MIT/LCS/TM-162

A MANARGFR FOR NAMED, PERMAMENT CBJECTS

Alan Michael Marcum

2pril 1980

A MANAGER FOR WAMED, PERMANENT OBJECTS

by

Alan Michael Marcum

June, 1979

© 1979 by Alan M. Marcum

Massachusetts Institute of Technology

Laboratory for Computer Science

Cambridge Massachusetts 02139

A Manager for Named, Permanent Objects
by

Alan Michael Marcum

Submitted to the Department of
Electrical Engineering and Computer Science
on May 17, 1979 in partial fulfillment
of the requirements for the Degrees of
Bachelor of Science and Master of Science.

ABSTRACT

Storing data in a computing system for a long time has been of interest
ever since it was possible to do so. Classically, one stores bit- or
byte-strings, or perhaps arrays of "records.” Yet, curreat programming
philosophy stresses data abstraction techniques and concepts.

This report describes an object-oriented filing system which stores
abstract objects, and allows the user to view the system as though one were
storing abstract objects, rather than storing some external representation
of the abstractions. WNames may be attached to the {(permanent) objects, and
objects may be contained in (and may contain) other objects. Furthermore,
an object may be contained in more than one object, thereby allowing the
naming structure to be a network.

CR Categories: 3.73, 4.33, 4.34, 4.9,
Key Words: filing system, data abstractiom, permanent storage.

Thesis supervisor: David D. Clark,
Research Associate in Electrical Engineering and Computer Science

s A

Dedication

I dedicate this thesis report to my pareants, Stan and Helen. They have
provided support and encouragement always. Sometimes, it has been
difficult for them —— I would drive home from school at the end of the
term, spend the night there, and then leave the next morning to go skiing,
to see friends, to go out to HP to begin a work assignment, Often, T would

spend more time driving home than I would spend at home.

Thanks, folks, for your love, your support, your understanding, your
friendship. To express my appreciation, in whatever small way this might

be, I dedicate this work to you.

Acknowledgements

The research on which this thesis is based was performed under the
Electrical Engineering and Computer Science Department’s Co-operative
Education Program ("VI-A"), at Hewlett-Packard Laboratories, Computer
Research Laboratory, in Palo Aleo, California. To express my appreclation
for the opportunity of participating in VI-A, my first thanks go to the
Department”s Co-operative Education Program, and especially to its

director, John Tucker, and his secretary, Lydia Wereminski,

My thesis supervisor, Dave Clark, provided me with constant guidance,
advice, and support. His efforts to bridge the contineatal distance
between us while I worked at HP were extraordinary. His efforts to help me
clarify my thoughts and the exposition of those thoughts were remarkable,

Dave read preliminary versions more quickly than I could reasonably expect.

My deepest thanks go to him.

The members of the Computer Systems Research Group at MIT s Laboratory
for Computer Science have helped me crystallize some of the ideas presented
in the following chapters. Many of thenm helped me, despite my very brief
association with the group, Some of the people, deserve special thanks.
Allen Luniewski has been mentioned in several of the other CSR theses I
have read recently; despite a very busy schedule, and a thesis of his own
to write, Allen has taken time to talk with me and help me. Karen Sollins
Llikewise took time out from writing her thesis to discuss some of my {deas.

Wayne Gramlich helped me find several refarences on Hydra. Gene Ciccarelli

i

Acknowledgements

and I talked a great deal late several nights. 1In general, people were

just there, ready to talk, or to listen.

Thanks are due also to Roy Levin, of Xerox’s Palo Alto Research Center
(Xerox PARC). His exceptionally prompt reply to a request for {information

about Hydra is greatly appreciated.

Jerry Morrison, again of Xerox (but with their System Development
Division -- Xerox SDD), helped transfer drafts of this report to HP Labs.

My thanks to him for his assistance.

During the previous five years I have been associated with the MIT
Varsity Rifle Team, first as a team member, then as team captain, and this
year as assistant coach. 1In addition to the Rifle Team, there was also the
entire MIT shooting community, in which I include the Varsity Pistol Team
and the Pistol and Rifle Club, in addition to the Varsity Rifle Team. A
finer, more fun-loving bunch of people exists nowhere. They gave me their
friendship, companionship, and competition, and provided a refuge when 1

had to "get away from it all." Thank you for everything.

Finally, my thanks go to my co-workers at HP Labs. Many theses I have
read claim that a list of such people is too long to include; I feel they
all deserve notice. Jim Duley, Bob Fraley, Bruce Hamilton, Ron Johnaton,

Wancy Kendzierski, Jeff Levinsky, Martin Liu, Dave Means, Darrell Miller,

.

&:knuwladgem&nta

Bruce Nordman, Jim Stinger, Howard Steadman, Paul Stoft, and Ken Van Bree
waded through drafts of the thesis proposal and the thesis report, giving
me their comments and ideas, often with not nearly enough time to do whatr
was asked, but it was always done nonetheless. Besides doing their jobs,
these people, in addition to John and Lydia, help keep VI-A going. We had
many discussions, ranging from friendly chats to heated debates, between
just two of us, or with the entire group. Bob Fraley, Bruce Nordman, and
Dave Means deserve special thanks: Bob for his special help in sorting out
my ideas; Bruce for his assistance in transferring copies of drafts of this
report to the people at the Lab; Dave for his consultation when 1 most

needed it. Thank you, people, for your support -- both personal and

technical.

I hereby grant to MIT and to the U.S.
Government a non-exclusive, royalty-free, irrevocable,

license to use, reproduce and distribute copies of my work,
entitled A MANAGER FOR NAMED, PERMANENT OBJECTS.

The research on which this report is based was supported in part by the
Computer Research Laboratory of the Electronics Research Center of
Hewlett-Packard Company through the Electrical Engineering and Computer
Science Department’s Co-operative Education Program. It was also supported
in part by the Advanced Research Projects Agency of the Department of
Defense and was monitored by the Office of Naval Research under Contract
Number N00014-75-C-0661.

Lo 3

Disclaimer

The Eaglish language has no explicitly neuter personal pronoun. Many
people consider this an unfortunate omission. However, traditional proper
usage dictates that the personal pronoun "he" and its derivatives be used
when a neuter personal pronoun is required. I shall follow tradition, and
use "he," the Women”s Liberation Movement notwithstanding. 1 do not mean

to offend with my use of "he", merely to express myself cleanly and easily.

ABSTRACT .

DEDICATION

- - - - - -

- - LI = &

ACKNOWLEDGMENTS. . .

DISCLAIMER .

- - - - -

TABLE OF CONTENTS. . . .

TABLE OF FIGURES

L. INTRODUCTION.

The
The

The

HEO O

LI.

Problem. .
Environment.

“Th.i.ﬁg&“ .

Related Work . .)
Plan for the Remainder of thia Preseatatian

ANTECEDENTS . p
4. Honeywell®s Multics.

Table

of Contents

The Programming Language

- - -

Syspal.

B. Hewlett-Packard’s MPE/3000 . .
C. Miscellaneous,

1.
2.

Tix. . . .
Hydra . . .

L LI

3. Version Maintenance . .,
D. Summary. . . . »

LII. DEFINITION OF A "CATOAN-OBJECT" .

A. Issues:

B.

3.

Containment and Catoan.
Trust and Catoan. . . .
Basic Object .

Containment, and Trust,

- -

-

-

. The Operations of the Easic Object

Comments on the " SET" Operations .
Naming and the DIRECTORY. . .

Storing Data:

The CONT

ENTS .

Protection and Security . .
C. A Refined Object . . . -
l. Protection and Security -
2. Cross-Referencing . . .

- - -

-

. 12

14

+ « 16

20

. 22

- L] 23

25

- " 31

- - L] 35
+ 36
. 37
38

s o+« 39

. s 42
. 43
. 45

o o« o« &7
52
57
. 58
60
- 62

+ + « B5
66
70

10

11

24

41

LV.

VI.

Table of Contents

D. Versioned Objects. . . « « « « = «
l. Version Naming. . « « « « « &

2. Storing and Implementing Versions .

3. More on Version NWaming. . . .
B. SUmMBALY. + « « # = 2 « = = s =« & & &

AN EXAMPLE: A SYSPAL PROGRAM OBJECT . .

-

A, Motivation . + & o s o o & & &« & & & =

B. Definftion . v v & = = « & & s % » &
Co UBB. 2 o o = 8 s a & s o # » & & 2%
D. Sumarff. ® & ® & ® & % & ®w ® & w = @

IMPLICATIONS OF MULTIPLE WAMING ENVIRONMENTS .

A. Disjoint Naming Spaces . . .

B. A Standard Interface for Filing Systema

C. Garbage Collection P
D. SUmmMATY. « « « « « # s = s = = = = &=

SUMMARY, AND EVALUATION OF THE PROPOSED SOLUTION .

A. SUmmATY. . . « « & 5 s s = s & 8 = »
B. Completeness . . « « « « = = s = & &«
C. Trade—=0ff8 . o » o o o o &' s s & + »
D. Remaining Work . + « + o & & = «

APPENDIX A . . « + & ¢ o o s = s & & & s & &

REFERENCES . « + &+ + ¢ « o = 2 s o s » s »

-

-

84

74

76

-

86

. B3
« 90
. 94
. 96

" 98

.100
.103
- 107

.109

«111
115
.118

+ 87

« 97

.108

Figure

Table of Figures

l1: Sample Representations of Multics Objects

Plgure 2n: DIrectory. o o » o wosces 5 o s = G0 6

Eigura Ib: Segment. + « « « o o e woe 6 @

- L -

Rigure Il LIAKE o o o & 5 6 . e e il BLEY e 5 et aive

Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure

Figure

2: Sample Representation of an MPE/3000 File .
3: The Basic Catoan-Object . . . & « . 2 . .
4: Catoan-0Object with CONTENTS of Type "text". . .

5: An Access Control List Scheme for Catoan.

. 29
30
il

6: Additions to the Basic Object for Cross-Referencing .

7: Version Naming Hierarchy. . « « « ¢ o o o « = o « &

8: Additional Information and Operations for Version
Maintenanes o + o s = 5 o 5 5.5 & 5 5 5 5 5 5 -wow

9: Definition of VERSION GENERATING PROCEDUREs .
I.D: .a.L SYSPEL-PIDSIM ﬂbj et o v » 8 ® ® & & ® & ® @® @
11: Standard, Minimal Interface for a Piling System .

12: A Module Implementing a Stack . . « v « & & o & & »

T,

. 49

72

78

.101

.127

CHAPTER ONE

INTRODUCTION

In this chapter, T describe the problem to which this report 1is
addressed. The environment which was assumed during my research is
described (including the types of computing systems at which the results
presented here are aimed), as are the assumptions about that environment.
The programming language used in the examples and descriptions in this
report is also briefly described. A short description of the entities in
the computing system which are addressed here is presented. 1 then discuss

related work, and present a plan for the remainder of the presentation.

=11=

Chapter One Introduction

Section A The Problem

L.A. The Problem.

How does one store and reference things in a computing syscem?
Especially, how does one store and reference things whose existence is
longer than that of the process which created them? What i{s the structure
of these "things" which are stored? How can they be manipulated? What are
the common characteristics of most of the "things" in a computing system?
[s there anything that can be done to those "things" which does not fit the

model of "common characteristics"?

One of the important trends in current computer science research is
data abstractions: programming using abstract data objects, whose

representation is not only of no concern to the user, but is forcibly

hidden from him.

When using a computing system, one usually waats to retain some data
for long periods of time. This requires some form of permanent storage on
the computing system, and a mechanism for accessing the data stored in the
permanent storage. Unfortunately, many abstraction languages ignore the
issue of permanence, retaining objects only for the life of the process

which created them. Yet, users want permanent storage of their objects.

]2

Chapter One Iatroduction

Section A The Problem

Once an object exists for longer than the life of its creating process,
it is desirable to attach a human-usable, hopefully mnemonic, name to it.
Such a desire requires a managing program for the names, and objects: to
translate names to internal object references, to provide a uniform

semantic interpretation for the names, and to manage the stored objects.

Classically, in order to permanently store an (abstract) objeet, and to
attach a name to it, the object had to be transformed from its interamal
representation to some external representation (like a stream of bits).
This external representation was then passed to a "file system," which
stored the stream of bits representing the abstract object in a "file."
Usually, the conversions from internal representation to external
representation was very visible to the user. Such a transformation is
undesirable, as it negates some of the benefits of data abstraction

techniques.

In this thesis report, I shall address these, and other, issues. 1
shall describe the "things" stored in a computing system, and how one might
manipulate, define, and characterize them. I shall compare and contrast
this work with that of other schemes for referencing and manipulating
"things." I shall examine how the definition of the "things" affects their

naming and other propecties.

~13=

Chapter One Introduction

Section B The Environment

L.B. The Environment.

Described here is a scheme aimed at a range of environments. Tt will
work equally well on single user computing systems and on multiple user,
shared systems. Often, on single user systems, some of the problems of

concurrent accessing and of protection become moot points, and so the focus

of this report will be on shared systems,

A virtual machine is similar to both the single and multiple user
systems. Within one process or collection of processes, it appears to be
single user. However, many virtual machines running on the same real
machine often share logical, as well as physical, resources. For example,
multiple virtual machines may share the same file system for permanent
Storage, thereby sharing not only the physical storage devices but also the
logical naming space. The scheme presented in the following chapters will

also fill the needs of a virtual machine environment.

Loosely connecting autonomous systems together to form a network of
computers presents some problems which I shall not address. For example,
there are the problems of naming resources on remote systems, locating
resources on remote systems, and network-wide sharing and protection. It
is hoped, however, that the general network case is a simple extension of

the work described here for a single, multiple user system.

T e

=

Chapter One Iatroduction

Section B The Envicronment

The specific environment assumed in this work is a single, multi-user
computing system, with a large address space (for example, at least a
trillion bits). Storage entities are accessed by presenting a unique
identifier for the entity (such as an address, a segment number, or a
capability) and an address within the entity to the memory management
system, which is responsible for the allocation of and access to the memory
resource. Within each eatity in the system, references to other entitles
may exist, and they may exist aanywhere within the entity (rather than in

some particular location within the entity).

The memory resource is presumed to be wirtual, though it could be
entirely real memory, provided there is a sufficiently large non-volatile
component. Permanent storage of an entity is achieved by not deleting the
entity; future accessing must be done with the unique identifier used to
create the entity. Memory appears to be single level; all entities exist
in the same collection of memory. 1In particular, the notion of separate

permanent and temporary memories is foreign to my presumed environment.

In my assumed system environment, security is a major concern. An
objective is to minimize the number of trusted components in the system.
By "trust" I mean to give access to one’s data, when that access is naot for

reason of explicit use. 1In most existing systems, the filing system is

~15-

Chapter One Introduction

Section B The Envirooment

trusted —- it can delete, modify, make inaccessible, or leak the data in
any file in the system. In the proposals following, the filing system
(object manager) need not be trusted to not modify or leak data. (It will
still be able to delete data, and to make them inaccessible.) The only
component of the system that will have to be trusted with one’s data is the
Meémory management system, which deals with data on a bit (or collection of
bits) level, and can place data in any address space in the system. (If a
single-level, non-volatile storage system is used, the memory manager need
not have the "power" it would in a multiple-level, volatile (virtual)

storage system.)

An additional aspect of my presumed environmeat is that the operating
system provided is a kermel, to which some user-environmeat features have
been added. The user-environment features need not be used if one desires
to write a replacement (or simply do without the feature). The filing
system provided with the kernel is part of the optional section of the

system; therefore, multiple filing systems could exist.

I.C. The Programming Language: Syspal.

The examples presented in the following chapters use the "Syspal"
programming language. Syspal [10] is a Pascal-based systems programming

language being developed at Hewlett-Packard’s Computer Research Laboratory.

=1h=

Chapter One Introduction

Section C The Language

Syspal is an object-oriented language, similar to MIT"s CLU [21, 22] or
Carnegie-Mellon”s Alphard [34, 35, 37]. One defines an object by defining
the operations one can perform on the object; the actual realization of the
abstract object is not visible to its users. Following is a short summary
of some of the features of Syspal which are used in this report; a2 summary

of the relevant features of Syspal is in Appendix A.

Syspal provides only a very few types, and allows the programmer to
extend those types. Specifically, Syspal includes no "string" for direct
use. Throughout this report, strings will have the representation

string(size: 0 TO 100) = TYPE RECORD
length: 0 TO size;

chars: ARRAY(l TO size) OF CHAR:
END; !string

with all the usual string operations defined.

The definition of STRING points out several features of Syspal.
Defined types can take one or more parameters which further specify the
type. The string definition shown above takes "size" as its parameter,
specifying the lemgth of the string. The statement

life _history: string(50);

declares a varlable as a string of length fifty.

= T 20

Chapter One Iotroduction

Section C The Language
There are two kinds of comments; a "here to end of line" comment

(denoted by "1"), and a "here to end of comment" comment (which uses "(#"

to open the comment and "*)" to close it).

Syspal allows pointers to be declared. Pointers are typed; that is, a
pointer refers to an object of some particular type, rather than a pointer
to anything (PL/l pointers are of the latter flavor). As an example, the
following could be the representation of a list. Like strings, lists are

parameter-based: the type of the list’s elements is supplied by the

"abstraction" user.

list(element _type: TYPE) = TYPE RECORD
first: @element_type;
rest: @list{elemant_;ype];
END; !list

The field "first" is a pointer to an object of type "element type"; "rest"

is a pointer to a list of type "element_type."

As a further example, shown in Figure 12 in Appendix A is a definition

of a STACK abstraction which takes, as its parameters, the type of the
objects on the stack, and the number of elements the stack will be able to
contain. The definition takes the form of a "module,” the Syspal

equivalent of the CLU "cluster." The operations on stacks, a

=]18=

Chapter One Introduction

Section C The Language

representation of a stack, and various "jnterfaces" for, or "means of

referencing," stacks are shown.
g

Within a module, the keyword SELF is bound to the object on which the
operation was called. SELF is not included in the header of the function,
but is supplied as the first argument to the operation when it is called.
The name of the module need not be provided in the CALL statemeat; it is
recognized from the type of the first argument. For example, wicth the
declarations

envr: stack(algol_stack_frame);
x: algol_stack frame;
algol stack frame = TYPE . . . ;
CLU would require a CALL similar to
CALL stack$push(eavr, x);
whereas in Syspal, the same statement would be
CALL push(eavr, x);
or, optionally,
CALL stack.push(eavr, x);
if the fully-qualified operation name was desired. Within the module

implementing stacks, "SELF" would refer to "envr" in the above example.

