LABORATORY FOR
COMPUTER SCIENCE

‘_ ., MASSACHUSETTS
INSTITUTE OF
[]

TECHNOLOGY

THEORY AND PRACTICE OF TEXT EDITORS
OR
A COOKBOOK FOR AN EMACS

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Addendum, February 1999

Author can be contacted at craig @finseth.com.

Additional Emacs information can be found at
http://www.finseth.com/~fin/emacs.html.

THEORY AND PRACTICE OF TEXT EDITORS
- nr -
A Cookbook for an Emacs

Craig A. Finseth

Copyright (c) 1980 by Craig A. Finseth

June 1980

The author hereby grants to the Massachusetts Institute of Technology
permission to reproduce and to distribute copies of this document in
whole or in part.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
[LABORATORY FOR COMPUTER SCIENCE
CAMBRIDGE, MASSACHUSETTS

Keywords: redisplay, text editors, video terminals

Abstract

Theory and Practice of Text Editors
-— ﬂr -
A Cookbook for an Emacs

by
Craig A. Finseth

Submitted as a B.S. thesis in the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology

Abstract

A comprehensive summary of the available technology for
implementing text editors. It is written to be a guide for the implementor
of a text editor. 1t does not provide a finished, polished algorithm for any
part of a text editor. Rather, it provides a breakdown of the problems
involved and discusses the pitfalls and the available tradeoffs to be
considered when designing a text editor. Specific reference is made to the
relevant tradeoffs for an Emacs-type editor, a character-oriented,
extensible display editor. -

Acknowledgments

| would like to thank Owen Ted Anderson for teaching me a lot of what
| know about cditors as well as writing one of the most readable programs

around.

I would like to thank Bernard S. Greenberg, who supplied some of the
ulgorithms which are presented here.

I would like w thank Richard M. Stallman for creating the original
Emacs and for deing most of the development of ITS EMACS,

Table of Contents

Chapter One: Introduction

Chapter Two: Memory Management

2.1 Data Structures
2.2 Marks
2.3 Interface Procedures
2.4 BufTer Gap
2.4.1 Gap Size
2.4.2 Multiple Gaps and Why They Don’t Work
2.4.3 The Hidden Second Gap
2.5 Linked Line
2.5.1 Storage Comparison
2.5.2 Error Recovery Comparison
2.6 Muluple Buffers
2.7 Paged Virtual Memory
2.8 Editing Extremely lLarge Files
2.9 Scratchpad Memory

Chapter Three: Incremental Redisplay

3.1 Line Wrap
3.2 Multiple Windows
3.3 Terminal Types
331TTY and Glass TTY
3.3.2 Basic '
3.3.3 Advanced
3.3.4 Memory Mapped
3.3.5 Terminal Independent Output
3.3.6 Echo Negotiation
3.4 Approaches to Redisplay Schemes
3.5 The Framer
3.6 Redisplay Algorithms

10

11
14
15
23
26
27
27
28
31
31
32
33
35
37

39

41
43
43

s g e

E&ERE

49
51

3.6.1 The Basic Algorithm
3.6.2 The Advanced Algorithm
3.6.3 Memory Mapped
3.7 Other Details
3.7.1 Tabs
3.7.2 Control Characters
3.7.3 End of the Buffer
3.7.4 Between Line Breakout
3.7.5 Proportional Spacing and Multiple Fonts
3.7.6 Multinle Windows

Chapter Four: The Command Loop

4.1 Basic Loop: Rcad, Eval, Print

4.1.1 The Philosophy Behind the Basic Loop
4.2 Error Recovery
4.3 Arguments

4.3.1 Prefix Arguments

4.3.2 String Arguments

4.3.3 Positional Arguments
4.4 Rebinding

44.1 Rebinding Keys

4.4.2 Rebinding Functions
4.5 Modes

4.5.1 Implementing Modes
4.6 Kill and UnDo
4.7 Implementation Languages

47.1 TECO

4.7.2 Sine

4.7.3 Lisp

474 PL/1, C, etc.

4.7.5 Fortran, Pascal, etc.

Chapter Five: User Interface Hardware

5.1 Keyboards

5.1.1 Special Function Keys and Other Auxiliary Keys

5.1.2 Extra Shift Keys

51
53
37
57
58
58
59
59
59
60

61

61
62

66
66
67
69
70
71
71
73
74
76
78
78
78
79
79
80

81

81
83
84

5.2 Graphical Input
5.2.1 How It Can Be Used
5.2.2 Devices: TSD, Mouse, Tablet, Joystick

Chapter Six: The World Outside of Text Editing
Appendix AT Annotated Bibliography

6.1 Emacs Type Editors
6.1.11TS EMACS
6.1.2 Lisp Machine Zwei
6.1.3 Multics Emacs
6.1.4 MagicSix TVMacs
6.1.5 Other Emacs

6.2 Non-Emucs Display Editors

6.3 Structure Editors

6.4 Other Editors

Appendix B: Some Implementations of Emacs Type Editors

Appendix C: Partial Emacs Command List

85
85
86

91

91
91
92
93
94

95
96
97

100
101

Introduction section |

Chapter One

Introduction

This thesis is intended to answer the question, "What are the important
considerations in designing a text editor?" In answering this question, it will provide

i reference document for would-be implementors of text editors.

There is a modest amount of literature available which discusses topics related to
text editing. Most of the papers are "reference manual”-like because they explain
the user interface only. A few of the rest cover the details of a specific
mplementation of an editor. This thesis will gencralize the latter into a document

which considers the problems relevant for all text editors.

The primary goal of a text editor is to allow the user to edit text. There are two
secondary goals. First is to perform this editing without wasting resources. Second
15 Lo give the user a pleasant environment to edit in. The latter requires a good

command sel, feedback to the users, and quick response to commands.

One way to achieve these goals is by breaking the design of the editor into three
parts. The memory management part performs efficient ediling of the text. [t is
essentially a very simple edilmr in itself. The incremental redisplay part provides
feedback to the user. The command set (loop) part translates the user's input into
commands to the memory management part. Each part of the structure contributes
in 1ts own way towards providing quick response. [t is this structure that will be

discussed in this thesis. Each chapter of the thesis covers a different part.

section | Introduction

The second chapter is memory management (you are reading the first chapter).
The basic problem that is addressed is; given that you have o possibly Large bulTer,
how do you structure the storage for it so that trivial operations (e.g.. inserting a
character and moving around in the bufler) do not require exeessive amounts of
work? Other problems are: what should the interface o the buffer look like from a
program? How do these considerations change when you have multiple buffers
and/or virtual memory? In a nutshell, this chapter discusses the cpu time - memory

- disk chunnel tradeofT. This topic is interrelated with the next one.

The third chapter is incremental redisplay. The basic problem here is: given that
the user has u reasonable video terminal which you can communicate with over a
limited bandwidth channel, how do you change what is displayed on his sereen to
match the current contents of the buffer? Other problems are: what are reasonable
terminals to use? What extra information can you retain to speed up the updating

process? This chapter discusses the cpu time - 1/0 channel usage tradeoff,

The fourth chapter is a discussion of the command loop. What is the basic edit
cycle? What sort of errors do you have to recover from? How and why do you
dynamically change the editor itself? What are some criteria to use when selecting

an implementation language?

The fifth chapter considers user interface hardware. What are desirable ways for
the user to interact with the editor? This area includes such things as desirable

features in keyboards and how to take advantage of graphical input.
The sixth chapter mentions some other uses lor text editors.

Note that MIT Emacs will be used in this thesis whenever a reference to a

specific editor is required (for example, when discussing command syntax). This

Introduction section 1

cluss of editors will be referred to as "Emacs-type.” A specific editor was selected
(us opposed to creating another one) specifically to avoid the work of reinventing
the wheel. MIT Emacs was selected because of the author’s familiarity with it and
because several implementations of it have been made, thus providing a wealth of

experience with it in different environments.

section 2 Memory Management

Chapter Two

Memory Management

A copy of the text that is being edited is stored in a buffer. The text appears to
the user as a sequence of characters. Al editing operations are specified relative to a
place in the buffer. This place is called the point and it is always located between
two characters (thinking this way eliminated the possibility of some fencepost
errors). Each buffer has a set of commands. These commands are called modes. [t
15 the responsibility of the memory management software to support buffers cleanly

and efficiently.

It is assumed that the user will be presented with some sort of status display.
This display will tell the user such things as the name of the buffer that he is editing,
the name of the file that is being edited, and what modes the buffer is in (sce section
4.3, page 73 for a discussion of what modes are). The interface to the memory

management software includes operations to maintain this auxilliary information.

Itis assumed that buffers are stored in the equivalent of main memory while the
editing is being done. This means that the buffer is either in main memory (for very
small machines), in the address space of the editor (for large address space virtual
memory machines), or it can be mapped into the address space (for small address
space virtual memory machines). Any of these cases will be assumed to be memory
in this thesis. There are two commonly used technigues to manage memory in order
perform the cditing cfficiently. These techniques are known as buffer gup (store the

text as an array of characters) and linked line (store the text as a linked list of lines)

10

Memory Management section 2

and will be discussed in following sections. Their discussion lollows the more
theoretical sections which cover the definition of the interface between the main
editor and the memory management routines. Further discussion shows how the
two schemes perform in a virtual memory environment and when multiple buffers
are manupulated. Some closing remarks will be made about scratchpad memory

und methods of reclaiming storage.

2.1 DataStructures

This scction discusses the data needs of an editor, With two exceptions, all of the
state of the editor is defined here. Thus, if this information is retained across
imvocations, you will have the ability to resume editing where you left off. Thus, the

amount of work involved with editing can be reduced.

The other pluce where state information is kept is in the the screen manager.
The screen manager to retains a knowledge of how buffers were displayed.
Retaining this information allows the screen to reappear as the user left it. [f the
information is not retained, the screen manager will have to recalculate the display
and this can be somewhat confusing. However, the editor will not lose any

functionality if this state is left out.

The World contains the buffers in use by the editor. It is a circular list of
BufferDescriptors and an indication of which buffer is the current one. In a

PL/1-1sh syntax:

11

section 2.1 Memory Manugement

declare World,
CurrentBuffer pointer,
BufferChain pointer;

Each bulfer descriptor has several types of internal information.

declare BufferDescriptor,
NextChainEntry pointer,

BufferName char(big) varying,
Point location,

Length fixed,

Modifiedp bit{1),

FileName char(big) varying,
ModeName char(big) varying,
MarkList pointer,

Model ist pointer,
StorageData pointer,
ScreenData pointer:

NextChainEntry is a mechanism for implementing the circular list of buffers,
The listis circular because there is no preferred buffer and it should be possible to
get o any buffer with equal ease. BufferName is a way for the user to be able to

refer to the buflfer.

Point is the current location where editing operations are taking place. It is of the
data type location. The representation for this data type is implementation specific.
For buffer gap editors, it is an integer, but for linked line editors, it is a (line pointer,
offsct) pair. Length indicates-how long the buffer is in some reasonable unit
(usually characters). Modifiedp is a flag which indicates whether the buffer has

been modified since it was last written out or read in.

FileName is the name of the file system ubject which is currently associated with
the contents of the buffer. ModeName is way to tell the user what modes are in

cffect. Typicully, each moade will insert its name there as it is invoked. This

12

Memory Management section 2.1

mformation is not really implicit in the ModeList because there can be invisible
modes (for example, autoloaded commands) which use the mode mechanism for
ivocation but the user does not want to be made explicitly aware of them. See

section 4.3, page 73 for a discussion of what modes are.

MurkList is simply a list of marks.

declare Mark,

NextMark pointer,

Name {anything convenient, try small
integers},

Whereltls location;

Each mark has a pointer o the next one, a name, and a location within the
buffer. Note that this list is not circular and it would probably help to keep it sorted
by incicasing location. The name is a way of distinguishing this mark from any
other one associated with this buffer. This name is generated by the Create Mark
routine und returned. It can thus be any convenient data type. Small integers will

work quite well.

ModeList is a list of procedures to be invoked when this buffer is selected. See

section 4.5, page 73 lor a more complete discussion.

StorageData is a descriptor block which defines how the contents of the buffer
are stored in memory. The nature of this block is dependent upon the memory
management algorithm used. ScreenData is a descriptor block which delines how
the buffer appears on the user's screen. Its definition will become apparent in the

discussion in the next chapter,

13

section 2.2 Memory Munagement

2.2 Marks

A mark is a named fixed point within a given buffer. A mark always points
between the same two characters no matter what has been inserted or deleted
around it. Marks are used for several different reasons.

- They remember a specific location for future reference. For example, a
command might paginate a file. In this case. a mark would remember

where the point was so that the command could return with your
location unchanged, Marks, like the point, are between two characters.

- They delimit o portion of text in conjunction with other marks or, more
commanly, the point. This portion of text is called the region. This case
would be used, for example, in a DeleteRegion command,

- They serve as bounds for iteration. Because they remain invariant when
changes are made o the bufTer, they can serve as a constant position to
“head towards.” An example could be the FillParagraph command.
This command iterates through the buffer deleting and inserting
whitespace (in the process, making each line as long as it can be without
going past the right margin) until it reaches the end of the paragraph, A
mark 1s used to remember where the end of the paragraph is. This usage
is @ variation on the region-delimiting usage, but it is worth noting in
itself.

When an insertion is made at a mark there is a question about what to do with
the mark (i.e. on which side of the inserted character it should end up). For the
most part, the mark should move (i.e. be after the inserted character). However,
there are good reasons for having it work the other way and so there are fixed

marks, which remain before an inserted character.

An example of using fixed marks is to delimit an insertion. A routine could
create both a mark and a fixed mark at the same location. Any inserted text would

push the marks apart and end up between them. Thus, it is possible to keep track of

14

Memory Management section 2.2

what has been inserted.

2.3 Interface Procedures

This section defines the interface between the main part of the editor and the
memory management routines. They will be described in terms of their logical
lunction only, leaving out specific implementation details. An example of such a
detail 1s a code variable which is returned and which indicates whether the operation
succeeded. Also note that any data types mentioned (e.g. string) are intended to be
canonical and no specific implementations are assumed. A <r> afier a parameter

means that it is returned by the procedure.

There is an important question as to exactly who allocates the data (the buffer
descriptors and the bulfers themselves). This issue is more language specific in the
sense Lthat certain languages specify an answer which must be used whether or not it
is the right one. The procedures will be defined as if they own the data. If it is
decided that they do not, it is relatively easy to include an extra argument on each
procedure call which identifies a descriptor of the object that the procedures are to

manipulate.
InitWorld
SaveWorld(FileName)
LoadWorld(FileName)

[nitWorld is the basic set-up-housekecping call. 1t is called once, upon editor
imvocation, SaveWorld and LoadWorld implement the state-saving across edit
sessions. SaveWorld is used to save the state of the editing session for later
resumption. This operation might be quite expensive if it requires explicitly writing

out all of the buffers 1o a large file or it might be very cheap in a virtual memory

15

section 2.3 Memory Management

environment, where all that might be required is to set an externgl static variable to
indicate that the environment is consistent. The possibility of multiple saved
environments is interesting, but has not been implemented (0 my knowledge, It
seems Lo be a nice way to work on several of tasks (not in the process management

s¢nsc) at once.

IT you are creating o “stripped down" editor then the save and load world
routines will not do anything, They can be put in s stubs if there Is a rcasonable
possibility that the editor will be cmbellished later,

CreateBuffer(BufferName)
De1eteHuHﬂr{Bufl‘erﬂame}
SetEurrenI.Bul'fer{l]ufferﬂamu}
SetCurrentBuf ferNext(BufferName <r>)

CreateBulTer is given a name and it returns after having created u buffer of that
name. Ifthe buffer already exists, it probably should signal an crror of some sort to
keep from bashing existing information. DeleteBuffer deletes a buffer, If the
current bufler is deleted, the default buffer becomes the current one. (The editor is
created with one default buffer called "Main® or something like that, It must always

exist.)

