-c)/(2-3c)]1}. Note that 0 < ¢<2/3. Morcover, g = 0iff

¢ < 172, Let x be an integer such that x = 0 mod s29, let z = [2+clx,and let Y = 3¢-2 + (l-c)/2q'1.

(The origin of Y will be explained a little later in the proof). Lete = g =1 1OQ+2. Also, for1 €k <

q, let & = 10ek_1. Now consider the task system S$* using these values of x, z and . The remaining

resource requirements of the A-tasks are:

Foreachi,1<i<s:

L. (1-c)x of the Al-tasks have an R;-value of 1/2 + &
(1-c)x of the Al-tasks have an R;-value of 1/2 - 2¢y.
2For0<k<ql,
(1-(;))4/2k of the Al-tasks have an R;-value of 172 + ¢;.
(1-c)x/2k of the Al-tasks have an R;-value of 174 + 2¢ey.
(1-«:):;/2k of the Al-tasks have an R;-valuc of 1/4 - 4ey.
3. Yx of the Al-tasks have an R;-value of 172 + &g
Yx of the A'-tasks have an R;-value of 1/4 + 2
Yx of the Al-tusks have an Ry-value of 1/4 - e,
There are two cases to be considered here:
1. If g = 0, then no tasks are assigned resource requirements in part 2 of the above specifications. In this
instance Y = c.
2.1fq > 0, then some tasks are assigned resource requirements in part 2 of the specifications. Note that Y
2 0,since g<1 + log [(1-c)/(2-3c)].
In both cases, resource requirements are specified for exactly z Ai-tasks. The constant Y was chosen so that
this was the casc. Intuitively, in part 2 of the specifications, we assign R;-values to the tasks in a series of
sets of tasks. The number of tasks in cach set is one half the number of tasks in the preceding set. Since
there arc only [2+clx = 2 Ai-tusks. the series must be terminated at an appropriate point. In this instance,
that is after q sets. The value 3Yx is the number of Al-tasks whose R;-valuc has not been specified when
the series is terminated. These 3Yx tasks are the tasks assigned Ri-valucs in part 3 of the specifications.

As before, w ) < x + 25 + 1 provided all of the A-tasks can be exccuted in x time units with the total
requirement for resource 1 by the A-tasks in cach time unit not exceeding 1 - e. This can be done by
cxceuting the following tasks at each of those x time units (Figure 5a): For cach i, 1 <i <s, cither 2 or 3
Al-tasks execute at cach of the x time units. More specifically, for (1-c)s = 3s-m+1 values of i, twd

Ai-tusks exccute. They have Ri-vniucs of 172 + ggand 1/2 - 2e(y. For the other cs = m-2s-1 values of i,
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three Al-tasks execute. They have Ry-valuesof 1/2 + ¢, 174 7+ 2ey and 1/4 - 4ey, for somek, 0 <k <
g. Since at each time unit 2(1-c)s + 3cs = m-1 tasks execute, all of the A-tasks can be executed in x time
units. Note that for each i, there are (1-c)x time units in which two Ai-tasks exccute and there are cx time
units in which three Al-tasks execute. Moreover, since ¢, > gy = € for0 <k < q, the total requirement
for any resource during each time unit does not exceed 1 - e. Thus, the A-tasks can be executed in just x
time units, and w, <x + 2s + L

For critical path schedules, @ep 2x+s+1+ sG(Al). There are two cases to consider based on the
value of q (i.e. ¢ = O and q > 0).

If g = 0, consider the following schedule for the Al-tasks (Figure 5b): In the first cx/4 time units, four
Al-tasks with Ry-values of 1/4 - 4¢(; execute in each time unit. Next there are cx time units in which two
Al—tasks execute during each time unit. These tasks have Ri-values of 1/2 - 280 and 1/4 + 230. Thirdly,
there are (1-2¢)x/2 time units in which two Al-tasks, each with an R;-value of 1/2 - 2¢), execute. Finally,
there are x time units in which one Al-task with an Ri-value of 172 + g() exceutes per time unit. Note that
in each of the first cx/4 time units the total requirement for resource 1 is 4(1/4 - 4e0) = 1-16gy. During
the execution of these time units the smallest resource requirement of any unexecuted Al-task is 1/4 - de, 7
a value which exceeds 16e(). This means that nonc of the Al-tasks which execute later in the schedule can
execute in these time units. Similar remarks can be made about each of the other time units in this
schedule. This assures that the schedule we have described here is a valid list schedule. Thus, (}(Al Y=
cx/4 + cx + (1-2c)x/2 + x = [3/2 + c/4)x.