~19-

Chapter One Introduction

Sectlon D The "Things"

I.D. The "Things."

At the beginning of this chapter, I referred to the "things," the
entities, stored in a computing system. What are those "things"? What are

their properties, what is their Structure, what operations can be performed

on them?

The "things" to which I refer are the abstract data objects which are
stored in the computing system’s long-term ("permanent™) storage. Such
objects may be viewed as files, segments, programs, hierarchical or
relational databases -- whatever one might want to retain for long periods
of time. The various kinds of objects are defined by the operatlons which
can be performed on them, in addition to those which can be performed on
ALL objects. Most existing permanent-storage systems do not take this
view, but, rather, view storage as a collection or stream of bits or bytes,
or possibly as an array of "records." TIndeed, some of the reports on

current research on storage systems take a byte-stream view of storage,

when such a view is not necessary (see, for example, [20]).

The view of objects as abstractions is similar to that which CLU,
ALPHARD, Smalltalk [12], and Syspal take of data. An object is an abstract
data type, out of which other abstract data types are made. An example of

this is building a first-in, first-out queue from a linked list. .Tha

-20-

Chapter One Introduction

Section D The "Things"

programmer lmplementing the gueue is not concerned with the implementation
of the list abstraction, merely with the definition of the operations of
the list (FIRST, REST, APPEND). 1If the input-output specifications of the
operations on lists remain the same, changing the implementation of lists
does not matter. Perhaps the person maintaining lists may decide that
lists larger than some critical size should be stored using a different

format; the user of lists does not care about internal representation.

Syspal provides the abstractions ARRAY, RECORD, INTEGER, CHAR and BOOL
for direct use. And yet, one is not concerned with the implementation of
such things; one merely wants to use them, often, as here, to build other,

more complicated abstractions.

(In addition to the languages mentioned above taking a view of objects
similar to mine, Hydra [36] has a similar view of objects which are to be
stored for long periods of time. Again, objects are abstract (and
explicitly extensible). There are other similarities between the Hydra

view of objects and mine; these will be mentioned later, as appropriate.)

More details on abstract data types can be found in the previously

cited references on CLU and Alphard.

a9

Chapter One Introduction

Section E Related Work

I1.E. R&latgﬂ Work.

s

The work which has most influenced my thinking about object management
has been the research on data abstractions. Much of this work has (rs
origins in SIMULA [6]. Parnas describes abstraction techniques [23]; cLu,
Alphard, and Syspal all embody these concepts. It was the desire to store
objects, rather than files, and to view storage as a collection of abstract

data, rather than as bit or byte strings, which motivated this research,

The file systems of Honeywell’s Multics [15], Bell Labs’ Unix (26, 29,
32], and Hewlett-Packard’s MPE/3000 [13) helped me determine the
characteristics of the objects stored in a computing system. The naming

structure 1is derived directly from Multics. Hydra®s file system [36] views

objects in a manner similar to that presented here.

Much of my thoughts on protection also were influenced by Multies. The
capability-based schemes described by Wulf (Hydra, [36]), Lampson and
Sturgis (Cal, [19]), and Saltzer [28] provided an lnteresting alternative

to the Multics Access Control List (also described in [28], and in [L51).
Various mechanisms have been developed for version maintenance. Most
of them simply store the object as a linear sequence of complete versions

(for example, TENEX (71, ITS [9], and 0S/vsi (16, 171). The Source Code

2%

Chapter One Introduction

Section E Related Work

Control System (S5CCS) [5, 11, 27], part of Unix’s Programmer’s WorkBench
(8, 1B, 29], implements a novel way of maintaining wversions as a set of
updates. SCCS also allows a (limited) hierarchy of versions. The scheme I

propose is an immediate exteansion of that embodied in SCCS.

[.F. Plan for the Remainder of this Presentation.

In the following chapters, I describe "Catoan" (pronounced ku-tda” (1)),
an object-oriented filing system for large, multi-user computing
systems. Chapter Two describes previous work which influenced my thinking,
especially about those attributes which are common to all permanently
stored objects in a computing system such as the one I assume. In Chapter
Three, my view of a "basic" object is developed, followed by a discussion
of a "refined" object and a "versioned" object. In Chapter Four, I present
an example of how one might use Catoan to store a Syspal program. Chapter
Five examines the problems which arise when other filing systems, and,
therefore, other naming schemes and spaces, are allowed to co-exist with
Catoan. The final chapter, Chapter S5ix, contalns an evaluation of Catoan,

and describes areas where further research is needed.

(1) Notation from Webster’s New World Dictionary of the American Language.

a2

CHAPTER TWO

ANTECEDENTS

In this chapter, I shall discuss previous work which had a large
influence on my research and thinking. The systems discussed here were

studied as examples of ways to manage particular kinds of objects.

The typical kind of object in each of these systems is the "classical
file," often appearing under different names (such as "segment"). A
"classical file" is presented to the user as a string or stream of bits or
characters. It does not have any structure, save in the way in which it is
interpreted by the user. Usually, files are stored as blocks of contiguous

bits, along with some system overhead ianformationm.

Sample representations of the files in Multies and MPE/3000 will be

described using Syspal notationm.

-

Chapter Two Catoan Antecedents

Section A Multics

IT.A. Honeywell®s Multics.

The Multics file system is described abstractly by Saltzer [28], and
concretely in the Multiecs Programmer”s Manual [153]. Here, thosa features

which most influenced this work are described.

There are two major kinds of objects in the Multics file system:
"directories" and "segments." Directories contain mappings of
character—string names to object references (unique identifiers}; the
objects can be either segments or other directories. Segments contain the
data stored in the system. 1In addition to directories and segments, there

are also "links" and "multi-segment files"; these will be discussed only

briefly.

The objects in the Multies file system are arranged in a hierarchical
fashion, starting from a directory called the "ROOT." Directories can be
either nodes or leaves (generally, they are nodes; only an empty directory
can be a leaf); segments must be leaves. Any object In the hierarchy can
be named directly, by specifying the names of all the contaianing
directories in order, starting from the ROOT. For example, the payroll for

tha month of June might be speciflied, using """ as a name separator,

~75~

Chapter Two Catoan Antecedents

Section A Multics

"ROOT"Accounting™payrolls~June" (assuming that the payroll function is part

of the accounting department).

In addition to specifying a fully-qualified name (like that in the
previous paragraph), local names are allowed, with the system automatically
supplying the higher levels of qualification. This requires a slight
change in the form of fully-qualified, or global, names: 4if the search for
an object is to start at the ROOT, the first component of the name is not
supplied, thereby beginning the name with the separator character.
Therefore, the above example would become "‘&ccuunting“payrnlls“June"; a
user executing in the "Accounting" (beneath the ROOT) directory could
reference the same segment with "payrolls“June," and someone in the

"Accounting“payrolls" directory (again, beneath the ROOT) could use simply

"June."

Each object in the file system has some system information associated
with ic. Some of this information is part of all the types of objects;
some of it is object-type particular. 4n example representation of a
Multics directory, segment, and link appear in Figure 1. The most
interesting parts of this information concern protection and sharing: the

"access control list" and "ring brackets." The access _coantrol list
specifies the types of access granted to each user in the system,

Directory access types are gsearch (look in the directory), modify (change

=2

Chapter Two Catoan Antecedents

Section A Multics

entries in the directory), and append (add entries to the directory);
segment access types are read (get the contents of the segment), execute
(interpret the segment as a program), and write (change the contents of the
segment) . The ring brackets specify the position in the system’s protection
rings (an extension of the supervisor-user mode concept; see [28]) in

which the object can be accessed.

The Multics file system implements a strict hierarchy; therefore, each
object in the system has exactly one parent (1), though directories can
have multiple children. To allow an object to appear to exist in more than
one directory, Multics provides "links". A link is a mapping of 3 local
(one component) name to a global (fully qualified) name. Returning to the
above payroll example, assume that top-level management wanted to access
the payroll files, and desired to do so directly, rather than through the
entire “Accounting”payrolls”June name. A link might be created in the
CorpMgt directory called "JunePay," which would be mapped into the name

"me

Accounting~payrolls~June."

An important point about Multics links is that they map local names to

global names, not local names to object references. Such links are called

{1) This is true for all objects in the system except the ROOT, which has
no parent.

=27 =

Chapter Two Catoan Antecedeats

Section A Multics

"soft" links (1); their resolution is a two-step process: resolving the
local name to a global name, and then resolving the global name to a unique
internal identifier (segment number). This position need not be taken;

Unix, for example, links local names directly to object references (see

Section ITI.C.1).

A multi-segment file allows more than one segment’s worth of data in
one object (segments have a limited size). A multi-segment file appears to
be very similar to a normal segment, though it is lnplemented as a

directory, with the segments comprising the multi-segment file as children

of the directory.

(1) A "hard" link maps a local name directly to an object reference.

=28=

Chapter Two Catoan Antecedents

Section A Multlies

multics directory = TYPE RECORD
(* Defined types (such as ACCESS _ID) are shown in Figure lc. #*)

access _class: string(32); lEg. Classified, Top Secret.
access _control list: ARRAY(*) OF RECORD
id: access_id; IPrineipal identifier
modes: RECORD
(s, m, a): BOOL; |Search, Modify, Append

END; !modes

END; !acceaa_cuntrnl_list
author: access_id;
current _length: INTEGER; |Number of pages.
(date_time dumped,
date time _entry modified,
date_time modified,
date_tim&_salvaged,
date_time used): multics_date time;
initial access control_lists: RECORD

segment: LIKE multics _segment.acl;

directory: LIKE multics_directory.acl;

END; !initial_access_control_list
multisegment file indicator: INTEGER; !Segments Iin multi-segment

lfile; 0 if not msf.

names: ARRAY(*) OF string(32); !Names of this directory.

quota: INTEGER: IPages allowed under directory.
records_used: INTEGER; !Secondary storage.
ring brackets: RECORD IRings of protection.

(m_a, s): rings;
END; Iring brackets
safety switch: BOOL; !Query user upon DELETE?
security out of service switch: BOOL; !Access class discrepancy
thas been detected.
type: ARRAY(3) OF BOOL (*segment, directory, link*) :=
(FALSE, TRUE, FALSE);
unique id: TNTEGER;
name _map: ARRAY(*) OF RECORD !Segments under this directory.
name: string(32);
ocbject: UNION(@multics directory,
@multics_segment,
@multics _link);
END; !nmame_map
END; !multics directory

Figure la: Sample Representation of 2 Multics Directory.

~79-

Chapter Two Catoan tecedeats

Section A

multics _segment = TYPE RECORD

access_class: string(32); lEg. Classified, Top Secret.
access_control list: ARRAY(*) OF RECORD
id: access _id; |Principal identifier
modes: RECORD
(r, e, w): BOOL; {Read, Execute, Write.

END; !modes
END; laccess_control list
author: access_id;
bit _count: INTEGER;

bit_count_author: access_id; !Principal who last set BIT_COUNT.
copy_switch: BOOL; {Copy on write?
current length: INTEGER; {Number of pages.
(date_time dumped,
date_time _entry modified,
date:time_mndifted,
date_time _used): multics_date_time;
maximum length: 0 To 262144; 1256K words,
names: ARRAY(*) OF string(32); !Names of this segment.
records used: INTEGER; |Secondary storage.
ring brackets: RECORD !Rings of protectiom.
(w, £, e): rings;
END; !ring brackets
safety switch: BOOL; !Query user upon DELETE?
type: ARRAY(3) OF BOOL (*segment, directory, link%*) :=
(TRUE, FALSE, FALSE);
unique_jd: INTEGER;
contents: ARRAY(262144) OF data_word; 1256K words,
END; !multics_segment

Figure lb: Sample Representation of a Multics Segment.

-30~

Chapter Two Catoan Antecedents

—_——— -

Section A Multics

multies link = TYPE RECORD
author: access_id;
(date_time_dumped,
date _time _entry modified,
date_time _used): multics_date;
names: ARRAY(*) OF string(32); !Names of this link.
type: ARRAY(3) OF BOOL (*segment, directory, link¥*) :=
(FALSE, FALSE, TRUE):
unique id: INTEGER;
linked to path: string(l68);
END; !multics_link

access_1d = TYPE RECORD
person: string(15);
project: string(15);
instance: string(l):
ERD (*access_id*);

rings = TYPE DISTINCT 0 TO 7; !Rings of protection.

multics date time = TYPE 0 TO 2%*54-1; IMicroseconds since
!January 1, 1901 00:00 SMT.

data_word = TYPE 0 TO 2%*36-1;

Figure le: BSample Representation of a Multics Link.

- S S o R o A e S e M o R o mE mE e i S e i e o o wl owl mE e

I1.B. Hewlett-Packard”s MPE/3000.

I examined MPE/3000 file system as an example of a
"limited-hierarchical" file system. Users cannot create their own
directories. Rather, the naming hierarchy is a fixed three-level system:

file_name (segment name), group_name, account name. The file name is the

"lowest" level name, the account name, the "highest."” If a higher level is

~31-

Chapter Two Catoan Antecedents

Section B HE"s MPE/3000

specified, all lower levels must also be specified. There is a very strict
rule for interpreting names: a one level name is extended with the curreat
group and account; a two level name is extended with the current account.
A process executes uader exactly one account and one group within that
account for its entire lifetime; the notion of changing the "working

directory" of the process does not exist.

Segments can be created only in the process’s current group within the
curreat account. Segments exist in exactly one place in the hierarchy, and
have exactly one name; neither soft nor hard links exist., To reference a
segmeat by another name, it must be renamed (if staying in the same group

and account) or copied (in which case it becomes an entirely new entity).

Security is specified in two ways: with an aggregate-level access
control list (called the "security matrix"), and with a password
(lockword). The latter, if required, must be supplied whenever the segment
is "opened" (made ready for use) or deleted. The security matrix is
checked at times similar to those when the password is checked, and

specifies the types of access various groups of users are granted.

The access types which can be granted are: read, append (write at the
end of the segment), write (anywhere in the segmeat), lock (access the

segment exclusively), and execute. The groups are: any (anyone in the

-32-

Chapter Two Catoan Antecedents

Section B HP s MPE/3000

system) , account user (anyone in the same account), account librarian (an

account member deemed responsible for all the segmeants in an account),
group user, group librarlan, and creator. In addition, the "account
manager" (a user who is responsible for administration of the account) has
access to all the segments in that account, and the "system manager" (a
user who 1s responsible for administration of all the accounts in the

system) has access to all segments in the systen.
Figure 2 shows a sample representation of a file in the MPE/3000 file

system. This representation is rather abstract, and incomplete in detail.

More detail can be found ia [13].

=13=-

Chapter Two Catoan Antecedents

———

Section B HP s MPE/3000

HP3000 _MPE_file = TYPE RECORD
label: RECORD

name: fname; IFile name. -]
group: faame: !Group name. | == Full file name.
account: fname; lAccount name., —=-=|

creator: fname;

lockword: UNION(null, fname); !Must be supplied at OPEN
!1if non-NULL.
security matrix: ARRAY(5) OF RECORD !Who can access file.

(* Subscripts: 1 - read 2 - append
3 - write 4 - lock 5 = execute. *)
(any,

account _user,

account _librarianm,

group user,

group librarianm,

creator): BOOL:

END (*security®);
secure: BOOL; !Is SECURITY MATRIX enforced?
date created: julian date;
date_accessed: julian _date;
date modified: julian date;

file_type: word; IType (eg. program, APL workspace),
access flags: RECORD lHow file 1s being accessed,.
store: BOOL; IFile being backed-up to tape.
restore: BOOL: IFile being recovered from tape.
load: BOOL; IMemory-resident program file.
exclusive: BOOL; |Opened for exclusive use.

END: !accesses
how_open: RECORD
write: BOOL:
read: BOOL:
END; !how_open
user _labels writtean: halfword;
user _labels max: halfword;
max records: dbl_word;
private volume_info: bit_string(32);
logical _record_size: word;
block _size: word;
last_block _size: word;
records_in_file: dbl _word;
END; !label
data: ARRAY(Ll TO 2%%47) OF CHAR;
END; !mpe_file

il

-y

Chapter Two Catoan Antecedents

Section B HP*s MPE/3000

fname = TYPE alpha_string(8);
alpha_string(size: 0 TO 100) = TYPE RECORD
length: 0 TO 100;
charl: letters;
charn: ARRAY(2Z TO size) OF UNION(letters, "0" TO "9');
END; !alpha string
lEttErB = IY‘PE U‘HIDH{“E“ TG l'lzll' ".A" Tﬂ “z“};
halfword = TYPE 0 TO 255;
word = TYPE 0 TO 32767;
dbl word = TYPE 0 TO 21474827115
julian _date = TYPE RECORD
year: 0 TO 99;
day: 0 TO 365;
END; !julian_date

Figure 2: Sample Representation of an MPE/3000 File.

e R e I I I i e B e e e

I1.C. Miscellaneous.

In addition to the file systems of Multics and MPE/3000, various other
file systems influenced my thinking on Catoan. Unix influenced my ideas on
links and the structure of the naming eavironment (that is, whether to use
a hierarchy or a network). Hydra’s form of objects proved interesting.
TENEX s file system supplies a form of version maintenance, as do those of
ITS, 05/VSl, and many others. This section preseats the various systems
which were investigated and which made some (at least minor) contributions

to this work.

A5

Chapter Two Catoan Antecedents

_—— e = —

Section C Miscellaneous

II.C.1. Unix.

The Unix file system is similar to the Multics file system. Like
Multics, Unix provides a hierarchical file system, with an access control
list protection scheme, However, the hierarchy is not strict, and the

access control list is more coarse than that of the Multics system.

Like Multics, Unix has, conceptually, two types of objects: directories
and segments (files). However, unlike Multiecs, Unix segments can have
multiple parents. Also, links in Unix are "hard" links (those in Multics
are called "soft"). The local name is translated directly to a unique
identifier (segment number -- "i-node" in Unix terminology) , without the
intervening global name. This is a more efficieat form of Link (it skips
the additional name resolution step (1) when following the link), but that
is relatively unimportant. Soft links provide greater indirection
facilities than do hard links (because they can be bound to another link).
Hard links, though, provide a known interpretation of a link, and make it
easier for the owner of a segment to determine all the people using {it.
Implementing a complete cross-reference with soft links, for example, would
require that the link be completely traced when it was created; 1in a hard

link system, the link is directly resolved,

(1) Or steps: a soft link can bind a local name to another soft link.