Depending on the implementation language, we may be able 1o chosse in the
procedures that are being defined between including a buffer as an explicit
parameter or having it implicit by setting an own variable that indicates which
buffer is the current buffer. IT buffers are changed often, it is worthwhile o include
the buffer with ecach call. If. on the other hand, buffer switching is done
infrequently, the overhead involved with setting a current buffer is more than
daceeptable. My experience has been that buffer switching occurs only rarely and so

the extra call is worth it

16

Memory Management seetion 2.3

SetCurrentBuffer makes buffer BufTerName the current one.
SctCurrentBullerNext makes the next buffer in the circular list the current one and
RETURNS its name in BufferName. This mechanism allows for iterating through

all buffers looking for one which meets an arbitrary test.

Note that most of the above calls are really useful only if you have a multiple
buffer implementation of the editor. In a single buffer editor, they are relatively
useless and should be used only if there is a reasonable chance of cxpanding to a
multiple bufTer editor in the future.

SetModified(Flag)
GetModified(Flag <r>)
SetPointA(Location)
SetPointR(Count)
GetPoint(Location <r>)
GetLength{Size <r>)
These routines deal with several variables. They allow setting and usking for the

point, the current bufler length and the state of the modified Nag.

The modified flag provides an indication of whether the buffer has changed. Itis
set implicitly by any buffer change operation (principally insertion and deletion)
and cleared automatically by writing the contents ol the buffer to a file. The
procedures 1o set or clear it explicitly are provided as this ability will ordinarily be
used by the redisplay code (see section 3.6.2, page 53 for the discussion of what it is

used for).

Note that there are two Mavors of the SetPoint routine, designated "A™ and "R".
They both do the same logical operation, but the "A™ version interprets its argument
as an absolute position within the buffer and the "R"™ version interprets its argument
as an olfset relative to the current position ol the point. (Negative values indicate a

backward offset.) Due to the definition of the location type, the "A" version does

17

section 2.3 Memory Management

not lake an integer valuc as the location and so one usage is not readily simulatable
in terms of the other.

Insert(String)

Delete(Count)

GetStringA(Location,Length,String <r>)

GetStringR(Count, Length,String <r>)

These routines manipulate and examine the buffer. Insert inserts a string into

the buffer at the point. The point is left at the end of the inserted string. Delete

removes abs(Count) characters from the buffer. (Negative counts delete before the

point).

GetString returns the string starting at the specified location and Length
characters long. There are both absolute and relative versions of this routine.

Search(String.Location <r> ,Flag <r>) F | B
FindFirstIn(String,Location <r>,Flag <r>) F | B
FindFirstNotIn(String.Location <r>,Flag <r>)F | B
Look ingAtP{String,Location,Flag <r>)

2P>2r >

I
[
l
|

e i v e i u |

There are a total of fourteen routines in this section, but they have been listed in
an abbreviated form for convenience. These are search routines and each form can
head cither forward (F) or backward (B) and with the returned location either

absolute (A) or relative (R) to the point,

Note that these routines are not necessary as their action can be readily simulated
by using the other defined routines. However, they have been included in the
discussion because they are useful and because they are often implemented in the
same level as the other memory management routines for having lower level access

to the bufTer will speed up their execution.

Search looks for the first occurrence of the string in the buffer, starting at the

current point and heading in the specified direction. It returns a flag saying whether

18

Memory Management section 2.3

the string was found and an indication of the string’s location. The location
returned is the location of the end of the found string (cither absolute or relative) in
the direction of the search. (For a backward search, the location is the beginning of
the actual string.) This definition implies that repeated scarches will stop at

successive instances of the string.

FindFirstin scarches for the first occurrence of any of the characters in the string.
For example, FindFirstin("0123456789"....) would return the location of the first
digit encountered. Like Scarch, it returns a Mag as o whether a match was made
and the location of the match. Unlike Search, the location returned is at the
heginning of the match and not the end. Successive applications will thus return the
same position. The difference in behavior between Search and FindFirstIn is a
function of their difTferent uses. FindFirstin is used to parse through text slowly,
and zero and one characters strings must be handled properly. These delinititons
lucilitate that handling. FindFirstNotin works in exactly the same manner as
FindFirstin except that it matches on any character not in the string. For example,
the following code fragment implements a forward word operation.

alphabet="abcdefghijkImnopgrstuvwxyz";
FindFirstInfA(alphabet,location,flag);
SetPointA(location);
FindFirstNotInFA(alphabet,location,flag):

The first Find operation will skip over any non-word characters to the beginning
of a word. The next one will-skip to the end of the word. (Note that the alphabet
variable should also have the digits, uppercase, and several special characters in
order to work as one would intuitively expect. Note also that the selection of special
characters will in gencral be language-specific. Further, no checks were made for

string-not-found, cte. Thus, it is not an example of linished code.)

19

seetion 2.3 Memory Management

Analternative way of defining these operations is to have them antomatically set
the point instead of returning a location. (The Mag must still be returned.) IF the
string was not found, the point would not be moved. The choice of a method of

implementing these routines is a matter of taste.

LookingAtP has a much more simple defintion. It compares String against the
sequence of characters in the buffer starting at Locution, returning the true/false
answer in Flag,

GetHpos(Column <r>)
Setllpos(Column)

(These routines, like the previous set, are not necessary but useful.) GetHpos
returns the column that the point is in, after iking into acconnt tah stops, ete. |t
does not take into account the screen width as it should not ke any dilTerence to
the editor how big the terminal is. SetHpos moves the point to the desired column,
stopping at the end of u line if it is not long enoagh. I there is no character at the
desired column (due to tab stops), it uses the next higher availuble column position,

SetFileName(FileName)
GetfileName(FileName <r>)
WriteBuffer

ReadBuffer

These routines interface between the buffer and the file system. The FileName
routines set and return the file object (in general a string--the file name). At the user
interface, the editor might implement an intclligent "default and guess”
interpretation of the file name so as to make life easier for the user, but doing so
dues not affect this level of code. This general area is one where system-specific

conventions become significant.

WriteBufTer writes the contents of the buffer out o the file name associated with

20

Memory Management section 2.3

the buffer. Any conversions between internal format and what the file system wants

will be done at this time. Also, the buffer modified Mag (ModifiedP) will be cleared.

ReadBuffer reads the file into the current buffer. There are two choices about
how to do the read operation. Both directions will be discussed along with their
ramifications for the other parts of the editor. They are not both implemented

because it is desirable to keep the number of primitives to 2 minimum.

First, it can replace the contents of the buffer with the contents of the file. [f it
does so, the bulTer modified Nag will be cleared automatically. The editor will want
W check on what it is replacing. 17 the previous contents of the buffer have been
mudified, the user should be asked what to do (e.g., whether he is making a

mistake).

Second. it can insert the contents of the file into the contents of the buffer at the
point. In this case, the [irst method can be simulated by explicitly deleting all of the
buffer and then reading. The buffer modified flag will have to be manually cleared.
The sume policy of asking the user what to do with modified buffers should be
followed. The advantage behind this method is that it allows the easy
implementation of the insert file command. The first method requires the allocation
of additional space and then the copying of the data; a luxury that may not be
available on smaller systems. This sccond method is thus preferred.

CreateMark(MarkID)

CreateFixedMark(MarkID)

DeleteMark(MarkID)

SetMark(MarklID,Location)
GetMark({MarkID,Location <r3)
Comparelocation{Locationl,Location2,Result <r>)

These routines manage marks. They allow for creating both ordinary and fixed

marks, deleting marks, and setting and evaluating them. Note that except for

21

section 2.3 Memory Management

creating them, there is no difference in usage with these routines between ordinary

and fixed marks (although their behavior will, of course, differ).

SetMark merely sets the location of the mark to Location. (A relative version of
this routine can be supplied, il desired.) GetMark returns the current location of the
mark. It should be used directly and not assigned into a variable as its value can
change across some buffer operations. These operations are Insert, Delete and
ReadBuffer.

ComparelLocation allows the comparison of any two marks or the point and the
mark to be done without being aware of the specific scheme chosen, It tukes two
Locations as arguments and returns the sign (+ 1, 0, -1) of the result of 1ocation] -

l.ocation2.

SetModeName (ModeName)
GetModeName (ModeName <r))
AppendModel ist(Procedure)
DeleceModel ist(Procedure)
InvokeModelist
These routines manage the multiple mode capability. The ModeName is a string
which can be displayed to remind the user what is going on. It does not affect

anything else.

Append, delete, and invoke operations are all supplied. Tt is generally bad form
to define the modes so that it matters in which order the procedures are called, but
there do arise such occasions. Therefore, the procedures should be called in the
order that they are appended onto the list. Checks should be made to insure that a
procedure is not put on the list more than once. Again, sec section 4.5, page 73 fora

complete discussion of modes.

Memory Management section 2.4

2.4 BufferGap

[his section discusses the implementation of one of the two ways of

implementing the memory management functions,

A buffer gap system stores the text as two contiguous sequences of characters
with a (possibly null) gap between them. [t thus uses memory efficiently as the gap
cun be kept small and so a very high percentage of memory can be devoted to
actually storing text. Chuanges are made to the bulfer by first moving the gap to the
location to be changed and then inserting or deleting characters by changing

pointers.

In more detail, here is an example buffer which contains the word

"Mussachusetts”,

There is a lot of information here which needs explaining. First, the buffer is 13
characters long and it contains no spaces. The blunks between the "u” und the "s"
show where the gap is and do not indicate that the memory has spaces stored in it.
I'he point is between the "a™ and the "¢" at location 5 and is labeled with a "P" in
the bottom line (legal values for the point are the numbers from zero to the length
of the buffer). There are also three different sets of numbers (coordinate systems)

for referring to the contents of the buffer.

First is the user coordinate system. [is displayed above the buffer. The values

for it run from 0 to the length of the buffer, As you will note, the gap is "invisible"”

23

seetion 2.4 Memaory Management

in this system. The coordinates label the positions between the characters and not
the characters themselves. Thought of in this way, the arithmetic is casy. Thought
ol as lubeling the characters, the arithmetic becomes lraught with special cases and

ripe for fencepost errors.

Second is the gap coordinate system. It is displayed immediately under the
dashed line. The values for it run from 0 to the amount of storage that is available
and it, too, labels the positions between the characters (or rather, storage cells). The
internal arithmetic of the buffer manager is done in this coordinate system. The
start of the gap (labeled "GS™ in the bottom line) is at position 8 and the end of the

gup (labeled "GE") is at position 11.

Conversion from the user coordinate system 1o the gap coordinate system is quite
casy. 1T the location (in the user coordinate system) is before the start of the aap, the
values are the same. 1T the location is after the start of the gap (NOT the ¢end of the
gap!), the location in the gap coordinate system is (GapEnd - GapStart) + the
location in the user coordinate system, It is a good idea to isolate this calculation
cither in a macro or a subroutine in order to enhance readability. Most routines
(c.g. Search) will then use the user coordinate system even though they are

essentially internal.

The third coordinate system is the storage coordinate system. [t is the bottom
row of numbers in the diagram. It is the means whereby the underlying storage cells
are referenced. It is labeled from X to X + the amount of storage that is available.
The origin (the value of X) 30 was chosen to be 30 here to help distinguish between
the various coordinate systems. Its absolute value makes no difference. Note that it

labels the cells themselves and so caution must be taken to avoid fencepost errors.

24

ton 2.4

=z

Memory Management S

A buffer gap system has a very low overhead for examining the buffer, The
relerence (GetChar) comes in in the user coordinate system and the location is
converted to the gap coordinate system. The cell is the looked up and the contents
returned. Essentially, one compare and a few additions are required. The purpose
of the conversions is to make the gap invisible. Note that in no case is any motion of

the buffer necessary.

There 1s more of an overhead associated with inserting or deleting a character. In

this case, the gap must be moved so as to be at the point. There arc three cases:
1. T'he gap is at the point already. No motion is necessary.

2. The gap is before the point. The gap must be moved to the point. The
characters after the gap but before the point must be moved. Thus,
ConvertUserToGap(Point) - GapEnd characters must be moved. This
quantity is numerically point - GapStart.

3. The gap is after the point. The gap must be moved to the point. The
characters after the point but before the gap must be moved. Thus,
GapStart - ConvertUserToGap(Point) characters must be moved. This
quantity is numerically GapStart - point,

Alter the gap has been moved to the point, insertions or deletions can be effected
by moving the GapStart pointer (or the GapEnd pointer--it makes no difference). A
delction is a decrementing of the GapStart pointer. An insertion is an incrementing
of the GapStart pointer followed by placing the inserted character in the storage

cell.

Note that after the first insertion or deletion, further such opcrations can take
place with no motion of the gap (it is already in the right place). Further, the point
can be moved away and back again with no motion of the gap taking place. Thus,
the gap is only moved when an insertion or deletion is about to take place and the

25

scclion 2.4 Memory Management

lust modification was at a dilTerent bufer location,

This scheme has a penalty associated with it. The gap does not move very often,
but potentially very large amounts of text may have to be shuflled. Ifa modification
1s made at the end of a bulfer and then one is made at the beginning, the entire
contents of the buffer must be moved. (Note, on the other hand. that if a
modification is made at the end of a buffer, the beginning is examined., and another
modification is made at the end, no motion takes place.) The key guestion that must
be usked when considering this display is, when a modification is about o be made,
how Far has the point moved since the last modification?

Sidenote Caleulation. How far can the point be moved before the
shulfling delay becomes noticeable? Assume 1710 see. is noticeable and
that it is a dedicated system. Assume lusce, 8 bit wide memory. Assume
10 memory eycles per byte moved (load, store, cight overhead cycles for
instructions). Then, 10,000 bytes can be moved with « just noticeable
delay.

Because of the loculity principle, it seemns reasonable 1o conclude that
for almost any rational buffer size the average distance moved will be less
than 10K bytes and so the shufMling delay will not be noticeable.

2.4.1 Gap Size

Note that the size of the gap does not affect how long the shulTling will take and
so it should be as large as it can be. Typically, it is all of the otherwise unused
memory. In that case, when the gap size goes to zero, there is no more room to store

text and the buffer is full.

26

Memory Management seetion 2.4.2

2.4.2 Multiple Gaps and Why They Don’t Work

Assume that we were still uncomfortable with the shulMing delay and a possible
fix was put forth. 'This fix would be to have, say, ten different gaps spread
throughout the buffer. What would the effects be? The idea behind this discussion

15 Lo help in understanding the buffer gap system by sceing how it fails.

First, the conversion from the user to the gap coordinate system would be more
complicated and take longer. Thus, some ground has been lost. However, this is a
smull loss on every reference in order o smooth out some large bumps, so it might

still be o reasonable thing to do.

Second, the average amount of shufMing will go down, but not by anywhere near
a Factor ol ten. Because of the locality principle, a high percentage of the shuffling is
of only a short distance and so cutting out the "long shots" will not have a large

effect.

Third, unless the writer is very careful, the gaps will tend to lump together into a
fewer number of "larger” gaps. In other words, two or more gaps will meet with the
Gapbknd pointer for one matching the GapStart pointer for another. There is just as
much overhead in referencing them, but the average amount of shuffling will

increase.

On the whole, the extra complexity does not seem to return proportional benefits

and so this scheme is not used.

2.4.3 The [lidden Second Gap

On two-dimensional memory systems such as Multics, a second gap at the end of

the bufTer is provided with almost no extra overhead. The key to this gain is that the

21

section 2.4.3 Memory Management

buffer is not stored in a fixed-size place. Rather. the size ol the memory that is

hulding the buffer can also increase,

The extra overhead is a check to see whether 1 modification is taking place at the
end of the buffer. If so, the modification is made directly with the
FndOlAvailableStorage (the buffer runs from X to X + F.mIDI'Auuiiuh]uﬁlurngu]

variable serving to note that the change has taken place.

This change has more of an effect that might at first be apparent because a
disproportionately high percentage of modifications take place at the end of the
buffer, This distortion is due o the Fact that most documents, programs, etc. are
written from beginning 10 end and so the new text is inserted at the end of the

buffer.

The overhead for this change is low because the check for the end of the buffer
wis already there, There is no problem of the gaps coulescing because one of them
is pegged into place. The gains are not all that great, but neither are the costs and so
itis used. This technique is also usable with some implementations of multiple
buffers.

