MIT/ICS/TM-185

AN OPTIMALITY THEORY OF CONCURRENCY CONTROL

FOR DATABASES

Hsing-Tsung Kung

Christos H. Papadimitriou

Novenber 1980

An Optimality Theory of Concu rrency Control
for Databases

H. T. Kung
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213
C. H. Papadimitriou
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

April 1979

[Last revised September 1980]

(This paper is issued simultaneously as a CMU and MIT Technical Memorandum)

KEYWORDS AND PHRASES: Database Concurrency Control, Schedulers,

Performance vs. Information of Schedulers, Optimal Schedulers.

This research is supported in part by the National Science Foundation under Grants MCS 75-222-58,
MCS 77-01193, MCS 77-05314, the Office of Naval Rescarch under Contract N00014-76-C-0370, and a Miller
Fellowship.

Abstract

A concurrency control mechanism (or a scheduler) is the component of a database system that safeguards
the consistency of the database in the presence of interleaved accesses and update requests. We formally
show that the performance of a scheduler, i.c., the amount of parallelism that it supports, depends explicitly
upon the amount of information that is available to the scheduler. We point out that most previous work on
concurrency control is simply concerned with specific points of this basic trade-off between performance and
information. In fact, several of these approaches are shown to be optimal for the amount of information that

they use.

SECTION 1 INTRODUCTION : X

1. Introduction

A database system may interact with many transactions in an interleaved manner. Even if we assume that
each such individual transaction is correct (that is, it preserves the consistency of the databases when run by
itself), the interleaved mode of operation may result in inconsistencies (sce, for example, [2]). It .is the task of
the concurrency control mechanism of the databasc systemn, called scheduler in this paper, to safeguard the
consistency of the database by granting or rejecting the execution of atomic steps of transactions, when

requests for such executions are made.

The design of schedulers for databases has proved to bé a non-trivial problem, and some theoretical work
on the subject has appeared (see, for example, [2, 6,7, 9]). Several solutions to this problem have been
proposed under a variety of assumptions. In this paper, we give a uniform framework for evaluating thése
solutions, and, in some cases, for establishing their optimality. A scheduler is evaluated in terms of its
performance, which is measured by the set of request sequences that the scheduler can authorize for exccﬁtion
without any delay. This set of request sequences is called the fixpoint set of the scheduler. The idea is that the
richer this set is, the more likely that no delays will be imposed by the scheduler. In this sense the fixpoint set

is a fair measure of the parallelism supported by the scheduler, and therefore of its performance.

We observe that there is a trade-off between scheduler performance and the information used by the
scheduler. The latter is the minimum knowledge about the database and the transactions that the scheduler
requires in order to function correctly. Typical information that could be useful to the scheduler is syntactic
information about the transactions (that is, a flowchart with the names of the database entities accessed and
updated at each step); or semantic information about the meaning of the data and the operations performed;
or the integrity constraints, the consistency requirements that the database must satisfy. Ideally, a scheduler
would like to have a perfect knowledge of all these three components of information. It is usually necessary,
however, to have the scheduler operate at some imperfect level of information. There are many reasons for
this. Some information (e.g., integrity constraints) may not be known explicitly even to the designer of the
database. If semantic information is given in some powerful enough language (e.g., arithmetic) then it may
not be possible to reason about it effectively. Finally, to utilize sophisticated information may render the
scheduling problem combinatorially intractable -- see [6] for a case in which the ability of simply
distinguishing between read and write operations makes the problem NP-complete. It should be intuitively
clear that the more information the scheduler has, the better job it can do in enriching its fixpoint set, and
therefore increasing its performance. We capture this intuitive trade-off in an cquation (Theorems 3.1) and
exhibit several specific instances for which well known concurrency principics correspond to optimal

schedulers (optimal with respect to the information that they use). For example, in our framework we can

SECTION 1 INTRODUCTION 2

formally show that serializability (which has been adapted in an ad hoc manner in virtually all the
concurrency control literature) is indeed the right notion of correctness when only synfactic information is
available (as is usually the case). If semantic or integrity information is available, then more liberal
correctness criteria may be uscd (see, for example, [3, 4]). We also prdve that some strict version of the two-
phase locking technique of [2] is the best possible principle when syntactic information is acquired in an

incremental manner.

