MIT/ILCS/TM~163

AXTOMATIC DEFINITIONS OF PROGRAMMING LANGUAGES:
A THEORETICAL ASSESSMENT

Albert R. Meyer
Jospeh Y. Halpern

April 1980

Axiomatic Definitions of Programming Languages:

A Theoretical Assessment®

Albert R. Meyer
Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139.

. Joseph Y. Halpern
Mathematics Department, Harvard University,
Cambridge, Massachusetts 02138.

April 7, 1980

Abstract:

A precise definition is given of how partial correctness or termination assertions serve to
define the semantics of classes of program schemes. Assertions involving only formulas
of first order predicate calculus are proved capable of defining program scheme
semantics, and effective axiom systems for deriving such assertions are described. Such

axiomatic definitions are possible despite the limited expressive power of predicate
calculus.

KEY WORDS: semantics of programming languages, partial correctness assertions,
termination assertions, axiomatic definitions of programming languages.

*This is an expanded version of a paper with the same title which was given at the 7th
Annual Symposium on the Principles of Programming Languages in Las Vegas, Nevada,
January, 1980. This work was supported in part by the National Science Foundation,

Grant No. MCS 7719754 and in part by a grant from the National Science and
Engineering Research Council of Canada.

1. Introduction

The thesis that programming languages can be defined by axiomatic systems for
proving properties about programs originated in [Floyd, 1967] (cf. [London, 1979)); it
has been applied in practice allegedly to define a fragment of PASCAL in [Hoare and
Wirth, 1973], advocated as desirable in [Hoare and Lauer, 1974], and further espoused
and applied in [Dijkstra, 1975, 1976; Schwartz, 1978, 1979]. .

Nevertheless, it is not clear in what precise sense an axiom system for proving
assertions serves to define a programming language. Moreover, the problem of
explaining how axioms serve as definitions has hardly been considered in the literature.
In what follows we consider, following [Greif and Meyer, 1979], two representative
kinds of "before-after" assertions about programs, namely partial correctness assertions
and rermination assertions. We then go on to offer a precise, natural formulation of the
property that an axiom system for deriving such assertions defines the input-output
semantics of a programming language.!

For the sake of definiteness, we insist that the predicates within our assertions be
expressible in a natural mathematical formalism, namely first order predicate calculus
with equality. (This is in contrast to the treatment in [Greif and Meyer, 1979; Blikle,
1979] where predicates were purely set-theoretic, with no attention paid to the existence
or derivation of formulas defining them.)

Our main result (see Sections 4.1, 4.5) is that

first order partial correctness assertions are capable of defining the input-output
semantics of program schemes taken from quite general programming languages.

Moreover, there is an effective procedure for generating enough true partial correctness
assertions to define this semantics.

It remains open whether there is an embodiment of this effective procedure in
terms of a reasonably elegant axiom system. But taking the abstract view that a sound
axiom system is in general nothing other than an effective procedure for generating true
or valid assertions, we conclude that defining programming language semantics by means
of effective axioms for first order partial correctness assertions is indeed possible.

We found this result surprising since, in general, first order predicate calculus is
inadequate to determine uniquely any infinite mathematical structure. For example,
there are nonstandard models of the ring of integers which behave identically to the
standard model with respect to all properties definable using first order language (i.e.

they are elementarily equivalent), but which are nevertheless not isomorphic to the
standard structure. This might lead one to expect that assertions involving only first
order formulas would also be consistent with nonstandard, perhaps pathological,
interpretations of program semantics, but this is in fact not the case.

Despite this theoretically positive conclusion, we regard our study as revealing
just how delicate and questionable is the thesis that languages can or should be given
axiomatic definitions by means of partial correctness assertions. The subtlety of the
proof that first order partial correctness assertions define semantics suggests, for
example, that there is no simple, intuitive way to translate from axioms for partial
correctness to the corresponding input-output semantics, even though this semantics is
uniquely determined mathematically.

In fact, under apparently mild restrictions on formulas and a slight enrichment
of the simplest class of finite flowchart schemes, the partial correctness assertions true

of a program scheme are not adequate to define the semantics of the scheme. (See
especially Section 4.7.)

We also consider termination assertions, which appear to be more tractable than
partial correctness assertions from a theoretical viewpoint. For example, we exhibit a
complete axiom system for first order termination assertions about while-program
schemes and show that such assertions uniquely determine program semantics.

(Essentially the same results as our Theorems 4.1, 5.1, and 7.2, and the technical
Lemmas 4.2 and 7.3 were obtained independently in [Bergstra, Tiuryn, Tucker, 1979]
for the case of deterministic effective schemes, in response to a question posed by the
first author.)

2. Partial Correctness, Termination, and Equivalence

2.1 Definitions from first order logic. A type (or signature) is a set of objects called
symbols. Each symbol is either a function symbol or a predicate symbol and has an
associated nonnegative integer arity. (Variables and constants are simply treated as
zeroary function symbols.) A type is said to be finite if it has only finitely many
function and predicate symbols. A state s, consists of a type 7(s), a domain D, and an
assignment to each function (resp., predicate) symbol in 7(s) of a function (resp.,
predicate) on D of the associated arity. The type of formula F, denoted 7(F), is the set
of function and predicate symbols appearing free in F. (Note that for first order
formulas, all symbols of positive arity necessarily appear free.) A formula F of the first
order predicate calculus with equality is defined to be true or false in a state s (such

that 7(s) 2 7(F)) in the usual way; we write s = F iff F is true in state s. We write
= F to indicate that F is valid, i.e., true in all states.

We extend the class of first order formulas as follows:

Let R denote some binary relation on states, and let F be any formula. Then
[R]F is a formula and s = [R]F iff t = F for all t such that (s, t) € R. Also, <R>F is a
formula equivalent by definition to —[R]~-F. (This is just Pratt’s notation for dynamic
logic (cf. [Harel, 1979]).) A relation R is fidy providing [R]F is equivalent to a first

order formula of predicate calculus with equality whenever F is such a formula. (cf.
[Pratt, 1976].)

2.2 Our results depend on the class of program schemes we consider. The richer the
class, the larger the semantics to be specified, and therefore our positive results take

their strongest form when we allow even more powerful program schemes than are
reasonably realistic.

We consider four classes of schemes which are listed in decreasing order of
generality.

a) Arbitrary schemes are nondeterministic, possibly infinite, flowcharts
(finite, deterministic schemes are regarded as a special case) whose tests may be
arbitrary first order formulas and whose basic instructions consist of simple assignments
of the form "x := term", array assignments of the more general form "f(x) := term" and
random assignments of the form "x := 7. (The random assignment "x := 7" means set x
to any value in the domain (cf. [Harel, 1979]).)

(b) An arbitrary scheme is recursively enumerable if there is an effective
procedure to generate the labels, boxes, and edges of the flowchart. Various weakenings

of recursively enumerable schemes are possible by disallowing array assignments, random
assignments, etc.

() Effective schemes are recursively enumerable schemes with open tests (i.e.
tests consisting of quantifier-free formulas of predicate calculus with equality) and

simple assignments only (i.e. no random or array assignments). (cf. [Friedman, 1971;
Bergstra, Tiuryn, Tucker, 1979].)

(d) A special case of effective schemes are the familiar while-program
schemes, with the following BNF-description:

<program>:=

<simple assignment> | <program>;<program> |
if <open test> then <program> else <program> fi |
while <open test> do <program> od.

The type 7(a) of an arbitrary scheme a is the set of function and predicate symbols
appearing in the instructions and tests of the scheme.