2.5 LinkedLine

The other method of memory management that we will discuss is called linked
line. It stores the buffer as a doubly linked list of lines, This method is especially
useful with Tanguages such as Lisp which provide memory management fucilities

within the language,

Each line in the linked list has several pieces of information in its header. Not all

28

Memory Management seclion 2.5

ol these pieces are required, but they can help greatly in managing the buffer. The

preces ol imformation are:

NextLine pointer /%32 bits*/
PrevigusLine pointer /%32 bits*/

Length fired /*"16 bits®/
/*presumably no SINGLE line will be >64K characters*/
Line char /*the line itself®*/

optional fields:

AllocatedLength fixed /*16 bits*®/
Version fixed /*32 bits*/
Marks pointer /232 °5iks*/
TextPtr pointer /*32 bits*/

The NextLine and PreviousLine fields implement the doubly linked list. The
length ficld is, clearly, the number of characters in the line. These, along with the
line itself, are all that are required in order to implement the linked line scheme.
The other ficlds are a help in making the scheme cfficient and some of them are

very valuable to include.

The AllocatedLength field indicates how much memory is allocated to storing
the line 1self. Thus, an allocate/free combination ure not required each time a
character is inserted or deleted. For example, a memory allocation block size of 16
bytes has been used. Allocatedlength will then be either 0, 16, 32, 48, 64, etc. The
allocate/ free combination is only required every time the line crosses a 16 byte

boundary, a considerable saviags in overhead.

Allocating memory in 16 byte chunks cuts down significantly on fragmentation,
It will almost certainly be possible to run without a compactilying garbage collector.
See the discussion ol scratchpad memory (section 2.9, page 37) for further

imlormation.

seetion 2.5 Mamary Management

The version field is for use by the redisplay code and is an optimization 0 make
it run faster. 1t will be discussed with the rest of the redisplay process. It serves the

purpose of specifying a unigue id for the line.

Using integer-valued buffer positions is hard with the linked line scheme.
Instead. a (line pointer, offset) pair are used. Marks are then always associated with
a line and can thus be merely strung in a list associated with the line that they are on,
With this implementation, Iess time is required to update the marks because only
those that are on the line can possibly be changed. Note that there should still be a
central listing of all marks in order w facilitate finding any given one and that mark

ids should be unigue within a buffer.

Finally, instead of storing the text of the line with the header, it can be separately
allocated. The TextPur field is then used to remember where the text 18, This ability
i especially useful when several places point to the header and properly updating

them whenever the line is reallocated is difficult.

In summary, the most uscful fields are NextLine, PreviousLine, length,
AllocatedLength, and cither version or the mark list. These ficlds can fit within one

16 byle allocation block.

The operation of a linked line scheme is quite straightforward. New lines, when
created, are simply spliced into the list at the appropriate place. (Note that no
characters are stored to indicate line breaks). If the new line is in the middle of an
existing line, some movement of the text on the end of the old line o the new line is

all that is required.

The linc itself is stored as a packed array of characters. Inserting or deleting text

's done by scrolling the line after the point of modification, Clearly, this scheme is

30

Memory Management section 2.3

very inefficient with large line lengths.

The reason why the length fields were 16 bits long is not obvious. After all, only
rarely will a document have even 256 character lines. But people occusionally edit
rather strange things, including object files. One cannot rely on encountering new

line characters at reasonable intervals in such files, Thus, the extra size.

2.5.1 Storage Comparison

Storage for o linked line scheme is somewhat higher than for bufTer gap. A
bulter gap scheme requires one or two new line characters per line, and a small

amonnt of fixed storage (GapStart, GapEnd, etc.).

Linked line requires, in a reasonable implementation, one 16 byte block plus an
average of & bytes lost due to fragmentation for each line. On the other hand, large

amounts of we: 1 will never have to be moved.

15.2 Frror Recovery Comparison

Recovering from errors (an unexpected program termination, for example) is
relatively easy and fuil soft in a buffer gap. In generul, the start and end of the
buffer are findable il a marker is left around the buffer (say, a string of sixteen
strange (value 255) byles) and the buffer is everything between them. The gap can
be recovered and manually deleted by the user or, if it, too, is filled with a special

marker, it can be automatically deleted.

Linked line management is harder to recover, Recovery is greatly aided by
crasing freed memory. Basically, you pick a block at random and examine it If it

can be parsed into a header, continue (a careful selection of header formats will

31

sceton 2.5.2 Memory Management

help). Otherwise, pick a dilferent block, You can then follow the next and previous
pointers and parse them. 15 this works three or four times in o row, sou can be
confident that you have a handle on the contents. 11 a header doesn't parse, it is
because it is either a part of u line (either pick again at random or go back one chunk
and try again) or a header that was being modified (in which case you are blocked
from continuing down that end of the chain). In the latter case, go in the other
dircction as far as possible. You now have one half of the buffer, Repeat the
random guess. but don’t pick from memory you already know about. You should
get the other hallof the buffer. eave it to the user to put them together again, IF
the freed blocks are not erased, the chance of linding a valid header that points o

erroncous data is very high.

2.6 Multiple Buffers

How do buffer gap and linked line schemes implement multiple buffers? There
is a varicly of choices:
intertwining (linked line only)
separate storage for each buffar
large address space (therefore paged)
structured
non structured
small address space
special cases
Intertwining is an option that is only open to linked line. In this case, all
allocation is done out of a common pool and so, over time, the buffers tend to
"intertwine” (i.e., the lines of one buffer are mixed in with the lines from other
bulTers in phisical memory). Such an approach tends to maximize the density of
text and thus make the most efficient use of memory. 1t also assumes that a large

address space 1s available. (Sce also the discussion in the next section about paged

32

Memory Management section 2.6

Ny IFOnments.)

Separate buffer space means that each buffer is allocated out of its own area and
that all of a buffer's area is contiguous. Thus, the address space is cut up into

separate sections for cach buffer.

I large uddress space is available, the cutting up can be done one of two ways.
IT the address space is structured (as in Multics), the operating system takes care of
managing such things automatically. 1f the address space is not structured (as in
Vax/VMS), the memory management scheme can reserve fixed regions of the
address space for separute buffers, each more than large enough for any reasonable

[ile.

If the address space available is too small to reserve elfectively, the memory
management scheme will have to keep track of all of the buffers and map them into
and out ol the available address space as needed. Cuution must be laken Lo avoid
requiring that only one buffer be in the address space, as a multiple window editor
must be able to scan multiple buffers. In addition, auxilliary buffers will be needed

from time to time.

Managing multiple buffers is relatively easy. They are treated as a sct of buffers,
only one of which can be accessed at a time. See the earlier section on buffer data

structures (section 2.1, page 11).

2.7 PagedVirtual Memory

How well do the two schemes perform in a paged virtual memory environment?
The buffer gap scheme works very well in general. Its highly compact format

33

section 2.7 Memory Management

allows or accessing large parts of the buffer with only u few pages in memory. Its
sequential organization also implies that it has o very good locality of reference and

so the nearby pages are heavily referenced and likely to be around,

Its major problem is the large amount of shufMing that must be done in some
cases. A move of the whole buflfer implies that the whole buffer must be swupped in
and--most likely--swapped out again. (A scarch of the whole buffer ulso requires
this swapping, but the user asked for it and no management scheme can search
lincarly through memory that is on disk. Therefore, the user should expect lesser
response.) Il the memory manager is built into the operaling system, some
mteresting hackery can be done with the page wble o "move” all of 4 chunk of
memory by one or more pages by moving page table entries. The existence of this
example implies that such a function might well be desirable 1o include in a future
set of operating system calls ("insert n pages after page x and scroll through page

y"==delete n pages is implicit in this and it only affects partof the address space).

In a tight memory situation, the buffer gap scheme does as well as can be
expected. The nearby sections of the buffer will be around because of locality of

reference, but anything far away can take a while to get to.

A linked line scheme does not perform as well overall. First, if an intertwining
multiple buffer scheme is used, one may as well forget performance in a tight
memory situation. The inlerT.wfning can use different parts of each page for storing
different bulfers. Thus, when considering any given bulfer, the page size is

efTectively reduced.

Even in a separated buffer scheme, the data is not as tightly packed overall (the

headers and lrugmentation) and so some performance is lost. Also, the linked lines

34

Memory Management section 2.7

can be anywhere in a kirge portion of memory and so the density of nearby lines can
range from good w very low. Finally, even if a desired line happens to be on an
m=memory page. inorder to get there (via the links), you will probably have to swap

i several additional pages and, in the process, may even swap the desired page out!

Ihe primary advantage that linked line has is that it never requires moving large
scetions of the buffer. Thus, if memory is not tight, the entire bulfer can fit in

memory and performance will be very good.

2.8 EditingExtremely Large Files

Extremely large files come in two fMlavors. First are files that are so krge that
recasonable assumptions break down. Such things tend to start happening about
64M bytes or so. At that point, even simple things (e.g. string scarch) tend to take

several minutes to run on a fast processor with the whole file in memory.

Although there are one or two interesting hacks to stay alive, life is simply not
bearable when trying to edit such a large unstructured file. The alternative (which
large data base people have known about for years) is to structure the file. This
alternative is not that unpalatable because an unstructured editor can still be used to
edit the subpieces of structure. The other reason why this is not that much of a
problem is that there aren’t all that many gigantic files to edit. The vast majority of

liles are much smaller. Gigantic files call for special tools for manipulating them.

‘The other flavor is more applicable to microprocessors where an extremely large
lilec might be 100K bytes. The reason why it is considered so large is that the disk to
store it on might be only 50K bytes, or there might only be magnetic tape for

pernmanent storage. Thus, a 100K file would tax the hardware resources severely.

35

section 2.8 Memory Management

‘The basic way of dealing with such files is to break them up into chunks and edit
the chunks separately (the TECO yank command is an example of this). In general,
you can only proceed forward through the file in any given edit session because of
the problems involved with the file size changing as the edit progresses, Fither a
marker byte (t1.is commonly used) or a character count (not as polite to the user)
cun be used to determine where the file breaks are to oceur. This method requires
an input and output file 10 both be availuble and open at the same time. A crash
preserves the input file and some of the output file. Thus, editing a 100K file
requires up to 200K of storage, This is the only method that works on magnetic

tape.

The next method allows full access to the file without breaking it up in any way.
It requires three files (input, output, and backup) to be open simultancously. As
vou proceed through the file, it edits from the input to the output file, However,
when you reverse direction, it reads fromthe output file onto the third, backup file
(it does not modily the input file, thus insuring its integrity in the case of a system
crash). Note that the data is stored in the backup file in reverse order! Preferably,
file i/0 is done in blocks and only the order of the blocks needs to be reversed, not
the contents of the blocks themselves. When you switch o guing forward once
again, the backup file is read until it is exhausted and then use of the input file is
resumed. This method allows for simulating a very large bulfer as the file
management can be done im-isit;]y. Thus, the user can edit a 100K file with much

less physical memory. Note that the swapping can be slow!

The final method that is available is to simulate demand paging by breaking a
buffer gap scheme up so that there are cffectively many small buffers. If a buffer

should fill up, it can be split up into two buffers and insertions can continue, No

36

Memory Munagement section 2.8

Large motion of text is ever required, but memory is lost.

In none of these systems is linked line acceptable, Memory is assumed to be very

tightand the overhead of the extra headers is not acceptable.

2.9 Scratchpad Memory

Seratchpad memory contains the temporary variables allocated by the editor.
Because of the transient nature of these variables, it is allocated and freed often. Itis
used 1o hold the buffer descriptors, string variables, and--in the linked line
scheme--the bulTers themselves. The scratchpad memory management required for
text editing is relatively simple, but there are some general considerations that are
worth mentioning. There aren’t too many buffer descriptors and they are of a well
known size so they are casy to manage, The string variables can range from being
null wo being entire buffers. Thus, they can cause fragmentation quite casily. The

linked line formats have already been discussed.

In a large address space system, two buffers worth of address space should be
devoted to scratchpad storage (to allow for putting an entire buffer there, which
lakes one buffer worth, and because space is allocated in integer buffers worth). In
a small address space system, large operations are typically done character at a time
because memory itself is usually at a premium. Therefore, the amount of scratchpad
storage nceded can be quite small. In any system where the editor can be
dynamicully extended (see the Command Loop chapter), scratchpad storage needs

can vary dramatically and are not generally predictable in advance.

Allocuting memaory in chunks helps prevent fragmentation, therefore not usually
requiring a compactifying garbage collector. 1f memory becomes badly fragmented,

37

section 2.9 Memaory Management

a compuaction is requried. In a linked line scheme, compaction climinates the
possibility of using the line pointers as unique ids (they change). Such unique ids

are used by the redisplay algorithm.,

38

Incremental Redisplay section 3

Chapter Three

Incremental Redisplay

The most visible part of a screen-oriented text editor is the redisplay process.
This is the section of code that keeps the current contents of the buffer accurately
displayed on the user’s terminal, It has the additional goal of performing this
finction in such a way that a minimum or near minimum amount of clock time is
required in order to fulfill this purpose. Clock time is 4 combination of transmission
time, cpu time, and disk access time which is perceived by the user as the delay from

when he enters the command to when the redisplay is finished.

In generul, the contents of the buffer will change only a small amount during the
basic read command - evaluate it - do redisplay loop. The screen will then only have
to be changed by a small amount in order to reflect the changed buffer contents.
Hence. the algorithms concentrate on incrementally redisplaying the buffer and the
entire process is referred to as incremental redisplay. Fortunately, it turns out that
in cases where the buffer is changed drastically, the incrementally-oriented
approach to the redisplay process works gquite well and so there is no need for

multiple algorithms.

Our discussion of the incremental redisplay process assumes a model of the
system where the editing is done on a main processor which communicates with a
terminal. 1f the main processor is the same as the terminal, the bandwidth of the
communication channel can be though of as being very high. The incremental

redisplay process is an optimization between cpu time and 170 channel time, with a

39

section 3 Incremental Redisplay

few memory considerations thrown in. The primary constraint is the speed of the
170 channel, Typical speeds that are currently available are 30 characters/second,
120 cps, and 960 cps. There are also memory mapped terminals which run at
essentially bus speeds, Equivalent speeds can be derived and run in the 100 to

50,000 cps range.

A typical video terminal has a 24 x 80 character screen. At 30 ¢ps, it will thus
take three seconds to print a line and over a minute to refresh the whole screen. At
120 cps. less than one second is required to print a line and about twenty to refresh
the screen. At 960 cps, it will take only one or two seconds 1o refresh the screen.
The speed of the communication line greatly affects the amount of optimization that
is desired. At 30 cps, even one extra transmitted character is painful to the user,
while at 960 cps reprinting entire lines does not take an appreciable amount of time.
One dimension of the optimization is thus clear: the importance of optimizing the
number of charucters sent increases in proportion to the slowness of the

communication line.

A user interface issuc arises at this point. While it is acceptable from a clock time
point of view to reprint entire lines, users do not like to sce text which has not
changed in the buffer "change” by being reprinted. The Mickering that is generated
by the reprinting process attracts the user's attention to that text, which is
undesirable (the text has not, after all, changed). Thus, avoiding extraneous
Mickering and movement of text is good. Even with infinitely fast communications

and computation, incremental redisplay will still be a desirable feature.

Cpu time must be spent in order to perform these optimizations. If the cpu time
that is spent exceeds some small amount of clock time, response will be annoyingly

sluggish (and that is not good). It is therefore desirable to minimize the cpu time

40

Incremental Redisplay section 3

that is spent on optimizing the redisplay. At this point. the speed of the
communication line makes a difference. I the line is slow, extra cpu time can and
should be spent (at 30 eps, it is worthwhile to spend up to 30 msec. of cpu time to
climinate one character from being transmitted (which takes about 30 msec.)).
However, at higher speeds it is generally not practical to heavily optimize as it can
casily take longer to compute the optimizations than to transmit the extra text. This
relaxation of the optimization is subject to the user interface constraint outlined
above. Memory size constrains the optimization as well. One technique used is
storing the entire screen, character by character. This technigue works quite well;
however, where memory is tight this technique will prove too expensive to

implement.

3.1 LineWrap

There are some more pragmatic considerations involved in the design of the

redisplay process. The first of these is line wrap.