The paper is organized as follows. In Section 2 we introduce our model for transaction systems, carefully
distinguishing among the syntactic, semantic, and integrity constraint components. In Section 3 we formally
introduce the notion of schedulers, and develop the basic tools for studying the information vs. performance

trade-off. Specific examples of optimal schedulers are presented in Section 4.

SECTION 2 TRANSACTION SYSTEMS i

2. Transaction Systems

2 1 Definition of a Transaction System
By a transaction system we mean a database (that is, data and integrity constraints) together with a set of
statically prespecified transaction programs. A transaction system can be formally defined in terms of three

components: syntax, semantics, and integrity constraints.

2.1.1. Syntax

A transaction system T is a finite set of transactions, {T, ... T }, n> lwhere each transaction T, is a finite
sequence of transaction steps, Ty, .y Ty . The n-tuple of integers (m,, ..., m) is called the format of the
transaction system. For simplicity, we ass:une that all transaction systems under consideration have the same,

fixed format.

The transactions in a transaction system operate on a set of variable names.. The variables are abstractions of
data entities, whose granularity is not important for our development. The variables can represent bits, files
- or records, as long as they are individually accessible. The set of variable names is denoted by V. Besides the
(global) variables in V, each transaction T, is associatcd with local variables, t, ..., lei. A transaction step Tij

in T, can be thought of as the indivisible execution of the following two instructions:
t —_ X
X; f”(A tu) :

where f is a j-place function symbol. That is to say, at step T the current value of some global variable X;; € Vv
is stored at a local place & and then X; is assigned a new value based on function f and knowledge available
to the transaction T, at thIS time, namcly, the values of all "declared” local variables t,, o b The meaning of
function f is open to arbitrary interpretations at this point. For example, it could be the identity function on
t in whlch case T is simply a read step. Similarly, if all £, (t;, ..., ¢) with k > j are independent of b then T

is a write step.

SECTION 2 TRANSACTION SYSTEMS 4

2.1.2. Semantics
Associated with each variable name v € V we have an enumerable set D(v), the domain of v, consisting of

all possible valucs that the variable v can assume -- typically the integers, the Boolean values, or finite strings.

A local variable tij has always the same domain as Xy

A state of a transaction system T is a triple (J, L, G), where

‘e Jisan n-tuple of integers (j;, . . .Jj) with j» (1 g j; < my+1), specifying the next step of tfansaction
T,. Thejs are thus program counters. Ifj, = mi+i, then transaction T, has terminated.

e L is an element in IT (1

AR D(xij)} representing the values of all declared local variables.

1<j <j;

e GisanelementinIT, EVD(V) representing the current values of all global variables v € V.

The semantics of T associate with the function symbol fij at each step Tij a function
P IT, o st(xik) — D(xij), which is the interpretation of fu Thus the exccution of a transaction step maps
one state of the transaction system into another one. Morc precisely, if transaction step Tij is eligible for
execution at state (J, L, G), that is, if j, < m,, then its execution modifies the three components of the state as
follows:

e+l

t =Xy

3]
Xy "‘pij(til’ £ .,tlj).

This view of single transaction steps can be extended to sequences of transaction steps in the obvious way.

2.1 .3._ Integrity Constraints

The integrity constraints of a transaction system T correspond to a subset IC of the product I .,DE). A
state (J, I, G) of T is said to be consistent if G belongs to IC. A scquence of transaction steps is said t0 be
correct if a serial execution of the steps in the sequence will map any consistent state of the transaction system

into a consistent state.