2.3 Definition: If a is an arbitrary scheme, then R, is the initial state - final state
relation defined by 4 ie. R,={(s,t) t is a state which is a possible result of
performing a starting in state s}. Let Ry(s) = {t| (5, t) € Rg. When there can be no
confusion, we will use a instead of R ; e.g. we will say []F instead of [RF.

2.4 Definition: Arbitrary schemes @ and b are equivalent iff R, = Ry; that is, they
always take an initial state to equal sets of final states.

2.5 Partial Correctness and Termination: A partial correctness (resp., termination)
assertion consists of a pair of formulas F,G and a program @, and is written F{a}G
(resp., F(a)G). The assertion is true iff F = [RJG (resp, F = <R>G) is a valid
formula. Thus F{a}G is true iff, whenever state s satisfies F and state t is a possible

result of performing q starting in state s, then t satisfies G. Similarly, F(a)G is true iff,
whenever s = F there exists a t such that (s, t) € Ryand t = G.

The first order partial correctness (resp., termination) theory of a, denoted PC(a)
(resp., T(a)) is {(F, G) | F,G are first order formulas of predicate calculus with equality
and F{a}G (resp., F(a)G) is true}

For any type 7, we let PC{a) denote {(F, G) € PC(a) | 7(F) ¢ 7 and 7(G) ¢ 7.

We observe trivially that
2.6 Lemma 1If a and b are equivalent schemes, then PC(a) = PC(b) and T(a) = T(b).
2.7 Lemma: [Pratt, 1976] If a s a finite loop-free scheme, then a is tidy. Moreover, if
@ has only simple assignments and F is quantifier-free, then [q]F is equivalent to a

quantifier-free formula.

2.8 Definition: If a5 i=1,2, 3, .. is a set of schemes, then Uja; denotes the scheme
which is the nondeterministic union of the aj i.e., Ry;q; is equal to UiRa,- :

It is now easy to see that

2.9 Lemma Any scheme a is equivalent to a union of finite, loop-free (and.hence, by
Lemma 2.7, tidy) schemes, such that each finite scheme uses only the instructions and
tests which appear in a. Moreover, if a is recursively enumerable, we can effectively
generate the finite schemes from (an index for) a.

3. Axiomatic Definitions of Language

3.1 The axiomatic definitions of programming languages proposed in the literature
consist of systems for deriving assertions about classes of program schemes involving
subroutine calls with parameter passing to other schemes. In nearly all cases (languages
with a pointer data type are an exception; cf. [Janssen and van Emde Boas, 1977]), the
programs are equivalent to arbitrary schemes of various types. We interpret the claim
that such an axiom system defines the programming language semantics as meaning that
enough assertions are provable to distinguish between inequivalent programs. (By
Lemma 2.6, we cannot expect to make distinctions among equivalent programs using
partial correctness or termination assertions.) More exactly, we offer the following

Definition: Let & be a set of true partial correctness assertions, and &/ be a set
of arbitrary schemes. Then & defines ./ providing that for all inequivalent schemes g,
b e & there is an assertion in & about one of @ or b which is not true of the other.
That is, let PC g(a) = {(F, G) | F{a}G € &}. Then & defines < if

(PC g{a) - PC g4b)) U (PC g(b) - PC ga)) = 2.2
3.2 Example:

Let NOP be the program which halts without changing anything, and let q, be the
following program scheme:

if (y = x v z = f(x)) then NOP
else while y = z do z := f(f(z)); y = f(y) 0d;
y = x; z = f(x) fi

It is easy to see that a, when it halts, behaves like NOP, namely, it has no
effect. However, under some interpretations a, does not halt, for example if x = y = 0,

z =1, and f is the successor function on the integers, so NOP and q, have different
meanings.

Take Open to be the set of all true quantifier-free partial correctness assertions.
We will show in Appendix A that

3.3 Lemma: PCOper(ap) = PCpen(NOP),

Thus it follows that quantifier-free partial correctness assertions do nor define
while-program schemes. On the other hand, if we allow quantifiers we can distinguish
a, and NOP. Indeed, the pair of formulas

vz(f(z) = x) A Vivy(t = y = £(t) = f(y)),
WEW

is in PC(a,) but not in PC(NOP), since if a state s satisfies the former formula, q, will

diverge on s. In fact, Theorem 4.1 shows that first order partial correctness assertions
define the semantics of while-program schemes. :

4. Defining Semantics By Partial Correctness Assertions

In this Section we prove our main results about partial correctness assertions.
We show in Theorem 4.1 that despite the general inadequacies of first order predicate
calculus, the set of true partial correctness assertions defines the semantics of recursively
enumerable schemes. In Theorem 4.5 we show that for effective schemes we can find a
recursively enumerable set of first order partial correctness assertions which will define
the semantics.

4.1 Theorem: For recursively enumerable schemes b, ¢ of finite type, if & and ¢ have
the same first order partial correctness theories, then b and ¢ are equivalent.

The proof of Theorem 4.1 rests on two lemmas. The first is purely model
theoretic, and reveals that in a certain sense first-order formulas are closed under
infinite recursively enumerable conjunctions. (This lemma, discovered independently by
the authors, turns out to be a refinement of a classical result [Kleene, 19521,

4.2 Lemma Let Fy, Fj, .., be any recursively enumerable sequence of first order
formulas of finite type 7. Then one can effectively construct a first order formula G
such that i

a) = G = AF;, and

b) if s is a state with infinite domain and s = A;F;, then there is an expansion* s’
of s|, (the restriction of s to type 7) such that s’ = G.

The idea of the proof is to introduce new symbols +, * and include in G axioms
involving these new symbols which define a (possibly nonstandard) copy of the ring of
integers. Then we implicitly define a predicate T which acts like a truth predicate, and
make sure (the Godel number of) each F; satisfies T. The proof is deferred to
Appendix B.

4.3 Lemma. If b and ¢ are arbitrary schemes of finite type and such that Rp - R, = 2,
then there is a first order formula H such that [¢JH A —[b]H is satisfiable.

Proof: Suppose (s, t) € Rp - R Let xy, . Xpy fyy vy £y be the free variables
and functions mentioned in b and c¢. Choose fresh variables and functions x;’, ..., x5,
f;s s fiy’ and define a state s’ in which x,, ..., Xp f1» - fy have the same respective

values as they do in s, while x;, ..., x5, f}’, .., f;;” have the same respective values they
do in t.

Let H be the formula
(X = XA A xg = x5 A VE(E(2) = £'@) A A f(2) = £,/ (@).
Then s" = [c]JH A —[5]H, as the reader may verify. O

Proof of 4.1: Suppose b and c are inequivalent. Without loss of generality we
may assume Ry - R, = 2.

By Lemma 4.3, we have a formula H for which there is a state s such that
s = [c]H A =[bJH.
Notice that this is equivalent to the assertion that [c(JH{s}H is false. Of course
[cJH{c}H is trivially true for all ¢ and H. Thus the pair of predicates ([c]H, H) will
serve to distinguish the partial correctness theories of b and ¢. The only difficulty

comes from the fact that [c]H may not be equivalent to a first order formula.

However, by Lemmas 2.7 and 2.9, ¢ is equivalent to Ujc;, where each ¢; is tidy.
Hence [c]JH is equivalent to A{{c;]H. Taking F; to be [¢;JH (which is first order since ¢;
is tidy), by Lemma 4.2(a) we can effectively construct a first order G such that

=G =[H

Moreover, if s = [c]H and s has an infinite domain, Lemma 4.2(b) says we can find an
expansion of s to s’ such that s’ = G. Then (G,H) ¢ PC(c) - PC(b).

