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Abstract:
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1. Introduction

In this report, an effective algorithm is presented which for any given arbitrary vector
replacement system (VRS) [8] allows to decide whether it is persistent or not. This algo-
rithm is an extension of the one presented in [11] which relies on the persistence of the
given Petri net when it constructs a finite semilinear representation of its reachability set.
The algorithm here is self-contained, based on a recursive construction of semilinear rep-
resentations for subsets of the counter set of the VRS. If the VRS is persistent, the whole
counter set is obtained by the algorithm, thus also giving a semilinear representation
of the reachability set. For further motivation to study persistent systems the reader 1s
referred 1o [6,10,13.17]. In [5], it is proved that the decision problem for the persistence
of one transition in a VRS or Petri net is recursively equivalent to the decidability of the
reachability problem. but it is also conjectured that the persistence of a VRS or Petri net
can be decided completely independent from the reachability problem. The algorithm
presented in the sequel does not rely on an algorithm for the general reachability problem.
Throughout the paper, VRS terminology is used; the transition 1o and from Petri nets 1s
straightforward [4].




2. Notation and preliminaries

A Vector Replacement System (VRS) [8] is a pair (T, m) where T = {¢,,...,t,} is a finite
set of rransitions t; = (u;,v;) € N'<Z" "with u; + v > 0 and m € N' is the initial vector
(v € N). t; € T is applicable at m' € N" iff u; < m/ (written a(t;, m’)), application of t; at m/
takes m’ 1o m/ + v; (written m'5% m/ + v; ).

Forr=t,...t, € T" we define inductively

i) a(r,m):=r =0V a(t, ™) Aalts,..t., m'+ v);

i) 67 =37, w3

i) m'D m" =a(r,m') A (m" = m/ + 67).

The reachability set R(T, m) of (T, m) is R(T,m): = {m’; (37 € T")[mT m/]}. Let &: T* - N»
denote the Parikh mapping. The counter set C(T, m) of (T, m) is given by

C(T,m): = {#(7); 7 € T" Aa[r, m)}.

et Ve 77 be the integer matrix whose i-th column is v;, i € 1. Obviously, we have

i) (V7 € T')[67 = V&(7));

1) (T, m) = {m + V¢;c € C(T, m)}.

A linear set L C N* is a sct of the form L = {a 4+ ¥7_ nb;(ny,...,n,) € N7} for some
r € N, a,by,...,b, € N*. A semilinear set is a finite union of linear sets. Semilinear sets
are exactly those sets definable by expressions in Presburger Arithmetic, i.e. the first order
theory of the nonnegative integers with addition [16]. There is an cfTective procedure to
construct semilinear representations of the sets defined by Presburger expressions [3,14).

Definition 1:
A vector m’ € N is persistent iff

(Vt,,1; € TG # 3) A alts, m) A alty, m)) = aftat;, m)].
(T, m) is persistent iff all m’ € R(T, m) are persistent.

It is known that for a persistent VRS (T, m), R(T, m) and C(T, m) are effectively construc-
table semilinear sets [9,12].

The following algorithm for the construction of the reachability graph RG(T, m) works
for arbitrary VRS's, it does not assume persistence. In this algorithm, which is a slight
modification of one originally given in [6], a digraph with labelled nodes and cdges is

*N denotes the sel of nonnegative integers, 7 the set of integers, and N =: '\U{w} the set N augmented by the "infinite"
number w with 4+=n +w =w-4n =w and n << w for all n € N. For ¢ € N, 1, stands for the sel il i},
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constructed: The label ¢(e) of an edge e is an element of 7. and cach node & obtuins a label
mi(k) € N'. (In pictures, parallel edges are merged into one which receives the union of
the edge labels.) From these labels, marks have to be distinguished which in the algorithm
serve to decide which nodes still have to be dealt with.

Algorithm 1:
begin
start with an unmarked node = (the “root") with #(r): = m;
while there is an unmarked node do
select nondeterministically an unmarked node k;
mark k;
for all 7 € I, with a(t,, m(k)) do
add to the graph constructed so far a new unmarked node k" and an edge €
from k 10 k' with t(e): = t,;
for.:=1,...,vdo
if there is a node &7 on a (not necessarily simple) path from 7 to k with
m(k") < m(k) + v, and (m(k”)), < (m(k) + v,)-

then
(mE): =w
else
(M) = (mlk) + j):
fi
od;
if there is a node k” £ k' in the graph constructed so far with (k") = m(k’)
then
identify &’ with this &
fi
od

od
end Algorithm 1.