The basic assumption throughout the paper is that all transactions in a transaction system are correct.

SECTION 2 TRANSACTION SYSTEMS 5

2.2 Example

Consider a transaction system consisting of three transactions T}, T, and T3, that access two banking .

accounts A and B in the following way:
e T, transfers $100 from A to B if A has enough funds and the balance of B is below $100.
o T, withdraws $50 from B and increments a counter C, if B has enough funds. |

o T, is an auditing transaction that computes the sum S of A and B, and sets the counter Cback to 0.

Syntax. The set of global variable names is V = {A, B, S, C}. The xij’s are as follows:

"11=A’x12=g”‘13=A
Xy =B, %, =C,

x31=A,x32=B,x33=S,x34=C

Thus the format of the transaction system is (3, 2, 4).

Semantics. For all v e V, IX(v) is the set of natural numbers. Typical states would be as follows:

o (J.L, G)=((1,1,1), * (150, 50, 200, 0)). This is a possible state beforc any of the transactions has
started execution. We have A = $150, B = §50, S = $200, C = 0, and don’t care about the values of
local variables.

e(J,L, G)=1((2,2,4), (150; 50; 150, 0, 200), (150, 0, 150, 0)). In this state, A has not been decreased
but B has. The new S has been computed but C has not.

As for the operations performed by each step:

P t}1
@iy = i, > 100 andty, < 100 then t,, + 100 elset,,
Pr = ity > 100 and by, < 100 then ty, - 100 elset,

@y = ifty, > 50 then L= 50 eiset_,l
@, = ift,, > 50 then t, + 1 elset,,

Pn=ty

Py =ty

P33 = B‘u +b
Py =

The integrity constraints may very well be the set of states for which A>0,B>0,and A + B=S - 50C,

SECTION 3 SCHEDULES AND SCHEDULERS 6

3. Schedules and Schedulers

3.1 Schedules

A schedule of a transaction system T is a permutation of the set {Tij: lizii<n, 1 < j <m} of steps in T
such that in the permutation 'I‘ij comes before T, for j < k. We may think of a schedule as a possible strcam of
arriving execution requests, or, in a different context, as a sequence of transaction steps that defines the order
in which these execution requests are granted exccution. The sct of all schedules of T is denoted by H(T).
Since this set depends only on the format of T and the format is assumed fixed, we shall write H for H(T). A
schedule is said to be correct if its execution preserves the consistency of the database. The set of all correct
schedules of T is denoted by C(T). The set C(T) is always nonempty, since it at least contains (by our basic
assumption that all transactions are coﬁect) all serial schedules, that is, all permutations # such that

T EJ+1)=w(Tij)+lforlgignandjgmi-l.

3.2 Schedulers

A scheduler (or concurrency control mechanism) transforms a stream of execution rcquests into a correct
schedule. This is achieved by properly granting or rejecting the execution of arriving requests. (A rejected
request is rescheduled for execution at some later time.) Thus, a scheduler for a transaction system T can be

viewed as a mapping S from H to C(T).

We measure the performance of a scheduler S by its fixpoint set PS, defined as
Py ={h e H: Sth) = h}.
Clearly Py must be a subset of C(T). The larger P is, the more improbable it is that S will have to delay (or
reject) the execution of a transaction step, after such an execution is requested. We therefore consider the

inclusion-induced partial order on the sets Py as a "qualitative™ measure of scheduler performance.

3.3 Information

A level of information available to a scheduler S about a transaction system T is defined to be a set I of
transaction systems {T, T, T”, ...} that contains T. Intuitively, if S is kept at this level of information, it knows
that the transaction systeni in question is among the transaction systems in I, but docs not know exactly which.
Thus, S has to be a scheduler for all transaction systems T' € I. For example, the set I could be the set of all
transaction systems that have the same syntax. This level of information corresponds to the case that a

scheduler has complete syntactic information, but no other information.