=36

Chapter Two Catoan Antecedents

Section C Miscel laneous

Although Unix segments can have multiple parents (can be contained in
multiple directories), directories cannot. This precludes building a

general network in the Unix file system.

The protection scheme in Unix allows the object owner to speclify access
for certain groups of users, rather than on a user-by-user basis. The
scheme is tied to the accounting system, with access being granted to the

owner, to members of the owner”s project (account), and to all users in the

system. See [26, 29, 32] for more details.

I1.C.2. Hydra.

The Hydra file system [l, 13] stores Hydra-objects, which are
pseudo-abstract, and are each of a particular type or type exteansion. Each
Hydra-object (call one "CRL") has two parts: the data part, and the
"e-1ist." The actual data in CRL is stored in the data part. The c-list
contains references to Hydra-objects which are contained in CRL. Every

object in Hydra has both parts,
Because each Hydra-object has both a data and a e¢-list part, there is

need for only one kind of object, which can function as both a "segment"

and a "directory." However, one other important reason for including both

e % o

Chapter Two Catoan Antecedents

————

Section C Miscellaneous

parts in all objects i{s that references to other objects cannot exist in

the data part, but only ia the e-list,

IL.C.3. Version Maintenance: TOPS-20, ITS, 0S/VSl, and SCCS.

Version maintenance has been a topic of interest for some time.
TOPS-20 [71, ITS (1) [9], and 0S/VSl [1l6, 17] all provide similar forms of
version maintenance. All three systems store each version in its entircety
(as opposed to storing updates relative to some base version). Versions in
TOPS-20 and ITS are linear, time-ordered sequences, referenced by numbers
which increase from older to newer (more recent) versions. The default
version (the version obtained if none is explicitly specified) is always
the most receat version. The symbol ">" in ITS, and the (special) version
number 0 ia TOPS-20, reference the latest version on read and create a new
version on write. The symbol "<" in ITS and the (special) version number

"-2" in TOPS-20 access the oldest version.

05/VS1’s version naming scheme differs from that of TOPS-20 and ITS.

It is a two-level system, allowing both a "generation" and a "version"
specification. The specification becomes a suffix of "GonanVmm" to the
regular file name, where "nnnn" is the "generation number" and "mm" is the

e b L T T ——

(L) ITS is an operating system developed at MIT for the PDP-10 family of
computers,

=-38=

Chapter Two Catoan Antecedents

Section C Miscellaneous

"version number." This provides a limited tree-structure for version
naming: generation within the file, and version within the generation. The
suffix "(0)" references the latest generation; "(+1)" creates a new
generation; "(-1)" references the previous generation, and "(-n)"
references the nth previous generation. The automatic version maintenance

system does not use the version field; it can be accessed directly by the

user, however.

The Programmer’s WorkBench under Unix provides a facility called the
Source Code Control System [5, 11, 27] for version maintenance. SCCS
allows versions to be arranged in a hierarchy, with the names representing
a derivation sequence. Versions are stored as sets of updates to the

previous version. I shall discuss SCCS further in Section IIL.D, "A

Versioned Object.”

I1.D. Summary.

In this chapter, I have discussed various existing systems which
significantly influenced the research presented in the following chapters
of this report. The file systems of Honeywell®s Multics and of
Hewlett-Packard’s MPE/3000 were described, with an examination of their
abstract file structures. The Unix file system is very similar to that of

Multics, except that a segment can be contained in more than one directory.

i

Chapter Two Catoan Antecedents

Section D Summary

The structure of the Hydra file system was also discussed, especially the
structure of the objects stored. Finally, existing version maintenance
systems were described, including TOPS-20, ITS, 0S/VSl, and the Source Code

Control System,

~40~-

CHAPTER THREE

DEFINITION OF A "CATOAN-OBJECT"

In this chapter, I describe the objects managed by Catoan. First, the
"basic" object, its characteristics, its operations, and its representation
will be defined. Then, a "refined" object, whose operations are less

primitive than those of the basic object, will be presented. Lastly,

objects which have explicit versions (such as programs) will be described.

e

Chapter Three Catoan Object Definition

Tty

Section A Issues

III.A. Issues: Containment and Trust.

As will be shown later in this chapter, there are three ways to put
data in a Catoan-object; all of them are different, all have different

semantics and characteristics. But, why three ways?

In Chapter One, I wrote that "multiple filing systems could exist,”
Furthermore, "the filing system (object manager) need not be trusted to not
modify or leak data." Both of these issues involve trust: need one trust

the filing system, and, if not, what can be done about it?

What does it mean to "contain" something? What does it mean to "trust"
something? 1In this introductory section, I shall explore these ideas as
they relate to Catoan. Some of the issues I shall raise may not be clear
until later in the chapter; 1 think this is better than delaying their

discussion, however.

First, though, a little groundwork must be laid. The uanit of storage
in Catoan is the "Catoan-object"; let a typical Catoan-object be called
"CRL." 1In data abstraction terminology, Catoan implemeats the abstraction
"Catoan-object." Catoan-ocbjects can "contain” other Catoan-objects, and

other kinds of abstractions, too. Each Catoan-object has a DIRECTORY and a

Chapter Three Catoan Object Definition

Section A Issues

CONTENTS; the things one normally puts in each of these is different, and

things are put in them for different reasons, a8 will be explained.

III.A.1. Containment and Catoan.

What does it mean for a Catoan-object to "contain" another

Catoan-cbject. What does it mean for a Catoan-object to "coantain" any kiad

of (abstract) object?

Each Catoan-object (such as CRL) has a "CONTENTS," which specifies the
abstract object which is the data of CRL. This is one form of
"containment": containment in the CONTENTS. The primary reason for
creating a Catoan-cbject is to provide a means for permanently storing,

referencing, and naming the data of the COMTENTS.

The data which the object contains —- its CONTENTS —— should be readily
accessible. It should be easy to read, easy to set, and easy to change the
CONTENTS. The CONTENTS could be used to hold the text of a letter which

was stored in a computing system which implemented Catoan.

In addition to a CONTENTS, Catoan-objects have a DIRECTORY. The
DIRECTORY has two parts: a "named" part, and an "unnamed" part. In the

named DIRECTORY of CRL, one would store refecrences (hard links) to those

53w

Chapter Three Catoan Object Definition

Section A Issues
Catoan-objects considered to be sub-objects of CRL. This is usually a
logical grouping, and can be thought of as placing a segment in a certain
directory in a Multics or Unix file system. The sub-objects of CRL are
Catoan-objects in their own rights; changing their relationship with CRL

(that is, the exact sub-object to which a particular name refers) usually

is not done.

In the unnamed part of CRL"s DIRECTORY are references (hard links, but
without local names attached to the reference) to Catoan-objects which are
physical sub-objects of CRL. Those Catoan-objects referenced ian the
unnamed part of the DIRECTORY are part of the implementation of the
particular Catoan-object, and are not usually of interest to the object’s
users. As with objects refereaced in the named part of the DIRECTORY, the
relationship between CRL and the sub-objects in the unnamed part of the

DIRECTORY usually is anot changed.

The objects in the DIRECTORY of a Catoan-object are considered less
accessible than the CONTENTS. Once a reference to an object is added to
the DIRECTORY, it cannot be replaced, but must be deleted and then added.
This reflects the accessibility semantics of such aan inclusion. If these
semantics are not appropriate for a particular application, the CONTENTS
could be used to implement a directory which is interpreted by some

program. Because the CONTENTS of a Catoan-object can be an arbitrary

=44=

Chapter Three Catoan Object Definition

Section A Issues

abstract object, the DIRECTORY portion of a Catoan-object can be ignored,

and the CONTENTS used to implement a filing system which is more natural

for the particular application.

All three of the forms of including data in an object mizht be used to
represent a system composed of a collection of programs (1). The
highest-level module in the system is a program, with the source stored in
the CONTENTS, representing the view of the source as the abstract program.
In the unnamed portion of the DIRECTORY would be the implementation of the
program object, including such things as documentation and object-code.
Named references to the programs comprising the system would be in the
named portion of the DIRECTORY. Chapter Four, "An Example: A Syspal

Program Object,”" describes the aspects of this example relating to programs

in more detail.
IIL.A.2. Trust and Catoan.
What does it mean to "trust" a non-sentient entity? What does it mean

to "trust" a filing system? What does it mean to "trust" Catoan?

"Trust" in general is very difficult to define, especially when applied

to non-sentient entities. However, "trusting" a filing system is easier to

B Ll e e e e

(1) T shall return to this example throughout the chapter.

5=

Chapter Three Catoan Object Definition

Section A Issues

define. 1In this report, to trust a filing system is to give the fliling
system access to data when it doesn”t explicitly require such access to
perform its duties. My perception of a filing system’s duties does not
include access to the CONTENTS (as defined in the previous.section).
Rather, a filing system is a manager for named, permanent objects —— not

the CONTENTS of those objects.

A "trusted" module is a module which a) the user believes is secure,
and will not access things except on explicit instructions from the user,
and b) does not allow other users to access it, except as 1s approprilate
for that user. Part (a) is primarily a belief on the part of the user;
part (b) has some implications on the kind of information which the trusted

module can supply to enviroanmeats outside the module.

Specifically, a trusted module, in order to prevent other entities from
accessing its protected data, cannot give out any refereances to any portion
of the protected data’s internal representation. Rather, it must give out
an indirect reference, which the trusted module, and only the trusted

module, can translate into the actual representatiou of the protected data.

Catoan, however, gives out a pointer to portions of the representation
of a Catoan-object. The CONTENTS READ operation (see Section IIL.B.l.b)

returns a pointer to the CONTENTS of the Catoan-object., This allows

Y

Chapter Three Catoan Object Definition

Section A Issues

entities besides Catoan to access part of the representation of the

Catoan-object.

Because a module which gives out portions of its data’s representation
does not have total control over the representation, it does not have total
control over what can be done to the representation, and so is unable to
ensure certain kinds of internal consistency. 1In the case of Catoan, for
example, the information accessed by the "principals" and the "dates"
sub-classes of operations may not be accurate. Furthermore, Catoan has no
way of verifying the identities of those accessing the data in the CONTENTS

of the Catoan-object, because they may be accessing the data without using

Catoan.

This report examines some of the implications of not trusting the
filing system. The filing system will have access to its objects
(Catoan-objects), but not to the data in the CONTENTS of the Catoan-object.
This is done partly out of lack of trust, and partly to allow more than one

filing system to exist in the host computing system more easily.

II1.B. The Basic Object.

An OBJECT ("Catoan-object") is the basic unit of data in Catoan.

Catoan-objects conceptually have three parts: SYSTEM OVERHEAD INFORMATION,

-47-

Chapter Three Catoan Object Definition

Section B Basic Object

a DIRECTORY, and a CONTENTS. The first is information the system keeps
about each object, such as when it was created. The DIRECTORY and CONTENTS

were described in Section IIL.A.l1 above.

Figure 3 shows the operations and represeatation of a Catoan-object.
Many points in the figure and the immediately ensuing discussion may be

unclear. Subsequent sub-sections in this section will clarify the

problems.

Most of the operations on an object are related to the "SYSTEM OVERHEAD
INFORMATIOR" in the object. There are only eight operatious dealing with
the DIRECTORY, and only two with the CONTENTS. Yet, these two parts of an
object are the most interesting. The SYSTEM OVERHEAD INFORMATION is very
structured, and has a very limited scope; we know the form it will take
long before the object is actually defined. The DIRECTORY, on the other
hand, may change drastically during the existence of the object -- it may
start off empty, have some objects added to it, have some objects deleted
from it, and will have an unpredictable size. Similarly, the structure and
size of the CONTENTS is unpredictable, and the structure might never be

known to Catoan.

-48-

Chapter Three Catoan Object Definition

Section B Basic Object

MODULE catoan object(contents _type);

new: PROCEDURE

RETURNS (0:2catoan _object)

(* Make a new catoan object. *);
delete:PROCEDURE

(* Delete a catoan_object. *);

contents set:PROCEDURE(c:@contents_type)
(* Stow the contents of the ubject %)
contents read:PROCEDURE
RETURNS (c:2contents_type)
EXCEPTION(contents _doesnt exist)
(* Retrieve this object’s conteats. LH B

directory_unnamed _add :PROCEDURE (o:%catoan _object, n:INTEGER)
ExEEFTIUH(directnry full, directory_slot_occupied)
(* This object now includes unnamed uhject number NW. *);
directory_unnamed delete:PROCEDURE(n:INTEGER)
EXCEPTION(directory_doesnt exist
directnry doesnt _contain object)
(* Remove Nth eatry from unnamed portion of DIRECTORY. *)
directory_unnamed lookup:PROCEDURE(n: INTEGER)
RETURNS (0:@catoan_object)
EXCEPTION(directory doesnt exist
directory doesnt _contain object)

(* Return Nth entry from unnamed portion of DIRECTORY. *)
directory named_add:PROCEDURE(n:object name, o:8catoan object)
EXEEPTION{directnry full, directnry slot occupied)

(* This object now includes another named object. #);
directory_named delete:PROCEDURE(n: object_name)
EXGEPTIGH(directnry doesnt _exist,
directury_ﬁuesnt_pantain_pbject}
(* This object no longer includes a certain object. *);
directory named contains:PROCEDURE(n:object _name)
RETURNS (b:boolean)
EXCEPTION(directory_doesat exist)
(* Does this object contain object “n’? %);
directory _named lookup:PROCEDURE(n: object_name)
RETURNS (o:@catoan _object)
EKEEPTIGH{directnry doesnt exist,
directnry doeant _contain object)
(* Translates a contained oh1ect—name into an object reference. *)
directory_named read:PROCEDURE
RETURHS{n hRRAY{*] of object name)

wlyGue

Chapter Three Catoan Object Definition

- e —

Section B Basic Object

EXCEPTION(directory_doesnt_exist)
(* Which objects does this one contain? *) .

owner _read:PROCEDURE

RETURNS (p:principal_id)

(* Who owns this module? [obtained from mem mgch *);
creator set:PROCEDURE(p:principal_id)

(* Indicate that principal “p" is object’s creator. *) .
creator read:PROCEDURE

RETURNS (p:principal_id)

(* Who created this object? *);:
1aat_mudiftar_§et:PRDCEDURE(p:principal_id}

(* State who last modified this object., *);
last modifier_read:PROCEDURE

RETURNS (p:principal _id)

(* Who last modified this object? *) .

date created_set:PROCEDURE(d:date)
EXCEPTION(date_iavalid)
(* Indicate when the object was made. x) »
date created read:PROCEDURE
RETURNS (d:date)
(* When was this object created? L H
date_last modified set:PROCEDURE(d:date)
EXCEPTION(date_invalid)
(* Indicate when this object was last modified. *) 4
date_last modified read:PROCEDURE
RETURNS(d:date)
(* When was this object last modified?)
date _last_accessed set:PROCEDURE(d:date)
EXCEPTION(date_invalid)
(* Indicate when this object was last accessed, *);
date _last _accessed_read:PROCEDURE
RETURNS (d:date)
(* Wnen was this object last accessed? *);

s8ize_read:PROCEDURE
RETURNS(s:integer)
(* How big 1s this object?
[uverhead+mem4wgr.size{CUHTEHTS}+memegr.size[DIREGTGRY]i *):

=50-

Chapter Three Catoan Object Definition

Section B Basic Object

object _name = string(20);
principal_id = string(20);

date = RECORD
year: 1975 TO 3975; lassumption: system will last <2000 years
month: 1 TO 12;
day: 1 TO 31,
hour: O TO 23,
minute: Q TO 59,
second: 0 TO 59.9999 PRECISION 4
END; !date

SELF = RECORD !Representation of an object.
contents = @conteats_type;
(date created,
date last modified,
date_last _accessed) = date;
(creator,
last modifier,
owner) = prinecipal id;
directory = RECORD
named: ARRBRAY(*) OF RECORD
n: object_name;
o: @catoan object;
END; !mamed
unnamed: ARRAY(*) OF @catoan_object;
END: !directory
END; [ISELF

END MODULE; !catoan _object

Figure 3: The Basic Catoan-Object.

e T T T T I e

Assume that the CONTENTS of a Catoan-object holding a Syspal program is
to be of type "text." Figure 4 shows how CRL would be declared, and how

one would store and retrieve its CONTENTS.

-5l

Chapter Three Catoan Object Definition

——— e == —

Section B Basic Object

text = TYPE . . .
edit_buffer: text;
crl: catoan _object;

crl := NEW catoan_object(text);

edit_buffer := contents read(crl);

-

contents_set(crl, edit_buffer);

Figure 4: Catoan-Object with CONTENTS of Type "text."

.n'-.-u--t—n-----.—.—-ﬂ...-l.—.-....—.—.....—......_.._._.._..,_.._

III.B.l. The Operations of the Basic Object.

The operations on an object can be classified according to the
information they reference. The classes of operations are overhead:
instance, principals, dates, miscellaneous; contents; and directory. Each

class will be considered below.
ILI.B.l.a. Overhead-Class Operations: Instancse.

The "instance" operations are NEW and DELETE. These operations are
invoked whenever a Catoan-object is created or deleted. NEW sets up the
initial contents of the overhead information, and initializes the DIRECTORY

and CONTENTS to be empty (NULL). DELETE passes a message to each of the

52

—_——— —— e ——— =

Chapter Three Catoan Object Definition

Section B Basic Object

Catoan-objects referenced in the DIRECTORY and to the object referenced in

the CONTENTS indicating that they are no longer refarenced by CRL, and

deletes CRL.
ITI.B.l.b. CONTENTS-Class Operatioas.

The "contents" operations are CONTENTS SET and CONTENTS READ. They
deposit data into, and extract data from, a2 Catoan-object’s CONTENTS. The
argument to SET (l) and the return value from READ are pointers to the
type of the CONTENTS, as specified by the module parameter ("conteats_type"
in Figure 3) when the Catoan-object was instantiated by NEW. (For example,

Lf CRL is defined as in Figure 4, SET takes and _READ returns something of

type BTEXT.)