If @ > 0, consider the following schedule for the Al-tasks (Figure 5c): In the first Yx/4 time units four

Al-tasks with Rl-values of 1/4 - 4¢_, execute in each time unit. Next, there are [{I-c:)/zq'1 - 2Y]x/4 time

q

units in which four Al-tasks with Ry-values of 1/4 - 4e, ; cxccute per time unit (since q 2>

q
log[(1-c)/(2-3c)] this quantity is non-ncgative). In the next Yx time units, three Al-tasks exccute per time
unit: these tasks have Ri-valucs of 174 + 2eq. 174 - 4eq_1, and 1/4 - 4eq_]. Similarly, in the next
(1-c)x/2q'l time units three Al-tasks execute per time unit. These tasks have R j-values of 174 + 2¢

174 - 4¢

.]-
g2 and 1/4 - 4£q-2' Generally, for k, g-1 2> k > 1, therc are (l-c)x/2k time units with :J‘?rcc
Al-tasks exccuting per time unit. ‘These tasks have Ry-valuces of 174 + 2ey, 1/4 - 4¢;,_y. and 1/4 - 4¢; ;.
Following these time units there are (1-¢)x time units with two Al-tasks cxecuting per time unit: These
tasks have Rl—vaiucs of 172 - 250 and 174 + 250. Finally, there are x time units in which one A]-[ask
exccutes per time unit. Each of these tasks has an Ry-value exceeding 1/2. Note that in each of the first
Yx/4 time units the total requirement for resource 1 s 4(1/4 - 4eq) =5li= IGeq. During the execution of

these time units the smallest resource requirement of any unexecuted Altask is 174 - 4e , a value which

q
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exceeds 16eq. This means that none of the Al-tasks which execute later in the schedule can execute in
these time units. Similar remarks can be made about each of the other time units in this schedule. This
assurcs that the schedule we have described here is a valid list schedule. Thus, G(Al) = [Y/4 +
(@29 2vy/4 + Y + 33210728 + (1o0) + 1k = 372 + c/dhx.
.". In both cases, G{Al) = [3/2 4+ c/4]x and “ep >x+s+1+5s[3/2 + c/4)x > x(4s+m+3)/4.
lwy 2> (x[4s+m+3)/4)/(x + 2s + 1)

limity _, on wep/wy = (s+m+3)/4. -

4.3 A useful set of independent tasks

In the next two lemmas, we make use of a set of tasks originally described by Johnson, et.al[7]. We have
modified this set of tasks slightly to better suit our purposes.

Given some resource (say, resource 1) and an integer y, we will describe a set of 3y - 1 independent tasks.
Each task requires some non-zero portion of the resource. These tasks can be grouped into three sets of
tasks: In the first set all of the tasks have Ry-values of approximately 1/6; in the second set the tasks have
R-values of approximately 1/3; and in the third set the tasks have R-values exceeding 1/2. Within each set
the tasks differ slightly in their resource r'cquirements. For instance, in the first set some of the tasks h;-ave
resource requirements exceeding 1/6 and some have requirements less than 1/6. There are y tasks in eac1 of
the first two sets and y - 1 tasks in the third.