SECTION 3 SCHEDULES AND SCHEDULERS 7

Alternatively, we could view I as a function that maps any transactioh system T to an object I(T) (¢ {0, 13
Intuitively, I(T) is the information extracted from T by the operator I; for example, I(T) could be an encoding
of the syntax of T. The effect would be that T cannot be distinguished from the transaction systems T’ that
have the same image I(T); in the notation of the previous paragraph, which we are going to follow henceforth,
I={T: T)=ID)}.

The maximum possible information that a scheduler can have is, of course, the complete syntactic, semantic
and integrity information about the transaction system in question; this corresponds to I = {T}. The
minimum information is the format (m,, ..., m_); this corresponds to I being the set of all transaction systems
of the given format, with the single restriction that the transactions be correct -- by our basic aésumptidn. The
more information available to the scheduler, the “better” scheduling results may be expected. We formally

capture this idea in the following theorem:

Theorem 3.1: For any scheduler S using information I, the fixpoint set Py must satisfy:

Pc n.lJ pls c(m).
The proof of this theorem uses a general adversary argument, instances of which we shall sce many times in
the rest of the paper. The proof goes as follows. If there is a schedule h ¢ Pg and a transaction system Tel
such that h is not correct for T’ that is, h (=S(h)) ¢ C(T’), then an adversary could “fool” the scheduler S by
choosing T’ for S to handle, and giving h as the stream of execution requests. The resulting state after the

execution can be inconsistent, since S(h) ¢ C(T'). Thus, the scheduler is incorrect.

As a corollary of Theorem 3.1, the maximum-performance scheduler using information I is the one that has
its fixpoint set P = ﬂf o C(T). We call this scheduler the optimal scheduler for the level of information
1. (Notice that in practice there may be insurmountable difficulties— such as the negative complexity results
in [6] — in realizing the optimal scheduler for a given level of information.) The concept of information
introduced here partially orders schedulers with respect to their sophistication: we say that S is more
sophisticated than §' if S operates at a level of information I that is properly included in the level of
information I of §, that is, I ¢ I On the other hand, schedulers are also partially ordered with respect to
their performance: we say that S performs better than S if Py 2 Py. Then the mapping from any level of
information I to the fixpoint set of the optimal scheduler for I, nfa C(T", is a natural isomorphism between
these two partially ordered sets. This captures the fundamental trade-off between scheduler information and

performance, that is, if I ¢ I' then Py 2 P for the optimal schedulers S and S’ for I and I', respectively.

In the next section, we present several examples of schedulers that are optimal for different levels of

information.

SECTION 4 - i OPTIMAIL SCHEDULERS ' 8

4. Optimal Schedulers

4.1 Optimal Schedulers for Extreme of Information

Maximum Information

“This is the case when complete information on the transaction system T in question is available to the
scheduler. The information level I in this case is a singleton set, i.e., I = {T}. We can therefore define the
scheduler 8, in principle at least, such that Pg = C(T). This is the optimal scheduler for the maximum level of

information.

Minimum Information

If we only know the format of T, then we have the poorest possible level of information. What is the best
possible scheduler in this case? Consider a serial scheduler S which is defined to be a scheduler satisfying the
following property for any T:

S(H) = {all serial schedules of T} and P¢ = {all serial schedules of T},
where serial schedules are defined in Section 3.1. By our basic assumption that each transaction is correct, we

see that each schedule in S(H) is correct.
Theorem 4.1: The serial scheduler S is optimal among all schedulers using the minimum information.