The effects of SET and _READ are to translate between Catoan-object
references and Syspal-object references. Notice that both operations work
with pointers, and not directly with the data. The _READ operation is
analogous to the OPEN operation in a classical file system; the _SET

operation 1s analogous to CLOSE.

——

(1) This is a shorthand notation for "CONTENTS SET." When there will be no
confusion as to the meaning and context, the prefix (portion of the name

before the " ") will be omitted. A similar convention will be used for
eliding suffixes.

=53-

Chapter Three Catoan Object Definition

Section B Basic Object

The SET operation must ensure that the Catoan-object and its
components are safely stored in non-volatile storage. Hopefully, part ng
the interface of the memory manager 1is an operation like MAKE NOW _VOLATILE,
which, if all memory is non-volatile, and there is no buffering in volatile
memory (by the memory manager), may be a null operation. Similarly, _READ
might "stage" some part of the contents by calling the memory manager’s

PRIME BUFFER operation.
I1I.B.1l.c. DIRECTORY-Class Operatioms.

The DIRECTORY of CRL specifies those Catoan-objects which are
sub-objects of CRL. There are two parts to the DIRECTORY of s
Catoan-object: the named part, and the unnamed part. The two parts
represent different logical relationships between CRL and its sub-gbiects.

The DIRECTORY is described in Section 111.4.1.

The unnamed portion of the DIRECTORY represents those Catoan-objects
which are internal sub-objects of CRL. Generally, these are part of the
implementation of the abstraction which uses CRL, and are of no concern to
CRL s users. An example of using the unnamed portion of the DIRECTORY is
shown in Chapter Four, "An Example: A Syspal Program Object," where it 1is

used for (among other things) the object-code of a program.

>, 1

Chapter Three Catoan Object Definition

Section B Basic Object

The named portion of the DIRECTORY represents Catoan-objects which the
user feels are logically parts of CRL. He might, for example, build CRL
from several componeant objects, thereby forming one Catoan-object from

several sub-Catoan-objects,

The operations on the unnamed portion of the DIRECTORY are
DIRECTDRY_ﬂNN&HED_ﬁDD, _DELETE, and _LOOKUP. _ADD inserts a sub-object in
the nth DIRECTORY slot; DELETE removes a specified unnamed entry from

the DIRECTORY. LOOKUP returns the object referenced by the Nth entry in

the unnamed portion of the DIRECTORY.

The operations on the named portion of the DIRECTORY are
DIRECTORY _NAMED ADD, DELETE, _CONTAINS, LOOKUP, and _READ. _ADD
associates a name and an object reference in CRL’Ss DIRECTORY; _DELETE
removes such an association. _CONTAINS is a predicate which indicates
whether the supplied name is in the DIRECTORY: _LOOKUP translates a name

to an object reference. _READ returns a matrix containing all the names in

the DIRECTORY, and is supplied so that a DIRECTORY can be searched.

III.B.1.d. Overhead-Class Operations: Principals.

The "principal" operations obtain and manipulate the
principal-identifiers stored in the overhead portion of a Catoan-object.

The identity of the Catoan-object’s owner (the principal paying for the

=EEL

Chapter Three Catoan Object Definition

_—————=

Section B Basir Object

storage), creator, and last modifier are accessed through the operations
OWNER _READ, CREATOR _SET and _READ, and LAST MODIFPIER SET and _READ (1).
The creator and last-modifier can be changed; the owner is obtained from

the memory management system.
III.B.l.e. Overhead-Class Operations: Dates.

The "date" operations provide access to the time and date when various
operations last occurred for the Catoan-object. Available are times and
dates for the Catoan-object’s creation, last modification, and last access.
These operations are DATE CREATED SET and READ, DATE_LAST MODIFIED SET and
_READ, and DATE_LAST ACCESSED SET and READ., The dates automatically
maintained by Catoan are for creating, modifying, and accessing the
Catozan-object, not the CONTENTS of the Catoan-object. This is related to

the trust issue discussed in Section III.A.2.
III.B.1.f. Overhead-Class Operations: Miscellaneous.

The "miscellaneous" operations provide information about the physlcal
size of the Catoan-cbject. SIZE _READ obtains the sizes of the CONTENTS,

DIRECTORY, and overhead from the memory manager, and returns their sum.

(1) The _SET operations are generally not explicitly used, and exist
primarily for completeness.

5

Chapter Three Catoan Object Defimition

Section B Basic Object

III.B.2. Comments on the " SET" Operations.
The inclusion of some of the SET operations (1) may be puzzling. For

example, why is there a DATE MODIFIED SET operation? Won’t Catoan take

care of such things?

Recall that Catoan is part of the optional extensions to the kernel
operating system. Furthermore, Catoan is not necessarily trusted, and it
is possible Lo access portions of Catoan-objects {specificélly, the data in
the CONTENTS) without using Catoan. A user who directly accesses the data
in the CONTENTS (for example) might want to update the SYSTEM OVERHEAD

INFORMATION in a containing Catoan-object so that it accurately reflects

what has happened.

It is possible that a failure of the host computing system”s hardware,
the operating system kernel, or Catoan may introduce errors into
Catoan-objects. These errors may require human intervention., Even in a
trusted filing system like that on Multics, the ability for people to
access some of the "overhead" fields is considered necessary. In a

non-trusted filing system, such abilities are mandatory so that "expected

errors" (2) can be corrected.

(1) Specifically, the CREATOR_, LAST MODIFIER_, DATE CREATED ,
DATE_LAST MODIFIED_, and DATE LAST ACCESSED SET operations.

(2) One of the reasons a system might not be trusted by its users is that

=57=

Chapter Three Catoan Object Definition

Section B Basiec Object

IIT.B.3. Naming and the DIRECTORY.

Each Catoan-object contains a DIRECTORY part. This DIRECTORY specifies

all thosa objects which are sub-objects of, for example, CRL; the
contained objects need not have names associated with them, {n which case
they are referenced numerically. See Section IIT.A.l1 for a discussion and

example of DIRECTORY use,

If one wanted to implement a Multics-like directory, the CONTENTS of
the object would be NULL; for a Multics-like segmeat, the DIRECTORY would
be empty. But, one can have a non-empty DIRECTORY and a non-empty CONTENTS

at the same time, thereby allowing objects to "contain" other objects.

Multics has the concept of a "soft link," between a local name and a
global name. WNo such concept exists in Catoan. Rather, because an object
can be in the DIRECTORies of many objects, the same object can be
referenced directly by many local names. This is often referred to as a

"hard link," and is similar to the Unix link.

One of the implications of the unrestricted DIRECTORY inclusion is

that, rather than implementing a naming hierarchy, Catoan realizes a naming

the users expect the system to make mistakes (that they can, perhaps,
correct).

«58-

Chapter Three Catoan Object Definition

Section B Basic Object

network., Just as object A can contain more than one object, so can more
than one object contain object A. Furthermore, loops can be created in the

network, by A containing B which contains A.

An advantage of this arbitrary network structure is that it can more
readily reflect the structure of some objects. Recursive objects and
objects which include other objects exist in the world; it would be nice
if one could model them in a computing system. Such object inclusion also
aids in modularity. For example, if one were implementing a network-model
database, one could define the network parent-child relationships using the

DIRECTORY of each object to contain the childrean,

Allowing a general network in the naming structure presants a problem
only when the eatire naming network must be walked. TIf it is deemed
important to be able to walk the network, VISITED flags must be included ia
each Catoan-object, which must be reset upon completion of the network
traversal. 1If such flags ARE included, it may be necessary to reset them
all upon system restart, to guard against a failure during a walking of the
network, and subsequent traversals encountering a non-existent loop because
a VISITED flag stayed set from a previously aborted walk. Various problems
besides system failure exist when the network must be walked; for example,
what if a walk aborts for a reason other than system failure? T shall not

discuss such problems here, but, rather, refer the interested reader to the

-50-

Chapter Three Catoan Object Definition

Section B Basic Object

literature (garbage collection algorithms oftea solve this problem; see,

for example, [3, 4, 30, 33]1).

As long as the network does not have to be walked, loops and
self-containment do not present a problem. The only other traversal of the
naming network is for resolving a name, which is directed by the name to be
resolved. 1If a name hits a loop, intentionally or unintentionally, the
results may be unexpected, but the system will not incur any great problem
(like an infinite loop), because the name must, by its physical properties,
have a finite length. If there are soft links, however, name resolution

may enter an infinite loop if a cycle of links is encountered (1l).

I1L1.B.4. Storing Data: The CONTENTS.

The purpose of Catoan, and of any filing system, is to allow the users
of a computing system to retain data for long periods of time. For this
purpose, Catoan objects have a component called the "CONTENTS." It is in

the CONTENTS that the actual data are stored.

Most filing systems are "record" oriented: one retrieves ("reads") and

deposits ("writes") bit- or byte-strings, or some collection of bits or

(1) Myltics has this problem; 1its solution is to abort link resolution
after encountering some aumber of consecutive links.

-60-

Chapter Three Catoan Object Definition

Section B Basic Object
bytes ("records"). The structure of the data is very visible to the file
system, and to the user of the file system, Furthermore, the user MUST
know the structure of the data —- not necessarily how it is stored

physically, but usually at least how it is stored logically ("logiecal

records™) .

The CONTENTS of a Catoan object is of arbitrary type; Catcan has no
explicit knowledge of the structure of the data in the CONTENTS.
Therefore, the CONTENTS must be handled in its entirety throush a pointer,
rather than piecemeal (as in many other filing systems). Because Catoan
works with abstract data, users of Catoan can view the contents ;hstractly,
and can deposit and retrieve arbitrary data structures. There is no

explicit notion of records in Catoan.

Because a polater to the data in the CONTENTS is returned, rather than
a copy of the data, sharing of the data in Catoan-cbjects is provided. If
one wanted to implement an airline reservation system with many agents
accessing a shared database, the database could be stored as a
Catoan-object, retrieved from Catoan, and then manipulated by the
operations defined on the database. If a text editor were implemented
where it was desired to operate on a copy of the original data, a new

object containing a copy of the data in the CONTENTS would be created,

61 -

Chapter Three Catoan Object Definition

Section B Basic Object

operations performed on the copy, and then, perhaps, the copy sStored in

place of the old CONTENIS.

ITI.B.5. Protection and Security.

An interesting consequence of the way Catoan stores data is that Catoan
need not be trusted with the data. True, it could maliciously delete an
object, but it cannot leak parts of the contents of the object to other
users. All Catoan could leak would be the entire object. If one wanted to
store one”s data securely, so that no one else could read it, one could
store it as the CONTENTS of a Catoan object, and simply not give anyone an
interface to the module that implements the data in the CONTENTS. All
Catoan can do is to leak the entire CONTENTS of the object; 1if the

interface is not also possessed, the CONTENTS does no one any good.

It might be undesirable to let even the CONTENTS of the object reach
"unfriendly"” hands. For example, it might be necessary for someone to have
an interface to the module which implements the object stored in the
CONTENTS, and yet he should be restricted from using the CONTENTS of a
particular Catoan-object. Such protection can be provided through various
schemes, ranging from passwords, to access coatrol lists, to capabilities,

Passwords can be included easily in Catoan, by adding PASSWORD SET and

-62-

Chapter Three Catoan Object Definition

Section B Basic Object

PASSWORD VERIFY operations to the module, for example. This, however,

require trusting Catoan to properly implement password protection.

Similarly, Catoan could implement access control lists, and could
verify the right of some principal to perform certain operations on a given

object. This, again, requires trusting Catoan to properly enforce the

protection.

If one does not want to have to trust the object manager with his data,
what can be done? Capabilities [28] offer a solution., If someone does not
have the capability of something, that thing cannot be accessed, because it

cannot be named. This level of protection must be enforced by the system”s

Memory manager.

In a capability-based system, implementing a directory-walking
mechanism for name resolution, where all resolution begins from a "root" as
in a Multiecs-like file system, allows all users access to all objects. To
resolve a name, start at the root (to which all have access); find the name
in the directory, and use the capability there found to proceed to the next
node, where the process is repeated. Since names are "translated" directly
to capabilities, and since capabilities are the mechanism on which

protection 1s based, naming and protection become equated. Since naming 1is

universal in a Multics-like system, there is no protection.

63

Chapter Three Catoan Object Definition

Section B Basic Object

Wnat is needed is a restriction on the initial entry into the naming
network. Providing a single node (object) from which all other nodes
(objects) can be reached is the problem in the Multics-like name resolution
in a capability system. Each user must be able to name, to find in some
accessible directory, only those objects which should be accessible to him.
This requires a per-user directory of objects initially accessible upon
entry to the system, and then careful control of which capabilities are
given to which users, and to which additional objects, besides the one
directly referenced, access is granted (that is, which objects are
contained in the DIRECTORY of the directly referenced object). This
restriction is a general property of capability-based protection systems.

A more detailed description of the issues underlying this discussion is in

[28].

Part of Catoan’s job is to produce internal names (like capabilities)

from external names (like character strings). This is the job of the
directory manipulation operations of an object. The DIRECTORY _LOOKUP
operation "translates" a character string into an object, thereby
generating an internal name, or capability, The solution here comes from a
refinement to the basic capability mechanism, and requires introducing

"locked" capabilities.

64

Chapter Three Catoan Object Defianition

Section B Basic Object

A locked capability has, in addition to the reference to an object, a
"lock" associated with it. A locked capability is implemented by a trusted
module, such as described in Section III.A.2. In order to access the
capability protected by the lock, and the data protected by the locked
capability, an accessor must go through the proper types manager, which can
verify the accessor’s ideatify and rights in whatever way its implementor
pleases. 1In other words, in order to use the locked capabilicy, a "key"

fitting the lock must be presented.

Capability locks and keys, like capabilities themselves, must be
unforgeable (locked capabilities must also be unforgeable). Thus, 1if one
wants to place an object in a somewhat publicly available directory (as may
be required, because all directories may be "somewhat publicly available"),
and yet retain control over who can access the object, a locked capability,
rather than an ordinary capability, is placed in the directory. The key

for the locked capability is then distributed in a secure manner to those

who are allowad access to the object.

III.C. A Refined Object.

The basic object, described above, is rather spartan. Often, a more
"eivilized" object is desired which supplies features convenient for human

usa. For example, one might want to provide a "eclassical file" object,

—65=

Chapter Three Catoan Object Definition

Section C Refined Object

supporting record-at-a-time access. Perhaps more security, automatic
object cross-referencing, locking (or some other form of "sequencing"), or
version control might be desired. This section describes a more refined,

"eivilized" object than that described above.

IIT.C.1. Protection and Security.

An important refinement to the basic Catoan-object is the addition of
further protection features. Given the directory lookup mechanism, a
capability-based protection system may provide little security, as
p:evlnusly.uoted (Section IIL.B.5). A solution to this problem is to
provide an access control list scheme as a feature of a refined object.

The access control list would be a matching of principal identifiers with a
specification describing the types of access allowed the principal. This

is the scheme Multics uses, and is described in [28].

An alternative to the complete access control list is a Uaix [26] or
MPE/3000 [13] protection scheme, which allows all members of particular
groups the same access. For example, all members of a particular project,
or of a particular sub-project, might be given access to the object. 1In
Multics, this would be represented as "*,Syspal," where "Syspal" was the

name of the project.

=hbH=

Chapter Three Catoan Object Definition

Section C Refined Object

Further protection refinements can also be implemented. 4
security-clearance concept (confidential, secret, top secret) is a
possibility, where each process would have an unforgeable indication of its
current clearance; passwords could be provided, requiring that the correct
password be supplied when the object is accessed:; arbitrary protection
schemes, requiring access only between certain times, or on certain days,
or after a program sufficiently verifies the identity of the user, might be
desired. By making the various "protected objects" each a different type,
with different object managers, and allowing access only through the

correct manager, access to the objects can be restricted as desired.

A point of note is: what i{s being protected by the access control list
of the refined Catoan-object? Catoan is not necessarily trusted;
furthermore, it is possible to access the data in the CONTENTS of a
Catoan-object without the intervention of Catoan. Therefore, the access
control list cannot protect the data ia the CONTENTS in the general case.
Rather, the access control list protects the Catoan-object, since that 1is

the only thing for which access requires using Catoan.

How, then, might the data in the CONTENTS of a Catoan-object be
protected? Locked capabilities, described above, offer one solution.
Another solution Ls to control the distribution of the data’s

addressability. 1In a capability-based protection system, this implies not

=1 g [

Chapter Three Catoan Object Definition

Section C Refined Object

distributing the capability for the data to other users, but instead
requiring them to use Catoan to access the data. This requires the user to

trust Catoan to enforce the access control list.

Figure 5 shows the operations and representation of an access control
list scheme. The access control list is implemented as an array, matching
principal identifiers with access rights. The access rights are specified
by bits indicating DIRECTORY read, DIRECTORY search, DIRECTORY modify,
DIRECTORY append, CONTENTS read, CONTENTS set, access control list read,
access control list modify, and access coantrol list append. Each operation
protected by the access control list must verify that the principal
requesting the operation is authorized to perform the operation on the

object; if not, UNAUTHORIZED ACCESS is signaled.

The ACL_ADD PRINCIPAL operation gives a new principal access to a
Catoan-object. The arguments are the identifier of the principal and the
access specification. If the specified prinecipal is already in the access
control list, an exception is signaled. _ADD_ACCESS adds a the specified

access rights to a principal in the Catoan-object’s access control list.

_DELETE_PRINCIPAL rescinds a principal’s right to access the
Catoan-object. Similarly, _DELETE_ACCESS removes a partlcular access right

of a principal in the Catoan-object’s access control list.