Note that new w—components are introduced independently for different coordinates as
for each coordinate i a different node £ may be found.

The proof of the termination of Algorithm 1 is very similar to the one given in [6] and
won't be presented here.



Example:

For the persistent VRS (7, m) with

T = {(0°,10%), (10, 012100 — 10%), (0210%,0'10 — 0210°), (07170, 0> — 0°1°0°), (0"1%,10° — 0712)}
B 3 . =0 :

and m == 10° (which is short for (1,0,0,0,0,0) € N') some run of Algorithm 1 produces the

graph RG(T, m):

10°
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Given (T, m), the set NPC(T,m): = {c € N*;m 4 Vc is > 0 and not persistent} is an
effcctively constructable semilinear set.

Proof:

By Definition 1, NPC(T, i) equals the set

e NGB GETi#jAm+ Ve uiAm+ Ve > uy Am 4 Vet v Z ul}.

Hence, NPC(T,m) can be defined in Presburger Arithmetic, and a semilinear repre-
sentation can cffectively be found. 1§




3. Some properties of RG(T, m)

Let k£ be a node in RG(T, m) for some arbitrary VRS (T, m).

L.emma 2:

The sets

CTy: = {@(7); 7 is the edge-lubelling sequence of a path in RG(T, m) from k to k}, and
@i e = CT. Ve > D)

arc ¢ffectively constructable semilinear sets.

Proof:

Regarding the strongly connected component (SCC) of k in RG(T, m), stripped of the node
marking 7, as the transition diagram of a finite automaton over 7, the set CT;, corresponds
to the Parikh image of the regular language accepted by that finite automaton with k as
initial and single final state. Hence, by Parikh’s Lemma [15], CT;. is an effectively construc-
table semilinear set. As CT;F = {c € CTy; Ve > 0}, and as systems of linear inequalities
are expressible in Presburger Arithmetic the claim of the lemma follows from the fact that
semilinear sets are effectively closed under Boolean operations [3].

Definition 2:
Fornmie N and N € N set
F(m, N). = {m’ € N%; (Vi € L)[(m; = w Am/ > N) V (m; = mj)]}.

In the sequel, we shall make use of the following basic properties of RG(T, m) proved in

[4,5]:

a) For any given N € N and node k in RG(T, m), one can effectively find some r € T* (and
hence &(r) € NV) s.t. a(r, m) and m + &7 € F(m(k), N).

b) For any given node k in RG(T,m), there is a path from the root r to k£ with edge-label-
ling scquence 7 s.t. a(7, m). ‘

Lemma 3:
Let (T, m) be a persistent VRS and & a node in RG(T, m). Let further p be the projection of
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N+ U Z on those coordinates where (k) is not equal w. (Note that two transitions p(t;) and
p(t;) with i 5 j and p(t;) = p(t,) are considered different.) Then (p(T), p(m(k))) is persistent.

Proof:
Assume that (p(T), p(mi(k))) is not persistent. Then there are - € 7" and t;,t; € T with i 5 5
s.t. (with m": = m(k) + 67)

a(p(t.), p(m")) A alp(t;), p(m')) A ~a(p(t:)p(t;), p(m)). (%)

Now, effectively find some 7 € T” st. a(r,m) and m + ér € FF(m(k), N). Choosing N big
enotgh one could obtain m” € R(T, m) N F(m(k), N) s.t. a(rt;,, m") A a{rt;, m"). From (¥*) then
follows ~a(rt;t;, m”), contradicting the persistence of (T, m). |

Definition 3:

Let (T, m) be an arbitrary VRS,

a) A transition t € T is bounded in (T, m) iff 3N € N, Ac € C(T, m))[N®(t) < .

b) A strongly connected component (SCC) CC in RG(T, m) is called distinguished iff the la-
bels of all edges leaving C'C do not appear as labels of edges within any SCC.,

[t has been shown in [5] that it is decidable whether ¢ € T is bounded. As a matter of fact,
t = 7 is not bounded iff it is the label of some edge within some SCC of RG(T, m). Let, in
the sequel, BT(T, m) C T denote the set of bounded transitions in (T, m).