Proof: SﬁppOSe that S is not optimal. Then there must exist a non-serial schedule in C(T) in ‘which some
steps Tik, i1 Pt Ti.k+l in T are exccuted in this order. Note that because of the minimum information
assumption, [may contain transaction systems with any integrity constraints and interpretations for steps. We
assume that the integrity constraints for some transaction system T' in I correspond to "x=0", and that the

interpretations of function symbols are such that Ti is {Tik: x — x+1, T,

kel X & x-1} and Tj is

1 n X 2x}. We see that T, and T; are correct, but the sequence {T;, TJ.l, T, .1} is not correct for it may
transform a consistent state, x=0, into an inconsistent state, x=1. Thus, the schedule is not in C(T"). This
contradiction implies that for the minimum information case, the only correct schedules that a scheduler can

produce are serial schedules. Hence, the serial scheduler defined above is optimal. O

SECTION 4 OPTIMAL SCHEDULERS 9

4.2 Optimal Schedulers for Complete Syntactic Information

Suppose now that all syntactic information is available; that is, the infdrmation level has the property that I
is the set of all transaction systems with the same syntax. As in a similar situation in the theory of program
schemata, one can supplement this syntax with canonical semantics called Herbrand semantics (see [5] for a
detailed exposition). For all v ¢ V, the domain D(v) is the set of all strings from the alphabet
e — RV {fij: i=1,. . .n;j=1 ..., m} plus the symbols ”)", "(", *.,". Ihazs. .. a are elements of D(v),
then Py Gy aj), the interpretation of ’r“IJ is the string Fij @-. . aj). In other words, the Herbrand
interpretation captures all the history of the values of all global variables. We say that a schedule h is
serializable if its execution results are the same as the execution results of some serial schedule under the
Herbrand semantics. Since serial schedules are correct, so are serializable schedules. By SR(T) we denote the
set of all serializable schedules of T. A serialization scheduler is defined to be a scheduler S satisfying the
following property for any T:

S(H) = SR(T) and P = SR(T).
Theorem 4.2: A serialization scheduler is optimal among all schedulers using complete syntactic

information.

Proof To prove the optimality, for any schedule h ¢ SR(T), we shall define a transaction system T' € I
such that h ¢ C(T"). The semantics of T’ are the Herbrand interpretation. Now, for the integrity constraints,
we define IC as follows. Assufne that T is consistent initially. Let (v, .., v,) be the initial values of global
variables in V, where k = |[V|. If a,, .., a are in .D(v), we say that (a, .., a,) € IC iff there exists a serial
concatenation Q (possibly empty) of some transactions in T' such that the initial values (Vpy o V) are
transformed by Q to (a,, ...). By this definition, all transactions are individually correct, and our basic
assumption holds. Now, it is easy to see that, if h is any schedule, not ih SR(T), then it transforms the initial

values (V,, ..., v,) to aset of values not in IC. Hence, h ¢ C(T). a

The theorem shows that even if complete syntactic information of a transaction system T is available to a
scheduler, SR(T) is the maximum possible set of correct schedules a scheduler can hope to produce. After all
syntactic information is the information one can c;asily extract in a transaction system, by having the users
declare the files that they intend to open, say. It is therefore not at all surprising that most approaches to

concurrency control have serialization as their goal [2, 8, 7, 1, 6].

SECTION4 : OPTIMAL SCHEDULERS 10

4.3 Optimal Schedulers for Complete Semantic Information but Integrity
Constraints
Consider the transaction system of Fig, 4-1.
T T
Tu: x—x+1 . i
Ty x = 2ex

X+ x+1

Figure 4-1: A fransa;tion system.
The schedule h = (T,;, T,;, T,,) is not serializable since the Herbrand values for x of the two serial histories
are fi, (fj; (£, x)) and £, (f, (fy; (x))), whereas that of h is f, (£ (f;; (x))). But with the given
interpretations of the fij.’s, h is seen to produce the same state as the serial history (Tzl* i le)' Hence, our
knowledge of the interpretations allows us to expand the set of correct schedules. It is not hard to see,
however, that the gains are delimited by a generalized notion of serialization, defined as follows. A schedule h
is said to be weakly serializable, if starting from any state E the exccution of the schedule will end with a state
which is achievable by the execution of some concatenation of transactions in T, possibly with repetitions and
bmissions of transactions, also starting from state E. Since transactions are assumed to be correct, a weakly
serializable schedule is correct. Denote by WSR(T) the set of all weakly serializable schedules of T. It is clear
that SR(T) ¢ WSR(T). A weak serialization scheduler is defined to be a scheduler S satisfying the following
property for any T
S(H) = WSR(T) and Py = WSR(T).