More formally, assume that an integer y, with y = 0 mod 10 is given. Let 8 be such that 0 < 8 <K 187/ 10.
Also, let 8; = 81871071 for 1 < i < y/10. Consider the following three sets of tasks:

1. The first sct contains y tasks, T}i for0<j<9 and1 < i < y/10. These tasks have the following

resource requirements for 1 <i <y/10:
Ry(T§) = 176 + 335,
Ry(T}) = 1/6- 35,
R (T}) = Ry(T3) = 1/6- 78,
Ry(T;) = 1/6- 135,
R(TY) = 1/6 + 98,
Rl(']%i) 7 Rl(T'lli) = Rl“%i) =Ry(T %i) = 1/6 - 2§;

2. The sccond set contains y tasks, T]zi
resource requirements for 1 < i < y/10:

Ry(13) = 173 + 465,

Ry(1F) = 1/3- 348;

for0 <j<9%and 1 <i < y/10. Thesc tasks have the following
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Ry(T3) = Ry(T) = 173 + 68;

R (T) = 1/3 + 125,

Ry(T3) = 1/3- 108,

Ry(TE) = Ry(T) = R(T§) = Ry(TF) = 1/3 + 5,

3. The third set containsy - 1 tasks, T % for1 <i < y-1. Each task requires 172 + 8 of resource 1.

An optimal schedule for these 3y-1 tasks has length y. It consists of time units with the following tasks:
1. For2 <j < 9and 1 <i < y/10,a T task and T} and T,
2. For1 < i < y/10, a T*-task and T, and T%;
3.Forl <i<y/10,aT>-task and T}; and T} ; , ;
1 2
4, Tl.y/lO and TOl

Now consider the list (T, (1)1, s T%l, T(l)z, e T%Z, e T%,,y /100 - » T%,y /100 T%l, e Tgl, s T%!y a0
T3,y/10 T} -~ » To.p). This list results in a schedule with length 17y/10 - 1. This follows easily from the
results in [7]. We give an informal description of the schedule here. The schedule has y/5 time units in
which 5 tasks from the first set execute per time unit and in which the total resource requirement in each of
the time units exceeds 5/6; y/2 time units in which 2 tasks from the second set execute per time unit and in
which the total resource requirement in each of the time units exceeds 2/3; and, y - 1 time units in which one
task from the third set executes per time unit.

Now assume that y is fixed. Since each task in the system requires a non-zero portion of the resource, and
since (in both of the schedules given above) cach time unit has 5 or fewer exccuting tasks, there exists a By >
0, such that the resource requirement of every task can be reduced by By without changing cither of the two
schedules. Morcover, this implies that the total resource usage during any single time unit in these two
schedules does not exceed 1 - By.

In the next result, some Al-tasks arc assigned R;-values in a manner similar to those assigned in previous

lemmas, and some arc assigned Rj-values similar to the resource requirements of the J-tasks.

4.4 Thc remaining cascs

I.emma 12: If8s/3 + 1 <m<3s + 1, then W/ @, can be arbitrarily close to (14s+m+9)/10.

p
Proof
letc = (m-2s-1)/s and let @ > 0 be an arbitrary integer. Note that 2/3 < c< 1. letx = 2032q'1, letz =
[2+c]x-landletY = 3c-2 + (1-c)/2q'1. The value Y will serve a purpose in this result similar to what it

served in the previous result.  Also similarly to the previous result, let e = ep << min{ ﬁYx‘ 1/109+2 }
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and for 1 <k < q,let g = 10¢,_. Now consider the task system s using these values of x, z, and e.
The remaining resource requirements of the A-tasks are as follows:
Foreachi, 1 <i<s,
1. (1-c)x of the Ai-tasks have an R;-value of 172 + &
(1-c)x of the Ai-tasks have an Ri-value of 172 - 2¢).
2. For0<k<ql,
(1-c)x/2k of the Al-tasks have an R;-value of 1/2 + &,.
(l-c)x/Zk of the Al-tasks have an R;-value of 174 + 2¢;.
(1—c)x/2k of the Ai-tasks have an R;-value of 1/4 - 4¢,,.
3.3Yx - 1 of the Al-tasks are assigned R;-values equal to the R;-values of the tasks in a set of 3Yx -1
J-tasks. These Al-tasks will be called type J Al-tasks.