Although the editor is editing a one-dimensional stream of text, this text must be
placed on a two-dimensional screen in such a way that the user can understand it.
There should be no constraints made by the redisplay process on the length of lines.
Additionally, there are no commands to "position the screen” or anything of the
sort. I'T IS THE RESPONSIBILITY OF THE REDISPLAY PROCESS TO HAVE
THE SCREEN SHOW MEANINGFUL INFORMATION AT ALL TIMES. The
user has almost no control over this function at all, and should not need to. If
commands have to be entered in order to obtain feedback, those are commands that

are not doing productive editing.

41

section 3.1 Incremental Redisplay

There are two different ways to handle very long lines. One way is to have these
lines be clipped at the right hand edge of the screen and then have some indication
that the clipping is occurring. The other is to wrap the lines to the next line (i.e., the
text that does not fit on one screen line is placed on the next). The first method is
acceptable, but not very well human-engineered, Typing textin the middle of a line
causes the Tine to spill and visually lose characters. This losing of characters causes
uncertainty in the user's mind about what exactly is happening. In addition, it is

never possible to see a long line in its entirety.

The sccond method is slightly less "clean” when displuyed on a screen us
wrapped lines will be around, but it does not suffer from ecither of the above
problems. Inserting text might cause a line to wrap (an annoying process) but no
text vanishes. Also, long lines are always visible. Finally. wrapped lines are usually
only a temporary phenomenon, because most people prefer line widths in the 65-80
character range and this range fits on most terminals. Thus, the wrapped lines
appear mainly during editing and will normally go away. Note that it is during the
editing process that users most want the feedback. Thus, the line-wrapping method

seems Lo be the best one to use.

In any method, care must be taken to make sure that the pathological case of
very long lines works properly. Although rare, non-text (e.g., object code) files are
sometimes examined with the editor. These files generally do not break up into
reasonable-sized screen lines (a newline indicator might not occur for two or three
thousand characters in an object file). Thus, a single line of text might more than fill
up the screen. Provisions must be made in the redisplay code to allow the screen to

nonetheless be positioned into the middle of such a line.

42

Incremental Redisplay section 3.2

3.2 Multiple Windows

t 15 useful to be able to see more than one bufTer (or different parts of the same
huffery simultaneously. For example, you can then examine documentation while
writing o procedure call. In general, it is not too difficult to set up the redisplay to
perform this multiple windowing. The few necessary details will be mentioned in
the discussion of the algorithms themselves. Care must be taken that modifications

made while in one window are reflected in any other appropriate windows,

3.3 Terminal Types

The redisplay process is the way to communicate to the user. It also has a strong
interest in taking advantage of whatever features are supplicd by the terminal in
order 1o reduce the tme taken for a redisplay. This section will undertuke a brief
discussion of _he various classes of terminals available and how various features

affect the redisplay process.

JATTTY and Glass TTY

A TTY is a canonical printing terminal. Printing terminals have the property
that what is once written can never be unwritten. A glass TTY is the samcasa TTY
except that it uses a screen instead of paper. [t has no random cursor positioning.
Incremental redisplay flor such a terminal usually maintains a VERY small window
(¢.g., one line) on the buffer and either echos only newly typed text or else
consistently redisplays that small window. Once a user is familiar with a display
cditor, however, it is possible--in a crunch--to use it from a terminal of this type.

This is not generally a pleasant way to work.

43

section 3.3.2 Incremental Redisplay

1.3.2 Basic

A busic terminal has, as « bare minimum, some sort of cursor positioning. It will
generadly also have clear w end of line (put blanks on the screen from the cursor to
the end of the line that it is on) and clear to end of screen (ditto, but to the end of
the sereen) functions. These functions can be simulated, if necessary, by sending

spaces and newlines. A typical example of a basic terminal is the DEC VT52.

Such terminals are quite usable at higher speeds (960 cps) but usubility
detertorates rapidly as the speed decreases. It requires patience to use them at 120
eps and o dedication bordering on insunity to use them at 30 eps. Terminals which

do not have clear 1o end of line are even worse.

3.3.3 Advanced

Advanced terminals have all of the features of basic terminals along with editing
features such as insert/delete line and/or character. These features can significantly
reduce communication time for common operations. Typical terminals in this

category are the HDS Concept 100, the Teleray 1061, and the DEC VT100.

Thesc terminals are, of course, quite usable at 960 cps und similar speeds. Due to
the reduced need for communication line bandwidth. at lower speeds they are more
tusable lor editing than anything else. At 120 cps, editing text is relatively painless,
but merely examining text takes place at a quite slow speed. At 30 cps, even editing

is hurely acceptable,

Therce is a subtle difference among some of the advanced terminals. The VT100
supports a scroll window (move lines x through y up/down n lines) feature while the

H61 supports insert/delete lines. Scroll window is more pleasing to sce when there

44

Incremental Redisplay section 3.3.3

IS some stationary text being displayed at the bottom of the screen. With
inscrt/delete line, the appropriate number of lines must be deleted and then
inserted; the text at the bottom thus jumps. Scroll window does the whole thing as

one operation and does not cause the bottom to jump.

‘The C100 has an interesting feature. It is a fully windowed terminal and thus all
operations can be confined to only affect a designated area on the screen.
Insert/delete line operations thus do not cause the bottom text to jump and it is
even possible to have two windows side by side as the clear to end of line operation
does not affect the text in the adjoining window. The window management software
thus has much more flexibility in what can be done while remaining within

reasonable transmission time constraints.,

3.3.4 Memory Mapped

I'his section covers a wide range of terminals. Their common characteristic is
that the enuire screen can be read or written at near bus speeds. Typically, this
means that the terminal is "built in" to the computer that is running the text editor.
In addition, this computer is ofiten a dedicated one, running only one user’s
processes. Examples of this type of terminal are the Knight TVs (at the MIT Al
lab), the Lisp Machine displays, and the wide variety of memory mapped displays

available for microprocessors.

The use of memory mapped terminals has several implications for the redisplay
process. First, many of the advanced featurcs are typically not available. However,
the terminal 1/0 is so fast that they can be emulated very quickly. Seccond, it is
possible in some cases 10 use the screen memory as the only copy of the screen.

Thus, if reading from the screen does not cause flicker (but writing does), the screen

45

section 3.3.4 Incremental Redisplay

cun be read and the incremental redisplay process will run’ and compare the buffer

against it, changing it only when necessary, Finally, if you can write o the sereen

without flicker. the redisplay process merely boils down 1o copying the buffer into
the sereen as doing so is always faster than comparing. Any memory mapped
terminal which has a slow access time should be though of as 4 basic terminal for the

purpose of redisplay algorithms.

3.3.5 Terminal Independent Output

A full discussion of this topic is beyond the scope of this thesis. [Linhart] (sce the
bibliography) discusses this problem more fully. In essence, the problem is that
every terminal manufacturer has decided on a different set of features and ways of
accessing these features. What must be done to solve the problem is to specify a set
of routines which can be called which isolate these differences, as well as a way of

sclecting amo..g different sets of such routines as the terminal changes.

Some systems already have a solution to this problem and interfacing the editor
to that solution is the best way out. For the most part (such solutions are RARE),
the person who writes the editor will effectively create one. As will be mention later,
the text editor might very well become the de facto solution to the problem. Other
programs would mercly output to editor buffers and the editor's redisplay code

would take care of the rest.

The following set of routines will allow terminal independent 1/0 for most
terminals. They allow full access to the capabilities of TTYs and basic terminals.
They will not allow Tull access o the capabilitics of advanced terminals, but they will
get you somewhere. Memory mapped terminals usually use 2 totally different 170

package anyway and so they are not considered.

46

Incremental Redisplay scction 335

Basic 1/0:
GetChar(Character <r>)
PutChar{Character)
InputWaiting(Number <r>)
Init{Terminal Type)
Fini
The first three routines are capable of handling all input and output associated
with a full duplex stream device. End of record marks (e.g., new lines) are
transmitted as characters. The [irst two routines get and put raw characters (no
translation or checking of any sort is done) and the other one tells you of the state of
the buffer. InputWaiting tells you if the user has typed anything that you haven't
read yet. I he has, you can read it before calling the redisplay. |17 the input is
coming from a file, InputWaiting will tell you the number of characters Ieft in the
file. This interface is a general stream oriented interface. These routines update the
internally known cursor position to correspond to the new one (i.e., increment by
one for the most part on output). Init sets the terminal type und initializes the
terminal to a reasonable state (e.g., do not echo input). Fini undoes whatever init
did so as to leave the terminal in some reasonable state for general system use (e.g.,

not raw 170, echo input, etc.)

Basic Terminal Control:
MoveCursor(x,y)
CLEOL
CLEODS
MoveCursor knows where the cursor is and figures out the fastest way of getting
it to (x,y). CLEOL sends a command to the terminal to clear from the current

position to the end of the linc and CLEEOS clears to the end ol the screen.

Advanced Terminal Control:

47

section 3.3.5 Incremental Redisplay

Insert({5tring)
Delete(Number)
InsertLines(Number)
Deletelines(Number)
Insert tukes String and figures out the most reasonable way ol inserting it. Delete
deletes characters on the current line. The Insert/Delete Lines routines deal with

lines on the screen. In all cases, Number can be either positive or negative and a

positive number significs to the right or below of the cursor, respecti vely.

3.3.6 F-.cho Negotiation

Echo negotiation was devised for the Multics system and is a protocol for use by
multi-node networks which can cut down on response time by reducing
communications overhead. Itis useful in an environment where the user's terminal
15 a one node and the computer which is running the text editor is at another. In
such an environment, it can take a long time to send a character back and forth (and

it takes nearly the same time to send many).

Fcho negotiation can only be used when the point is at the end of a line. The
editor can download the front end processor (the node closest to the terminal) with a
list of approved characters. As long as the user types only those characters and does
not reach the end of a screen line (necessitating a wrap), the front end can safcly
echo the input characters to [Iﬁme terminal and buffer the input text. When any
non-approved character is typed (or the line fills up), the editor is invoked to process
the cchoed text (the number of already echoed characters is returned to the editor)
and the additional character. See section 3.6.2, page 55 to see how this protocol

affects the redisplay algorithm,

Incremental Redisplay section 34

3.4 Approachesto Redisplay Schemes

‘There have been two major approaches to performing redisplay. The first is for
the routines which arc invoked by the user to tell the redisplay code exactly what
they did (e.g., "I deleted § characters from here"). This approach is not a very clean
one and it is prone to error. This is an especially important consideration because
we would like to encourage novice users to write their own commands. The extra

clfort of getting the redisplay correct might make this an impractical goal.

‘The second approach has been to have the redisplay know nothing about what
has occurred. It must rescan the buffer and decide what has and has not changed
for itsell. This process requires a copy of the screen and can be expensive in cpu

time. This algorithm will be presented first because of its relative simplicity.

There is a compromise between these two approaches which seems to solve all of
the problems. This compromise is to have the memory management soltware
communicate with the redisplay software. User routines know nothing of this
communication and cannot cause bugs in it. On the other hand, the cpu time
require for a redisplay is somewhat reduced and is more spread out and so it is not
as noticeable. Extra memory is required to handle the communication. but in some
cases, the screen representation can be discarded and so the net result could be a
memory gain. [t is this compromise that is the heart of the "modern" redisplay and

it is the other one to be presented.

3.5 TheFramer

The framer is the part of the redisplay that decides what will appear on your

screen. In the stable state, there are two different approaches used.,

49

section 3.5 Incremental Redisplay

First, the TopOfScreen and BottomOSereen marks are kept around. As long as
the point stays within these marks, we expect that the point will remain on the
screen. Thus, the top of the sereen can be assumed tobe in the proper place and the
redisplay algorithm can be started direetly. IT it does not (the redisplay code detects
this error and generates a FramerError), the framer runs agam, but uses the next

approach.

Second, if the point is outside of the screen marks, it is simplest to assume that
the entire sereen will be changed. Thus, the framer wants (o recenter the point on
the sereen. It can start by counting back <screen height> 7 2 lines, Assuming that
there are no wrapped lines, this method would work fine. At this point, the framer
checks this assumption (that there are no wrupped lines) by counting forward
character by character, keeping truck of how many lines are actually used along with
the intermediate results. I there are no wrapped lincs, the new guess will work fine.
IF there are wrapped lines, it will look at the iniermediate results and decide how
many lines to throw away to leave you approximately centered. If the advanced
redisplay algorithm is used, these intermediate results should be recorded as they

might be needed.

[l all the lines have to be thrown away (i.c, the current line is VERY long), the
third and most desperate mode must be used. Here, the framer figures out,
character by character, where each character on the current line is. It then decides
how many characters to move back before starting the redisplay, while staying

within the same line.

Incremental Redisplay section 3.6

3.6 Redisplay Algorithms

Here are presented the two major redisplay algorithms and an discussion of how
to adapt these algorithms for memory mapped terminals. These algorithms will not
go into every detail (or even most of them) as doing so would inundate the

description with too much detail. This detail is discussed in later sections.

3.6.1 The Basic Algorithm

call Framer;
/* TopOfScreen is a mark returned by
the framer */
BufLoc = TopOfScreen:
/* loop over the whole screen */
do Row=1 while(Row <= HeightOfScreen);
do Col=1 while(Col <= WidthOfScreen);

/* found a NewlLine char */
il Buffer{BufLoc)=NewLine
then do;
/* is the rest of the line blank? */
do i=Col to WidthOfScreen:
if Screen(i,Row) t= " "
then do;
/* if not, make it so by
sending a CLEOL at the
non-blank */
call MoveCursor{i,Row);
call CLEOL:
do j=i to WidthOfScreen;
Screen(j.Row)=" "
end;
leave;
end;
end;
BufLoc = BufLoc + 1:
/* move to next line */
Row = Row + 1;

Col = 1:
Teave;
end;

/* no NewLine, so has there been a
change in the buffer? */

51

scection 3.6.1 Incremental Redisplay

if Screen(Col,Row) t= Buffer(BufLoc)
then do;
/* if so, change the screen
to match */
call MoveCursor(Col,Row);
call PutChar(Buffer(BufLoc));
Screen{Cul,Rnw]=Buffer{Bquoc}:
end;
BufLoc = BufLoc + 1:
Col = Col + 1;
/% save the (x.y) of the point so
that we can put the cursor there later */
if BufLoc=Point

then do:
PointX = Col:
PointY = Row:
end;
end;
Row = Row + 1;
Col = 1:

end;
/* framer missed--it almost never happens */
if BufLoc < Point
then call FramerError:
EndOfScreen = Bufloc:
call MoveCursor(PointX,PointY);

This algorithm is quite straightforward. It first calls the framer to match the top
of the screen with somie point in the buffer. It then iterates through the buffer und
the screen simultancously, matching characters as is goes. As long as the character
on the screen matches the character in the bulfer, no action is taken. When there is
u discrepancy, the cursor is moved to that position by means of the MoveCursor
routing. the changed character is printed, and the screen array 1s updated. [the line
guts to be too long, it is wfapped automatically. If a NewLine character is
encountered, the rest of the line is checked to make sure that it is all blanks. If not,
blanks are put there. Finally, a note is made of where in the buffer the end of the

screen falls,

This is your basic, garden variety redisplay algorithm. It will work on any

lerminal that supports cursor positioning (the CLEOL call can be faked by sending

52

Incremental Redisplay section 3.6.1

spaces). It will work quite well on anything running at 480 cps or over. [ts only
memory requirements are an array large enough to hold the screen (typically 1920
characters). The only interaction between the redisplay algorithm and the memory
management system is two marks. Finally, it is not told anything about what
changes were made and so it figures everything out for itself each time it is called.
There cun thus be a cpu time penalty associated with this algorithm that might make
it slow ¢nough to be painful. The next section describes with an algorithm which

gets around this penalty.

A complete redisplay can be generated quite easily using this algorithm, ‘The
GenerateNewDisplay routine will set the cursor to home and then clear the screen
and the internal screen array. It then calls the incremental redisplay routine. The
incremental redisplay routine will simply do its normal job, which in this case
implies sending all of the non-blank characters to the terminal. The NewDisplay
routine must also remember to send such things as status displays, which are not

sent during an ordinary redisplay.

A status display is text that is kept on the screen but is not often changed. For
example, the Emacs status display hus the editor name, the mode name, the current
buffer name, and the lile name displayed on a line near the bottom of the screen.