Theorem 4.3: A weak serialization scheduler is optimal among all schedulers using all information but the

integrity constraints.

The proof is quite similar to the proof of Theorem 4.2, and is omitted.

4.4 Optimal Schedulers for Dynamic Syntactic Information

So far we have implicitly assumed that the information of a scheduler about a transaction system is static in
nature, that is, prespecified and fixed. We now consider the case that information is dynamic, that is, the
amount of information available to a scheduler increases as the scheduler proceeds. We restrict ourselves

mainly to the important case of dynamic syntactic information.

At a given state (J, L, G) of a transaction system T, the dynamic syntactic information available to a
scheduler is the complete syntactic information on all transaction steps Tij’s withl<i<nl<jxg j;and on

those Ti‘j. +p 1 €1 < n, which are pending for execution. Thus, the set I corresponding to this level of
1 5

SECTION 4 OPTIMAL SCHEDULERS 1

information consists of all transaction systems of the given format that are syntactically identical to the one at
hand up to the specificd points. We can define by a straightforward generalization of the definition of P, the
fixpoint set P of an optimal scheduler that uses dynémic syntactic information. By Theorem 4.2, we know
that P, must be contained in the set SR(T) of serializable schedules of T Theorem 4.4 below characterizes P,

exactly.

Optimal schedulers for dynamic syntactic information are closely related to schedulers that are
implemented by the well-known two-phase locking policy [2], which is defined informally as follows. (a) If a
transaction accesses x € V, then there is a Jock x step before the first access of x and an unlock x step after the
last, and (b) no lock step appears in any transaction after the first unlock step. Thus each transaction has two
phases: the locking phase, during which no locks can be released, and the unlocking phase, during which no
locks may be requested. Notice that rules (a) and (b) do not uniquely specify the positions of lock-unlock

steps.

A two-phase locking scheduler is simply a scheduler that treats transactions as though they were locked
according to some version of the two-phase locking policy. The fact that schedules output by a two-phase
locking scheduler are all correct follows from a proof in [2]. The following version of the two-phase locking

policy can be implemented by a scheduler using dynamic syntactic information.

A strong two-phase locking policy. For any x € V, lock x is always inserted immediately before the first
access of x, and unlock x occurs only after the last step of a transaction (or immediately before, in case that the

last step does not update x.)

Theorem 4.4: A two-phase locking scheduler corresponding to the strong two-phase locking policy is

optimal among all schedulers using dynamic syntactic information.

Proof Suppose that h is a schedule not belonging to the fixpoint set of the two-phase locking scheduler

defined in the theorem. Then there must exist transaction steps in h, say le and T ;o such that
: : 1 2

® le is not the last step of transaction T}, i.e, j, <m,,
1

® le and sz access the same variable x, and -
1 2

e these steps are scheduled in h in the order T;,. , ..., sz. 3 e Ly a0 either T, updates x, or T
was not pending when T,, was scheduled for txecuticn. 1 1 L
2

We can construct a transaction system T = {T,, T,}, compatible with the syntactic information that was

available at the moment when sz was scheduled, such that h ¢ C(T). . Transaction system T is defined as
2

follows:

SECTION 4 OPTIMAL SCHEDULERS 7 12

T, ! x+—=x+1,
Tz.l: X+—2%X,
sz'x‘—-x-l
lml' 3

all other steps are read steps, i.c., T e and the integrity constraints is "x = 0." It is readily seen that

schedule h is not a correct one for T, and thus the thcorem follows. 2

Note that the scheduler in Theorem 4.4 need not really insert lock’s and unlock’s into transactions, as it can

just keep track the first occurrence of each variable in each transaction.