An optimal schedule for this task system has a similar form for the execution of the A-tasks as the
optimal schedules in the previous lemma. As before, w, < x + 2s + 1 provided all of the A-tasks can be
executed in x time units on m-1 processors. This can be done by executing the following tasks at each of
those x time units: For (1-c)s = 3s-m+1 values of i, two Al-tasks execute: these tasks have R-values of
172 + £ and 172 - 250. For the other cs = m-2s-1 values of i, either:

1. Three Al-tasks exccute having R;-values of 1/2 + ¢}, 1/4 + 2¢,, and 1/4 - 4¢ for some k, 0 < k <

q-1, or
2. Two or three type J tasks exccute (as noted in section 4.3, three type J tasks execute in all but one of
these time units).
Note that at each time unit no more than 2(1-c)s + 3cs = m-1 tasks cxecute. Also, for cach i, there are cx
time units in which three Ai-tasks execute and there are (1-¢)x time units in which two Ai-tasks execute,
Thus, the A-tasks can be executed in just x time units and the total requirement for any single resource
during each time unit does not exceed 1 - €. Thus, w ) <x + 25 + 1.

The execution of the Al-tasks is also similar to that in the previous lemma. In that lemma (for q > 0),
there were essentially four types of time units: those with 4, 3, 2 or 1 tasks. Let T4, T3, T2 and T1
designate all of the time units of cach type. Each of these types of time units will also occur here. In
addition, in this proof, we have time units where only type J Al-msks exccute.  As indicated in our
discussion in the previous section, there will be three types of time units  where type J Al-tasks cxecute.,
‘These time units contain §, 2 and 1 tasks, and will be referred to as 15, J2 and J1, respectively. ‘The schedule
used to derive G(A']) consists all of these time units in the following order: '1'4, J5,°13,°12, J2, J1 and 'T'l.
That is, first all of the T4 time units execute, then all of the JS time units exccute, and so on.

More formally, consider the following schedule for the A]-msks (Figure 6): In the first |(l-c)x/2q'1]/4
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time units four Al-tasks, each with an R;-value of 1/4 - 4¢ .]» execute in each time unit. Next, there are

q
Yx/$5 time units in which five type J tasks execute - as noted in the previous section, each of these tasks has

an Ry-value of approximately 1/6. Next, similarly to the critical path schedule described in Lemma 11, for
g-1 > k 2 1, there are (1-c)x/2k time units with three tasks executing per time unit. These tasks have
Rl-values of 174 + Zsk, 1/4 - 4ek-1’ and 1/4 - 431(-1' Following these time units there are (1-c)x time
units with two Al-tasks executing per time unit. These tasks have R;-values of 1/2 - 2¢ and 1/4 + 2¢,.
Next, there are Yx/2 time units with two type J tasks executing per time unit - as noted in the previous
section, these tasks have Ry-values of approximately 1/3. Finally, there are x-1 time units in which one
Al-task executes per time unit. Each of these tasks has an Ry-value exceeding 172. Note that in each of
the first {(l-c)/zq'l]x/4 time units the total requirement for resource 1 is 4(1/4 - 4eq_1) =1:- 16eq_1.
During the execution of these time units the smallest resource requirement of any unexecuted Al-task is

approximately 1/6 (actually, just a little less than 1/6). But, e _; was chosen such that 176 > 16eq_1.

This means that none of the Al-tasks which execute later in theqschedule can execute in these time units.
Similar remarks can be made about each of the other time units in this schedule. This assures that the
schedule we have described here is  valid list schedule. Thus, G(A) = ((1-c)29/4 + /5 + 2§_]
(1—c)/2k + (1¢) + Y72 + Ix-1="[(16+c)/10 - (1-c)/(20 2q'1]x - 1. Hence, @ep 2x+s+1+
sK[(16-+c)/10 - (1-c)/(20 29 1)) -5. But,x = 2029, 50 w0 > x[s(16+0)/10 + 1] - 5%
"L g/ 0y > (K[S(16+¢)/10 + 1] - 2)/(x+2s+1)
limit, _, op 0o/ > (s+m+9)/10. =