Ordinarily, the redisplay code ignores this section of the screen.

3.6.2 The Advanced Algorithm

The advanced redisplay algorithm serves two vastly different purposes. First, it
provides a way of clficiently taking advantage of the insert/delete line/character
functions which are supplied with some terminals. Sccond, it provides a low cpu
overhead way of performing a redisplay on basic terminals.

53

scction 3.6.2 Ineremental Redisplay

The basic idea used by this algorithm is to assign a unique id 1o cach bulfer line
that appears on the sereen. Note that a buffer line can ke up more than one line
on the screen by wrapping. Just to make sure that the definitions are clear, here
they are: a buffer line (BufferLine) is cither the lext between two newline
characters (in the buffer gap memory management scheme) or the text in one
clement of the line list (in the linked line scheme). A screen line (ScreenlLine) is a

horizontal row of characters on the user's display.

The unique id can be in any form. One method is to use a 32 bit counter and
increment it cach time any line is changed. After the change is made, the line is
ussigned the current value of the counter. I it is changed again, it gets the new
value of the counter. The assignment can be made in an otherwise unused part of
the header (for linked line) or in a special mark (for buflfer 2ap). In ua linked line

scheme, the pointer to the line can serve as a unigue id.

These unique ids only have to exist for lines that appear on the screen, Thus, the
buffer gap scheme only has a few of these special marks that must be maintained,
The special marks are placed at the beginning of each line that appears on the
screen. They contain a version number for the line as well us the location of the

mark.

The memory management scheme is responsible for maintaining this extra
information. Thus, it and the redisplay code can interact heavily and the specific
redisplay process chosen will affect the internal structure of the memory

management scheme.

There are (wo fMags that can be kept by the memory management software which

will aid the redisplay process. First is the buffer modified flag. This Nag is usually

54

Incremental Redisplay section 3.6.2

kept anyway so that the editor can detect when the buffer has been modified. (The
details of manipulating it were discussed with the interface routines in section 2.1,
page 11.) If it has not been set, the redisplay code knows that it generally will not
have to do anything except move the cursor. [f the point is still on the screen
(remember that we have beginning and end of screen marks), its position on the
screen can be caleulated with much less effort that is required for a full redisplay. If
the flag has been set, o full redisplay is required and the flag will be reset (the editor
proper ORs this flag in with a private Nag (Modifiedp; mentioned in the buffer data
structure descriptions) in order to properly remember whether the buffer has been

modified).

Another flag (which has not been mentioned before) can significantly reduce
redisplay computation in some cases. Assuming that you are located at the end of a
BufferLine, it tells you whether or not any operation other than inserting a character
has been done. IFthe Nag says not, all that the redisplay has to do is output the one
character (after checking for wrap, etc.). A significant amount of time can be saved
this way, but it is most useful with a negotiated echo protocol (see section 3.3.6, page

4R). The exact interfuce to this flag will not be defined.

The redisplay algorithm itself starts by trying to find a match between the
BufferLines and the ScreenLines by using unique ids. The unique ids are
compared, line by line. If they match, no work needs to be done and the redisplay
proceeds to the next line. [f they don't, it can be for one of three reasons:

- An additional line (or lines) was inserted between the two ScreenLines,
This condition is detected by comparing the ScreenLine unique id with
all ol the Bufferline’s unique ids and finding a match. (Remember that
the Screenliines are what the Bufferlines were one redisplay iteration
ago.) We thus have the situation where we used to have A,B and now
have Ajunk>,3. Clearly, the most rcasonable assumption is that

55

section 3.6.2 Incremental Redisplay

CJunk> has been inserted. We thus count how big <junk> (the framer
has already calculated this information) is and tell the tenminal o insert
the appropriate number of lines. (Before you do this. however, you
must first delete the same number of lines from the end of the window
in order to keep [tfom losing the text at the bottom of the screen.)

- A line (or lines) was deleted. This is detected by comparing the
BufferLine unique id with all of the SereenLinc’s unique ids and finding
a match. We thus have AB,C becoming A,C. We delete the
appropriate number of lines and then insert them again at the bottom of
the window.

- The line was modified. This is detected by not finding either of the
above matches. At this point, we switch to intra-line work and do the
following:

*Do a string compare starting from the beginning ol each line (the
Bufferline and the ScreenLine) und see how much they have in
common. (If this says the whole line matches, no more work has
o be done.) For example, if the Sc.eenl.ine is "ubedel™ and the
BufferLine is "ubxdef™, they have two characters in common from
the start.

*Do the same thing starting from the end. The cxample strings
have three characters in common from the end,

*Compare the line lengths. If the two lines are the same length, you
only need to rewrite the changed part (e.g., two characters were
interchanged). In the example strings, the lengths are the same
(6). This optimization can be done even on a basic terminal. [the
two lines are not the same length (for example, the Sereenline is
"ubcdel” and the BufferLine is "abxyzdef™), rewrite as much of
the portion between the common text sections as possible ("x")
and then either insert or delete the required number of characters
(in this case, insert two blanks) and finish writing the modified text
("yz"). Remember that if there is no common text at the end and
the BufferLine is shorter than the ScreenLine, a CLEOL call is

56

Incrementad Redisplay section 3.6.2

appropriate.

*Wrapped lines can pose a problem. There may be no end
conmumon text, and yet an insert or delete character operation might
be the appropriate one. (If the screen width is six characters, the
ScreenLine is "abedef™, and the BufferLine is "abexdef”. Here,
the Bufferl.ine will ultimately become two Screenl.ines, "abexde"
and "F".) This case is detected by having no end common portion
and noticing that the line wraps. A more complicated matching
process can detect the situation and appropriate action can be
taken.

3.6.3 Memory Mapped
Redisplay for memory mapped terminals boils down to one of three cases. Fach
case is relatively simple.,

1. Reading from and writing to the screen cause flicker. The solution is to
use the basic terminal redisplay scheme,

2. Reading does not cause flicker but writing does. The solution is to use
the basic terminal redisplay scheme, but use the actual screen memory
for storing the screen array.

3. Neither reading or writing cause flicker. On each redisplay cycle,

merely copy the buffer into screen memory, not forgetting to process
new lines, etc., as needed.

3.7 OtherDetails

There are a number of other details that must be carefully watched when writing
redisplays. None of them are particulary worrisome in themselves, but they

collectively clutter the algorithms a great deal. The problems that they pose will be

57

seetion 3.7 [ncremental Redisplay

deseribed and they are cach simple cnough that specific solution algorithms ure not

required.

3.7.1 Tabs

[t helps to think of a tab character in a buffer as a cursor control command
saying, "think of me a N blanks, where N is the number of columns to the next tab
stop.” Thus, whenever you see a tab you want to figure out what N is, and then
check to see that the next N colums are blanks, increment the cursor by N, ete. Tab
stops can be set in an array (for arbitrary placement ol tabs) or set every C columns.
In a one origin numbering system, tabs set every C columns are sct .ut positions 1,
C+1,2C+1,3C+1. .. Forexample, when C=8, tabs are in columns 1, 9, 17, 25,
33, ete. Again, assuming a one-origin system. the equation for N is:

N =C - mod(X-1,C)

(X is the colur.in position.)

3.7.2 Control Characters

In generul, only the new line character(s) and tabs are interpreted: other control
characters are displayed in some reasonable printing representation. One popular
representation is "1* followed by the character whose ASCIH value is <control char>
+ 64. The character control-a is thus printed as 1A, (The ASCII DEL character,
127, can be printed as 17.) This convention has been followed in this thesis. When
displaying control characters, you must remember that while the character itself is
only one character, it displays in a two character wide sequence. In addition, it is the
actual displayed sequence that is stored in the screen array (e.g., "t" and "A", not

"tA"). Care must be taken to insure that control characters can wrap properly

58

Incremental Redisplay section 3.7.2

across line boundaries (e.g., the "™ at the end of one line and the "A" at the

beginning ol the next).

3.7.3 End of the Bulfer

If the entire buffer fits on the screen, you will run out of bulTer before you run
out of screen. Thus, whenever Bufloc is incremented, a check should be made
against the buffer length. If you do run out of buffer, remember to finish blanking

the rest of the screen il it needs it.

1.7.4 Between Line Breakout

e redisplay process does not have to run to completion before editing resumes.
Instead, it can get o a convenient spot (in the basic algorithm, alimost uny spot will
do: in advanced algorithm, stop after linishing a line) and check the input buffers.
Il more mput has arrived, it can abort the redisplay and process the input.
Remember that the purpose of redisplay is to provide feedback to the user. If he
has already typed something, he does not need feedback immediately. (However, if

you can give it to him in a way that does not slow him up, do so.)

3.7.5 Proportional Spacing and Multiple Fonts

Displaying text in a proportional spaced font is not wo difficult. Instead of
assuming that each character has a width ol one, the width can vary and it must be

looked up cach time it i1s needed.

Displaying multiple fonts implies receiving a command to switch fonts at some
time during the redisplay process. These commands can be stored in the buffer (in
which case they are interpreted and not displayed just like Newlines) or in some

59

section 3.7.5 Incremental Redisplay

other structure.

3.7.6 Multiple Windows

There is a database somewhere which describes what windows (i.c., what part of
which buffers) are to appear on the screen. One way to perform redisplay with
multiple windows is to call the incremental redisplay routine and pass it as an
argument each window descriptor in turn. Another way is more suitable for use
with the advanced algorithm and it involves having a separate descriptor for each
Iine of the display (i.c., the same database sorted backwards as well), This descriptor

tells you where to get cach line from.

Il a row of dashes ("-----") or any other character string is used as a visual
separator between windows, it can be implemented as an additional buffer/window

combination and no special casing is required for the redisplay code.

I'he Command Loop section 4

Chapter Four

The Command Loop

This command loop is the part of the editor that actually implements the logic of
the editor. It is responsible for reading in commands, executing them, and
“printing” the results. In the process of executing them, it must accept arguments
and bind the input characters to functions. This chapter will discuss the command
loop. It will also discuss some distantly related issues: the tradeofls between kill
buffers and an undo function, the provisions for recovering from crrors, and

considerations for selecting implementation langauges.

4.1 Basic Loop: Read, Eval, Print

The basic loop is:

do while{TRUE}):
call GetChar(Char);
call Eval(Char);
if abort
then leave;
if InputWaiting() = 0
then call IncrementalRedisplay:
end;

Note the two details that have been added to what was mentioned in the section
heading. First, an abort flag is checked to sec whether we are supposed to exit the
edit session. This Mag is set by the FEval routine. Eval works by invoking a function

which was specified by the input character. This function’s only result is the change

in the state of the editor (e.g., an “x" has been inserted). The "printing” (actually,

61

scetion 4,1 I he Commund Loop

an incremental redisplay o the sereen) is done only if the user has not typed in

anything more o be processed.

4.1.1 The Philosophy Behind the Basic Loop

The basic loop as described puts the fewest restrictions on the user interface that
can be managed. Each character, in its raw form. is mapped to a procedure which is
in turn evaluated. Any arbitrary syntax and semantics can be implemented with this

base.

In theory, a syntax of commands being words (e.g.. "delete”, "move”, etc.) could
be implemented in this structure by having either a large number of dispatch tables
(and thus implementing a symbol state table architecture) or a procedure which
parses the syntax of the command via conditional statements. For reasons which

will be stated, this syntax is not generally implemented.

Consider the thought that every character that is typed at the keybourd causes a
[unction to be executed. The first conclusion that results is that it is silly to type
“insert x™ or anything like that when you want "x" to be inserted. As this is a very
common operation, it makes more sense to bind the key "x" to the InsertX function,
(Actually, it is probably bound to Selflnsert, a function which looks at how it was

invoked--the input character--to determine what to insert).

Now, all of the straight, printing, ASCII characters have been taken and bound
to Selfinsert. (While there are a large number of special characters that are not
often typed, leaving them in consideration does not materially affect the
conclusions.) The remaining things that can be entered from an ASCII keyboard
are the control characters, the delete key, and the break key. These could be bound
t functions that implement a complex syntax, but why bother? It is not too difficult

62

I he Command Loop section -k 11

to learn even a large number of key bindings, so let us bind the control keys directly
to useflul functions. For example, tF could be ForwardCharacter, 1D could be

DeleteCharacter, etc.

33 functions are not enough for even the commonly used functions. Thus, some
of the keys should be bound to functions which rebind the dispatch table. For each
of these rebinding functions, 128 new functions are made available (there is no
reason lor the printing characters in them to be bound to Selflnsert). Note that the
break key is not used in this scheme as it is hard to work with (it does not have an

ASCII value).

Thus, even though we began with a structure for the command loop that did not
o impose any constraints on the syntax of commands (and thus was as gencral as
pussible), we arrived at a specific syntax for commands. This syntax is to bind the
printing characters to Sclflnsert, bind the control characters to a mixture of useful
functions and rebinders, and to have about three or four alternate dispatch tables
(enough to supply many hundreds of commands). Thus, commands are rarely more
than two Keystrokes long. The price that is paid for this brevity is a longer lead time

in learning to use the cditor effectively.

(Note that most of the increased lead time in learning the editor is NOT from the
brief commands, but because there are more commands to learn. Given a
"conventional” editor (e.g. DEC's SOS) and an equivalent subsect of an Emacs-type

editor, novice users will learn the subset of the Emacs-type editor faster.)

63

section 4.2 Ihe Commaund Loop

4.2 ErrorRecovery

Errors come in two flavors. There are internal errors which are in the cditor itself
(¢.g.. a subscript out of range) and external errors which are cansed by the user (e.g.,
attempt to delete ofT the end of the buffer). There is also a non-crror, the normal
exit, which will be treated as an error in this discussion. These errors will, in
general, be indicated both from within the editor and from the outside world (the

operating system).

The first category to be considered will be internal errors. These errors cause an
immediate exit to the operating system with no questions asked and no delays
tolerated. They will be internally generated by such things as arithmetic overflows
and bad subscripts. (While the cditor might catch and process some of these, it will
not generally process them all) They can also be generated externally and often are
(c.g.. process switching). The factor in common is that they are unpredictable and
the state of the editor should remain exactly intact. The user should also be able to
signal such an error to abort out of the editor. He might want to do this because ofa
problem with the editor itself (e.g., infinite loop) or because he wants to do
something else. This signalling is usually done with the help of the operating
system. In any case, the precise state of the editor should be retained so that it can
be resumed exactly where it Ieft off. Most operating systems have some facility for
doing this: they differ principally in the freedom of action that they allow before
losing the state. This freedom ranges from nothing to doing arbitrarily many other

things.

Al the user’s discretion, the editor should be restartable either from exactly
where it Ieft ofT or at a safe restart point. This point is ordinarily a portion of the

witor which recovers the buffers and other current state and then resumes the

64

| he Command Loop section 4.2

command loop.

External errors are principally user errors, The action ordinarily taken is the
printing of an error message and a return to command level. The implementation of

this level of recovery is built in to the procedures which implement the commands.

‘There is a variation of external errors which are generated manually by the user.
Typically, these involve backing out of an undesired state (e.g.. the unwanted
invoking of a dispatch table rebinding or aborting an undesired argument). The bell
character (ASCIl tG) has often been used for this purpose. In this case, the
procedures will know that a bell has been typed and will implement the backout

protocol.

Finally, provisions to cxit the editor must be made. This is ordinarily by means
of an ubort MNag of some sort as can be seen in the previous code fragment. Note (hat
various other uses might be multiplexed onto this abort Mag, signifying varying
levels of "exiting.” For example, one level could used by buffer switching in order

to rebind the dispatch tables (see the section on later in this chapter).

Ordinary exiting involves several types of processing. The editor might ask the
user what to do with buffers that have been modified but not written out. If, as is
ordinarily assumed, the state of the editor is preserved across invocations, the state
must be saved. If not, it must be sure that all memory is dcallocated. Finally, the
user’s environment shm;ld be restored as it was found. This implies such varied
things as cleaning up the stack, closing files, deallocating unneeded storage, and

resetting terminal parameters.

section 4.3 I'he Command Loop

4.3 Arguments

Arguments are specified by the user to modify the behavior of g function. The
Emacs argument mechanism will be described as an example of three diverse ways

in which arguments are obtained.