If s has finite domain our task is even easier. For if 7 = 7(6) U 7(¢) then we
can find a first order formula ISOg such that §' = ISOy iff s7; is isomorphic to s|,. (So
s = ISOq iff s and 5" look the same as far as & and ¢ are concerned.) Then clearly we
have (ISOg, —ISO;) € PC(c) - PC(b), since (s, t)eRp-R,. O

4.4 Remark: The hypotheses that b, ¢ be recursively enumerable and of finite type are
both necessary, as we show in Appendix C. O

Theorem 4.1 involves the set of all true partial correctness assertions, which is
not recursively enumerable even in the the case of while-program schemes (in fact, it is
H?,_ complete [Harel, Meyer, Pratt; 1977]). This leaves open the question of whether
some, necessarily recursively enumerable, set of partial correctness assertions derivable
from an effective axiom system can define semantics. But the proof of Theorem 4.1 is
effective except for the portion concerning the behavior of schemes on states with finite
domain. With a slight restriction on the class of recursively enumerable schemes, for
example restricting to effective schemes will suffice, we can ignore the states with finite
domain and give an affirmative answer to the question of effectiveness.

4.5 Theorem: There is a recursively enumerable set of first order partial correctness
assertions &’ which defines the semantics of effective schemes and, a fortiori, of while-
program schemes.

Proof. All the essential ideas of this proof are already in the proof of Theorem
4.1. For any program c¢ and sentence H, let Gy,c be the formula from the proof of
Theorem 4.1 such that

= Gy e = AjleH.
(where again c is equivalent to Ujc; and each c; is tidy.)
Then Gy Ac}H is always true.

Take 7 = {GH’C{C}H | H is a first order formula, ¢ is an effective scheme}.
Then 7 is recursively enumerable, since the proof of Lemma 4.2 actually shows how to
construct Gy . effectively from H and c. Moreover, & defines the semantics of
effective schemes. To see this suppose & and ¢ are inequivalent, and (s, t) e Ry - R
Without loss of generality we can assume s has an infinite domain. (Otherwise take s’

to be an extension of s with an infinite domain. Then there is a corresponding
(s, t) € Rp - R The crucial point here is that since & and ¢ are effective they only
have open tests and simple assignments, so adding new elements to a domain will not
affect the truth value of the tests). Take the H from Lemma 4.3 such that

s = [cJH A —[6]H.
Then the proof of Theorem 4.1 shows
(GH,o H) € PC gAc) - PC#(b). O

4.6 Remark: We can extend Theorem 4.5 to larger subclasses of recursively
enumerable schemes, in particular to while-program schemes which are enriched to
include random and array assignments and first order tests. A technical complication
arises with the introduction of first order tests and random assignments. Namely, we
can no longer assume, as we did in Theorem 4.5 that we can find an s with in infinite
domain such that s = —[6]JH A [cJH. The details are left to Appendix D. O

In Theorem 4.1 we showed that if b and ¢ are inequivalent then PC(6) = PC(c).
In the proof we used the formulas G and H from Lemmas 4.2 and 4.3, which made use

of new symbols such as +, , T, f;, x;, etc. which did not appear in either & or c. Can
we still find a distinguishing partial correctness assertion if we restrict ourselves to
7(b) U 1(c)? In general the answer is no, as the following theorem shows.

4.7 Theorem: Let 7 be a type with only finitely many function symbols of positive
arity, finitely many predicate symbols, infinitely many variable symbols, and at least two
function symbols of arity > 1. Then there are inequivalent recursively enumerable
schemes b, ¢ of finite type such that 7(b) U 7(c) ¢ 7 and PC(b) = PC(c).

Construction: Let f, g, f; ..., fiy Py ...,' P, be the function and predicate symbols

of 7 with m, n > 0, where fj is rj-ary, Pj is sj-ary. For convenience, let us assume f
and g are unary functions.

Let Trivial (x;, .., xy) be the following predicate (where N = max {ry, .., Iy §p»
vy Sq)):

Pl(xl, sasy xSl) A vee A Pm(Xl, seey xsm) A
fl(xl, ey xrl) = xl N S fm(xl, ery xrm) =X N

fg(x))) = x; A g(f(x%))) = x;.

10

Then let b = NOP and let ¢ be defined as follows
if x; = y v.. v xy =y then NOP
else xp =% sxy =%
if —Trivial(x;, .., xy) then x, =y; . xy =y
else (x, = f(x,);
while x, = x; do x, := f(x,) od;
X = yoas ay =) FI) M

The program scheme ¢ nondeterministically checks to make sure that
X} =X =.=%xy =Y, Py .., Py are all trivial predicates, By .5 fm are all projection
on the first coordinate, f and g are inverse functions, and f has no "loops" (i.e.
fk(x) = x for any x). If any of these conditions are not met, ¢ acts like NOP; if they
are all met ¢ diverges. Hence R, ¢ Rypp. But R, = Rypp since if we take s to be
the integers, with f successor and g predecessor, and x; = .. = N =Y =0, then
(s,s) e Rypop- R~ Finally, it is not hard to show (see Appendix E) that
PC(NOP) = PC (c).

In Section 7 we will take a more detailed look at the whole question of extra
symbols. O

S. Defining Semantics By Termination Assertions

Termination assertions can also be used to define a class of program schemes,

and they are, in general, a more powerful tool for doing so than partial correctness
assertions, as the following theorems show.

S.1 Theorem: The set of all true termination assertions defines the semantics of
arbitrary schemes of finite type.

Proof: Suppose & and ¢ are inequivalent schemes of finite type. Without loss of
generality, suppose (s, t) € Rp - R. By Lemma 2.9, b is equivalent to U;b;, where each
b; is tidy. Hence there must be some b,-o such that (s, t) € Rbia - R By Lemma 4.3,

there is a state s” and a formula H such that s’ = -w[b,-o]H A [cJH, or equivalently

s = <bj >~H A =<c>-H.

11

Thus (<b,'o>--H, -H) ¢ T(c), but we trivially have (<b,°0>--H, -H) ¢ T(4). O

S.2 Remark: The hypothesis of finite type is necessary. The programs b and ¢ of
Appendix C.1 demonstrate this.

As the example in 3.2 showed, the set of true quantifier-free partial correctness

assertions does not define the semantics of the class of while-programs. But termination
assertions will do the job.

5.3 Theorem: The set of all true quantifier-free termination assertions defines the
semantics of the class of arbitrary schemes of finite type with quantifier-free tests and
simple assignments only (i.e. no array assignments or random assignments), and, a
fortiori, defines the semantics of effective schemes and while-program schemes.

Proof: Let xq, .., Xy be the variables of 7(6) U 7(c). As in Theorem 5.1, we
can assume without loss of generality that we have (5, t) € Rb,- - R~ Since b uses only
0

simple assignments, only %, .., X, could have been changed by & in going from s to t
(no functions could have been changed since there are no array assignments).

Thus, H from Lemma 4.3 can be simplified to H', where H' is
(X =% A A Xy =Xy
and we still have, as in Theorem 5.1,
(<b,-o>—vH', -H") e T(b) - T(c).
But by Lemma 2.7, <b,-0>-uH' is quantifier-free, so we are done. O

S.4 Remark: The hypothesis in Theorem 5.3 that there be only simple assignments is
necessary, as we show in Appendix F.

6. A Complete Axiomatization For First-Order Termination Assertions

6.1 Consider the following deductive system for termination assertions about while-
program schemes. (In what follows F, G, and H denote first order formulas.)