Lemma 13: If 3s + 1 < mand m 2 10, then v,/ w, can be arbitrarily closc to 2 + 17s/10 - (3s+1)/m.

p
Proof

Letx = 0mod 10m, letz = 3x-1and lete = B,. Consider the task system S using these values of x,
zande. Foreachi 1l <i<s, the Al-tasks are assigned R;-values equal to the Ry-values of the tasks in a
sct of z J-tasks. In addition to the usual tasks in S* the following tasks are added to S

1. G, a task which requires no resources.

2. Fj for 1 <j < (m-3s-1)x. These tasks require no resources.

JLEwithRy(E) =1for1 <i<s.

The following precedence constraints are also added to the system:

1. For 1 Sjgz,}\?((}.

2.B,<G.and C < G.

JForl <j < (m-3s-Ix, E< I~'j.

'The precedence structure of this task system is shown in Figure 7.
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FIGURE 7: The task system used in Lemma 13.
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The non-zero resource requirements of these tasks are as follows:
Each D-task requires € of resource 1.
BO requires all of resource 1.

Bi requires all of resource i, 1 > 0.
Each Ai-task requires a non-zero portion of resource 1i.

E requires all the resources.

G, the C-tasks and the F-tasks require no resources.
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An optimal schedule for this system is: In the first s+ 2 time units execute the B-tasks and task E. In the
next x time units the A-tasks, D-tasks and F-tasks are executed (1 D-task, m-3s-1 F-tasks and no more than
3s A-tasks per time unit). For each i, there are x-1 time units where three Ai-tasks exccute and there is one -
time unit where two Ai-tasks execute. In the final s+1 time units execute the C-tasks followed by task G.
Thuswy<s+2+x+s+1=x+25+3.

Now consider the following critical path schedule: Execute the D-tasks and tasks By and C; in the first
x+1 time units. In the next 17x/10 - 1 time units execute the Al-tasks. Then, execute By and C,,
followed by the Az-tasks in the next 17x/10 - 1 time units, and so on, until BS executes. Then execute E
and G. In the final (m-3s-1)x/m time units execute the F-tasks. Thus, @ep >x+ 1+ 17xs/10+ 1 +
(m-3s-1)x/m > x[2 + 17s/10 - (3s+1)/m].

/wy 2 X[2 + 17/10 - 3s+1)/m]/(x + 25 + 3)
limity _, oo wep/wy = 2 + 175/10- (3s+1)/m. -

Lemma 14: If3s + 1 < mand m< 10, then w
Proof

The task system we describe here combines various aspects of the systems used in Lemmas 11 and 13.

cp/“’o can be arbitrarily close to 2 + 5s/3 - (8s/3 + 1)/m.

We use the task system structure from Lemma 13 (i.e. with the added tasks) and we assign the A-tasks
resource requirements as was done in Lemma 11. _

More formally, assume s and m are given. Letc € (1/2, 2/3) and let q = Tlog[(1-c)/(2-3c)]7. Letx be
an integer such that x = 0 mod sm29, let z = [2+cJx and let Y = 3¢c-2 + (1-c)/2q'1. Lete = ¢y =
1710912, Also, for 1<k < q,letg = 10ey._;. Consider the task system s using these values of x, z
and e.

Foreachi, 1 <i<s:
1. (1-c)x of the Al-tasks have an R;-value of 1/2 +
(1-c)x of the Al-tasks have an R;-value of 1/2 - 2¢p.

2. For0<k<qg-l,

(1-)x/2* of the Al-tasks have an R;-value of 1/2 + e,
(l-c)x/2k of the Al-tasks have an R;-valucof 174 + 2¢y.
(1-c)x/2% of the A™-tasks have an Ry-valuc of 1/4 - 4e,.

3. Yx of the Al-tasks have an R;-value of 1/2 + 2
Yx of the Al-tasks have an R;-value of 174 + 2,
Yx of the Al-tasks have an Ry-valuc of 1/4 - deg

‘These are exactly the same specifications for the R;-values of the Al-tasks as given in Lemma 11.
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In addition to the usual tasks in S*, the following tasks are added to $*:

1. G, atask which requires no resources.

2 Fj for 1 <j < (m-[2+c]s-1)x. These tasks require no resources,

JEwithRy(E) =1for1 <i<s.