-68-

Chapter Three Catoan Object Definition

Section C Refined Object

acl_add principal:PROCEDURE(new_acl:acl, prin:principal_id)
EXCEPTION(unauthorized access, acl principal_already_in_acl)
(* Inserts new principal in the access control list., *);
acl_delete principal:PROCEDURE(prin:principal id)
EXCEPTION(unauthorized access, acl principal not_in_acl)
{* Removes a principal “from the access control list. k).
acl_add _access:PROCEDURE(add_acl:acl, prin:principal_id)
RETURNS (old _acl:acl)
EXCEPTION(unauthorized _access, acl _priancipal_not_in_acl)
(* Ensures PRIN has specified permission. *)j
acl _delete_access:PROCEDURE(del acl:acl, prin:principal id)
RETURHS{DL& _acl:acl)
EKEEFTIQH{unauthcrized access, acl principal not_in_acl)
(* Ensures PRIN does not hava specified permission. *);
acl_read:PROCEDURE

RETURNS (acl:access _control _list_rep)

EXCEPTION(unauthorized access)

(* Formats the access control list for external perusal., #);
acl_set:PROCEDURE(new_acl:access control list rep)

RETURHS{QLd _acl:access nnutrnl _list rep}

EEGEPIIDH(unauthnrized_pccess}

(* Allows bulk setting of the access control list. *);

access_coatrol list _rep = ARRAY(*) OF RECORD
prin:principal _id;
the acl:acl;

END; laccess _control_list rep
acl = RECORD
dir _acl: ARRAY(4) OF BOOL (*Read, Search, Modify, Append.*);
cont _acl: ARRAY(2) OF BOOL (*Read, Set.*);
acl _acl: ARRAY(3) OF BOOL (*Read, Modify, Append.*);
END; lacl
principal_id = string(20);

Figure 5: An Access Control List Scheme for Catoan.

B T T e T T T I

_READ returns the entire access control list so that it can be examined
externally. This operation might be used to obtain an access control list

for use in setting some other Catoan-object”s access control list, using

-69-

Chapter Three Catoan Object Definition

Section C Refined Object

the SET operationm. _SET’s argument is an entire access control list, like

the value returned by _READ.

The representation of an access control list consists of a sequence of
two-component RECORDs. Each RECORD consists of a PRINCIPAL ID and an ACL.
The ACL is a three-component RECORD: the DIR_ACL, the CONT ACL, and the
ACL_ACL. Each componeat is an ARRAY OF BOOL, with the several bits
corresponding to the various modes of permission which can be granted,

Each permission type is independent of all the others.

III.C.2. Cross-Referencing.

One often wants to determine which Catoan-objects reference CRL, and
which Catoan-objects CRL references. This requires two collections of
data: those obiects referenced by CRL, and those objects which reference
CRL. The first set is the DIRECTORY of CRL, and so is readily available.
The second set, however, is not so readily available —-- it must be

explicitly collected.

How might such a ecross-reference be implemented? Suppose esach object
had a structure and operations like those of Figure 6 as part of its
definition. Then, upon adding a reference to an object”s DIRECTORY, a call

ta the contained object’s XREF_ADD REF operation would be included in the

-70-

Chapter Three Catoan Object Definition

Section C Refined Object

implementation of DIRECTORY NAMED_ADD and DIRECTORY UNNAMED ADD. (Similar

definitions and calls are required for XREF DELETE REF.)

There is a problem with the above method for storing cross-reference
information: who pays for the storage? A stralght-forward implementation
of a versioned-object would have the object’s owner paying for the storage
of cross-reference information. This penalizes owners of very popular

objects, for the object’s owner may have little control over the nunber of

cteferencing objects.

One solution is to ignore the problem; that is, to let the object’s
owner pay for the object’s cross-reference information. Another
possibility is for the accounting system to keep track of the number of
cross—references to each object, and to deduct the charges for the
cross-reference information from the object owner’s bill. This would
effectively make cross-reference information part of the system’s overchead,

and so all users would pay a share of the cross-reference storage costs.

~Tl=

Chapter Three Catoan Object Definition

Section C Refined Object

xref_pdd_;ef:PRﬂEEDURE(name:ubject_pame, obj:@object)
EXCEPTION(xref full);
(* NAME i{s the name of the referencing object.
0BJ is a reference to the referencing object. *)

array _ref out of bounds: EXCEPTION;

EXCEPTION

ON array ref out of bounds DO
RETURN(xref full);

BEGIN
SELF.xref.refd bys[SELF.xref.nexth.obj := obi:
END;

END;

SELF.xref.refd bys[SELF.xref.nextl.name := name;

SELF.xref.next :=f +1;
END PROCEDURE; I!xref

xref: RECORD
next: INTEGER;
refd bys: ARRAY(*) OF RECORD
name: object _name;
obj: Bobject:
END; Irefd bys
END; l!xref

Figure 6: Additions to the Basic Object for Cross-Referencing.

Two problems exist with the system overhead solution. The first is
that it is inequitable: if a system has two users, with the first
referencing five objects not owned by him and the second referencing one
such object, both users would probably pay for three references, thereby
overcharging the second user. The second problem is: what prevents someone
from informing the system of far more references than actually exist to his

objects and (illegally) lowering his storage bills?

-72-

Chapter Three Catoan Object Definition

Section C Refined Object

Assume that the following fragment is part of the XREF_ADD REF

operation:

The ACCTG_STORAGE ADD REF operation tells the accounting manager that a
cross-reference entry has beean added to a particular object, and that the
object”s owner should not be charged for the storage occupled by the entry.
This operation must be carefully protected; the only eatities which are
allowed to call ACCTG_STORAGE ADD REF must be trusted by the accounting
manager not to call it excessively (that 1ls, more times than are
appropriate for the number of references), because otherwise someone could

obtain free storage.

IT1.D. A Versioned Object.

Another refinement to the basic object is the "versioned" object.
Rather than directly modifying an object when changing it, a new instance
of the object is created, which is somehow related to a previous instance.
Therefore, rather than an object appearing mutable, it is a "history" of
immutable versions. This provides access to instances of the object
besides the most recent one, and facilitates, for example, concurrent

support and development of software.

-

Chapter Three Catoan Object Definition

—_——— e ==

Section D Versioned Object

II1.D.1. Version MNaming.

For each object, a hierarchy of versions exists, which is raflected in
each version”s name. The hierarchical relationship is that of "logical
derivation”: If Version B is the child of Version A, then B was "logically
derived from" A. For example, B might be a refinement of A, correcting an
implementation error if the object were a program. Alternatively, B might
become a sibling-version to A, which could imply that A and B were similar
sorts of refinemeats (improvements, modifications) of their mutual parent.
Whether a version is a child or a sibling is the decision of the version’s

author.

A version name consists of a sequence of qualifiers to the object name.
These qualifiers are suffixes to the object name or to a "qualified" object
name (an object name with a version name suffix). Each qualifier is a
aumber, specifying the version number from the appropriate level in the
version hierarchy which is desired. The name "CRL.3.62" is a qualified

object name, whose object name is "CRL," and whose version name is "3.62."

Figure 7 shows an sample version hierarchy. The versioned
Catoan-object is named "CRL." CRL has three "top-level" versions; that
is, three versions which are, in some sense, major modifications of CRL.

In system installation terms, this level in the tree might correspond to a

Tl

Chapter Three Catoan Object Definition

Section D Versioned Object

"release," with lower levels being called "level"™ and "fix." To obtain CRL
release two, one would use the name "CRL.2": to obtain CRL release three,

level one, "CRL.3.1" would be used.

CRL
//}{\ -2 3
1 5L .f//ﬁ\EZ
i | .1 .2 » 3

Figure 7: Version Wamiag Hiecarchy.

- L o e S mE mE mE mE mE mE mm mm mEm am wm am e am am mm -

Examining the CRL.3 subtree, there are two children of CRL.3: CRL.3.2
has no children; CRL.3.1 has three children. 1In system installation

terms, one might reference CRL release three level one fix two as

“CRL.3.1.2."

There are no restrictions on the semantiecs attached to the wvarious
levels in the hierarchy. For example, rather than "system iastallatlon,"
verslon management could be used in a class on software engineering.
Suppose an exercise in modifying existing programs is to be given. The

students might be broken into groups, with each group developing a

~75=

Chapter Three Catoan Object Definition

= e

Section D Versioned Object

solution. The initial program is CRL; each group is to create its
solution as CRL.n. While working on the assignment, various trial
solutions might be attempted, with modifications being made in an attempt
to produce a better solution. Perhaps one group has one small part of the
problem remaining which is especially difficult, and so two of the group
members attempt a solution in parallel. All of this could be handled very

easily with the version maintenance system proposed in this chapter.

II1.D.2. Storing and Implementing Versions.

Storing versions is a problem distinct from naming, though they are
often coupled, especially if versions are stored as incremental changes to
other versions, as in the Source Code Control System (SCCS) [5, 11, 27]
available with the Programmer’s WorkBench under Unix [8, 18]. SCCS stores
a set of versions as a collection of updates rua against the parent
version. A version is created from some particular existing version, is
named relative to that version, and is generated from that version. (The

version generation process is recursive if necessary.)

By de-coupling version naming from version generation, additional
flexibility is obtained, without sacrificing the potential benefits of
coupling naming and generation (coupling can be done by the user if

desired). Furthermore, the proposed mechanisms allow version generation to

=76=

ChapEEE Three Catoan Object Definition

Section D Versioned Object

be done in any manner desired, allowing the user to specify space-time
trade-offs, derivation relationships, policies for creating new versions

(as opposed to including the changes in an existing version for

efficiency), et ceterae.

The additional information contained in a Catoan versioned object to

provide version maintenance and the operations on such objects are shown in

Figure 8,

A versionmed Catoan-object consists of four types of information:
Information describing how to generate the version (VERSION GEN_INFO), the
logical children of the node in the version naming hieracchy (CHILDREN),
the logical parent of the node (PARENT), and whether some other version is

physically derived from this version.

sy oo 8

Chapter Three Catoan Object Definition

Section D Versioned Object

version new:PROCEDURE(v _name: version _name,
v_base: @versioned catoan object,
update info: updates_specification,
v_gener: version_generating program)
RETURNS (new _version: @versioned catoan_object)
EXCEPTION(version _exists)
(* Creates a new version; SELF = pareat, *);
version_delete:PROCEDURE(v_name:version_name)
EXCEPTION(version_nonexistent)

(* Remove a version from the history; SELF = parent. *);

version _get:PROCEDURE(v_name:version_name)
RETURNS(v_obj :@versioned catoan object)
EXCEPT(version_nonexistent)
(* Translate a name into a versioned object; SELF = parent. #*)
version_read:PROCEDURE
RETURNS (o:@catoan_object)
(* Translates a version into an object; SELF = the version. *)

version_replace:PROCEDURE(v_name: version _name,
v_base: @versioned catoan object,
update_info:updates_specification,
v_gener:version _generating program)
EXCEPTION(version _nonexistent, version not_replaceable)
(* Replace a (leaf) version with a new one, *):

additional _versioning_ information(updates specification) = TYPE RECORD
version_gen_info: RECORD
base version: @versioned catoan_cbject;
updates: updates specification;
version_gen pgm: @version _generating procedure;
END; Iversion_gen_info
childrea: ARRAY(*) OF RECORD
name: verslon_name;
version: @versioned catoan object;
END; Ichildren
parent: RECORD
name: version_name;
version: @versioned catoan_object;
END; Ipareat
used _as base: BOOL;
END; !versioned catoan_object

-78-

Chapter Three Catoan Object Definition

Section D Versioned Object

version name(size: 0 TO 100) = TYPE RECORD
length: 0 TO size;
chars: ARRAY(L TO size) OF
UNION("D" TO "™9", ".M):
END; Iversion name;

Figure 8: Additional Information and Operations for
Version Maintenance.

O MmO SE W el mE mk e R A e R A Al Wl mE omE mm Sm N mE S e mE e mm em e o owm um

The VERSION GEN_INFO contains three pieces of information. The
BASE_VERSION denotes the version from which the current version is
physically derived. To generate the curreat version, as is done by
VERSION_READ, start with the BASE VERSION and apply the UPDATES. The
UPDATES specify the transformation under which the base version must go to
obtain the curreat version. The UPDATES are applied by the
VERSION GENERATING_PROCEDURE, in which the semantics of the UPDATES are

embodied, The minimal definition of VERSION GENERATING PROCEDUREs Ls shown

in Figure 9.

The definition of the UPDATES SPECIFICATION (the parameter to the
VERSIONED _CATOAN OBJECT type) is up to the user, as is that of the
VERSION_GENERATING PROCEDURE. The only requirements of aither of these 1is
that the VERSION GENERATING PROCEDURE meets the proper interface, and the

VERSTON_GENERATING PROCEDURE and UPDATES SPECIFICATION are compatible.

~79-

Chapter Three Catoan Object Definition

Section D Versloned Object

version_generating procedure(updates_specification, contents_type) =
TYPE

PROCEDURE(base: version_name, updates: updates_specification)
RETURNS (contents_type)
EXCEPTION(versioned object _nonexistent base,

versioned object_inconsistent updates)

(* UPDATES SPECIFICATION is a type definition describing the
form of the updates.

CONTENTS _TYPE describes the form of the CONTENTS of the
version.

BASE is the version from which this version is physically
derived,

UPDATES is the updates to be run against the base. *);

Figure 9: Definition of VERSION GENERATING PROCEDUREs.

VERSION _REPLACE allows certain versions to be mutable, rather thaa
immutable, so that changes to certain versions need not create a new
version (though one could be made, if desired). Any version with a child
becomes immutable, and any version which is the BASE VERSION of some other
version also becomes immutable. However, if a version is a leaf in the
naming structure, and no other versions depead upon it, it can be changed.
This is an efficiency refinement, and allows small changes to be readily

incorporated.

The VERSION DELETE operation is not totally straightforward; 1t cannot
merely remove the version. Some other version may be using the
to-be-deleted version as its BASE VERSION. If deleting a version will

remove a BASE VERSION, either the version cannot be deleted, or the

=A0=

Chapter Three Catoan Object Definition

Section D Versioned Object

information in it must be included in those versions which depend on the
version to be deleted. This may require a cross-referencing mechanism,

similar to that presented in Section III.C.?2.

The CHILDREN field specifies those versions which are immediate
children of the current version. The CHILDREN fields of all the versions
of a versioned object specify the logical relationships among the various
versions, as described above. Because the CHILDREN information and the
VERSION GEN_INFO information are separate, the logical derivation of a

version need not be related to the physical derivation of the version.

The CHILDREN field attaches names to the logically derived children of
the current version. The name of the child, together with the names of all
the eventual parents of the child, specify the position of the child in the

version hierarchy. See Section IIT.D.l1 for a discussion of version naming.

The PARENT information indicates the version which is the logical

parent of this version. It allows tracing back up the version hierarchy

when necessary.

To demonstrate how a VERSTION GENERATING PROCEDURE and an
UPDATES SPECIFICATION might be defined, consider an example: maintaining

versions of a program. The version history is that of Figure 7.

=81 =

Chapter Three Catoan Object Definition

Section D Versioned Object

Logically, the UPDATES SPECIFICATION could be a collection of "commands,"
specifying operations like "delete" or "insert" on a particular line of the
document. (This is similar to the record-oriented update programs which
exist in some batch-oriented computing systems for including updates in the

source for a program.)

The VERSION GENERATING PROCEDURE would take the BASE VERSION and "run
the UPDATES against" the base, The result of this process is the text of
the version represented by the BASE VERSION and the UPDATES. Each pair of
<UPDATES, BASE VERSION> could represent a differeant logical version of the
document (l), depending on how the VERSION GEWNERATING _PROCEDURE interpreted

the UPDATES relative to the BASE VERSION.

How does one create the initial version of such a program? First, a
VERSIONED CATOAN OBJECT, CRL, is created. The VERSION GEN PGM is specified
to be the "Syspal version editor," which would apply the change directives
properly. The BASE VERSION is specified as NULL, indicating that there 1is
no version on which this one is based. Then, the UPDATES which will create

the initial version of CRL from "nothing" are supplied. CRL‘s {nitial

version is now complete.

(1) In general, only a small subset of the <UPDATES, BASE _VERSION>s
actually represent meaningful versions.

-82-

Chapter Three Catoan Object Definition

Section D Versioned Object

As an example, suppose that CRL.3.1.3 is to be created under CRL.3.1

(that is, CRL.3.1 is to be CRL.3.1.3°s parent). For whatever reason,

CRL.3.1.3 will be derived from CRL.3.2. What follows is a description of

generating CRL.3.1.3 at the lowest level.

Call the version to be created NEW VER, and let ADAM denote the most
ancient ancestor in the version tree (in this case, CRL). First, the
version on which NEW_VER is based must be obtained. The statement

base := version_get(adam, base name);
finds the version denoted by BASE NAME (which would have the value ".3.2")
and assigns it to BASE. The program of CRL.3.2 would be obtained by

original pgm := version_read(base);
This program would be provided as input to an editor, the output of which
would be the new version of the program®s source, which would be assigned
to NEW_PGM. The incremental differences between ORIGINAL PGM and NEW_PGM
could be determined by

differences := Syspal _differences(original _pgm, new_pgm);
and everything is almost ready to complete the process. The parent of
NEW _VER must be obtained:
parent := version get(adam, parent_name);

assuming ".3.1" is the value of PARENT NAME. WNow, NEW_VER can be included

in the version hierarchy of CRL, using the statement

-83-

Chapter Three Catoan Object Definition

Section D Versioned Object

new_ver := version_new(parent, new_name, base,
differences, Syspal _version _editor);

where NEW_NAME has ".2" as its value. This completes the creation of

CRL.3.1.3.

To obtain the program as of a particular version, the version’s name is
supplied to VERSION GET, which fiands the version in the version naming
hierarchy. VERSION _READ is then invoked, which passes the version’s base
and updates to the version generator (VERSION GEN_PGM), which returns the

version.

At some point, after the version history becomes very large, generatiag
a given version may take a very long time. What could then be done {s to
create a veralon which is complete (similar to the initial vecsion).
Thereafter, future new versions could be generated off this new "complete"
version, rather than having to incrementally generate all the previous

versions before generating the desired one.

III.D.3. More on Version Naming.

In addition to the regular version names, one might want to have
"sliding" names for versions. For example, when developing a program, one
often has a backup, a current, and a test version of the program. Upan

determining that the test version is ready for installation, one would waat

~84=

Chapter Three Catoan Object Definition

Section D Versioned Object

to change the meanings of the names "backup," "curreat," and "test" to
reflect the new state. This can be accomplished, and the general problenm

of "sliding" names can be solved, by introducing "variables" to refarence

versions.