12

Axiom Schemes:
TAl(a). F(NOP)F.
TAL(b). F¥(x = t)F, where t is a term and F¥ is the formula obtained from F by

uniformly renaming all bound variables in F which occur in t, and then replacing all
free occurrences of x in F by t.

TA2. —FAG(while F do « 0d)G.

Rules:

TA3. F(a)G, G(b)H ~ F(ab)H.

TA4(a). G(a)H ~ FAG(If F then aelse 5 fi)H.

TA4(b). G(a)H ~ —=FAG(if F then & else o fi)H.

TAS. F(a)G, G(while E do ¢ 0d)H ~ FAE(while E do « od)H.

TA6. F(a)G - H(a)G whenever = F = H (substitutivity of equivalent formulas).
TA7. F(a)G - FAH(&)G (restricted rule of consequence).

TA8. F(a)H, G(a)H - FVG(a)H.

6.2 Theorem: The quantifier-free termination assertions derivable from quantifier-free
instances of the axiom schemes TAI-8 are precisely the quantifier-free termination
assertions true for while-program schemes. That is, the axioms TA1-8 are complete for

quantifier-free termination assertions.

Proof. The soundness of TAI-8 should be clear. We now prove completeness
by induction on the structure of while-program schemes.

a) Suppose F(NOP)G is true. Then = F= G, so = (F A G) = F. Hence we
have:

1 ~ G(NOP)G , TAl(a)
2 ~ (FAG)(NOP)G TA7
3. ~ F(NOP)G (since = (F A G) = F) TA6

13

(b) Suppose F(x := t)G is true. Then=F = G}, so
=E(FAG))=F.
Using TA1(b), TA7, and TA6, we get = F(x = t)G.

(¢) Suppose F(ab)G is true. Since @ and b are effective, they are respectively
equivalent to U;a;, Ujbp and each a;, bj is tidy. Since F(@b)G is true we have

e Vi,j(F = <a;,‘bj>G).
By compactness it follows that there exist finite sets I, J such that
B Viel je j(F= <ai.‘bj>G).

Thus F(a)(vjej(<bj>G)) is true. And clearly (Vj€1(<bj>G))(b)G is also true. So, by
the induction assumption

- F(a(vjes(<5pG))

and
= (Vies(<bpG(B)G.

Then using TA3 we get - F(gb)G.

(d) Suppose G(if F then a else & fi)H is true. Then FAG(a)H and —FAG(b)H
must both be true, so, by the induction assumption, derivable from TA1-8.

Using TA4(a) and TA4(b), we get

~ FAG(if F then a else 5 fi)H

and
~ —~FAG(if F then a else & fi)H.

Using TAS, we get
~((FAG) V (=FAG)) (if F then qelse b fi) H

and hence (since ((FAG) V (=FAG)) = G), from TA6 we have

14

~ G(if F then q else 5 fi)H.

(e) Suppose G(while F do @ 0d)H is true. For any formula of first order
predicate calculus F, let F'? denote the program scheme

if F' then NOP else (while x = x do NOP od) fi.

Note Rpg={(t,t)] t = F} and F? is tidy; in fact <F?>G is equivalent to F'AG.
Again, we can assume q is equivalent to Uja;, where g; is tidy. Let ./ be the set of all

finite sequences of natural numbers, and for s = <81, w Sp> € S define as) = F?; ag,;

- F?% ag ; -F?. The program scheme als) is tidy since F?, -=F? are, and each a; is. By
n
hypothesis

= G = Vg s<dShH.
By compactness there is a finite set S ¢ ./ such that
= G = Vgeg <dSHH. *)
Let [s| denote the length of the sequence s. We prove by induction on Is| that
~ <adlShH (while F do ¢ 0d) H.
If | = O, then = <al¥5H = <~F?>H = -FAH, and by TA2
~ (=FAH) (while F do ¢ od) H.
Ifs=<s, y5p>n21lets = <sp .. 5
Now <a5H (a) <af¥H is true, so by the main induction assumption,
- <alShH (a) <dSHH.
And by our induction on sl
~ <alS/>H (while F do 4 od) H.
Hence by TAS, TA6, and the fact that = (F A <afShH) = <afS/hH, we have

+ <af$>H (while F do 4 od) H.

15

Now using TAS8, we get

- (Vges<a5H) (while F do a od) H.

So by (*), TAS, TA7,

~G(whileFdoeod)H O

It is now immediate from Theorem 5.3 that

6.3 Corollary: The quantifier-free theorems of the axiom system TAI1-8 define the
semantics of while-program schemes.

Note that the proof of Theorem 6.2 also goes through in the case of the full
first order language. So we get

6.4 Theorem: The first order termination assertions derivable from first order instances
of the axiom schemes TA1-8 are precisely the first order termination assertions true for

while-program schemes. That is, TAl1-8 are complete for first order termination
assertions.

6.5 Remark: Theorem 6.4 continues to hold if we enrich the class of primitive
instructions to include both random and array assignments, and indeed, any tidy
primitive instruction, with the appropriate strengthening of TAl(b), (namely, to now
read <R 4>F(4)F for A primitive). We may also allow first order tests in the while-
statement.

Note that by allowing random assignments we are dealing with a highly
nondeterministic class of program schemes, which illustrates the point that completeness
of the above axiom system does not depend on the property of determinism. O

7. The Role of Extra Symbols

Although Theorem 4.1 showed that it is always possible to distinguish
inequivalent recursively enumerable schemes by partial correctness assertions, Theorem
4.7 showed that in general one must use symbols that appear in neither scheme in order
to do so. In this section we investigate the role of extra symbols more carefully, both in
partial correctness and termination assertions.

16

Basically we observe that no extra symbols, not even extra variable symbols, are

needed as long as first order tests and random assignments do not appear in programs
(Theorem 7.2).

Two further results of purely technical interest are given. Allowing random
assignments or first order tests makes extra symbols of positive arity necessary; extra
variables do not suffice (Theorem 7.4). Finally, if array assignments are disallowed,

then termination assertions do not require extra symbols aside from variables (Theorem
7.5), although in contrast partial correctness assertions do.

7.1 Definitions: We will say 7 is a sufficiently rich type if it contains at least one
function or predicate symbol of arity > 2 or at least two unary function symbols. The
type 7 is a weak extension of 7 if 7 = 7U {a finite number of variable symbols}.
Finally, 7 has enough variables if it has at least one more variable symbol than the
maximum arity of the function symbols and predicate symbols appearing in it.

Our major result is a positive one:

7.2 Theorem: For inequivalent effective schemes q, b, even allowing array assignments
as primitives, if 7(a) U 7(b) = 7 is sufficiently rich, then PC,(a) = PC(b) and
Ta) = T/b). That is we do nor need extra symbols in order for either partial
correctness assertions or termination assertions to distinguish inequivalent programs.’?

Outline of Proof: We show that under our hypotheses we can replace the G and
H of Lemmas 4.2 and 4.3 by new formulas, say G' and H', that perform the same
function without using extra symbols. Using this G’ and H' instead of G and H in the
proofs of 4.1 and 5.1 we get our desired result.

Replacing the extra symbols in G and H is carried out as follows:

It is easy to show that we can replace all the extra symbols occurring in G and
H by one predicate symbol of sufficiently large arity. Since 7 is sufficiently rich, we can
assume without loss of generality that it contains a binary predicate symbol, say R.
Then using R, it is possible to write a first order formula which implies the existence of
"new" elements which are not the values of terms of type 7. The formula asserts that
the relation given by R between these new elements and the old ones serves to encode
the large arity predicate on the old values.