The following precedence constraints are also added to the system:

LFor1 <j<zA}<G.

2.B;<G,and C < G.

3.Forl <j<(m-3s-I)x,EX Fj.

An optimal schedule for this system is similar to that for the system used in the proof of the previous
lemma. The B-tasks and task E are executed in the first s+2 time units. In the next x time units the
A-tasks, D-tasks and F-tasks are executed. In each of those x time units, [2+c]s A-tasks, 1 D-task and
(m-[2+c]-1) F-tasks execute. For each i, there are (1-c)x time units where two Al-tasks execute and there
are cx time units where three Ai-tasks execute. In the final s time units the C-tasks are executed. Thus, w

<x+25+2

(o]

Now consider the following critical path schedule: Execute the D-tasks and tasks By and C; in the first
x+1 time units. In the next [3/2 + c/4]x time units execute the Al-tasks (this follows from the proof of
Lemma 11, where G(A]‘) = [3/2 + c/4]x). Then execute B j and C2 followed by the A2-tasks in the next
[3/2 + c/4]x time units, and so on, until B executes. Next execute E and G. Finally, exccute the F-tasks
Cp2x+1—|-([3/2-1- c/4x + s + 1 +
(m-[2+c]s-1)x/m > x[2 + 3s/2 - (2s+1)/m + cs(1/4 - 1/m)].

“’cpfwo > x[2 + 3s/2-(2s+1V/m + cs(1/74 - 1/m))/(x + 25 + 2)

limit, _, 5/3 “’cp/“’o 2 x[2 4+ 58/3- (8s/3 + 1)/m}/(x + 25 + 2)

in the final (m-[24c]s-1)x/m time units. Thus, @

limity _, o Wep/@o =2+ 5/3- (85/3 + 1)/m a
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6. Appendix

In this section we prove two lemmas and a corollary about weighting function Wz. For convenience, the

definition of W, is repeated here.

Definition: Wo(a) = 0
10/100
15/100
20/100
25/100
30/100
40/100
45/100
50/100
55/100
60/100

1

if a=0

if
if
if
if
if
if
if
if
if
if
if

a €(0,.092]

a €(.092, .136]
a € (136,.182]
a € (182, 204]
a € (204, 250]
a € (250, .296]
a € (296, 318]
a € (318, .364]
a € (364, .408]
a € (408, .500]
a €(.500,1]

We have the following facts which follow by inspection from the definition of W,.
Fact1: If a € (092, .500], then Wy(a) < (1.64)a.
Fact 2: If [B| = 3and R (B) < 1, then W, (R (B)) <17/10.
Fact 3: If[B] = 2and R (B) < 1, then Wy(R(B)) < 16/10.
Fact 4: If |B| = 2 and R (B) < .500, then Wy(R,(B)) < 7/10.
The following claim is useful in proving Lemma 4:

Claim A: If B is a set of tasks such that R(B) < land|B| > 2 then WZ(RV(B)} < (|B|+14)/10.

Proof

If|B] < 3 then the claim follows from Facts 2 and 3, so, assume that [B| > 4. Definc the following two sets

of tasks:

Y = {T€B: R (1)>.500}

X = {T € B: .092< R (1) < .500}
Clearly, Wo(R\(B)) = Wp(R(Y)) + Wy(R (X)) + Wy(R,(BX-Y)). Note that if T € Y, then
Wy(R(T) = 1and if T € B-X-Y then W,(R(T)) < 10/100. Thus,

WH(R(B)) S [Y] + Wo(R (X)) + (IB] - [X] - [Y[)/10.