If ascheduler is given additional dynamic information, i.e., (a) the read-completion information -- indicating
the earliest point that a transaction has read all the global variables that it ever wants to access, and (b) the
last-use information -- indicating for each global variable in V the point in a transaction that the variable is
used (read or written) for the last time, then the scheduler may enjoy higher performance. Using the read-
completion and the last-use information the following version of the two-phase locking policy can be

implemented by a scheduler.

A weak two-phase locking policy. For any x € V, lock x is always inserted immediately before the first access

of x and unlock x occurs as early as possible, as long as the two-phase locking requirement is still maintained.

Theorem 4.5: A two-phase locking scheduler corresponding to the weak two-phase locking policy is
optimal among schedulers using dynamic syntactic information plus the read-completion and the last-use

information.

Proof! Suppose that h is a schedule not belonging to the fixpoint sét of the two-phase locking scheduler
defined in the theorem. Then there must exist transaction steps, say le and sz in h, such that (a) these steps
1 2
are scheduled for execution in the above order, (b) le and T212 both access the same variable x, and (c) le is
1 1
not the last step in transaction T, that uses x, or (¢') le is not after the read-completion point for T,. For the
1
case of (c) we define the transaction system T to be the same as the one used in the proof of Theorem 4.4. For
the case of (¢'), we define the transaction system T = {T,, T,} to be such that
T, : Xe=x+1,
Tplt ye=2+y,
2_12
ety 1,
1.
Eixe2sx,
all other steps are read steps, i.e., Tij: Xy = X and the integrity constraints is "x =y.” We see that the
transaction system T defined in either case is compatible to the syntactic information available at the moment
when sz is scheduled for execution while Tim is not yet pending, and that schedule h is not a correct one for
2 1

i E | m|

REFERENCES 13

References
1] Berstein, P.A., Goodman, N., Rothnie, J.B. and Papadimitriou, C.H.
A System of Distributed Databases (the Fully Redundant Case).
IEEE Transactions on Software Engineering SE-4:154-168, March, 1978.
[2] Eswaran, K.P., Gray, J.N,, Lorie, R.A. and Traiger, L.L.
The Notions of Consistency and Predicate Locks in a Database System.
Communications of the ACM 19(11):624-633, November, 1976.
[3] Kung, H.T. and Lehman, P.L.

[4]

[3]

[6]

[7]

8]

%1

Concurrent Manipulation of Binary Search Trees.
ACM Transactions on Database Systems 5(3):354-382, September, 1980.

- An extended abstract appears in the Proc. of the Fourth International Conference on Very Large

Databases., September 1978.

Lamport, L.
Towards a Theory of Correctness for Multi-user Data Base Systems.
Technical Report CA-7610-0712, Massachusetts Computer Associates, Inc., October, 1976.

Manna, Z.
Mathematical Theory of Computation.
McGraw-Hill, New York, 1974,

Papadimitriou, C.H.
The Serializability of Concurrent Updates.
Journal of the ACM 26(4):631-653, October, 1979.

Silberschatz, A. and Kedem, Z.
Consistency in Hierarchical Database Systems.
Journal of the ACM 27(1):72-80, January, 1980.

Stearns, R.E., Lewis, P.M. IT and Rosenkrantz, D.J.
Concurrency Control for Database Systems.

In Proc. Seventh Annual Symposium on Foundations of Computer Science, pages 19-32. IEEE, 1976.

Yannakakis, M., Papadimitriou, C.H. and Kung, H.T.
Locking Policies: Safety and Freedom from Deadlock.

In Proc. Twentieth Annual Symposium on Foundations of Computer Science, pages 286 -297. 1IEEE,
1979.