This idea then leads to the following variation of Lemma 4.2:

17

7.3 Lemma Let F, Fy, .., be any recursively enumerable sequence of open formulas

of finite type 7. If 7is sufﬁcxently rich, then one can effectively construct a first order
formula G such that

@ G crn
(b) = G = AFj, and

() if s is a state such that s = AF;, then there is an extension’® " of s such
that s’ = G. '

The details of the proof are omitted. O

As we already noted, Theorem 4.7 shows that if we allow either random
assignment or first order tests, Theorem 7.2 fails in the case of partial correctness
assertions. In fact, for schemes using random assignment or first order tests it is the
case that extra symbols of positive arity are required for termination assertions as well as
partial correctness assertions, as the following strengthening of Theorem 4.7 shows.

7.4 Theorem: For any finite type 7 with enough variables and at least one function
symbol of positive arity, there exist inequivalent recursively enumerable schemes @, &
such that 7(a) U 7(b) = 7 and for any weak extension 7 of 7,

PC.(a) = PC,(b);

and
Ty(a) = T ().

Outline of Construction: The construction is an amalgam of the constructions
used in Theorem 4.7 and Appendix F. We can assume without loss of generality that
we have a unary function symbol f in 7. We define a flowchart switch which generates
f0(x) and fM(x) for some nondeterministically chosen integers m # n and then, using
array assignments, switches the values of these two terms. Using random assignments as
in the proof of Theorem 4.7, we also define a finite flowchart trivial which diverges on
states in which every predicate and every function besides f is trivial, and acts like NOP
otherwise. Then let a be switch U NOP and b be switch U trivial.

Again, we omit the remainder of the proof. O

Curiously, if array assignments are disallowed, then termination assertions

18

without any extra symbols aside from variables can distinguish inequivalent schemes --
even arbitrary schemes.

1.5 Theorem: Suppose a b are inequivalent arbitrary schemes without array

assignments. Then we can find a weak extension r of 7(@) U 7(b) such that
Tr(a) = T (b). |

Proof: The proof is just that of Theorem 5.3, except that since b’.o might now

have random assignments, <b,-o>-1H is not in general quantifier-free (note that
<x := P>F is equivalent to 3xF). O

Note that the proof of Theorem 4.7 shows that partial correctness assertions do
not share the property of termination assertions given above in Theorem 7.5. This
provides another instance illustrating the somewhat nicer theoretical properties of
termination as opposed to partial correctness assertions.

8. Conclusion

We have given a rigorous formulation of the thesis that programming languages
can be specified axiomatically using before-after assertions. We examined this thesis in
detail in the context of first order assertions about program schemes, and concluded
that in theory there is an axiomatic system for effectively deriving enough assertions to
define the behavior of any effective scheme.

We interpret the technical complication of the proofs of these positive resuits for
the case of partial correctness assertions as suggesting that language specification by
such assertions is likely to be awkward in practice. Termination assertions fare
somewhat better in two respects: the proofs are straightforward, and these assertions
have a simple complete axiomatization for while-programs. Another significant
advantage of termination in contrast to partial correctness assertions is that the former
can be viewed as a kind of operational specification - with the proof of a termination
assertion about a program corresponding to steps in a computation of the program. We
shall not elaborate on this observation here, but we expect this property would make a
specification using termination assertions much more useful to programming language
implementors. (It would be interesting to examine extensions of the termination axioms
to more realistic kinds of program schemes than while-schemes.)

The property of completeness plays a smaller role in this paper than in many
others on proving assertions about programs (eg. [Cook, 1978; Apt, Bergstra, and
Meertens, 1979]). The reason is simple - the property of completeness of an axiom

19

system and the property of its yielding enough assertions to define semantics are
independent. As we noted just before stating Theorem 4.5, no complete effective axiom
system for partial correctness assertions even about while-programs is possible, yet a
recursively enumerable set of such assertions does define semantics. Conversely there
are also cases, e.g., using quantifier-free formulas, where the complete set of true
assertions about some class of programs does not define semantics.

Some comments regarding our use of first order predicate calculus must be made
here. A reasonable rejoinder to our concern about the technical subtleties arising from
predicate calculus is that one could choose instead some richer logical language such as
weak second order predicate calculus or first order arithmetic (augmented with the
uninterpreted function and predicate symbols appearing in programs). For these richer
logical languages the subtleties disappear; it is easy to show that partial correctness
and/or termination assertions involving formulas from these languages define input-
output semantics. Indeed these richer logical languages are the ones implicitly used in
most of the literature on axiomatic definitions of programming languages.

But on adopting richer logical languages, one pays a high price in terms of
effective proof procedures. The tautologies of weak second order predicate calculus and
first order arithmetic augmented with uninterpreted function symbols are of quite high
degree of undecidability (H%). Since one of the central aims of axiomatic programming
language definitions is to ease the generation of proofs about programs, it is obviously
important to retain constructive proof properties such as those of predicate calculus.

Further, we observe that with minor exceptions the use of arithmetic formulas in
the literature on axiomatic programming languages arises only in the specification of
arithmetic primitive operations in programs. Above the level of primitive operations
(for example in the specifications of sequencing constructs or subroutine calls) the
arithmetic properties of the primitives are not used. Thus the specifications fit within
the framework of predicate calculus and uninterpreted flowchart schemes considered
above, and we therefore believe our first order framework is the most appropriate one
for assessing the thesis that programming languages can be specified axiomatically.

20

APPENDIX A

Proof of Lemma 3.3: We want to show that F{NOP}G iff F{a,}G for F, G
quantifier-free. :

Note Rypp - R“o ={&sls=x=yAz=fx) A (x, f(x), f2(x), .. are all
distinct)}. Since Rao c Rypp we have that PC(NOP) ¢ PC(a,). Now suppose, in
order to obtain a contradiction, (F, G) € PC(ay) - PC(NOP), where F and G are
quantifier-free. Then there must be a state sp such that (sp, s9) € Rypp - Rao and
so = F A-G.

Now the truth of a quantifier-free formula in a state s only depends on the

values in s of a finite number of terms in the Herbrand universe. More precisely, we
mean the following: :

Define a partial state to be a domain D and an arity-respecting assignment of
partial functions and predicates on D to function and predicate symbols; (cf. [Meyer
and Winklmann, 1979]). For a partial state s and a formula H, we say s satisfies H and
write s = H iff t = H for every total state t which extends s°. Then it can easily be
shown by induction on formulas that for any state s and quantifier-free formula H, if
s = H then there is a partial state s' with finite domain such that s extends s* and
s" = H. Going back to our proof, let s; be a partial state with finite
domain such that s, extends s; and s; = FA-G. Since (sp» 5p) € R NOP - Rao, it must

be the case that so = (x, f(x), f2(x), .. are all distinct), Let ng = max{n|
fi(x) e Dom(s;)}. Finally, let t be a state which extends s; such that
t = fo*1(x) = flo(x). Then t = FA=G, but (, t) ¢ Rg, contradicting F{q,}G. O

2l

APPENDIX B

Proof of Lemma 4.2: For ease of notation, we will assume that the only
symbols that occur in the type 7 are one binary predicate symbol R, a unary function
symbol f, and variables x; and x,. We augment 7 by adding new binary function
symbols +, *, and 7 (which will be a coding function), a binary predicate symbol T
(which will be the truth predicate), a unary predicate symbol N (which will be
interpreted as the natural numbers), constants 0 and 1, and a countable supply of
variables x3, x4, ... We call this augmented type 7.