Case1:|Y| =0

Then, W(R (B)) = Wa(R (X)) + (B] - [X])/10.
If [X| < 2, then since for each T € X, WZ(RV(T)) < 60/100, we have WZ(RV(B» < (607100)X| +
(BIHXD/10 = 5XI/10 + [BI/10< (|B|+14)/10.
IFIX|> 2, then by Fact 1, (R (X)) < 164, hence W(R (B)) < 164 + (B] - [X])/10 <
164 + [B] - 3)/10 < (|B]+14)/10.
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Case2: Y| =1
Note that RV(X) <.500 and
W)R(B) < 1+ WyR (X)) + [IB}-X|-1}/10 ()
If[X] = 0, then from (III), Wo(R,(B)) < 1 + (|B|-1)/10< (|B|+14)/10.
If [X|] = 1, then Wo(R, (X)) < 607100, so from (II, W,H(R,(B)) <1 + 60/100 + (|B|-2)/10 =
(IB]+14)/10.
If|X| = 2, then by Fact 4, W,(R (X)) < 7/10, so from (III),
W5(R,(B)) <1 + 7/10 + (|B}-3)/10 = (|B|+14)/10.
If|X| = 3, then let max,(X) = ma.x{Rv(T): TeX}.

If max (X) > .318 then the other two tasks in X have R -values totaling less than .182, since R (X) <
.500. Then at least one of these other two tasks must have an R,-value less than .091. But, by
definition each task in X has an Rv-vaiue exceeding .092. Thus, maxV(X) < .318.

If max (X) € (.250, .318], then Wy(max (X)) = 45/100. The other two tasks in X have R,-values not
exceeding .136 and .182 respectively, hence they have a total weight not exceeding 35/100. Thus,
WH(R,(X)) < 80/100.

If max (X) € (.092, .250], then W,(max,(X)) < 30/100. The other two tasks in X have R, -values not
exceeding .204, hence they have a total weight not excecding 50/100. Thus, Wz(Rv(X)) < 80/100.

Thus, if [X] = 3 then Wy(R,(X)) < 80/100, hence W,(R (B)) < 1 + 80/100 + [|B[-4)/10 =

(IB|+14)/10.
If[X] > 4, then W,(R (X)) < L64R (X) < .82. Then from (III), Wo(R,(B)) < 1 + 82 + [|B[-|X|-1)/10
< 1.82 + [|B}-5]/10< (|B|+14)/10. a

L.cmma 4: If B is a legal set of tasks, then WZ(B) < (|B]+ 14s)/10.
Proof

Partition the tasks in B into s sets Dl. o Ds' wherc T € Dv if and only if v is the minimum value such that
RV(T) E Rmax(T)' Clearly, Wz(B) = Egz 1 Wz(Rv(l)V)). Now partition the resources into scts 7‘0’ s
Z,,, according to the sizes of the respective D, sets. That is, resource v is placed into set le) I (Figure 8).
v
Thus, W o(B) = E?:o( EVEZj WZ(RV(DV» ). From the definition of W, it follows that for each v € ZO.
W2(RV(DV)) = Qandforeachv € Zy, wz(Rv(Dv)) < 1. Moreover, from Claim A, it follows that for each
j2 2, andecachv e Zj. WH(R (D) < ( + 14)/10 and zvezj Wy(R,(D,)) = [+14)/ IO}IZjI. Thus,
Wy(B) L1Z,] + E?___z G+ 14)/10]17,j| = Z'jl=1j[7,j|/10 + 2‘.‘-’=1 14[Zj|/10 - IZIEIZ. Bu;, the Z;'sare a
partition of the resources, so E?,_, 1 IZjl < s. Morcover, that partition is based on a partition of the tasks

such that E‘j‘ =137 S Bl Also, 1Z,] > 0.
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.". Wo(B) < [BJ/10 + 145/10 - 0/10 = (|B| + 14s)/10 a

Corollary 2: Given asetof tasks Y C 7, then W5(Y) < (|Y]+14sw o/10.