4 simple method of specifying variables for version references is to
include an optional user-defined procedure for variable assignment which
would be called whenever a new version is created. This procedure, or
another one, could also be called directly by the user when he waated to
update the variable assignments. The variables’ names and the objects they

referenced could be stored in the named DIRECTORY in the highest-level

Catoan-ocbject,

It may be desirable to allow a general network of version names, rather
than just a hierarchy. Catoan supports a general network for naming
objects; version naming may require similar capabilities. At this poiat,
the value of a version network has not been proven. Despite always
referring to a hierarchy of naming versions, though, Catoan will support a
network of versions using the definition presented in Figure 8 above. Any

restrictions to a hierarchy would have to be done in the VERSION NEW

operation.

w5

Chapter Three Catoan Object Definition

Section D Versioned Object

The operations presented here are very low level. Presumably, a
higher-level interface to version maintenance would be presented to the

user by, for example, the editor.

III.E. Summarx.

Definitions of the "Basic Catoan-Object," a "refined" object, and a
"versioned" object have been presented in this chapter. The operations of
the objects, and sample representatlons, have been described. Issues of

naming, protection, and {in some cases) efficlency were meantioned.

-86-

CHAPTER FOUR

AN EXAMPLE: A SYSPAL PROGRAM OBJECT

In this chapter, I shall demonstrate how Catoan might be used. The
demonstration will be based on an example: a "Syspal program object." A
Syspal program object is a convenient way to store a program writtem in

Syspal using Catoan as the object storage mechanism.

In this object, one would store a Syspal program though the same
general structure, if not the exact structure, could be used for storing
programs writtea in most languages. The Syspal program object is an
extension of the versioned Catoan object described in Section III.D, and
the cross-referenced Catoan object described in Section ITI.C.2. In
addition to the operations pertaining to Syspal programs, the operations of
the versioned Catoan object and those for cross-referencing are part of the

definition of the Syspal program object.

-87-

Chapter Four Catoan Syspal Program

Section A Motivatcion

IV.A. Motivation.

Classically, a program is stored as a collection of files, each one
containing some portion of the program. For example, one might have a
source file, a documentation file, an object-code file, an interface file,
a load-able (executable-code) file, and so on, These are usually
differentiated by a suffix indicating the kind of file: ALG68 for an
ALGOL68 source file, PL1 for a PL/l source file, DOC for a documentation

file, OBJ for an object-code file, et ceteras. Each file is individually

visible to the user.

A typlcal scenario in a system like this is as follows. A user wants
to write a program to help him balance his checkbook. Assume he wants to
use the Syspal programming language. He types something like

edit CheckBook Syspal new
meaning that a new file, of "type" Syspal, named "CheckBook," 1is to be
edited. Upon finishing his first attempts at writing the program, he might
type
run CheckBook

with a resultant error message like

NO SUCH FILE: CheckBook,LOAD
which is reported because he had never compiled the program. Upon

discovering his error, a likely follow-up might be

-88=

Chapter Four Catoan Syspal Program

Section A Motivacion

complle CheckBook
for which another error message might be generated, because there is no
COMPILE command. Finally, after much aggravation, the user might realize

that he should type

Syspal CheckBook

which would compile his program.

Thinking that he can now run his program (assuming it compiled

properly), the example user might type

run CheckBook
for which an error message like the one he received the last time he tried
RON would be elicited. Eventually, he might realize that

link CheckBook
is needed, after which

run CheckBook
would work — assuming that SYSPAL, LINK, and RUN did not require the user

to supply the proper suffixes for CheckBook.

How many times does the user actually care about the object-code file,
or the load-able file? How many times does the user actually care about
compiling, or about linking (except to check for compile-time errors)? Why
can’t RUN simply produce a properly executable form of the program?

Abstractly, the user is writing a Syspal program, not a machine-language

=89

Chapter Four Catoan

Syspal Program

Section A Hotivation

program; what does he care about the representation of his program?
(Indeed, even if he were writing a machine-language program, the

representation of the program may of no concern to him.)

The example presented in this chapter addresses these problems. The
Syspal program object defined in the next section consists of several
internal parts, which correspond to the classical object-code, load-able,
documentation, source, et ceterae files. Wormally, these are of no concern

of the user, and so need not be dealt with explicitly (though the ability

to do so exists).

IV.B. Definition.

Like any abstract object, a Syspal program object is defined by the
operations one performs on it. The primary operations one performs on such
objects are NEW, DELETE, EDIT, RUN, EDLT DOCUMENTATION, and DEBUG. Secondary
operations, which exist more for efficiency than for completeness, iaclude
COMPILE, and RESOLVE REFERENCES. In addition to those operations specific to
Syspal programs, the operations of the versioned Catoan-object and the
cross-referenced Catoan-object are part of the definition of the Syspal
program object. These extra operations are available directly to the user
because of the IVISIBLY EXTEND statement. Figure 10 shows the interface for

and representation of the Syspal-program object.

-9p-

Chapter Four Catoan Syspal Program

Section B Definitclion

new: PROCEDURE

RETURNS(p:@Syspal program)

(* Instantiates a new Syspal program. *):
delete:PROCEDURE

(* Destroys a Syspal program and its subgidiary objects. #*);

bl

edit:PROCEDURE
(* Allows modification to a Syspal program. *);
run : PROCEDURE
(* Executes the Syspal program. *);
edit documentation:PROCEDURE
EKEEPT(syspal_pragram no_documentation)
(* Modifies the documentation of a Syspal program. *);

compile:PROCEDURE
EXCEPT(syspal program _compilation_failed)
(* Compiles the Syspal program. *);
resolve references:PROCEDURE
EKGEPT{syspal _program_unresolveable refereace)
(* Resolves external references (calls the system LINKER). *);

debug: PROCEDURE
(* Invokes the DEBUGGING subsystem. *);

AVISIBLY EXTEND versioned catoan object,
cross_referenced catoan object;

SELF: RECORD
program: versioned catoan object;
xref: cross refe:ence iufarmatton

(* Use of the VERSIONED _CATOAN aBJEcT.-
CONTENTS = gource code,

unnamed DIRECTORY slot 1 = object code.

unnamed DIRECTORY slot 2 documentation.

unnamed DIRECTORY slot 3 interface.

unnamed DIRECTORY slot 4 object code with external
references resolved.
sub-programs. *)

named DIRECTORY slots
END; [SELF

Figure 10: A Syspal-Program Object.

AR Mmoo S S S el o e o S S S ol wl ol mE mE aE SE EE o ol wl ml mE mE w am em e wl

~9]=

Chapter Four Catoan Syspal Program
Section B Definition

The WEW operation is iavoked when a Syspal-program object is created.
It takes no arguments, and returns as a result the new object. Usually,
this operation is automatically invoked by the EDLIT operation on a new
program. NEW ianitializes the various fields in the representation of the

program before returning.

DELETE destroys a Syspal-program, and all of its underlying sub-objects

and versions.

The EDIT operation is invoked when changes are to be made to the
program. As mentioned above, EDIT will invoke NEW if a new program is
being edited. The only argument of the operation is the implicitly

supplied program object; it returns nothing.

RON attempts to execute some representation of the program. For Syspal
programs, this may require compiling first. ROUN verifies that valid,
curreat executable code exists for the source; if it does not, RUN will
implicitly invoke the COMPILE operation. If the supporting system requires
pre-exacution binding (linking), RUN will also iavoke the
RESOLVE_REFERENCES operation. Once current executable code is obtained,

RUN will transfer execution-control to the prograa.

92~

Chapter Four Catoan Syspal Program

Section B Definitcion

EDIT_DOCUMENTATION provides access to the DOCUMENTATION portion of the

Syspal program.

DEBUG calls a debugging facility, allowiang the programmer to control

the execution of the program, to examine the state of its execution, et

ceterae.

The secondary operations, COMPILE and RESOLVE REFERENCES produce
object- and bound-code, respectively. As mentioned, they exist primarily
for efficiency. They would probably be used by a programmer to be sure
that an error would not occur if someone else should cause the operations

to be implicitly invoked.

In addition to the explicitly defined operations listed above, the
operations of version management and crogs-referencing, as well as those of
the basic Catoan-object, are available for use with Syspal program objects.
The ZVISIBLY EXTEND pseudo-statement causes the named interfaces to be
included in this one. (Appendix A describes this in a little more detail).
Syspal programmers can treat Syspal program objects as ordinary
Catoan-ocbjects, including them in other Catoan-objects, including other
Catoan-objects in them, explicitly creating new versions, accessing the

eroge-reference information, et ceterae.

~93~

Chapter Four Catoan Syspal Program
Section B Definition

For example, assume that a user named "Ribak" was writing a system
composed of several Syspal programs. One of the programs (called "DRIVER")
is the top-level program, which controls dispatching the other parts of the
subsystem. One way to reflect this structure in the external structure of
the programs is to have the other parts of the subsystem be sub-objects of
DRIVER, included in the DIRECTORY of the Catoan-object used to store the
DRIVER Syspal program object. Then, Ribak could easily see the system’s

structure by NAMED READing the DIRECTORY of the Catoan-object.

IV.C. Use.

To use the Syspal program object, a user would invoke the EDIT
operation. EDIT would obtain the source code of the program, or initialize
it to empty if the program was new. The user would make whatever changes
had to be made, replace the old edition of the program with the updated one
(or, perhaps, create a new version instead), and terminate the editing

session.

If the editor was able to check some or all of the syntax and semantics
of the program, a COMPILE merely to verify that no compilation errors
existed would be unnecessary. If the editor was unable to perform such
checks, the user might want explicitly to COMPILE the program if he was not

golng to run it i{mmediately, and someone else might try to RUN it befare he

«94=

Chapter Four Catoan Syspal Program

Section C Use

had a chance to do so. Otherwise, he could invoke the RUN operatiom, which

would automatically invoke COMPILE and, if necessary, RESOLVE REFERENCES.

If an error is discovered while RUNning the program, the DEBUG
operation could be invoked, allowing the programmer to examine the program
and its eavironment. If changes were made to the program while debugging,
EDIT could be called directly by DEBUG, thereby automatically incorporating
changes which were made while DEBUGging into the permanent copy of the

program.,

Assume that the programmer finishes DEBUGging the program, and then
neglects to COMPILE the program. One of the users of the program then
tries to RUON the program. At this point, the COMPILE operation 1is
implicitly invoked, and the program is transformed into some form which can
be executed by the host system. The user had no knowledge of this

transformation; it is an implementation detail.

The Syspal program object is an extension of the Catoan-object. This
allows the programmer to use the properties of Catoan-objects when thinking
about managing his programs. For example, if someone has writtea a utility
program which produces a copy of a Catoan-object, that same program could
probably be used with Syspal program objects with very little, if any,

modification. 1f other computlng systems or other naming eavironments (see

=95

Chapter Four Catoan Syspal Program

Section C Use

Chapter Five) could reference his Catoan-objects, then they could,
likewise, reference his Syspal program objects. This allows the issues of
object management to be left to the object manager, regardless of the use
to which the objects are being put, regardless of the extensions which are

made of the basic Catoan-object.

IV.D. Summary.

Many people do little with computers but write programs om and for
them. Generally, the abstractions available for their use for actually
writing the programs are very primitive. The Syspal program object
presented above is a high-level abstraction for writing and storing

programs which is based on the Catoan-object and its extensions.

-96-

CHAPTER FIVE

IMPLICATIONS OF MULTIPLE NAMING ENVIRONMENTS

As mentioned in Chapter One, I do not assume that Catoan is the only
manager for named, permanent objects that exists in the system. Therefore,
Catoan”s is not the oanly naming environment in the computing system. If
there exist other naming schemes, and another naming enviromment is created
which is disjoint from the one I propose, what are the implications? Are
the name spaces forever disjoint? 1Is there a way to refer to objects in
one namespace while within another? 1TIs there a way to transfer objects
from one namespace to another, either from within either of the two

namespace in question, or from a third one?

~97—

Chapter Five Catoan Multiple Name Spaces

Section A Disjolnt Waming Spaces

V.A. Disjoint Naming Spaces.

Given tha existence of more than one object manager, it is very
probable that the objects of one system cannot be handled by the others.
In classical file systems, internal storage formats may differ, the system
overhead information stored may differ, the structure of the files may
differ =— in fact, the "type" (in the programming language sense of the
word) of the files may be incompatible, so that the different kinds of

files are implemented by differeant modules.

In Catoan, the naming mechanism 1s part of the object structure, and is
handled by the object management mechanism. Separating names from objects
is not part of Catoan”s underlying philosophy. Therefore, regardless of
the structures of other object managers, regardless of the naming
mechanisms of other object managers, if an object i3 not a Catoan-object,

it cannot be named within Catoan.

1f Catoan-objects can be named and accessed directly by some othar
object manager, the naming structures are not disjoint. 1In this case, data
transfer is no problem, and is, indeed, a moot polnt: the objects of both

systems are accessible from one of the systeas.

-98-

-~

Chapter Five Catoan Multiple Name Spaces

Section A Disjoint Waming Spaces

Let us assume that, not only can Catoan not access non-Catoan-ocbjects,
but other systems likewise cannot access Catoan-objects, either. 1In this
case, the naming structures are truly disjoint, and data ia the objects of
one system cannot be transferred directly into objects of the other. What

is needed for such data transfer is some procedure which can bridge the two

naming structures,

To be able to write a "bridging" procedure, it must be possible to
access both object managers from the same procedure. This requires that
the interface for both systems be available to the procedure. The
procedure must be able to name and to access (in a protection seanse) the
interfaces; 1if naming can be done at this level directly, with internal
names (segment numbers, capabilities), then providing the procedure with
the internal unique identifiers of the two object managers produces the

necessary availabilicy.

If naming cannot be done with internal names, then a mechanism is
needed to allow translation of external names (character strings) to
internal ones. This requires, essentially, another name manager for

"special" interfaces which are needed between, among, and above the normal

naming structures.

—gg9_

Chapter Five Catoan Multiple Name Spaces
Section A Disjoint Naming Spaces

Once the interfaces (and modules) for both object managers are
available to the bridging procedure, transferring data between the two
naming environments involves obtaining the necessary lanformation from one
environment (using the operations of its objects), and supplying that
information to the other environment (using the operations on its objects).
The author of the procedure must, therefore, know the interfaces for both

systems. Such bridges might be provided as part of a system-wide library

of "utility" routines.

V.B. A Standard Interface for Filing Systems.

An alternative to forcing someone who is trying to transfer data
between object managers into learning the idiosyncrasies of both systeas is
to have all object managers meet the same interface (if standard data
transfer is to be possible). This interface would specify the minimal set
of operations required of an object manager, and would also allow data to

be transferred freely among object management systems and their naming

environments,

Because of the wide variety of storage techniques, protection schenmes,
and information collected, access to the "overhead" information will not be
included in the "standard, minimal interface" which will be defined.

Because there are many ways to interpret names, many ways to organize a

-100-

L

Chapter Five Catoan Multiple Name Spaces

Section B Standard Interface

naming structure, many ways to attach semanties to a naming structure (be
it a hierarchy, a network, or even a list), passing components of names to
the object manager may not make sense. Becauss there are many ways to
structure data, a limited means for accessing an object manager”s data will
be provided. Figure 11 shows the standard, minimal interface for object
managers.
lookup: PROCEDURE(name:string(*), root:@TYPE(SELF)
RETURNS (obj : @TYPE (SELF))
EXCEPTION (name_not_found(index: INTEGER),
name_invalid(index: INTEGER))
(* Translates a character-string name into an object
reference, relative to "root." "index" is the
position in "name" up to which the name could be

found or parsed. *);

contents _read: PROCEDURE
RETURNS(cont:@Bcontents_type)
(* Extracts the CONTENTS from the object. *);
contents_set: PROCEDURE(cont:@contents_type)

EXCEPTION(contents type inappropriate)
(* Places "cont" in the CONTENTS of the object. #*);

Figure 1l: Standard, Minimal Interface for a Filing System.

R . T I T e T I T e I e

Names are handled in their entirety only, and are relative to some
point which is supplied by the caller. This "root" poiater may be NULL, in
which case the object manager determines the root. If the root is not
NULL, the name is parsed relative to the supplied root, For example, if

one wanted to have a Multies file system parse the name

-101-

Chapter Five Catoan Multiple Name Spaces

Section B Standard Inter face

"“udd“CSR"Marcum“thesis," the root would not have to be specified, hecause
Multics has one global root. If "Marcum™thesis" were to be located

relative to "“udd”“CSR", thea "~udd~CSR" could be supplied as the root.

If the above example were to be executed in Catoan, and the object
"thesis," a sub-object of the object "Marcum," were to be found, a pointer
to CSR would be supplied as the root, and "Marcum™thesis" would be supplied

as the name.

Just as names are handled in their entirety, the data contained 1in an
object are accessible only in their entirety. One i3 allowed to _SET and
_READ the CONTENTS of some object as a whole. Returned by _READ is a
pointer to the CONTENTS, which may be of arbitrary type, just as the
CONTENTS of a Catoan object may be of arbitrary type. _SET"s argument is a
pointer to a datum of arbitrary type to be used as the CONTENTS of the

object.

Some object managers may have to place restrictions on the types of the

objects which are the CONTENTS being stored. It is the responsibility of
the object manager to verify that the type of the CONTENTS is sensible for
that particular style of object manager. The exception

CONTERNTS_TYPE_INAPPROPRIATE is provided to allow a standard mechanism for

signalling such a problem.

-102-

Chapter Five Catoan Multiple Name Spaces

Section B P Standard Inter face

Catoan does not meet, as described so far, the standard, minimal
interface. The operations on the CONTENTS (_SET and _READ) are compatible,
but an additional DIRECTORY operation is needed to take a full name and a
root point, and return a pointer to the named object. This is a simple

additlon, with which Catoan meets the standard, minimal interface of

Figure 11.

V.C. Garbage Collection.

Reclaiming storage used by objects which are inaccessible may be
necessary. Lf such "garbage collection" is needed, how does the existence

of multiple naming eavironments affect garbage-collection?

Sarbage collection is a reclamation of the physlcal storage used by
logical entities (objects) which become inaccessible. Garbage collection
techniques have been a topic of investigation for a long time; they still
are, I shall not discuss the actual techniques here; the interested
reader is referred to [3, &4, 30, 33]. Rather, what follows Is a discussion

of the effects of multiple name spaces on garbage collection.