There are three standard argument types. First are prefix arguments. These are
invoked by a string of functions (which are in wrn invoked by characters typed
before the "actual” command) and are an example of using the key/function
binding to implement a more complicated syntax. Next ure string arguments.
When obtaining a string argument, the editor is invoked recursively on an argument
buffer and upon return from the recursive invocation the contents of that buffer are
given to the requesting procedure. Last are positional arguments. These are the

internal variables of the editor.

4.3.1 Prefix Arguments

Prefix arguments are entered before the command whose behavior they are
modifying, thus, their interpretation must not depend upon the command. Emacs

limits these to numeric values.

Ordinarily, commands will have an internal variable available to them named
something like "argument” and it will have a value of one. Prefix arguments allow

the user to change that value to any other positive or negative integer.

Arguments are used for two different purposes. First is to specify a repeat count
for a command. Thus, <12 tF would 2o forward twelve characters (assume the 1F
key is bound o the ForwardChar function). The other use is (o tell a command to

is¢ an alternate value for a parameter. If FillParagraph was bound to tP, then <65>

66

I'he Command Loop section 43,1

P might say to, for this time only, use 65 as the desired width of the paragraph after
itis filled. Alternatively, it might say to reset the default value of the right hand
margin to 65 and then use that value. It is useful to provide a predicate to allow
procedures o determine whether an argument has been given. This allows them to
differentiate the default argument of one from the user entering one as the

argument value,

Emacs uses tU as the universal —argument function. It can be used in cither of
two ways. tU tF means to go forward four characters. Adding another tU means
tw multiply the current argument by four. Thus, tU tU tU tF means to go forward
64 characters. The factor of four was sclected because five is too large (1, 3, 25, 125
goes up too fast) and, while three might have better spacing (1, 3, 9, 27. 81, 243), the

powers of four are known by all people who are likely to be around computers.

The other use is more complicated. tU 1 2 tF means to go forward twelve
characters. tU- 147 tA means to give tA an argument of -147, The tU in this

case serves as an "escape” 10 logically rebind the 0-9 and - keys.

On some terminals, there are two sets of numeric keys (one set that sends the
ASCII "0" - "9" codes and another that is labeled with digits but sends different
codes) to generate "numbers” than simply sending the appropriate ASCII codes. In
this case, these "other numbers" can be bound directly to argument generating

functions and the initial tU is not needed.

4.3.2 String Arguments

String arguments are specifically requested by a procedure. A prompt is
displayed and the user enters the value of the argument. The procedure uses this
value in any way it desires.

67

section 4.3.2 Fhe Command 1.oop

One way to implement such a way of entering arguments is to create an
urgument buffer in a new window, display a prompt, and call the editor recursively
with that as the current buffer. By following this scheme, the full power of the
eclitor is availuble to correct typing mistakes or otherwise muke the entry process

casier.

When implementing any argument entry scheme. there are three things to take
into account. First, the key or key sequence used Lo indicate that the entry process is
over should be able to vary depending upon who is asking for the argument, tM
(<er2) and 1 (<esc>) are both commonly used as delimiters. Second, there should
be a clean way to ubort out of the argument entry process (1G is commonly used for
this purpose). In this case, the culling procedure should be told about the abort in
order for it to terminate gracefully. (Most of the routines that ask for arguments do
all of the asking at once and then proceed to do 2 large amount of work (e.g.,
ReadFile). Thus, aborting out of the argument <ntry process effectively aborts out
of the command. Aborting cannot be done cleanly if commands are written to get
an argument, do some work, get another argument, etc.) Finally, null arguments
(the user enters only the delimiter character) can be used to cut down on typing

errors if the procedures supply some reasonable default values,

Here are some examples of using string arguments:

ScarchString: Ask for a string and look for it in the buffer. If the user enters a null
string, use the same string that he searched for before.

ReadFile: Ask for a string and, using it as a filename, read the file into the buffer.

If the user enters a null string, use the current filename associated
with the buffer,

ChangeBuffer: Ask for a string and, using it as a buffername. make that buffer the
current one. If the user enters a null string, use the buffer that he

68

Ihe Command Loop section 4.3.2

was in last (i.e., the one that he was in before the one that he is in
now).

Note that SearchString typically uses t[(<esc>) as the delimiter while ReadFile
and ChangeBuffer typically use tM (<cr>). In order to help the user, it is nice to
automatically remind him which delimiter is being asked for. Here are some
example prompts:

Search String(<esc>):

lnput File Name(<cr>) (Default is >u>fin>test):
Buffer Name(<cr>) (Default is foo):

Note that some prompts helped the user by reminding him of the default value.

While all of the examples asked for and wanted a character string, this might not
always be the case. It is quite practical to use this method to enter numeric values.
The requesting procedure merely has to convert the read-in character string to a

numeric value,

4.3.3 Positional Arguments

Positional arguments are not directly specifiable by the user. They are the
internal variables that are used in the editor. Such variables include both those
required by the editor (e.g., the length of the buffer, the locations of the point and
the mark, etc.) and those which have a specialized purpose (e.g., the current value of

the right hand margin, the tab spacing, etc.).

Often these values are used in unusual ways. For example, the horizontal
position (column) of the point can often be a more pleasant way of specifying a
value than entering a number. The user can indicate that "this is where | want the

right margin to be" instead of having to count characters to get a number. The user

69

scelion 4.3.3 IMe Command 1oop

indicates this value by using other commands (e.g., ForwardChar, ForwardWord) to
move the point to the desired location. See also section 5.2, page 85 for information
about how graphical input devices (mice. tablets. touch sensitive displays) affect

positional arguments.,

4.4 Rebinding

Rebinding is a name for the act of changing at run time what a key or procedure
does. The distinction between the two (keys and functions) is important. Changing
the binding of a key means that when that key is typed, the new procedure (the one
that is now bound to the key) will be executed instead of the old one. Changing the
binding of a procedure means that whenever that procedure is invoked, the new
version will be executed instead of the old one. This change affects not only any

keys bound to that procedure but also any internal references to it

There are two levels of rebinding functions. Level | rebinding is when the new
procedure must be known before invoking the editor. Level || rebinding is when
the new procedure can be defined after the editor is invoked. Unless otherwise

stated, level 1l rebinding is assumed.

To a first approximation, editors that are written in compiled linguages (e.g.,
PL/1) can only change the key bindings and interpreted editors (those written in,
say, Lisp) can change both bindings. Dynamic linking, however, allows both
bindings to change in compiled editors and so this distinction is not always a proper

one to make.

70

I he Command Loop section 4.4. 1

4.4.1 Rebinding Keys

The process of key rebinding is a relatively simple one and it is done essentially
the same way in all implementations. A set of dispatch tables is used to map keys

(represented by their ASCI values) to their respective functions.

In languages such as Lisp and PL/1, the table can contain the procedures
themselves. In less powerful languages such as Fortran and Pascal. the dispatch
luble branches 1o a different part of the same routine that contains the table. There,
the procedure call is made. In languages that supply it, a case statement can be used

instead ol the n-way branch.

None of these procedures have any formal parameters, and so they can all be
invoked with the same calling sequence. Thus, the Lisp and P1/1 direct invocations
can work properly. Note also that simple commands do not have to have a separate
procedure assigned to them, but the code to execute them can be placed in-line in
place of a call (where the case statement equivalent is used). Doing this substitution

loses some potential flexibility.

4.4.2 Rebinding Functions

Level [function rebinding is ordinarily a language-supplied feature and so it
will not be discussed in depth. Two comments will, however, be made on how to

simulate it.

If the underlying operating system has dynamic linking (e.g., Multics), a
procedure may be rcbound at run time. Dynamic linking is a way of linking
procedures together in which the actual link is not made until the procedure is about

lo be executed. At that time, the procedure is located in the file system and brought

71

seetion 4.4.2 I'he Command Loop

into memory. The link may either be left alone, in which case the next call will have
the procedure re-located (a relatively expensive process) or it may be snapped.
Snapping a link implies converting the general call instruction (which is kept in a
special, writable part of the program) into a call instruction to the appropriate
address. [fa link is snapped, it must be explicitly unsnapped before any re-locating

is done.

If the operating system does not support dynamic linking, the editor writer might
choose to simulate it manually. Such a process is complex und some thought will
have to be given to exactly how desirable rebinding functions is. The process is

tuntamount to explicit overlaying.

This all has a straightforward bearing on rebinding functions. Rcbinding a
function involves changing the definition of the procedure that is invoked by
referencing it. What has been discussed are ways of changing such a procedure
definition. Note that if the code to execute a function is inserted in-line in the basic

editor, it cannot be rebound by any of these methods.

[f dynamic linking is not available and is unfeasible to simulate, there is still one
way out. This way will only provide level 1 rebinding. Instead of just using one
dispatch table which indicates a procedure to be called directly, use two. The first
table maps from keys to the operation to be performed (c.g., tF is mapped to
moving forward one character). The second table maps from the operation to be
performed to a procedure to perform it (e.g.. moving forward one character is

mapped to ForwardChar),

[he Command Loop section 4.5

4.5 Modes

Modes are collections of rebindings which are done all at once. They can cither

be done automatically or can be explicitly asked for by the user.

An cxample of an automatically loaded mode might be PL/1 mode. This mode
will automatically be loaded whenever a file whose name ends in “.pl1" is read into
a buffer. Such a mode might do several things. It might rebind the internal variable
that identifies which characters are legal in tokens (i.c., variable names) to also
include the "$" und underscore characters which can occur within PL/1 names,
Fhis change would make the ForwardWord function treat a PL/1 variable name as
word. The mode might also rebind the ";" key to be an electric semicolon (i.e.,
finishing one statement would cause it to automatically indent properly for the next

one).

The process of autoloading is related to automatically loaded modes. The trigger
is the main difference. In autoloading, the trigger in completely internal. An
cxample could be the set of Sexpression hacking commands. Although they are
defined atall times, the code for them is not necessarily a part of the editor. Instead,
when any of the commands is invoked, they are autoloaded into the editor and the

command is executed.

An example of a user requested mode would be auto fill mode. This mode
rebinds the space character to one that checks to see if you are typing past the right
margin. If you are, it breaks the linc up to fit within the right margin. It also inserts

the space.

A printing terminal mode would use function rebinding. It would be loaded

automatically whenever the editor is used from a printing terminal instead of a

73

scetion 4.5 Ihe Command Loop

display. 1t nmght rebind the Selflnsert function (which is tsed by all ol the 95
printing keys) w one that prings the character that it is inserting on the terminal (and
then iserts i), In this case the definition of the function changed and so function
rebinding is culled for. Note that this change is global over 4l buffers and so it is

not readily simulatable by changing the bindings of keys to operations,

The Tunction rebindings that are commonly done by an editor are known in
advance and so they can be done by any implementation (see the preceding section
for a discussion of the difficultics involved in function rebinding). Fully dynamic
rebinding (the new definition of the procedure is not known until run time) is

desirable Tor several reasons,

- Debugging is greatly cased if the trial-and-error cycle time is reduced by
not having o compile and link the whole editor each time. Instead, only
one function has to be recompiled and linked. (In languages such as
Lisp, it is more uccurate to say compiled/linked as the two operations
are synonymous.)

- Space savings are achieved if unnceded modes and autoloaded single
functions are not brought into memory until asked for.

- If the editor is implemented in an interpreted language (sce the next
section) users can develop their own functions relatively easily. Such
“sideline” development is advantageous because it allows many pcople
to develop useful code and so the editor can be specialized in many
more ways than any reasonable support group could ever implement on
their own. It also encourages iloring the editor to a user's own taste
and so his productivity is enhanced.

4.5.1 Implementing Modes

Modes are on a per bulfer busis and so provision must be made for changing

74

I'he Command Loop section 4.5.1

these bindings as buffers are switched. The general technique for doing this is to
have a set of default bindings and a set of current ones. When a buffer switch is
made, the default bindings are copied to the current ones and then a series of
procedures are run which modify the set of current bindings to be the correct ones

for the modes that are active on this buffer.

A different approach would be to have a separate environment for each buffer
which is created with the buffer, is modified as modes are added. and is never
thrown away. This approach leads to cfficiency problems because of the large
amount of storage overhead associated with each buffer.

Sidenote Calculation: Assume that there are two dispatch tables of 128
commands each and that each entry is four bytes (big enough for an
address). This leads to 1K bytes just for the dispatch tables per buffer. In
addition, you have another 1K byles for a default table to use when
creating a new buffer. With a current/default dispatch table scheme, you
have 2K bytes per editor and so you are always as efTicient and better in
the case where you have more than one buffer. Procedural storage
overhead is esscntially the same. In one case, you invoke the state
building procedure once (but in general cannot undefine the procedure)
and in the other case, you invoke it with each buffer switch. It does, on
the other hand, take longer to switch buffers but the incremental time is
usttally minimal.

There is an important flexibility tradeoff. With a mode list and the associated
default/current dispatch tables, it is possible to remove a mode from a buffer. If
gach buffer has its own dispa-lch table which is incrementally changed whenever a
new mode is added, it is not generally possible to undo such changes. Note that
while the dispatch tables were used as an example, it is by no means the only

variable whose value may change on a per-buffer basis.

15

seclion 4.6 I'he Command Loop

4.6 Killand UnDo

An Emacs maintains a kill ring which is a place where all significant chunks of
deleted text get placed. (Those deleted with C-d and do not get saved,) There
are commands to push and pop things from the current spot in the ring and to rotate
the ring so that different text is at the current spot. Typically, a maximum of ten or

so items are kept in the kill ring.

Moves and copies of text are done with this ring. Thus, there is a mechanism by
which the user can recover accidentally deleted text. This type of error is the most

harmful one that can occur as it involves losing information,

The InterLisp system (and others) provides a more general undo facility.
Invoking this facility will cause the system to "undo™ whatever it was that you just
did (for one command only; a second "undo” will undo the first one). In order to
implement this facility, the system must keep track of everything that you do and

what its effects were.

While this general purpose facility has good applications, it is not clear that a text
editor is one of them. There are three basic areas where undo applies to text cditing.
These are: moving around in text, deleting text, and file i/0. The Emacs approach

und the undo approach will be compared for each of these.

Moving around in text is simply solving the problem "I am at x and | want to be
at y." The Emacs solution involves translating this difference into a sequence of
commands to move the point from z to y. If a mistake is made in the process of
implementing the solution, the problem is merely restated to "l am at x” and [want
to beat y" and itis re-solved. The undo solution differs by detecting the error (i.e.,

deviation from the intended solution), saying "undo" to put you back on the

76

I he Command Loop section 4.6

original path, and proceeding. Ordinarily this difference in the two solutions is not

very great.

If the accidentally typed command is one that moves you a great deal (e.g., move
1o the beginning of the buffer), it is not always easy to recover with the Fmacs
solution because you might not remember exactly where you were. Emacs solves
this by having the large movement commands set the mark to where you were.

Thus, an interchange point and mark sequence will recover from the error.

The undo actually helps less in the text deletion case. There, the “canonical”
undo will only recover the last command and, hence, the last delete opcration.
There is no provision for deleting something, moving somewhere else, and
undeleting it. Nor is there a provision for recording multiple deletions. Thus, the

Emacs approach is more flexible.

Finally is the case of file i/o. Different iinplementations of Fmacs will do
different things but the basic idea is to let the user do what he wants. Obvious
things will be checked (the file was modified by someone else since it was read in,
for example) and such things as deletions will be double checked with the user but
no recovery will be provided. On the other hand, not all systems can support the
overhead of the multiple copies of a file that would be required by undo, nor are
there always ways to manage these extra filcs conveniently. (The DEC TOPS-20

operating system does do a reasonable job at this, but it is far from perfect.)

The basic conclusion is that while an undo facility is nice, it is not all that useful

in the context of an Emacs type text editor.

77

section 4.7 I'he Command Loop

4.7 Implementation Languages

The language that the editor is implemented in can greatly affect the ease of
writing, maintaining, and extending it. Some brief comments will be made about
several classes of programming languages which might be considered as

implementation languages.