Without loss of generality, the Fj’s are built up from A, 1, =, and 3, and x,,
Xg, ... (with the free variables of each Fj contained in {x;, x,}.) Further we may assume

that the arguments of R and f are always variable symbols, and there is always a

variable symbol on the left hand side of = For example R(f(f(x;)), x;) could be
rewritten as:

3x33%, (R(%4y %) A x4 = £(x3) A %3 = £(x))

We can attach a G&del number to each formula of type 7 in some standard way.
In what follows, we will use the notation [F1 to denote the Godel number of formula F
and ¢y, to denote the formula F such that TF1 = n. The hypothesis that F;, Fy, Fj, ...

is a recursively enumerable set of formulas means that fF, TFy, TF3), .y is @
recursively enumerable set of integers.

Let AX be a finite set of axioms true of arithmetic and sufficiently strong to
allow representability of partial recursive functions (cf. [Machtey and Young, 1978; pp.
123 - 128)); i.e. for any partial recursive function g : NK — N, we can effectively find a

formula Fg(xl, s XKy Z) of type 7' such that_
= AX = [(Fg(xlv ey Xy Y) A Fg(x]’ sy Xy z)) = : d s z]
and for all natural numbers ny, .., ng, m, if g(n;, .., ny) = m then
EAX = Fg(nl, vy M), M)
(where we let k denote (1 + (1 + ... (1 + 1) ..) (k times))

By definition of G&del numbering one can effectively decide, given m, i, j € N,
whether m =R(x;, xj)'l. Thus, by recursive representability of partial recursive
functions, we can effectively find a formula PRED, and similarly formulas EQ, FUN,

22

CON, NEG, EX, and ISF, all of type 7, such that if i, j, m, n, and p are integers and
s = AX then:

oot

. s = PRED(m, i, j) iff m =R(x;, xj')k
2. s = EQ(m, i, j) iff m =0x; = %ils
s = FUN(m, i, j) iff m =rx; = f(xj),

d

4. s = CON(m, n, p) iff n and p are the Godel numbers of formulas and
m =Tg, A ¢,

W

. s = NEG(m, n) iff n is the Godel number of a formula and m = -¢,]1,

o

s = EX(m, i, n) iff n is the Gédel number of a formula and m = 3x;¢,1,

7. s = ISF(m) iff m =TF;1 for some i. (Note that ISF(m) says that m is the Gddel
number of one of the formulas in our recursively enumerable set.)

Let the formula G be the conjunction of the following ten clauses. (For
readability we use q, r, x, y, etc. as variables instead of x;, Xy,)

1. AX.

This ensures that if s = G, s is a (possibly nonstandard) copy of the integers under
addition and multiplication. |

2. N(0) A vq(N(q) = N(q + 1)).

The subset of Dom(s) which satisfies N will also be a (possibly nonstandard) copy of
the integers.

3. vtvg(N(q) = vuat' (vr{((N() A 1 = @) = n(t, 1) = n(t, 1)) A =(t, q) = u)).

This says that the projection function has the property that for any t, u, and integer
q we can find an t’ whose projections agree with t for every integer r # q. Moreover,
n(t, q) = u.

Clauses 4 - 9 ensure that the truth predicate T acts properly on formulas:

4. vxvtvqvr{(PRED(x, g, r) A N(x) A N(q) A N(r)) = (T(x;t) = R(n(t, @), 7(t, 1)))].

23

5. vxvtvqVvr[(FUN(x, q, r} A N(x) A N(q) A N(1)) = (T(x, t) = n(t, @) = f(n(t,)}
6. VxvtvqVr{(EQ(x, q, 1) A N(x) A N(q) A N(r)) = (T(x, t) = n(t,) = n(t, 1))].

7. vxvtvyvz[(CON(x, v, z) A N(x) A N(y) A N(2)) = (T(x, t) = (T(y, t) A T(z,)}
8. vxVtvy[(NEG(x, y) A N(x) A N(y)) = (T(x, t) = =T(y, 1))].

9. vxvtvqvy[(EX(x, ¢, ¥) A N(x) A N(@) A N(y)) = (T(x, t) = 3(Vr((N() A 1 = q)
= n(t, 1) = n(t, 1)) A T(y,)]

Finally, clause 10 ensures us that if s = G then all the formulas in the recursively
enumerable set Fy, Fs, ... will be true in s:

10. vxvt((N(x) A ISF(x) A m(t, 1) = x; A m(t, 2) = x5) = T(x, t)).

Claim I: Suppose s = G and F(xil, b xin) is a formula of 7 whose free variables are
contained in {xil, i xin}. Let m =IFl, and suppose a € Dom(s). Then s = F(n(a, i,),
.y F(m(a, ip)) iff s = T(m, a).

(There has been a small abuse of notation here since the domain element a is
not a symbol of 7’ and hence should not appear in the body of a formula. Technically,

instead of s = T(m, a) we should have written sy = T(m, y), where s}, denotes state s

modified so that the value of variable y is a. Similar comments apply to all other
formulas in which elements of Dom(s) appear).

Proof: Suppose s = G. The cases where F is of the form R(x;, xj), Xj = Xj
xj = f(xj, x), F{AF,. or —F are easily taken care of by clauses 4 - 8 in the definition of
G. The only difficulty occurs when F is existentially quantified. For notational

convenience, let us assume that F has only one free variable x; and is of the form
BXjH(xi, Xj).

Let m =TFl, m' =TH1. Note we thus have
1. s = EX(m, j, m').

Suppose a € Dom(s) and s = F(n(a, i)), or equivalently s = axjH(rr(a, i), xj).
Then for some b € Dom(s),

2. s = H(m(a, i), b).

24

By clause 3 in the definition of G, there is a ¢ ¢ Dom(s) such that
3. sEVI((N(r) A1 =j)= n(c, 1) = n(a, 1)) A (e, j) =b.
In particular we have
4. s&= mw(c, i) = m(a, i) A n(c, j) =b.
Thus, from 2 and 4 it follows that
3. s = H(w(c, i), n(c, j)).
By the induction hypothesis,
6. s = T(m', c).
Finally by 1, 3, 6, and clause 9 in the definition of G, we have
s E T(.m, a).

For the converse suppose a € Dom(s) and s = T(m, a). By clause 9 again, there
is some a' € Dom(s) such that s = n(a, i) = n(a, i) A T(m', a). By the induction
hypothesis we have, ‘

s = H(n(a', i), n(a, j)).
Thus it follows that
5k axjH(vr(a', i), x]')
or equivalently,
s = F(m(a, i)). O

Claim 2: For any formula F(x;, xy) with free variables contained in {Xy Xp}, if
m =TF1 and s = G, then

s = Fiff s = vt((n(t, 1) = x; A m(t, 2) = x,) = T(m, t)).

Proof: Immediate from Claim 1. (Note that clause 3 in the definition of G
ensures that we can always find a t such that s = n(t, 1) = xg A m(t,2)=x.) O

23

Claim 3: = G = NF;.

Proof: If s = G and m =TF;], we must have s = ISF(m). Then by clause 10 of
the definition of G, it follows that

s = Vt((m(t, 1) = X At 2) = 32) = T(m, t)).

Since the only free variables of F; are contained in {x;, x,}, from Claim 2 we
have s = F;. And thus it follows that s = A;F;. O

Claim 4. If s = AF; and Dom(s) is infinite, then there is an expansion s of s|,
to type 7 such that s’ = G.