If (T, m") is a persistent VRS, and if 7,7 € T" are sequences s.t. a(r, m’), a(r, m’), and 67 > 0
then @(7) € C(T, m' + é7). This follows from the fact (proven in [7]) that ¢,¢ € C(T, m)
implies max{c,c¢’} — ¢ € C(T,m’' + V¢) and the observation that a(7, m’' + é§7) because of
or >4,

Now, let (T, m) be a persistent VRS, £ a node in some distinguished SCC of RG(T, m),
K # k a node on a cycle through &, and = the edge-labelling sequence of a cycle through
¥ but not k. Note that the node markings m(k”) have the same set of w-coordinates for all
nodes &” in the SCC of . 1 p denotes the projection on those coordinates where (k) is
not equal to w, we have a(p(r), p((k’))) and p(67) = 0. It is also clear from the construction
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in Algorithm 1 that p(m(k)) € R(p(T), p(n(K"))). Therefore, using Lemma 3 and the above
observation, there must be a path starting from & with some edge-labelling sequence ' s.t.
#(7') = @(7). But then all transitions in 7 arc unbounded, p(67') = 0. and this path must
end in k. From this observation, one easily obtains

Lemma 4:
If (T, m) is a persistent VRS and & a node in some distinguished SCC of RG(T,m) then
CTy (resp. CT};) is linear and equal for all & in the SCC of k.

Proof:
From the above discussion, one deduces that the sets CTy, are lincar and cqual for all ¥ in
the SCC of k. But as CT",:, = {c € CTy; Ve = 0}, s0 are the C..‘T;}. |

On the other hand, one may observe that if (T,m) is an arbitrary VRS and CC some
distinguished SCC in RG(T,m) s.t. all m(k) for k in CC are persistent, then CT;, (resp.
CT3) is linear and equal for all k in CC because {m(k); k in CC} = R(T — BT(T, m), m(k'))
forany ¥ in CC, and (T — BT(T, m), m(k')) still is persistent.

The following theorem states the basic properties of distinguished SCC's in the reachabi-
lity graph of persistent VRS’s. Let, in the sequel, w”: = |BT(T,m)| denote the cardinality
of BT(T, m) C T, and py;; the projection of N* onto those coordinates which correspond to
transitions in BT.

Theorem 1:

Let (T, m) be a persistent VRS.

a) There is exactly one maximal SCC (i.e. no other SCC can be reached from it) in
RG(T,m).

b) For each & € {py:(c);c € CT(T,m)}, there is exactly onc distinguished SCC CC(e) in
RG(T, m) s.L. (V7 € T")|(a(r, m) A 7 determines the edge-labelling sequence of some path
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in RG(T, m) from the root r 1o some node in CC(c))=pp(P(7)) = .

Proof:

a) Assume that there are two nodes k£ and &' in two different maximal SCC’s of RG(T, m).
Then there are 7,7 € T” s.t. a(r,m), a(, m), and 7 (resp., 7 ) determine a path in RG(T, m)
from the root to & (resp., ¥ ). Because of the result in [7] and its consequence mentioned
above, we may assume w.l.g. that ¢(r) = #(~) and m(k) and m(k’) have the same set of w-
coordinates, and hence, that k = &, contradicting the assumption.

b) First note that in RG(T,m) an edge thc label of which is a bounded transition always
leads from one SCC to a different one.

Lete & {pyr(c);c € C(T,m)} C N*. Obtain from (T, m) a modified (', m’) in the following
way (where BT = {t,,,...,t._}):

Add to all (u;,v) € T «' new coordinates the j-th of which is 1 for «;, —1 for v, for
7 € 1., and zero in all other cases, and m’ equals (m,¢) € N, It is casy to sce from the
definition that (77, m’) still is persistent, and that C(T', m’) = {c € C(T, m); pur(c) < ¢}. Also,
it follows from the remark made above that for all 7 € T with a(#,m/) py(®(r)) = ¢ if 7
determinges a path in RG(T, m') from the root to some node in the maximal SCC.