4.7.1 TECO

(This discussion refers to MIT TECO and not the TECO which is supported by
DEC on several of its machines. MIT TECO is much more powerful.) TECO is a
text editor. Its command language is so powerful that it is usable to write other
programs in. It is tailored for writing text applications and so would seem a good
choice. It has two major problems:

-1t is the only language less readable than APL. A listing of a TECO

program more resecmbles transmission line noise than readable text.
Thus, maintenance is a problem.

- Its only implementation is on the PDP-10/DEC 20 serics of computers.
Implementations on other machines involve asking the question of what
you write the TECO in.

4.7.2 Sine

Sine is a Lisp-like language tailored for text applications. Its only
implementation to date is on [nterdata 7/32 (or Perkin-Elmer 3200) minicomputers
running the MagicSix operating system developed at MIT. It s interesting because
it is a language tailored for implementing editors. It is a example of an “ideal"

implementation language. [Anderson] discusses this language in detail.

78

Ihe Command Loop section 4.7,2

Sine is composed of two parts. Sine source code is assembled into a compact
format. This object code is then interpreted. It allows function rebinding and other
such nicities and the interpreter implements such things as memory management
and screen redisplay automatically. Thus, the resulting editor is nicely structured,

with "irrelevant” details hidden away.

4.7.3 Lisp

Lisp is probably the best choice, if it is available. The Lisp must, however, have
string operations in order to run with any efficiency. It is best suited for the linked
line form of memory management because of its view of memory management.
Lisp provides a nice interpretive language for escaping into to casily write
complicated editing macros. It also is quite readable and maintainable. 1t also
provides function rehinding. Some Lisps have compilers whose code can run very

fast, so speed 1-eed not be a problem.

474 PL/1,C, ete.

PL/1, C, and other such "systems languages™ are widely available in reasonably
cflicient implementations. They allow the straightforward manipulation of
complicated data structures and yet remain generally readable, They specifically
support containment of detail by independently compiling several related routines

and their internal data structures.

As a specific example of the latter, it is possible to write a buffer management
abstraction in which the only visible parts are the entry points. The specific method

chosen to represent the buffer remains well hidden.

seetion 4.7.3 'he Command |Loop

4.7.5 Fortran, Pascal, ete.

Fortran, Pascal, and other such languages are the least acceptable (except, of
course, for ussembler). In general, one must either simulate a missing basic feature
(c.g., Fortran and If=Then-Flse) or circumvent a "feature” (e.g., Pascal and multiple

entry puints to procedures) in order to do useful work in such languages.

User Interface Hardware section 3

Chapter Five

User Interface Hardware

The only way for a user to interact with the text editor specifically or the
containing operating system generally is by means of the keyboard/screen
combination. The chapter on Incremental Redisplay discusses the use of the screen

in detail. This discussion is on the keyboard part of the combination.

5.1 Keyboards

The keyboard is the primary means of interacting with the system. In most cases,
it is the only way of doing so. Many thousands of characters will be entered in the
course of a normal working session. Thus, the keyboard should be tailored for the
ease of typing characters. While the previous statement might seem trite, there are a
large number of keyboards on the market which are not very good at all for entering
characters. Here is a discussion of the various keyboard features and why they are

or are not desirable:

N-KEY ROLLOVER is a highly desirable feature. Having it means that you
don’t have to let go of one key before striking the next. The codes for the keys that
you did strike will be sent out only once and in the proper order. (The "n" means
that this rollover operations will occur even though every key on the keyboard has
been hit.) The basic premise behind n-key rollover is that you will not hit the same
key twice in a row. Instead, you will hit a different key first and the reach for that

key will naturally pull your finger off of the initial one. However, the timing

81

scction 5.1 User Interface Hardware

requirements are quite loose about exactly when your finger has to come off of the
first key. Thus, typing errors are reduced. Note that n-key rollover is of no help in
lyping double letters. Note also that shifi Keys and the control key are handled

specially and are not subject to rollover.

AUTO-REPEAT has both good and bad sides to it. It is useful on a system
which does not supply such things in software but its drawbacks (leaning on a key
can be deadly) makes it out of place on a system with a sophisticated editor. (If you

want a row of "."s, just type “tU 80 ."))

TOUCH-TYPABILITY is the single most critical feature. It is simply the ability
1 type the useful characters without moving your fingers from the standard
touch-typing position (the "asd™ and "jkI;" keys). As more and more people who
use keyboards are wuch typists and can thus type at a reasonable clip, they should
not be slowed down by having to physically reach their hands out of the basic
position, It can take one or two SECONDS 1o locate and Lype an out-of-the-way
key. (The row above the digits is out-of-the-way, as are numeric key pads and
cursor control keys.) One second is from three to ten characters of time (30 - 100
words per minute). Thus, it takes less time in gencral to type a four or five character

command from the basic keyboard than to type one "special” key.

Because of the desire for touch-typability, it is worth at least considering doing
away with such keys as "shift lock.” They are rarely, if ever, used and the keyboard

space that they occupy is in high demand.

Other things which keyboard manufacturers have done can be deadly. Two
cxamples are illustrative. First, the timing on the shift keys can be blown. The

result of doing so is that when "Foo" is desired, "FOo," "f0o," and "foo" are more

82

User Interface Hardware section 5.1

likely to result. The other example is having a small "sweet spot” on each key.
Missing this "sweet spot” will cause both the desired and the adjoining key to fire.

Thus, striking "i" can cause "i0" to be sent.

More generally, the packaging of a keyboard can be important. Sharp edges near

the keyboard or 1oo tightly packed keys can cause errors and fatigue.

5.1.1 Special Function Keys and Other Auxiliary Keys

Keyboard manufacturers scem to have decided that a plethora of special keys is
more useful than a more general approach. Thus, you can get "insert line" or
“cursor up” or--gasp--"PF1". These keys, when pressed, will either do the function
that they name, do something totally random, or send a (usually pre-defined)
sequence of characters to the computer, For reasons that have been covered
already, having the terminal do the named functions is a losing approach. Having
them send pre-defined sequences of characters is not much more useful. For
example, the "cursor up” key might send [E and your editor has this sequence
bound to MoveToEndofSentence. Note that this problem exists even though the
cditor is fully extensible (i.e., it is not an acceptable solution to rebind the t[E
command in the editor to MoveUpLine) because the user might still want to use the
t[E command for its original purpose. This problem can be avoided if the keys are
down loadable with a sequence of characters to send. Thus, the editor can tell the

"cursor up” key to send, say, tP.

Aside from the problems of compatibility with whatever sofiware is being run,
the placement of the keys is the worst problem. As has just been stated, keys that

are ofT to one side take too long to hit. Thus, typing is slowed down considerably.

There is yet one more problem. Additional keys are not free and so the number
83

section 3.1.1 Uscr Interface Hardware

of them that you want to pay for is limited. However, it is desirable to have the
ability to specify a large number of functions (i.c., have a large number of codes that
can be specified by the user). The number of special keys required grows linearly

with the number of codes.

5.1.2 Extra Shift Keys

A more general solution is to provide extra shift keys. These are keys that
modify the actions of the other keys. "Shifi" and "control” are the two most
common examples of such keys. The Teleray 1061 terminal has a "meta” key as an
option. This key sets the top (128) bit of the character that is specified. There are
thus 256 codes that can be specified instead of the usual 128 from a full ASCII

keyboard,

The number of extra shill keys required grows as the log of the number of codes.

Thus, 512, 1024, and even 2048 code keyboards are conceivable.

Finding room on the basic keyboard for these extra shift keys is not easy. That is
one reason why the removal of the "shift lock” key was suggested earlier. These
Keys must be on the basic keyboard in order to preserve touch-typability. (It does
not take noticeably longer to type the shifted version of a key than the non-shifted
version.) The Knight keyboards in use at the MIT Artificial Intelligence Laboratory
have several shift keys. They are, unfortunately, located far enough away from the

basic keyboar to prevent touch-typability.

84

User Interface Hardware section 5.2

5.2 Graphicallnput

Another way of interacting with a computer is by means of a graphical input
device. The advantage of a graphical input device is that it can reduce the number
of commands needed. Such a device is used for pointing at sections of the screen. It
is thus possible to specify items there without having to specify the numerical

address of the location or a command string to move you there.

5.2.1 Ilow It Can Be Used

A graphical input device is used by thinking of the screen as one menu with the
device pointing to onc entry. A cursor of some sort is used to provide feedback
about which menu item is currently selected. There are usually one or more "{lags"
that can be specified conveniently from the device. These flags provide control

information. One flag is special and it provides "Z-axis" information.

The basic loop is to track the device with the cursor. When the Z-axis flag is
cntered, the currently sclected action is taken. The screen is logically broken up into
two or more sections. One section has the text that is being edited. Moving the
cursor here provides a convenient way to move the point around; typing a character
could cause it to be inserted wherever the cursor is. Other logical screens can
specify menus of possible actions to vselect from. [t is thus a very sophisitcated and

general way of specifying a position as an argument to a function,

The desired logical screen can be selected by means of the flags or, where the
number of flags is limited, by physical position of the cursor on the screen. The
Lisp Machine editor and Xerox PARC's Bravo editor both use graphical input

devices heavily,

85

section 5.2.2 User Interlace Hardware

3.2.2 Devices: TSD, Mouse, Tablet, Joystick

There are several types of devices that are either availuble commercially or

experimentally. They shall be discussed in o1der of usability.

A Touch Sensitive Display (TSD) is just what it sounds like. The screen is
covered with a special transparent material that you touch with your finger and it
reports the absolute x,y coordinates of where you touched. No "fags" arc available
until someone can figure out how to track your finger as it brushes the surface as
well as when vou press more firmly (creating u Z-axis touch). It is the nicest of the
devices, although obtaining feedback is hard because your finger covers the most

interesting part of the screen.

A mouse is a small box with wheels. It reports the relative movement that you
give it (i.e., "he moved me n units up and m units left”) as opposed 1o absolute
coordinates ("I am at position x,y"). It can have several flags. It moves along the

Noor, table, books, legs, or anything clse.

A tablet is un absolute version of a mouse (uctually, it came first). It can be run
with an electronically detected puck (a small box) or a pen. A physical tablet is
required for detection and it is usually ubout 15" x 15" x 1/2". The absolute
coordinates are relative to the tablet. There can be several flags for a puck; a pen

usually only has Z-axis reporting.

A joystick is a small stick mounted on a couple of potentiometers. It can report
cither absolute position, first derivative (relative movement) or second derivative.
As it is moved small distances, getting good resolution and avoiding "stickiness” and
“jumpiness” are hard. It is generally not as nice to use as the others. Flags are

ustially by means of regular keyboard keys.

86

User Interface Hardware section 5.2.2

Finally, an imaginary but useful device should be considered. That device is a
foot-operated mouse. Using your feet rather than your hand to operate the mouse
solves one of most nagging problems of any of these devices, which is that your

hands must leave the keyboard with the usual and aforementioned results.

These devices all assume a high bandwidth connection to some computer. Such
a connection is not practical over, say, 30 cps phone lines. What must be done in
that case is 10 have the device report to the terminal, which moves the cursor around
and reports when a flag has been hit. Thus, it is possible to supply the immediate
feedback that is necessary. A 30 cps connection would be quite satisfuctory for this
operation (but probably not satisfactory for the screen refresh that would follow,

say, a the selection of a menu).

section 6 The World Outside of Text Editing

Chapter Six

The World Outside of Text Iditing

Text editors have been used for many things besides editing text and, in the
future, they will undoubtedly be used for more diverse things. Here are some

examples:

A text editor can be the primary interface to a mail system. Messages can be
composed by editing a buffer and sent with a special command. Mail can be read
and managed by reading it into a buffer and having special commands to perform
such operations as move to the next message and summarize all messages. Having
the full power of a text editor available can make such things as undcleting an
accidentally deleted message or copying the text of a message that is being replied to

quite casy to implement,

A text editor can be the primary interface to the operating system. Command
lines can be cdited with the full power of the editor before being evaluated. The
pust record of interaction can be kept and parts of it examined or re-used in new
command lines. [If the operating system does not have support for advanced
\erminals, a display editor can offer its interface for use by other programs. Other
programs would then take advantage of the terminal independence of the editor.
Alternatively, other programs would insert their output into a buffer and the editor

would becomme an entire terminal management system.

A text editor can be used by a debugger. Multiple buffers and multiple windows

cin be used to examine (perhaps multiple) source files, interact with the debugger,

38

Ihe World Outside of I'ext Editing section O

and sce the output/input of the program as it runs. In additions, a debugger might
tuke over an extra window or two to do such things as constantly show selected

variables.

A text editor can be an interface to a complicated file. For example, an indexed
sequential file can be updated by providing editor commands to read and write
entries (adding or deleting them can be managed as well). Within the entry, the full

power of the editor is available for editing it.

A text editor can provide a smooth interface to the file system. A directory can
be read by the editor and "edited” by the user. Files can be deleted or otherwise
changed in a smooth manner by merely moving to the file name and giving a

command (e.g., "delete").

(All of the preceding are currently subsystems within Multics Emacs. They are

enthusiastically accepted by the user community.;

A text editor can be used to examine and--when absolutely necessary--modify

object files. It can thus replace various patching programs.

A text cditor is an integral part of a word processing system. Such systems often
have features like automatic pagination and continual justification (the document in
general and the current paragraph in particular are constantly kept right justified by
rejustification after each modification). These features exist in the ALTO editor
Bravo, written at Xerox PARC as well as a number of the word processing packages

supplied currently for micro computers.

A text editor can deal with proportionately spaced fonts as well as fixed with

ones. (The redisplay gets a lot more complex.)

89

section 6 Ihe World Outside of Text Fditing

The editor can be interfaced with the compiler to incrementally compile and/or
check a program. Here, the principle of "sticky compiling" must be introduced.
Assume that a program has been properly compiled. Now, change a statement by
deleting a few characters und inserting a few others. The editor/compiler
combination should not give an error message even though the program has been
temporarily illegal. Rather, it should be quiet until you have ecither finished
entering the new statement or it is clear that you are making a mistake. (Deciding
when you have made a mistake can be hard.) The editor/compiler combination is
generally also interfaced with a debugger. This trio supplies the essence of an

integrated program development system.,

[n summary, a text editor can be used for a wide variety of things besides editing
text. Taking the intended use into account when designing a new system can

provide useful feedback and new constraints on the design of the system as a whole.

Appendix: Annotated Bibliography

Appendix A

Annotated Bibliography

This bibliography includes many different types of documents. Some of the
documents are user manuals for various editors. Others of them describe the
implementation of specific cditors. Still others discuss language tradeoffs or

input/output system interfaces.

They are grouped by the type of editor that they refer to. Fach entry is
annotated 1o help place it in perspective. Documents that are marked with "*" are

especially valuable or interesting.

6.1 EmacsType Editors

There are four prinicipal implementations of Emacs type editors and there are

enough documents to justily their scparate listing.

6.1.1 ITS EMACS

Ciccarelli, Eugene

An Introduction to the EMACS Editor

MIT Artificial Intelligence Laboratory, MIT Al Lab Memo #447,
Cambridge, Massachusetts

January 1978

A primer on the editor's user interface.
*Stallman, Richard M.

EMACS: The Extensible, Customizable, Self-Documenting, Display
Editor

91

Appendix: Annotuted Bibliography

MIT Artificial Intelligence Laboratory, Al Memo #519,
Cambridge, Massachusetts
June 1979

Provides arguments for the Emacs philosophy.

Stalliman, Richard M.

Structured Editing with a Lisp

letter in Surveyor's Forum (includes a response by Sanderwall)
Computing Surveys, vol 10 #4, page 505

December 1978

This is a response to the Sanderwall paper (referenced later).

On-1ine Documentation

MIT-AI: .TECO.: TECORD >

A more detailed command list for TECO
MIT-AI: .TECO.; TECO PRIMER

A primer for TECO
MIT-AI: EMACS: EMACS CHART

A four page command list for Emacs
MIT-AI: EMACS: EMACS GUIDE

A detailed user interface manual
MIT-AI: EMACS; [MACS ORDER

A more detailed command list for Emacs

6.1.2 Lisp Machine Zwei

*Weinreb, Daniel L. & Moon, David
The Lisp Machine Manual
MIT Artificial Intelligence Laboratory, Cambridge, Massachusetts

Januvary 1979

The user interface for Iwei.