Proof: By the upward Lowenheim-Skolem Theorem, AX has a model of the
same cardinality as s, so there is no problem expanding s|, to an s’ such that s’ = AX.

Let N be true only on the integers in Dom(s); then s’ satisfies clause 2 in the definition
of G.

We define 7 to satisfy clause 3 as follows:

Let A = {f | f : N = Dom(s’) such that f(k) = 0 for all but finitely many k}. A
has the same cardinality as Dom(s), so with each x e Dom(s) we can bijectively
associate an fy € A.

If q is an integer in Dom(s) (ie. if s' = N(q)), define m(x, q) = f,{q). Then

extend m arbitrarily to the rest of Dom(s’). It is easy to check that with this definition
of m, clause 3 is satisfied by s

Finally, define T on Dom(s’) such that s’ = T(m, a) iff m is the Gédel number
of a formula F(xil’ i xin) and s = F(n(a, i), .., m(a, ip)). This implies that s’

satisfies clauses 4 - 9. Finally, since s = AFj, it follows that s satisfies clause 10.

Thuss' = G. O

Claims 1 - 4 complete the proof of Theorem 4.2. O

26

APPENDIX C

C.1 There are inequivalent recursively enumerable schemes 4, ¢ of infinite type such
that PC(4) = PC(c).

Proof: Let buzz be the program scheme which always diverges:
while x = x do NOP od
Take b to be NOP and c to be the non-deterministic scheme of infinite type
Ujx1 (if x; = x; then NOP fi)
Clearly when c halts it behaves like NOP. Hence R. ¢ Ryop and PC(NOP) ¢ PC(c).

Suppose, in order to obtain a contradiction, (F, G) € PC(c) - PC(NOP). Thus,
for some s with (s,5) e Rypp-Rp s=F A -G. But note that Ryop-Re =

{(s) 8)l s = Ajq(xj = %)} Let ny=max {n X3 € WF)U n(G)}, and let s =
R(x = x)(s). Thus
Ng+1 1

s(xp) ifi=ny+1
sx) T
s(xp)ifi=ny+1

Since s’ = Xnye1 = X, We must have (s, s) e Ry but &' = F A =G, contradicting
(F, G) € PC(c). O

C.2 There are inequivalent non-recursively enumerable schemes b, ¢ of finite type such
that PC(4) = PC(¢).

Proof: Consider a language with a countable number of constants, and a
countable number of functions and predicates of each arity. Let Fy, Fy, F;, ... be an
enumeration of all satisfiable formulas in this language.

Let R, f, x, be respectively a unary predicate, unary function, and constant in
the language. For each i define

R(fi(x)) if Fj A R(fi(x)) is satisfiable.
R; o=

—1R(f"(x)) otherwise

27

Note that by the construction, the formula F, A R, must be satisfiable for all i.
Take b to be NOP and let ¢ be the (non-recursively enumerable) scheme
u; (if R; then NOP else buzz f1).
Again, if ¢ halts it behaves like NOP. Note that Rp - Rp = {(5,5)] s = AR
Thus R, c Ry, (the containment being proper since {-R; | i = 1,2,3,...} is consistent) and

PC(b) ¢ PC(0).

Now suppose (F, G) € PC(c) - PC(b). Thus F A -G must be satisfiable, so
FA-G= Fio for some ij. But Fio A Rio is satisfiable, say by s. Since s = Rio’ we must

have (s, s) € R, but s = F A =G, contradicting (F, G) € PC(c).

Hence & is not equivalent to ¢, but PC(6) = PC(c). O

28

APPENDIX D

Proof that we can find a recursively enumerable set < which defines the

semantics of while-program schemes with first order tests, and array and random
assignments:

_ The proof of Theorem 4.1 shows it is sufficient to find a recursively enumerable
&' such that &£’ 3 {GH’b{b}H | H is a first order formula, & is a while-program

scheme} U {ISOg{6}-ISO; | Dom(s) = Dom(t) is finite, (s, t) ¢ Ryl. That such a &’
can be found is shown as follows:

Definition: A formula F is said to be k-bounded iff s = F implies [Dom(s)| < k.
F is bounded if F is k-bounded for some k.

Remarks: 1. Note F is k-bounded iff = F = 3y,.3yyvz(z =y, V .. V z = y}).
Thus it follows that the set of bounded formulas is recursively enumerable, since we can
enumerate all the tautologies of first order predicate calculus with equality.

2. Note that if s has a finite domain, then ISOg is bounded.

Lemma For any while-program scheme b, the set {F{6}G | F, G are bounded

A F{b}G is true} is recursively enumerable. Moreover, it can be found uniformly from
b.

Proof: If F is k-bounded, there is a G suéh that G is k-bounded and G = [{JF.
To see this, note that if 7 is the similarity type of &, there are only finitely many
distinct ‘states with k elements and similarity type 7. Let s, .., s;; be those which

model [6]JF. Then take G to be ISOsl Vi ISOsm. From this condition, often

referred to as expressiveness, it is easy to see by induction on the structure of while-
program schemes that the Floyd-Hoare axioms are complete for bounded predicates.
[cf. Greif and Meyer, 1979; Cook, 1978; Harel, 1979.]

Hence {F{b}G | F,G bounded, & is a while-program scheme, and F{5}G is true}
is recursively enumerable and clearly can be found uniformly from (an index for) 6. O

Returning now to the proof of the main theorem, just take & = {GH,b{b}H l

H is a first order formula, b a while-program scheme} U {F{6}F' | F, F’ are bounded, b
a while-program scheme} and we are done. 0.

29

APPENDIX E
Proof that PC(NOP) = PC.(c), from 4.7:
Let Ay be vx; ..Wxy(Trivial(x;, .., xy)) and let Ay be Vx(fk(x) # x), for k = 1,

2, 3, ... Let T={Aj A, Ay, ..}. T axiomatizes the theory of the integers with
successor and predecessor.

Since R, ¢ Rypp we know PC(NOP) ¢ PC(c). To obtain a contradiction,
suppose (F, G) € PC(c) - PC(NOP). Note that R NOP - Re =1{(s, s)| s = T}. Thus there
must be some state sy such that (sy, s5) € R NoP - Rc and s = F A =G. In fact, we
must have

s TAFA-G.

The theory of the integers under successor and predecessor is well known to admit
elimination of quantifiers (cf. [Enderton, 1972, pp. 178 - 183]), so there is a quantifier-
free formula H such that

T~ H = (F A -G).
Thus, for some ny,
{Ap Apy Ano} ~H=(FA-G). *
Finally, note that sy = H since sy = T A F A -G.

We want to find a structure s; with the following properties;

(i) s =H
(i) s = {Ag Ay Ano}
(i) s T

If we can find such an s;, we will have our desired contradiction, since (i), (ii),
and (*) will allow us to deduce s, = F A =G. But from (iii) it follows (s1p 51) € Ry,
and this contradicts (F, G) € PC(b).

Define s, to be the extension of s, such that Dom(s;) = Dom(sy) U {a, ..., ano},
where a,, .., ap, are new elements in the domain, all predicates are still trivial on
Dom(s,), and all functions besides f and g are still projections on the first coordinate.

30

Then extend f so that f(aj) = a;,) for i =1, .., ny-1, and f(ano) = ay, and extend g so it
is still the inverse of f.