Usually, garbage collection is performed by the object manager. If

this view of garbage collection is taken, all works well while thece is

=103~

Chapter Five Catoan Multiple Name Spaces

Section C Garbage Collection

only one object manager. Indeed, all may work well within each of the
individual object managers. Each object manager has enough information to
garbage collect its own objects. What happens, however, Lf there exist
inter-namespace references? What happens if an arbitrary object can refer

to another arbitrary object, as can happen ian Catoan?

A possible solution is to extend the standard, minimal interface for
object managers (see Figure 11) to include operations for communicating
garbage collection information. Suppose two object managers, Catoan and
Namit, exist in one computing system. TLet "Cl," "C2," et cetarae be
Catoan-objects; let "N1," "N2," et ceterae be Namit-cbjects. There can be
references in Cl to C2, for example, and there might be references
permitted between two Namit-objects. Objects in Catoan can certainly

reference objects in Namit; whether objects in Namit can refarence

Catoan”s objects is immaterial,

Perhaps Cl references C2, and C2 refereances N6. Catoan reaches a stage
when garbage collection is required, and so it scans its objects for
inter-object references. It records the Cl-C2 reference. Upon discovering
the C2-H6 reference, it must transmit the information that N6 is referenced

to N6°s manager, Namit. How might this be done?

-104~

Chapter Five Catoan Multiple Name Spaces

Section C Garbage Collection

Let us assume that Catoan can determine that N6 belongs to Namit (I
shall return to this issue shortly). Catoan must (conceptually) send a
message to Namit indicating that N6 is referenced from some other naming
environment. Perhaps Catoan would even specify that N6 was referenced from
the Catoan naming environment, by object C2. How would Catoan name N6 to
Namit? If all inter-namespace references are symbolic, Catoan could use
the same name that C2 used. (This also solves the problem of determining
the object manager of N6, mentioned above.) 1If, however, refarences are
direct (rather than symbolic), as they could be in Catoan, it would be
necessary to pass to Wamlt the direct reference (which might be a segment
aumber). This presents no problem if garbage collection can be done

without object names, as is usually the case.

Direct references pose another problem: how does Catoan determine that
Namit is the manager of N6?7 Perhaps some extra information is stored with
the reference in C2 to N6 enabling Catoan (or any other object manager) to
determine that the reference is to an object of some other object manager.
(Indeed, some such information is needed to allow an object manager to
determine at least that an object reference is to one of its objects or to
an object of some other object manager.) Another possible solution is to

maintain a directory of references to objects of other object managers.

-105-

Chapter Five Catoan Multiple Name Spaces

Section C Garbage Collection

Regardless of the exact methods for solving the various problems of
lnter-namespace references, garbage collection will require much
inter-object manager communication to convey the inter-namespace
references. PFurthermore, additiomal complexity 1s introduced into the
standard, minimal interface for object managers of Figure 11, into the
information stored for references, into the mechanics of garbage
collection. [4] contains a discussion of garbage collection in multiple
address spaces with inter-address space references. When the address
spaces are logical rather than physical, when they are name spaces rather
than address spaces, when they are managed by more than one entity, garbage

collection is even more difficult than as described ia [4].

Another solution, which I prefer, 1s to make garbage collection the
function of the memory management system. This is especially appealing in
an addressing system in which all references must be made through tagged
"pointers." Such references can be recognized easily by the memory manager
(because they are tagged). Generally, as long as the memory manager can
determine that a reference to an area of storage exists somewhere, the
precise form of addressing is immaterial -- it can be through segment

numbers, disc addresses, capabilities, et ceterae.

If the memory management system can determine that an area of memory is

referenced, regardless of where the refereace is located within the EEmoTY

=106~

Chapter Five Catoan Multiple Name Spaces

Section C Garbage Collection

system, it can do the garbage collection. The memory management system 1is
below the object managers. Furthermore, because the memory management
System is part of the operating system kernel, all object managers use the
same (the only) memory manager. Therefore, because a single entity has
access to all the object references, and can determine when something is
and is not an object reference, the problem of garbage collection in

multiple naming eavironments is solved.

V.D. Summary.

Chapter Five has presented the issues surrounding the existence of
multiple naming eavironments in a computing system. The effects of
multiple naming environments on system-wide naming, on transferring data
among name spaces, and on garbage collection (storage management) were

discussed. A "standard, minimal" filing system interface was described.

-107-

CHAPTER SIX

SUMMARY, AND EVALUATION OF THE PROPOSED SOLUTLON.

In the following, I look at my proposals, commenting on what they are
and "where I am," on their completeness, and on the trade-offs that have
been or could be made. I examine them with regard to pravious work and
what "might be done." Lastly, I present my recommendations for further
research in the area of managing named, permanent objects in computing
systems which range in size from a single-user personal computer to a
distributed network composed of many autonomous hosts (which range in size

from personal computers, to multiple-user computing utilities, to networks

themselves).

-108-

Chapter Six Catoan Summary and Evaluation

Section A Summary

VI.A. Summary.

This report has presented the results of an investigation into storing
things in modern computing systems. The investigation has produced a
design of a system called "Catoan," which is a manager for named, permaneat
objects. Colloquially, such a manger could be considered an

object-oriented filing system.

A description of existing ways of viewing permanent storage was
presented in Chapter Two, describing Honeywell’s Multics and
Hewlett-Packard”s MPE/3000 in depth, Bell Telephone Laboratories’ Unix was
briefly described, as was Carnegie-Mellon University’s Hydra. The file
systems in each of these influenced my thinking about permanently storing
objects in a computing system. A few methods for maintaining versions of

objects were also described in Chapter Two.

In Chapter Three, I described Catoan. The "Basic Catoan-object”" was
defined and described, and a representation of the information in the
Catoan-object was presented. Refinements of the basic object were shown,
including an access control list protection scheme, cross-referenciang, and
version maintenance. A general scheme for storing versions was described,
which allows the user to make the space-time trade-offs which most other

verslon maintenance schemes make for the him.

=f09=

Chapter Six Catoan Summary and Evaluation

Section A Summary

An example of using Catoan was described in Chapter Four. A

Syspal-program object was built using the cross-referenced and versioned

Catoan-objects,

Chapter Five related the problems which occur when multiple naming
environments exist in the same computing system. It is assumed that Catoan
might not be the only object manager in the computing system, and that
users might desire to transfer information among object managers and their
naming environments. The effects of multiple naming enviroonments on

garbage collection were also stated.

More globally, more abstractly, in this report 1 have described a view
of storing data in a computing system which departs from the classical
view. I have made this departure because the classical views of data
storage are not amenable to many of the current philosophies on
programming, software engineering, and data abstraction. Catoan allows one
to think of data storage in the abstract; it allows one to think of

storing abstract data objects, rather than storing "piles of bits."

Catoan is merely a type manager, for a Catoan-object. However, it is a
rather odd type manager: it gives out references to portions of the

representation of its data —— namely, a poilater to the CONTENTS. It is

=110~

Chapter Six Catoan Summary and Evaluation

Section A Summacy

this aspect of Catoan which makes it untrusted: part of the representation

of a Catoan-object is not secure.

Vi.B. Completeness.

Catoan has also been a vehicle for exploration. Very rarely is the
permanent data storage mechanism of a computing system not trusted. Very
rarely do multiple filing systems exist within the same computing systen.

Yet, these are two important issues in the design of Catoan.

When one is exploring and experimenting, there is a good chance that
the results will not be perfect. So it is with Catoan. The decision that
Catoan need not be trusted, and will not be trusted, limits its use.
Because of the lack of trust, Catoan cannot enforce extended controls on

access to the data of a Catoan-object.

If one were to trust Catoan, and make Catoan the only object manager,
then other filing systems and naming eavironments could still exist.
However, rather than building directly on the memory management facilities,
the other filing systems would build on Catoan. Although this does solve
the trust issue, it introduces inefficiency by imposing another layer of
mechanism between the user and permanent storage. It may limit flexibility
if, in fact, a particular application is ill suited to Catoan (a

possibility 1if for no other reason than Catoan is not implemented).

-111=-

Chapter Six Catoan Summary and Evaluation

Section B Completeness

 Hopefully, Catoan could be implemented efficiently, so that the additlonal

layer would not cost very much.,

The naming scheme of Catoan allows a network of Catoan-objects to be
built. This introduces additional complexity by making it more difficult
to traverse the naming eavironment. When writing a program to traverse a
tree, it is known that there will be no loops encountered during the
traversal. But, when traversing a network, it is possible to eancounter a
loop; therefore, loop detection is needed. However, the additional
flexibility gained by allowing multiple parents and, therefore, a naming
network often outweigh the cost of additional traversing complexity.
Furthermore, because a network is a superset of a hierarchy, a naming

hierarchy can be used, foregoing the generality (and cost) of a network.

Catoan has no concept, analogous to the soft link, of associating an
external name with another external name. Catoan recognizes only hard
links, and multiple pareats of an object. There are semantics of soft
links which cannot be modeled using hard links. For example, allowiag a
user to use the same (local) name for some object, regardless of the
modifications made to the object, is much easier using soft links. 1If it
is possible at all with hard links (and this depends on the type of
internal name to which a hard link translates an external name),

substitution is usually much more visible to the unconcerned user than with

=112-

Chapter Six Catoan Summary and Evaluation

Section B Completeness

soft links. WNonetheless, because changing the CONTENTS of a Catoan-object
does not affect the containing objects, the "soft substitution" provided by
soft links i{s easier to approach with Catoan hard links than with, for

example, Unix hard links.

The Catoan philosophy would dictate that, because of uniformity, each
object should contain a section for soft links, if they were to be included
in Catoan. An alternative is to introduce a new type of Catoan-object, a
"soft_link." This points out another feature of Catoan: there is only one
type of Catoan-object. This forces the overhead of both portions on all

the users of Catoan, even if eighty-seven percent of their objects do not

use the CONTENTS.

One of the most important questions to be answered about Catoan 1is:
"Can one do everything with Catoan that onme can do with “coaventional’ file
systems?" 1 claim that, except for issues of trust, one can, and that, in
fact, one can do some things in Catoan that cannot be done in many existing
file systems. As to trust, the overhead operations are most greatly

ilmpacted by not trusting Catoan -- the SYSTEM OVERHEAD INFORMATION is not

necessarily correct.

The data-oriented operations in Catoan are the "CONTENTS" operatioms,

described in Section IIL.B.l.b. The operations are very simple, and from

-113-

Chapter Six Catoan Summary and Evaluation

——— o — —

Section B Completenass

their simplicity comes much generality. Also, because of the lack of
constraints on the structure of the COMTENTS, anything which can be
described in Syspal can be stored directly in a Catoan-object. (It can be
argued that Syspal®s data description Facilities are universal; such

arguments are outside the coverage of this report.)

Bacause Catoan allows an arbitrary network of objects in its naming
structure, relatiouships which cannot be expressed in some other systems
(for example, hierarchical naming environments) can be easily expressad in
Catoan. Objects can be composed of sub-objects, which may themselves be
composed of further sub-objects, any of which (at any level) may be part of

other objects.

In the basic Catoan-object, there is no provision for enforcing
protection (except at the CONTENTS s type level, which is somewhat clumsy).
Protection is, however, introduced as a refinement. This refinemeat is
merely a suggestion, and is presented as such to re-enforce its
optionality. PFor similar reasons, cross-references and version maintenance

schemes are extensions and refinements, and are not critical to the basic

theory.

No mechanisms for concurrency control have been presented in this

report. This is because there are very many schemes, ranging from

-114-

Chapter Six Catoan Summary and Evaluation

Section B Completeness

"elassical" locks, to monitors [L4], to semaphores, to event counts [25],
to some very recent, perhaps esoteric schemes aimed primarily at
distributed systems [24]. 1If one desired to implement concurrency control
atop the basic Catoan-object, or any of its refinements, this could be

done, and should not impact the abstractions which exlst.

When designing a computing system, recovery from semi-catastrophic
failures and from human errors is often considered, The concept of
off-line backup of on-line storage is crucial to a system which portends to
be a safe repository for its users’ data {31]. However, backup is not
digcussed in this report. To makes Catoan complete, some form of off-line
backup must be included, at some level. This was not done here because of
the implications that lack of trust has on the ability to access data so as
to transfer it to off-line backup. If Catoan is, in fact, not trusted, the
task of backup must be relegated to the memory manager, which is trusted,

or to a higher level abstraction which is in a better position to implement

backup when it is needed.

VI.C. Trade-Offs.

An implicit trade-off has been responsibility for memory management.
Most filing systems perform their own buffering between primary and

secondary memory; Catoan relies on the underlying memory management system

=115~

Chapter Six Catoan Summary and Evaluation

——

Section C Tradeoffs

for this., While this cectainly slmplifies Catoan, and helps support the
multiple-level, abstract system concept [23, 36, 2], there may be a
sacrifice in control over buffer management, resulting in a decrease 1in

system performance.

In 2 memory system which is "automatically" managed, the performance
degradation will generally be local, visible only to the user of Catoan
whose application would benefit from detailed control over the buffer
management. However, such local control will often result in degraded
global performance, because the memory (buffer) manager, which has more

global ianformation than the filing system, is baing circumvented.

An instance of the "classical space-time trade-off" can be fouad in
version maintenance. One has the option of very fast access to any version
(at the expense of storing each version in its entirety), or of very little
storage (at the expense of building the requested version from a "base" by
applying "updates"). This trade-off has been left to the user of Catoan’s
version maintenance system, by allowing him to specify a "base," a sat of

L1

"updates," and a program to apply the updates to the basa. See

Section III.D for further details.

The view of stored objects presented by Catoan is very ualike that

presented by most existing object managers (filing systems). Usually,

-116-

Chapter Six Catoan Summary and Evaluation

—— —————

Section C Tradeoffs

stored objects are viewed as a one-dimensional array of records (byte
strings). This view allows the object to be access in piesces, rather than
requiring that it be accessed in its entirety (as far as the object manager
is concerned). This decision allows objects to be viewed abstractly, aad
to have an internal structure which is unknown to Catoan. 1If a more
classical view is desired (because, for example, most of the object are
very large, and one generally wants to access only a small portion of them,
anyway) , a record-at-a-time view could be built atop Catoan, using Catoan
to actually store the object. Because Catoan’s CONTENTS_READ operation
returns a pointer to the contents, rather than the entire contents itself,
such a system would not require modification to Catoan, nor would it

generate excessive memory referencing from reading in the entire contents.

What happens if some portion of memory is volatile? How must Catoan be
changed so that a user can be assured that his data is in stable storage?
Catoan must provide the user with a MAKE NON VOLATILE operation which
performs a "synchronous write" so that, upon termination of the operationm,
the user is assured that the objeet has been transferred to non-volatile
storage. This requires a similar operation exist for the memory manager,

since the view it presents to Catoan is that of non-volatile storage.

A very important trade-off is that of trust. Because Catoan need not

be trusted, the information in the DATEs and PRINCIPALs fields may be

=117=-

Chapter Six Catoan Summary and Evaluati

Section C Tradeoffs

inaccurate. Lack of trust implies a certain difficulty in enforcing
security and in implementing backup, and implies certain uncontrolled
accessibility to Catoan-objects (in particular, to the CONTENTS). But,
Catoan is optiomal. If Catoan provides protection mechanisms, if Catoan 1is

secure, then it must be trusted, and it probably becomes mandatory.

VI.D. Remaining Work.

Much has been done on and with Catoan. Much is left to do: more
theory needs developing, practical experience needs to be gained with the
concepts embodied in Catoan. This section describes some of the work which
remains to be done relating to Catoan and the ideas presented inm this

report.

As mentioned in Chapter One, Catoan might be used on a machine which is
part of a multi-node network. In such an eavironment, one often wants to
name resources which exist at remote nodes. Furthermore, one often wants
to locate a resource thought to exist somewhere in the network, but at an
unknown node. Despite the need for investigation into this area, this
report oa Catoan does not address network-wide filing systems or naming
eavironments. One possible view of a network-wide filing system built
using Catoan is to consider the remote nodes as represeanting other members

of a collection of multiple naming environments. It might then be possible

-118-

Chapter Six Catoan Summary aad Evaluation

Section D Remaining Work

to apply the concepts presented in Chapter Five to the problems of

network-wide filing systems.

Issues of protection, security, and sharing are relevant to the goals
of Catoan. These have been discussed briefly throughout this report:
additional work is needed to present a unified view of protection and

sharing to the users of Catoan that is both coanvenieat and powerful.

As discussed in Section III.C.2, when implementing cross-references
there is a problem of who pays for the storage occupied by the
cross-reference information. This is part of a more global problem of how
to determine the amount of storage in one principal’s space which is
occupied by the data of another principal (includiang "The System"). I kaow

of no previous work done in this area.

Designing a system which is robust in the face of host-system failures
is still a large open research question. Because Catoan manages permanent

data objects, it should provide stability in the face of failure.

Lastly, how might one implement Catoan? How difficult would it be? Is
the eavironment Catoan presents to its users really the right one? 1Is
Catoan complete, sufficient, and easy to use? Only an attempted

implementation can answer thess questions.

-119=-

APPENDIX 4

SUMMARY OF THE SYSPAL PROGRAMMING LANGUAGE,

This appendix summarizes the salient features of Syspal (1) [l10] as
they relate to this presentation. The reader is warned that this is not a
definitive explanation of the language, nor is it complete. The reader 1is
warned further that this represents Syspal as I knew it in May, 1979, while
the language was still undergoing active development. The language as it
actually is defined at the time this paper is read, or evea published, may

differ substantially from the summary presented here.

Syspal 1is a data-abstraction language, based on Pascal, and geared
toward systems programming. Much of the syntax and semantics are derived
from Pascal, and from CLU. One of the design goals of Syspal is to support

modular programming conveniently.

(1) Syspal is an experimental programming language under development at
Hewlatt-Packard Laboratories, Electronics Research Center, Computer
Research Laboratory, in Palo Alto, California.

-120-

Appendix A Catoan Syspal

Data Types.

Syspal provides the programmer with a few standacd, "built in" data
types. Various forms of enumeration types, which specify the range of
values of a type, are available. Using enumerations, the usual INTEGER,

REAL, BOOL, and CHAR types can be defined. For example, INTEGER might be
defined

INTEGER = TYPE -1000000 TO 1000000
if INTEGERs between positive and negative one million were desired. The
REAL type might be

REAL = TYPE PRECISION 6 EXPONENT 32
stating that six digits of precision and an exponent between positive and

negative thirty-two was available. BOOL, representing truth and falsehood,

could be defined

BOOL = TYPE UNORDERED(TRUE, FALSE)
where UNORDERED specifies that the relations based on order (less, greater,
et ceterae) are not defined on BOOLs (though equal and not equal still
are). The CHAR type represents the ASCII character set, and is an ORDERED

collection of the values according to the ASCII collating sequence.