Weinreb, Daniel L.

A Real-Time Display-Oriented Editor for the Lisp Machine

S.B. Thesis. MIT Electrical Engineering and Computer Science
Department, Cambridge, Massachusetts

January 1979

How Zwei works internally.

Appendix: Annotated Bibliography

6.1.3 Multics Emacs

Greenberg, Bernard S.

Emacs Extension Writer's Guide

Order #CJ52, Honeywell Information Systems, Inc.
(In publication)

How to write extensions.

Greenberg, Bernard S.

Emacs Text Editor User's Guide

Order #CH27, Honeywell Information Systems, Inc.
December 1979

The user interface.

*Greenberg, Bernard S.

"Multics Emacs: an Experiment in Computer Interaction”

Proceedings, Fourth Annual Honeywell Software Conference,
Honeywell Information Systems

March 1980

A summary of MEPAP (referenced below).
Also, MIT-AI: BSG: NMEPAP »

Greenberg, Bernard S.

Read-Time Editing on Multics

Multics Technical Bulletin #373

Honeywell Information Systems, Inc., Cambridge, Massachusetts
April 1978

On-Line Documentation:
(by Greenberg, Bernard S.)
MIT-AI: BSG; LMEPAP >
Why Lisp was chosen for the implementation
language
- MIT-AI: BSG; MEPAP »
A detailed history of Emacs in general and the
Multics implementation in specific.
Very valuable.
MIT-AI: BSG; R4V >
A proposal for a terminal independent video
terminal support package.
MIT-AI: BSG; TTYWIN >
A look at the good and bad features of video
terminals,

93

Appendix: Annotated Bibliography

6.1.4 MagicSix TVMacs

*Andersaon, Owen Ted

The Design and Implementation of a Display-Oriented Fditor
Writing System

S.B. Thesis, MIT Physics Department, Cambridge, Massachusetts

January 1979

How TVMacs works internally. It concentrates on describing not
the editor itself but rather the implementations language: SINE,

Linhart, Jason T,

Dynamic Multi-Window Terminal Management for the MagicSix
Operating System

S.B. Thesis, MIT Electrical Engineering and Computer Science
Department, Cambridge, Massachusetts

June 1980

A video terminal management system. Contains many useful
comments on terminal independence and redisplay problems.

6.1.5 Other Emacs

This section covers cditors which have the same general user interface as an
Fmacs (e.g.. screen-oriented, similar key bindings) but are not extensible or
otherwise full noticably short of the Emacs philosophy.

Finseth, Craig A.

VINE Primer

Texas Instruments, Inc., Central Research Laboratories, Systems
and Information Sciences Laboratory, Dallas, Texas

August 1979

User interface manual for the complete novice.

Schiller, Jeffrey I.

TORES: The Text ORiented Editing System

revised from S.B. Thesis, MIT Electrical Engineering and
Computer Science Department, Cambridge, Massachusetts

June 1979

On-Line Documentation

Appendix: Annotated Bibliography

CMU-10A: fine.{mss prt)[s200mk50]
User manual for FINE, running at Carnegie-Mellon
University. Written by Mike Kazar.

6.2 Non-Emacs Display Editors

Bilofsky, Walter

The CRT Text Editor NED -- Introduction and Reference Manual
Rand Corporation, R-2176-ARPA

December 1977

Irons, E. T. & Djorup, F. M,

A CRT Editing System

Communications of the ACM, vol. 15 #1, page 16
January 1972

Joy, William

Ex Reference Manual:; Version 2.0

Computer Science Division, Dept of Electrical Engineering and
Computer Science, University of California at Berkeley

April 1979

Joy, William

An Introduction to Display Editing with Vi

Computer Science Division, Dept of Electrical Engineering and
Computer Science, University of California at Berkeley

April 1979

Kanerva, Pentti

TVGUID: A User's Guide to TEC/DATAMEDIA TV-Edit

Stanford University, Institute for Mathematical Studies in
the Social Sciences

1973)

Kelly, Jeanns

A Guide to NED: A New On-Line Computer Editor
The Rand Corporation, R-2000-ARPA

July 1977

Kernighan, Brian W,

95

Appendix: Annotated Bibliography

A Tutorial Introduction to the ED Text Editor
Technical Report, Bell Laboratories, Murray Hill, New Jersey
1978

MaclLeod, I. A.

Design and Implementation of a Display-Oriented Text Editor
Software Practice and Experience, vol. 7 #6, page 771
November 1977

Weiner, P., et. al.

The Yale Editor "E": A CRT Based Editing System
Yale Computer Science Research Report 19

April 1973

Seybold, Patricia B.

TYMSHARE's AUGMENT -- Heralding a New Era, The Seybold
Report on Word Processing

Voel. 1, No. 9, 16pp, ISSN: 0160-9572, Seybold Publications, Inc.,
Box 644, Media, Pennsylvania 19063

October 1978

On-Line Documentation:
SAIL: E.ALS[UP,DOC]
User manual again. Stanford University.

6.3 StructureEditors

Ackland, Gillian M., et al

UCSD Pascal Version 1.5 (Reference Manual)

Institute for Information Systems, University of
California at San Diego

Donzeau-Gouge, V.; Huet, G.:; Kahn, G.; Lang, B.: & Levy, J.J,

A Structure Oriented Program Editor: A First Step Towards
Computer Assisted Programming

Res. Rep. 114, IRIA, Paris

April 1975

Teitelbaum, R. T,
The Cornell Program Synthesizer: A Microcomputer

96

Appendix: Annotated Bibliography

Implementation of PL/CS
Technical Report TR 79-370, Department of Computer Science,
Cornell University, Ithaca, New York

6.4 OtherEditors

Benjamin, Arthur J.

An Extensible Editor for a Small Machine With Disk Storage
Communications of the ACM, veol. 15 #8, page 742

August 1972

Talks about an editor for the IBM 1130 written in Fortran.
Not extensible at all,

Bourne, 5. R.

A Design for a Text Editor

Software Practice and Experience, vol 1, page 73
January 1971

User manual

Cecil, Mpll & Rinde

TRIX AC: A Set of General Purpose Text Editing Commands
Lawrence Livermore Laboratory UCID 30040

March 1977

Deutsch, L. Peter & Lampson, Butler W.

An On-Line Editor

Communications of the ACM, vol. 10 #12, page 793
December 1967

QED user manual

Fraser, Christopher W.

A Compact, Portable CRT-Based Editor

Software Practice and Experience, vol. 9 #2, page 121
February 1970

Front end to a line editor.

Fraser, Christopher W.

Appendix: Annotated Bibliography

A Generalized Text Editor
Communications of the ACM, vol. 23 #3, page 154
March 1980

Applying text editors to non-text objects,

Hansen, W. J.

Creation of Hierarchic Text with a Computer Display
Ph.D. Thesis, Stanford University

June 1971

Kai., Joyce Moore

A Text Editor Design

Department of Computer Science, Univ of I11 at Urbana-Champaign,
Urbana, I7linois

July 1974

Describes both internals and externals on the editor. However,
the design is a poor one,

Kernighan, Brian W. & Plauger, P. J.
Software Tools

Addison-Wesley, Reading, Massachusetts
1976

This book has a chapter which leads you by the hand in
implementing a simple line editor in Ratfor.

*Hoberts, Teresa L.

Evaluation of Computer Text Editors
Systems Sciences Laborary, Xerox PARC
November 1979

A comparative evaluation of four text editors. Quite well done.
Unfortunately, it does not include Emacs (it uses DEC TECO
instead).

Sanderwall, Erik

Programming in the Interactive Environment: the Lisp Experience
Computing Surveys, vol. 10 #1, page 35

March 1978

Talks about the editor for InterLisp.

98

Appendix: Annotated Bibliography

Sneeringer, James

User-Interface Design for Text Editing: A Case Study
Software Practice and Experience, Vol 8, page 543
1978

User manual and a discussion of user interface concepts.

Teitelman, Warren

Interlisp Reference Manual

Xerox Pale Alto Research Center, Palo Alto, California
October 1978

How to use the InterlLisp (non-display) structure editor.

van Dam, Andries & Rice, David E.
On-Line Text Editing: A Survey
Computing Surveys, Vol. 3 #3, p. 93
September 1971

Contains a general introduction to the problems of text
editing. Out-dated technology, though.

Appendix: Some Implementations of Emacs 1ype Editors

Appendix B

Some Implementations of Emacs Type Editors

This is a partial list and is intended to provide a gencral guide and not a

comprehensive list.

Name System Implementation
Language
TECO ITS Midas
Full Emacs
EMACS ITS TECO
Emacs Multics Lisp
Emacs Tops-20 TECO
TVMacs MagicSix Sine
Zwei Lisp Machine Lisp

Partial Emacs

FINE Tops-10 Bliss
MINCE CP/M C

oty MagicSix PL/1
Tores UNIX C

VINE VAX/VMS Fortran

100

Appendix: Partial Emacs Command List

Appendix C

Partial Emacs Command List

This list is of the command set that is generally common to all of the full
Emacses. Specific command bindings can and do vary from implementation to
implementation, This list is not complete, nor can it be as commands are constantly

being added and changed.

Command designations reflect both the name and the manner in which they are
entered. For example, the C-f command is named "control ' and it is entered by
typing the tF character. Most of the C- commands can be given dircctly from an
ASCII keyboard. Escapes are provided for those that are not. The M-a command is
named "meta a" and it is entered from an ASCII keyboard by typing the <esc> key
and then the command. Thus, M-a is given by typing <esc> a and M-C-a (or C-M-a)
by Lyping <esc> tA.

c-g place the mark at the point

C-a move to the beginning of the current line

C-b move backward one character

C-c a prefix for control-meta commands. see below

C-d delete the following character

C-e move to the end of the current 1ine

C-f move forward one character

C-g abort: abort execution of the current command and
return to the edit loop

C-h same as C-b

C-i insert <tab>

C-j insert <newline>; insert <{tab>

C-k delete the text to the end of the current line; if at
the end of the line, delete the newline
character; push deleted text onto the kill buffer

c-1 rebuild the display from scratch

C-m insert <newline’>

C-n move down one line staying in as nearly the same

101

I N)
L]
- O

Lo B]
1
e =

Appendix: Partial Fmacs Command List

horizontal position as possible
insert <newline>; move backward one character
move up one line staying in as nearly

the same horizontal position as possible
insert the following character as typed
search for a string before the point;

see C-s for details
search for a string after the point.

There are lots of things that you can do
typing characters builds up the search string
 deletes the previous character

C-s search for the next occurrence of the string
C-r search for the previous occurrence
C-g abort

<alt> terminate search; if the string is null, the
previous string is used

interchange the characters on each side of the point,
leaving the point after the second one: if at
the end of a 1ine, interchange the previous
two characters

universal argument.
There are two forms

C-u C-u <command> do <command> 4, 16, G4, 256, ...
times depending upon the number of C-us.

C-u <integer> <command> do <command> Cinteger> times.

(e.g., C-u 3 5 C-f means to C-f 35 times)

move the bottom of the current screen to the top of the
screan

delete the text between the point and the mark: push
the deleted text onto the kill buffer

a prefix for control-x commands. see below

copy the top item from the kill buffer to the point:
place the mark at the beginning of the
block and the point at the end

return to superior

a prefix for meta commands. see below
a2 prefix for meta commands. see below

a prefix for control commands. See this list

PTHSEE ()*+,-./ insert themselves
0123456789

114=278
A..L
(0

a..z

{1}~

102

Appendix: Partial Emacs Command List

bs,back space
same as C-h
tab same as C-i
1f.line feed
same as C-j
cr,carriage return,return
same as C-m

asc,escape
same as C-[(the <alt> key)

del,delete, rubout
delete the previous character

C-<alt> you are now typing at whatever is running the editor

C-% ask for the old string, then the new one and replace
all occurrences of the old with the new

C-/ give help

C-« place mark at the beginning of the buffer

C-> place mark at the end of the buffer

C-7 give help

C-x C-b print a list of all buffers and associated information

C-b
C-x C-d display the current directory
C-f ask for the name of a file and read it into a buffer
whose name is derived from the filename: if
there is a conflict with an existing
buffer, you are asked for a name to use
€C-i indent the region
C-1 convert the region to lower case
C-o delete the blank lines around the
point -
C-x C-p move to the top of the current screen; place the mark
at the end of the current screen
C-x C-r ask for the name of a file and read it into the
current buffer
C-x C-s write out current buffer to the current filename if it
has been modified
C-u convert the region to upper case
C-x C-w ask for the name of a file and write the buffer to
that file

C-x C-x exchange point and mark

C-x 1 use one window

C-x 2 use two windows

C-x 3 use two windows and stay in the first

C-x = print where you are in the buffer

C-x A ask for the name of a buffer; append the region to that

buffer

103

| SRE! A TR R T B M TR Y AN R R
oM oM oM oM oM oM M M oM oM M oM M M M

L B g IO - i O O e I e OO O o B e B e T o I O e O
S 08 ~=mOaAbdn -+ 0O —~"MOD

Ll

= =
TR
=2

] i i | RN Y | i
(= e I =l - L BV N

TT T T ZTZZXTT

=TT T =X
Tomm

i S
<o

Appendix: Partial Emacs Command List

ask for the name of a buffer and put you there

edit directory

set the fill column to the horizontal position

run INFO

send mail

in two window mode go to other window

read mail

grow window

same as C-x

same as C-x

same as C-x

same as C-x

same as C-x
C-x
C-x
C-x

L

same as
same as
Same as

WOT-TMOE > o

ditto. copy the word directly above onto this 1ine

QueryReplace. ask for an old string and a new string
At each occurrence of the old string, it
is displayed and you are asked for a command

5p> replace and go on

 don't replace and go on

- replace and wait

. replace and exit

<alty exit

return to previous old string (jump to mark)

delete old string and enter C-r recursively

normal edit, but recursively invoked

redisply screen

! do not ask any more

nsert "()": leave point between them

move to the the beginning of the current buffer

move to the end of the current buffer

help

move to the beginning of the current sentence

move backward one word

capitalize the following word

delete the following word; push deleted text onto
the kill buffer

move to the end of the current sentence

move forward one word

fill text in the region

move to the beginning of the current paragraph;
place the mark at the end of the
current paragraph

convert the following word to lower case

fi11 the current paragraph (make each line as long
as possible); C-u M-Q means do justify
(same, but make right margin even)

104

- 3 3 3 =
-_— = E

Appendix: Partial Emacs Command List

= =
]
=i A

==
[
= =

I?Z
= = FE

[I I | 3$3
I I I
| = S I = T b~)

I
=5 @D

333333$IIZIII

I I
b M OE £ S o O = oS

E:ZIIZE

del>

OO0 O000
]
3333?333

(it =t [
e e T | TR
TGN ME I~

I

(]
i
=
1
=

C-M-0

C-M-T

center the current l1ine on the screen

interchange the adjoining words, leaving the point
after the right hand word

convert the following word to upper case

move the top of the current screen to the bottom of
the screen

push a copy of the region onto the kill buffar

ExecuteCommand

(after C-Y) delete yanked text and yank previous
kill buffer entry

move to the beginning of the current paragraph
delete the <{sp> and <tab>s around the point
move to the end of the current paragraph

same as M-A
same as M-B
sama as M-C
same as M-D
same as M-E
same as M-F
same as M-G
same as M-H
same as M-L
same as M-Q
same as M-5
same as M-T
same as M-U
same as M-V
same as M-W
same as M-X
same as M-Y

delete the previous word; push deleted text onto the
kill buffer

move up one level of 1ist structure backward

move up one level of 1ist structure forward

move to the beginning of the current defun

move backward one Sexpression

move to the end of the current defun

move forward one Sexpression

format the current Sexpression

move to the beginning of the current Sexpression:
place the mark at its end

delete the following Sexpression; push the
deleted text onto the kill buffer

move the rest of this line vertically down,
inserting <{tab>s and <sp>s as needed

interchange the adjoining Sexpressions, lTeaving the
point after the following sexprssion

105

Appendix: Partial macs Command List

C-M-W the following delete-and-push will be part of the
current entry in the kill buffer
C-M=-» delete the preceeding Sexpression: push
the deleted text onto the kill buffer

106