It should now be clear that 5; = {A,, Agy sy Ano}, but 5; = =A,,; (since

s; = f1*)(a)) = a;) so s £ T. Since 5y = H, H is quantifier-free, and s, is an extension

of sg, it must be the case that s = H. Thus (i), (ii), and (jii) are all satisfied, giving us
the desired contradiction. O

31

APPENDIX F

Example of two inequivalent recursively enumerable schemes &, ¢ with open tests
and array assignments only, such that Tope,,(b) = TOpen("-')s where Open is the set of
true quantifier-free termination assertions:

Let b be the scheme Upspbem p» Where by ps is fM(x) = fA(x). Let
¢ =buU NOP.

Ry ¢ Ry, so clearly TOpen(b) = TOpen(")- To prove the converse containment,
first note R, - Rp={(s,)| s = (x, f(x), f2(x), .. are all distinct)l. So if

(F, G) e TOpen(c) - Topen(b), there must be some state sy such that (s, 55) € R - Ry,
and sy = FAG. _

As in Appendix A, let s, be a partial state with finite domain such that s, extends s,
and s; = G, and let ny = max{n| f(x) € Dom(s;)}. Let t = ben i, ”o>(s°)' Then

(sppt) e Ry sg=F and t=G (since t extends s5), and this contradicts
(F, G) ¢ Topen(d). O

32

Notes

1. Input-output semantics do not reflect the full operational behavior of programs,
e.g., information about "looping" or "failing" is lost, but dealing with such extended
semantics and the Kind of weakest pre-condition assertions proposed by Dijkstra capable
of defining this extended semantics is technically more complicated and does not appear
to raise any new issues about the nature of axiomatic definitions of programs. (cf. [Greif
and Meyer, 1979; Hoare, 1978; Harel, 1979].) :

2. In the terminology of [Greif and Meyer,1979], & determines the standard
relational semantics of ./ An equivalent definition is given in [Blikle, 1979].

3. Kleene’s result for pure first order predicate calculus (without equality) was
formulated in terms of finite axiomatizability, namely, the theory of any recursively
enumerable set of axioms of finite type equals the theory restricted to the same finite
type of some finite set of axioms. In general, however, the finite set of axioms must
involve extra symbols.

Lemma 4.2 immediately implies Kleene’s result, since without equality a first
order formula is satisfiable iff it is satisfiable in an infinite domain. Conversely,

Kleene's proof of his result is quite similar to the authors’ independent proof given in
Appendix B.

4. Given two types 7, 7 with 7 ¢ 7, s a state of type 7, " a state of type 7, then s’
is an expansion of s if Dom(s) = Dom(s’) and s}, =s.

5. If s and s" are two states (respectively partial states; cf. Appendix A) of the same
type, then s’ is an extension of s if Dom(s) ¢ Dom(s’), and for any function symbol f,
if f; is the function assigned by s to the symbol f, then fg ¢ fy as relations, and for
every predicate symbol P, Py restricted to Dom(s) is equal to Pg.

6. It is not too difficult to show that the set of all true termination assertions
defines the semantics of arbitrary deterministic schemes, even those of infinite type.

7. If we disallow array assignments, we can even handle the case where 7 is not
sufficiently rich, but then we must use a weak extension of 7 in order to achieve the
desired distinctions.

33

REFERENCES

Apt, K. R, J. A. Bergstra, L. G. L. T. Meertens. Recursive Assertions Are Not
Enough - Or Are They? Theoretical Computer Science, vol. 8, pp. 73 - 87, 1979.

Bergstra, J. A, J. Tiuryn, and J. V. Tucker. Correctness Theories and Program
Equivalence. Preprint. Stichting Mathematisch Centrum, Amsterdam, 1979.

Blikle, A. A Survey of Input-Output Semantics and Program Verification.
Institute of Computer Science. Polish Academy of Sciences. 1979.

Cook, S. A. Soundness and Completeness of an Axiom System for Program
Verification. SIAM Journal on Computing, vol. 7, no. 1, pp. 70 - 90, February, 1978.

Dijkstra, E. W. Guarded Commands, Nondeterminacy and Formal Derivation of
Programs. Comm. of the A.CM., vol. 18, no. 8, pp. 453 - 457, 1975.

Dijkstra, E. W. A Discipline of Programming. Prentice-Hall, 1976.
Enderton, H. B. 4 Marhematical Introduction to Logic. Academic Press, 1972.

Floyd, R. W. Assigning Meaning to Programs. In Mathematical Aspects of
Computer Science. Proceedings of Symposium in Applied Mathematics (ed. J. T.
Schwartz), pp. 19 - 33. American Math. Society, Providence, Rhode Island, 1967.

Friedman, H. Algorithmic Procedures, Generalized Turing Algorithms, and
Elementary Recursion Theory. In Logic colloguiuum, 1969 (ed. R. O. Gandy and C. M.
E. Yates), pp. 316 - 389. North Holland, Amsterdam, 1971.

Greif, I. and A. R. Meyer. Specifying the Semantics of While-Programs.

M.IT., Laboratory for Computer Science, TM-130. M.L.T,, Cambridge, Mass. 02139.
April, 1979.

Harel, D. First-Order Dynamic Logic. Lecture Notes in Computer Science, 68.
Springer-Verlag, N.Y., 1979.

Harel, D.,, A. R. Meyer, and V. R. Pratt. Computability and Completeness in
Logics of Programs. Proceedings of Ninth Annual A.CM. Symposium on Theory of
Computing, pp. 261 - 268, May, 1977.

34

Hoare, C. A. R. Some Properties of Predicate Transformers. Journal of the A.
C. M., vol. 25, no. 3, pp. 461 - 480, July, 1978.

Hoare, C. A. R. and P. Lauer. Consistent and Complementary Formal Theories
of the Semantics of Programming Languages. Acta Informatica 3, pp. 135 - 155, 1974.

Hoare, C. A. R. and N. Wirth. An Axiomatic Definition of the Programming
Language PASCAL. Acta Informatica 2, pp. 335 - 355, 1973.

Janssen, T. M. V. and P. van Emde Boas. The Expressive Power of Intensional

Logic in the Semantics of Programming Languages. Preprint. Stichting Mathematisch
Centrum, Amsterdam, May, 1977.

Kleene, 8. C. Two Papers on the Predicate Calculus. Memoirs of the American

Math. Soc., No. 10, pp. 27 - 66. American Math. Society Providence, Rhode Island,
1952,

London, Ralph L. Program Verification. In Research Directions in Software
Technology. ed. Peter Wegner, pp. 302 - 315. M.LT. Press, Cambridge, Mass., 1978.

Machtey, M. and P. Young. An Introduction to the General Theory of
Algorithms. North Holland, 1978.

Meyer, A. R. and J. Y. Halpern. Axiomatic Definitions of Programming
Languages: A Theoretical Assessment. Proceedings of the 7th Annual Symposium on
Principles of Programming Languages, pp. 203 - 212, January, 1980.

Meyer, A. R. and K. Winklmann. On the Expressive Power of Dynamic Logic.
Proceedings of the 11th Annual Conference on Theory of Computing. pp. 167 - 175. May,
1979.

Pratt, V. R. Semantical Considerations of Floyd-Hoare Logic. 17th Annual
{EEE Symposium on the Foundations of Computer Science, pp. 109 - 121, October, 1976.

Schwartz, R. L. An Axiomatic Semantic Definition of Algol 68. UCLA-ENG-
7838; UCLA-34P214-75, University of California at Los Angeles, Los Angeles, Calif.
1978.

Schwartz, R. L. An Axiomatic Treatment of ALGOL 68 Routines. dutomata,
Languages and Programming, Sixth Colloquium. Lecture Notes in Computer Science 71.
pp. 530 - 545. Springer-Verlag, N.Y., 1979.