Let By, ..., B

o De the time units of an optimal schedule restricted to the tasks in Y. By Lemma 4, each
0

w w
Wy(B) < (B + 149)/10. Thus W(Y) = ;21 Wo(B) < ;21 [IByl + 14s1/10 = ldsw /10 +
w

Lemma 5: Weighting function W, has Property B.
Proof

By Lemma 1 it is sufficient to show that W, has Property A. Consider atask T' and a nonempty set of
tasks B such that Rmaxm > Rmax(T') for T € B, and Rt} > 1= Rmax(B)' We want to show that
Wy(B) > 1.

If |B] = 1, the result is immediate, so assume that |B| > 2. Let min(B) = min{R_ . (T): T € B}. If
there is only one resource in the task system, then min(B) is the smallest resource requirement of ény task
in B. Given a time unit B, it is possible to compute a lower bound for WZ(B) based on |B|, min(B) and
Rax(B)- In particular, Table I gives various combinations of |B|, min(B) and Rpax(B). each of which
implies that Wz(B) > 1

Now consider the possible values of Wy(T"). If Wy(T')> 50/100, then for each T € B, W2(T) >
50/100. Since [B] 2> 2, we have Wy(B) > 1. If Wy(T") = 10/100, then 0< R . (T"') < .092. But this
implies that R . (B) > .908 and min(B) > 0 hence from Table I, Wy(B) > 1. If Rmax(T) = 0, then
Rnax(B) 2 L hence Wy(B) > 1.

There are six remaining possibilities for Wz(T' ): 15/100, 20/100, 25/100, 30/100, 40/100, and 45/100.
Associated with cach of these weights there isa range (al, a2] in which Rmax('l") must lic. Moreover, in
cach instance it follows that min(B) > a; and that Rmax(B) >1- ay. For cach (ay, a2] pair, an
cxamination of the "relevant™ entrics in Table [, shows that Wz{B) 2 1l in all instances. A guide to the
"relevant” entries of Table I is given in Table II. In Table I, for each of the six possible values of Wo(T*),
we give the values aj. ay, the subsequent lower bounds on min(B) and Rmax(B) and the cntrics of Table I
that need to be examined. Note that entries are not listed for each size of |B| in every case. In particular,
for cach W5(T") possibility, only one entry of the form (|B|, min(B), 0) is given. Such an entry implies that
W,(B) > |B] Wo(min(B)) > 1. Thus, for any larger |B], we also have Wy(B) > 1.

For example. when Wo(T") = 25/100, R . (1) € (.182,.204]. Thus, min(B)>.182andR . .(B)>1
-.204 = 796. If [B] > 4, it follows from |B| and min(B) > .182 that Wo(B) > 4 Wo(min(B)) > 4 (25/100) 7
= 1. If|B} <4, the entries (2,0, .750) and (3. .182, .750) in Table 1 indicate that W,(B) > L. O
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Table I

B min(B) Ry, (B) [Bl min(B) Ry, B B min(B) R, (B)

2 0 150 4 0 820 7 0 868
2 .250 04 4 136 818 92 0
2 2% 682 4 182 0
8 0 870

3 0 820 5 0 8364 8 092 0
3 136 a72 5 136 0
35 182 750 9 0 872
3. 250 0 6 0 866 g 492 0

6 .092 862

6 .136 0 10 0 0

An entry (i, x, y) in this table is interpreted as follows: If B is a set of tasks such that
|B]=1, min(B) > x, and Rimax(B) >y, then WZ(B) a3

Table II
Wo(T") (aj.aj) min(B)> R, .. (BP Relevant Entries
15/100 (.092, .136] 092 864 (2,0,.750). (3, 0, .820), (4, 0, .820). (5. 0, .864),
(6,.092, .862), (7, .092, 0)
207100 (.136, .182] 136 818 (2,0,.750). (3, .136, .772), (4, .136, .818), (5, .136, 0)
25/100 (.182,.204] 182 796 (2,0,.750), (3, .182, .750), (4, .182, 0)
30/100 (.204, .250] 204 750 (2.0,.750), (3, .182, .750), (4. .182, 0)
40/100 (-250, .296] 250 704 (2, .250, .704), (3, .250, 0)

45/100 (296, .318] .296 .682 (2, .296, .682), (3, .250, 0)