In addition to the scalar types, aggregates are provided by Syspal.
Two kinds of aggregates exist: RECORDs and ARRAYs. ARRAYs are homogeneous

collactions of szlements which can be referenced using numeric subscripts.

-121-

Appendix A Catoan Syspal

A definition like
x: ARRAY(lL TO 6) OF INTEGER
defines "x" to be a six element ARRAY of INTEGERs. The declaration
y: ARRAY(*) OF CIRCULAR(D, 1, 2)

specifies "y" as an array with unknown size of modulo-three integers.

RECORDs allow non-homogeneous data to be included in the same
aggregate. The elements of RECORDs are accessed by their field names. For
example, suppose the following definition were part of a Syspal program:

employee: RECORD
name: string(30);
addr: RECORD
street: string(35);
city state: string(35);

zip_code: 0 TO 99999;

END; !address
salary: 10000 TO 500000;
monthly productivity: ARRAY(l TO 12) OF 0 TO 10;
EWD; l!employee

This defines the variable "employee" to contain four fields: "pame" (a
character-string of length thirty; see Section I.C for a definition of
strings); "addr" (which itself is a RECORD, consisting of two thirty-five
character strings and a non-negative integer less than 100,000); "salary"
(an integer between 10,000 and 500,000), and "moathly productivity" (which
is another aggregate: an ARRAY containing twelve elements, each of which

is an integer between zero and ten).

-122-

Appendix A Catoan Syspal

In addition to being able to define variables, the Syspal programmer is
allowed to define new types. This is done in the same way that INTEGER,
REAL, et ceterae were defined above. For example,

address = TYPE RECORD
street: string(35);
city _state: string(35);

zip_code: 0 TO 99999;
END; laddress

defines a type called "address," with the same structure as the "addr"
field in the "employee" structure above (also called "employee.addr™ . A
programmer-defined type (call it "PDTP") can be an extension of some other
type (the "base type," call it BTP)., meaning that PDTP is built on BTP and
"extends" it. Unless specifically prohibited, an extension of a type will

match the base type for the purpose of compile-time type checking.

Defined types can have user-specified parameters, as shown ia the
definition of the "string" type fouand in Section I.C. Parameters are very
useful when defining modules, such as a stack comsisting of INTEGERs, or of

REALs; see below for a discussion of modules.

-123-

Appendix A Catoan Syspal

One can also define a varlable or type as the UNION of two or more
types. This specifies that any of the base types might be the type of the

defined variable.

Syspal provides pointers. Pointers are typed, and can refer to only
one kind of object (as opposed to PL/l pointers, which can reference
anything). A pointer to an INTEGER is declared

pint: @INTEGER;
and a pointer to an address would be
paddr: @address;

1f the value of "pint" were assigned to "paddr," an error would ba raisad.

Control Structures.

Most of the "usual" flow control constructs exist im Syspal.
Conditionals (IFP-THEN-ELSE and CASE), iteration (WHILE, REPEAT, FOR, and
LOOP [infinite repetitiond), exception handling (EXCEPTION), and procedure
calling (CALL), among others, are provided. 1In addition, iteration can be
controlled by a "sequencer" (1), which is a co-routine to provide the next

value for iteration.

(1) This is very similac to the CLU "iterator" [22].

-124—-

Appendix A Catoan Syspal

Procedure and Function Definition and Calling.

Procedure declarations have the form:

name: PROCEDURE(parml:typelp, parm2:typeZp, ...)
RETURNS(varl: typelv, var2:type?v, ...)
EXCEPTION(condl (exvarsl), cond2(exvars?), ...):

This defines a PROCEDURE called name. The parameters are parm¥ (N being 1,
2, et ceterae), of types typeNp. The procedure returns values of types
typeNv through the internal names varN. Exceptional conditions condN can
be raised in this procedure; they will return with parameters exvarsi,
respectively. The parameters, RETURNS clause, EXCEPTION clause, and vars

portion of the exceptional conditions ("condN") are optiomal.

As mentioned in Section I.C, Syspal recognizes the type of the implicit
operand to module operations, and, furthermore, assigns this impliecit

operand to the keyword "SELF." Type checking is performed for calling

sequences, as well as for other variable references.

In addition to a normal procedure termination, an abnormal termination
can occur. There is only one way for a procedure or funetion to terminate
normally: assign a value to the RETURNS variable defined ia the function
header (if any exist), and exit through the end of the procedure or

function. An abnormal termination is indicated by the RETURN statement.

=125~

Appendix A Catoan Syspal

Abnormal termination can, in addition to returning the name of the
exceptional condition, return values which can be used by the calling

procedure to diagnose the error.

Modularity, Data Abstractions, and Interfaces.

Syspal is a data-abstraction language, similar to CLU [22], for
example. The Syspal analogue to the CLU cluster is a "module." When one
defines an abstract data type, one does so by defining the module which
will manage the abstraction. Variables of the abstract type are then

declared to be of the module”s type.

The sbstraction is defined by the "interface" of the module. The
interface defines those things (operations, constants, type declarations,
et ceterae) which are to be visible to users of the abstraction; all other
information about the module is invisible to all but the module itself., A
module can have many interfaces; for example, the creator of an object
might be able to modify the object, but he might not want others to be able
to modify it, only to read it. Figure 12 shows the defianition for a module
implementing a STACK abstraction. The module definition, including the

operations and representation, and three interfaces are presented.

=126-

Appendix A Catoan

MODULE stack(element_type: TYPE, stack lim: INTEGER):
stack, strict_stack, loose stack, pseudo_stack;
new: PROCEDURE

RETURNS(stk: @stack)

(* Creates a new STACK, of "type" ELEMENT TYPE, with
STACK _LIM elements (maximum). *):

ALLOCATE SELF;

SELF.tos := (3

stk := BXT(SELF):

END PROCEDURE; !new

push: PROCEDURE(val: element_type)
EXCEPTION(stack_over flow)
(* Puts VAL onto the top of the stack. *);
IF SELF.tos=stack_lim THEN
RETURN(stack overflow);
ELSE SELF.tos :=# +1:
SELF.elements(SELF.tos) := val:
END;
END PROCEDURE; !push

pop: PROCEDURE
RETURNS(top: element_type)
EKﬂEPTIOH{stack_pnderfluwi
(* Return and discard the top of the stack. *);
IF SELF.tos=0 THEN
RETURN(stack underflow);
ELSE top := SELF.elements(SELF.tos);
SELF.tos :=f -1:
END;
END PROCEDURE; !pop

1s_empty: PROCEDURE
RETURNS (ans: BOOL)
(* Returns TRUE if the stack has no elements. *) 3
ans := SELF.tos={;
END PROCEDURE; !is_empty

-127=

syspal

Appendix A Catoan Syspal

make empty: PROCEDURE
(* Porces the stack to have no elements. *);
1 : INTEGER;

operation not defined on_type: EXCEPTION;

i = 1;
EXCEPTION
ON operation not_defined on_type DO
i := stack_limtl;
BEGIN
WHILE i<=stack lim DO
SELF.elements(1) := NULL(element type);
1 :=f +1;
END;
END;
SELF.tos := 0
END PROCEDURE; !make empty

extract: PROCEDURE(index: INTEGER)

RETURNS (elem: alement_type)

EXCEPTION(stack nonexistent_element(size: 1 TO stack lim))

(* Returns the INDEXth-from-top element (top = 1). *i';

IF index>SELF.tos THEN
RETURN(stack_nonexistent_element(SELF.tos));
ELSE elem := SELF.elements(SELF.tos=(index-1));

END PROCEDURE; !extract

insert: PROCEDURE(val: element type, index: INTEGER)
EXCEPTION(stack _nonexistent element(size: 1 TO stack_lim))
(* Sets the IﬂﬂEIl;h-fmm-tnp element to VAL (top = 1). *);
IF index>SELF.tos THEN
RETURN(stack nonexistent element(SELF.tos);
ELSE SELF.elements(SELF.tos-(index-1)) := wal;
END PROCEDURE; !insert

SELF: RECORD
tos: 0 TO stack lim;
elements: ARRAY(lL TO stack_lim) OF element_type;
END; |SELF

END MODULE; !stack

-128-

Appendix A Catoan Syspal

!Interface definitions.

(stack(element_type: TYPE, stack_lim: INTEGER),
strict stack(element type: TYPE, stack lim: INTEGER)): INTERFACE:
new: PROCEDURE
RETURNS(stk: @stack):
push: PROCEDURE(val: element_type)
EXCEPTION(stack overflow);
pop: PROCEDURE
RETURNS (top: element_type)
EXCEPTION(stack underflow);
is_empty: PROCEDURE
RETURNS (ans: BOOL);
stack overflow, stack underflow: EXCEPTION;
END INTERFACE; !stack, strict _stack

loose stack(element type: TYPE, stack _lim: INTEGER): INTERFACE;
ZVISIBLY _EXTENDS strict atack{element _type, stack lim);
make empty: PROCEDURE;
extract: PROCEDURE(index: INTEGER)
RETURNS (elem: element_type)
EXCEPTION(stack nonexistent _element(size: 1 TO stack_lim));

stack nonexistent element(size: 1 TO stack _lim): EXCEPTION;
END INTERFACE: !loose_stack

pseudo_stack(element type: TYPE, stack lim: INTEGER): INTERFACE;
ZVISIBLY _EXTENDS loose_stack;

insert: PROCEDURE(val: element _type, index: INTEGER)

EXCEPTION(stack nﬂnexistent _element(size: 1 TO stack lim));
END INTERFACE; 1pseud0_stack

Figure 12: A Module Implementing a Stack.

e i

-129-

Appendix A

[y]
o
=]
w
=]

Syspal

The STACK module has two parameters: defining the type of the STACK's
elements ("element_type") and its maximum size ("stack_lim"). These
parameters are passed to STACK when a new STACK is created, They are

supplied by the programmer when the particular STACK variable is declared.

For example,

inventory: stack;

inventory := NEW stack(inven control record, 150);

declares "inventory" to be a STACK, and instantiates it as a stack of
"{aven control_records,” with at most one hundred fifty
inven_control_records. The list of names after the last colon in the

MODULE statement is a list of the interfaces which this module meets.

The NEW operation, invoked by the WNEW statement, initializes the fields
in the representation of the STACK, and returns the external (abstract)

representation of a stack ("EXT(SELF)").

PUSH and POP present no particular surprises. They do illustrate,
however, the exception-handling mechanisms of Syspal. The only way to
terminate the execution of a procedure normally is to exit through the last
statement of the procedure body, having previously assigned to the

appropriate variables whatever values are to be returned, If an

-130-

Appendix A Catoan Syspal

exceptional return is to be performed, the RETURN statement is used, naming
the exception, and specifying the parameters which migzht be returned with

the exception (see EXTRACT and INSERT).

The TS_EMPTY operation is a predicate to allow the user to see if the
stack has any elements. MAKE EMPTY alters the stack to ensure that, if

IS_EMPTY were called immediately after make empty, IS_EMPTY would return
TRUE.

EXTRACT and INSERT allow direct access to the elements of the stack.
If an undefined element 1is accessed, the exception

STACK_NONEXISTENT ELEMENT is signalled, and the current size of the stack

is returned with the exception nanme.

Thne interfaces allow various forms of access to the STACK abstraction
(module). If a strict stack discipline is desired (access to only the top
of the stack), the "stack" or "strict_stack" interface would be used. If a
slightly looser stack discipline is desired, allowing writing only through
PUSH but reading anywhere in the stack, "loose stack" would be used. If no
controls over the use of the stack, but the convenience of a stack, were

desired, the "pseudo_stack" interface would be appropriate.

-131-

Appendix A Catoan Syspal

Note that the "loose_stack" and "pseudo_stack" interfaces are built on
other interfaces. The "ZVISIBLY_EXTENDS" statement specifies that the
named interface should be considered as part of this interface, and that
this interface extends it. It further specifies that all informatiomn im
the extended interface should be explicitly visible to the user. (In
contrast, LEXTENDS would allow the extending interface access to the
operations of the extended interface, but would not allow the user access
to the information in the extended interface unless it was explicitly

given.)

=-132-

References

[1] Almes, G. and G. Robertson. "An Extensible File System for HYDRA,"
Carnegie-Mellon University, Department of Computer Science,
CMU-CS5-78-102, February 1978.

(2] Anderson, T., P.A. Lee, and S5.K. Shrivastava. "A Model of
Recoverability in Multi-Level Systems," IEEE Transactions on
Software Engineering SE-4 (November 1979), pp. 486-494,

[3] Baker, Heary G., Jr. "Actor Systems for Real-Time Computation."

M.I.T. Laboratory for Computer Science Technical Report TR-197,
1978,

[4] Bishop, P.B. '"Computer Systems with a Very Large Address Space and
Garbage Collection." M.I.T. Laboratory for Computer Science
Techaical Report TR-178, 1977.

[5] Bonanni, L.E., and A.L. Glasser. SCCS/PWB User’s Manual. Bell
Telephone Laboratories, 1977.

[6] Dahl, 0.-J., and K. Nygaard. "SIMULA — an ALGOL-Based Simulation

Lanugage," Communications of the ACM 9 (September 1966)} pp.
B7L-h78.

[7] DEC. DECSystem-20 User’s Guide. Digital Equipment Corporationm,
AD-41798, 1978.

[8] Dolotta, T.A., R.C. Haight, and E.M. Piskorik, editors. PWB/Unix
User’s EEEEEL -- Edition 1,0. Bell Telephone Laboratories, 1977.

[9] Eastlake, D., et al. ITS L.5 Reference Manuwal. M.I.T. Artificial

Intelligence Lahuratury Memo AIM-161A4, July 1969.

[LO] Fraley, Robert A. "Syspal: A Pascal-Based Language for Operating
System Implementation," Proceedings of Compcon, Spring 1978.
IEEE, 1978, pp. 32ff.

[11] Glasser, Alan L. "The Evolution of a Source Code Control System,"
preprint of a paper submitted to the IEEE Transactions on
Software Engineering. Bell Telephone Laboratories, 1978.

[12] Goldberg, A., and A. Kay, aditors. SMALLTALK-72 Instruction Manual.
Xerox Palo Alto Research Center, SSL-76-5, 1976.

(L3] HP-GSD. MPE Commands Reference Manual, Second Edition.
Hewlett-Packard Company, Geasral Systems Division, 1973.

=133~

(L4]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

References

Hoare, C.A.R. "Monitors: an Operating System Structuriag Concept,"
Communications of the ACM L7 (October 1974), pp. 549-557.

HISI. Multics Programmers’ Manual Reference Guide. Honeywell
Information Systems, Incorporated, 1975,

IBM. 0S/VSl JCL Services. TInternational Business Machines
GC24-5100-%, 1975.

=====-, 0S/VSl Utilities. International Business Machines

GC26-3901-0, 1977.

Ivie, E.L. "The Programmer’s Workbench —- A Machine for Software

Development," Communications of the ACM 20 (October 1977), pp.
746-753.

Lampson, B.W., and H.E. Sturgis. "Reflections on an Operating
System Design," Communications of the ACM 19 (May 1976), pp.
251-265.

==—=———, "Crash Recovery in a Distributed Data Storage System," to be
published in Communications of the ACM.

Liskov, B.H., et al. "Abstraction Mechanisms in CLU," Communications
of the ACM 20, (August 1977), pp. 564-576.

Liskov, B.H., et al. "The CLU Reference Manual," Computation
Structures Group Memo Number 161. M.I.T. Laboratory for
Computer Science, July, 1978.

Parnas, D.L. "On the Criteria to be Used in Decomposing Systems into

Modules," Communications of the ACM 15 (December 1972), pp.
1053-1058.

Reed, D.P. "Naming and Synchronization in a Decentralized Computer

System," M.I.T. Laboratory for Computer Science Techaical Report
TR-205, 1978.

» and R.K. Kanodia. "Synchronization with Eventcounts and
Sequencers," Communications of the ACM 22 (Pebruary 1979), pp.
115-123,

Ritchie, D.M., and K. Thompson. "The Unix Time-Sharing System,"
Communications of the ACM 17 (July 1974), pp. 365fFf.

=134~

Referencgg

[27] Rochkind, M.J. "The Source Code Control System," IEEE Tramnsactions
on Software Engineering SE-1 (December 1975), pp. 364-370.

(28] Saltzer, J.H. "Topics ia the Engineering of Information Systems."

M.I.T. Department of Electrical Engineering and Computer
Scisnce, 1977,

(29] Schiadler, G.E., Jr., editor. "Unix Time-Sharing System," The Bell
System Technical Journal 57 (July-August 1978), part 2.

[30] Steele, G.L., Jc. "Multiprocessing Compactifying Garbage

Collection," Communications of the ACM 18 (September 1975), Pp.
495-508.

[31] Steram, J. "Backup and Recovery of On-Line Information in a

Computer Utility." M.I.T. Project MAC Techaical Report
TR-116, January, 1974

(32] Thompson, K., and D.M. Ritchie. Unix Programmer’s Manual. Bell
Telephone Laboratories, 1975.

[33] Wadler, P.L. "Analysis of an Algorithm for Real Time Garbage

Collection," Communications of the ACM 19 (September 1975), PP.
491-500.

[34] Wulf, W.A. "ALPHARD: Toward a Language to Support Structured

Programs." Carnegie-Mellon University, Department of Computer
Science, April 1974,

[35] ===—-, editor. "An Informal Definition of ALPHARD." Carnegie-Mellon
University, Department of Computer Science, CMU-CS5-78-105,
February 1978.

[36] ——=—=-=, R. Levin, and C. Pierson. "Overview of the Hydra Operating
System Development," Proceedings of the Fifth Symposium on
Operating System Principles, November 1975.

[37] Wulf, W.A., R.L. London, and M. Shaw. "Abstraction and
Verification in ALPHARD: Introduction to Language and

Methodology." Carnegie-Mallon University, Department of Computer
Science, Junas 1976.

-135=