If one now observes that—again because of the above remark—RG(T’, m’) is isomorphic
to a subgraph of (some, because Algorithm 1 is nondeterministic) RG(T, m) (with the
canonical mapping between the edge and node labels, resp.), then let the maximal SCC in
RG(T’,m) correspond to CC(e) in RG(T, m), and b) follows from a). § ‘

Definition 4:
Let (T,m) be a VRS and k a node in RG(T, m) s.t. CT; is linear. Let, further, 77, j € I, be
edge-labelling sequences of paths in RG(T, m) from k to & s.t.

h
Clg — {Z n;®(9); (ny, . .., ny) € NP}
j=1
A hurdle for k is then a number H, € N s.t.
m' € F(m(k), He)=(Vj € I)[a(7?, m)].

Given RG(T,m) for some (T, m), an H, for some k with linear CT; can effectively be
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determined.

Finally, we note a property of linear sets which is used by the algorithms discussed in the
next section. Let, for sets A,B C N, A + B denote the set {a + b;a € A,b € B}. Then we
have

I.emma 5:
Let L © Nv be linear, 0 € L, and L' some subsct of L. Then there is a finite B C L' s.t.
L’ C B4 L. If L' is semilinear, and L, L’ arc effectively given, such a B can cffectively be
obtained.

The proofis left to the reader.
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4. A decision procedure for persistence

Let k be a node in the reachability graph RG(T, m) of some VRS (T,m), m € N, s.t. CTy
is equal and linear for all nodes &' in the SCC of k. We are now going to describe a
procedure siset which for SCC’s as above constructs a semilinear representation of the set
{c+9(7); a(r,m+ Vc) and 7 is the edge-labelling sequence of a path in the SCC of k} where
c is some counter s.t. m + Ve € F(m(k), H).

procedure slset (k:node; SL:repr of semilinear set; c:counter):
begin
co it is required that k is a node in the reachability graph RG(T, m) of some VRS (T, m). m € N", s.t. CTy is
equal and linear for all " in the SCC of k. (T, m) ctc. are global for slset oc;
var H K integer; CTK zrepr of semilinear set;
co SL,CTK refer 1o representations of semilinear sets oc;
procedure complete (k:node; c:counter);
begin
var <:integer: bset:finite set of counter; L':repr of semilinear set;
foru:=1,...,w do
if there is an edge labelled ¢, from k to some &’ (possibly & = k') in the SCC of k s.t.
(3 € ¢ 4 CTK)[alt,,m + V')A + &(t:) € SL)]
co this can be written as a Presburger expression oc
then
L= {cd € c+ CTK;a(t;,m + VI)A( + @(t;)) & SL)}:
co the right hand side defines a semilinear set oc;
bset: =some finite subset of L’ s.l. L' C bset 4 CTK;
co bhecause of Lemma 5, this assignment is effective oc;
for all ¢’ in bset do
SL: = SL|J(c¢' + #(t:;) + CTK);
complete(k’, ¢’ + @(t:))
od
fi
od
end complete;
CTK: =co a representation of oc CT;“;
co note Lemma 2 and the remark after Lemma 4 oc;
HK': =some hurdle H, for k:
¢: =some counter € C(T, m) s... m + Ve € F(m(k), HK);
SL: =co a represcntation of oc ¢ 4+ CT;
- complete(k, ¢)
end slset;
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Theorem 2:
a) The procedure s/ser terminates and yields a set SL C (T, m).

b) If (T, m) is persistent then SL = {c + &(7); 7 is the edge-labelling sequence of a path
in the SCC of k in RG(T,m) starting from k s.t. a(r,m + Vc)}, where ¢ is the counter
determined in slset.

Proof:

a) From the sclection of 1K and ¢, it is clear that ¢ + CT;F C© C(T, m). When some
¢ 4+ @(t,) + CTK 1s added to SL one can assume by induction on the depth of recursion
that SL C ¢ + C(I,m + V) before that step. Let € T" be some scquence s.t.
a(7, m~+ V)Ad(') = ¢ —c. Furthermore, SL+CTK C SL. But by the definition of HK and
CTK . there is, forany ¢’ € CTK,ar € T" st a(r",m+ V) A (") =" A 7" determines
a path from k to k. Hence, a(7,m + V(c + ")) A a(t,m+ V(@ + ") as ér" = V" = 0. As
¢ has been chosen arbitrary in CTK this shows that ¢ + &(t;) + CTK C ¢+ C(T, m + Ve),
and by induction, that invariantly SL C ¢ + C(T,m + V¢) C C(T, m). Now assume that
¢/ser does not terminate. Then, by K&nig's Infinity Lemma, there must be an infinite chain
of nested recursive calls of the procedure complete and a subchain of this chain such that
all calls in this subchain have the same first parameter. Let (cf)i(,:N be the sequence of
counters in the second parameter position of this subchain. Because cach infinite sequence
in N has a nondecreasing infinite subsequence (this is a corollary ol what is sometimes
referred to as Dickson's Lemma [2. Lemma A]) there is a subsequence (c");( N ()I‘(c’?)ieN
s.l. (m + Va")ieN is nondecreasing. As has been shown above, for cach ¢ thereis a reT
st a(r’,m+ Ve) A &(r) = ¢/ —c A (¢ is the edge-labelling sequence of a path o' in
the SCC of k in RG(T, m) starting from k and ending in some fixed node k). The last
observation follows from the choice of (ci)iEN' Considering the multiplicity with which
the edges of RG(T, m) appear in o, < € N, and applying once more Dickson’s Lemma,
one obtains indices j < ' s.. ¥ contains each edge of RG(T, m) at least as often as does
a’. As CTy is linear and equal for all ¥ in the SCC of k, and by the definition of the 7%,
¢(7) — &(r) € CTK. Thus, after &/ 4 CTK has been added to SL, & &€ SL, contradicting
the assumption that s/ser does not terminate.

b) From the first part of this proof we know that SL C {c + #(7); 7 is the edge-labelling
sequence of a path in the SCC of k in RG(T, m) starting from k s.L. a(r,m Ve)y. ‘The other
direction can casily be seen by induction on the lengthof 7. B
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The procedure siser will now be used in the following main algorithm to decide persist-
ence of an arbitrary VRS.

Algorithm 2:

begin

var GSL, NPC:repr of semilinear set;
procedure test ((T°, m):VRS);
begin

var i:integer; SL, SL"repr of semilinear set; k:node; ¢/, crnaz:counter;
procedure slset (k:node; ... ); ... ;
construct RG(T', m) using Algorithm 1;
if RG(T, m) doesn’( satisfy the necessary condition of Theorem 1a) or contains a non-persistent node marking
thus violating Lemma 3
then stop (T, m) is not persistent’ fi;
set CC,,1 = 1,...,h. the distinguished SCC’s of RG(T, m);
cmaz: = 0 co € N¥ oc;
Sk =
fort:=1,..  hdo
k: =some node in CC;;
slset(k, SL, ¢’); :
cmaz: = max(c’,cmaz) co max component-wise oc;
S S| JSE!
od;
it SL[YNPC £ @ then stop (T, m) is not persistent’ fi:
GSL:=.GSL| JSL;
co GSL globally collects all counters in C(T", m) found by the algorithm oc;
fori:=1,...,wdo
ift;, € T — BT(T, m) then
construct from (7', m) a new VRS (T, m’) where T is obtained from T by adding a w+ 1st coordinate
which is 1 for ., -1 for v,, and zero in all other cases, and m' equals (m, cmaz;) € Nw+1;
co this means that (T, m*) = {c € C(T, m); c; < cmaz;} oc;
tes((T", m*));
co note that GSL is global in this recursion oc
fi
od

end test;
NPC: = NPC(T,m) co nole Lemma 1 oc;
GSL: = 0;

tes(T, m));

il (3c € GSL, 3i € L.)[a(t., m + Ve)A(c + D(t:) &€ GSL))
then stop (T, m) is not persistent’
else stop (T, m) is persistent’

fi

end Algorithm 2.
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Theorem 3:
Algorithm 2 terminates for every VRS (7, m) and determines whether (7, m) is persistent
or not.

Corollary 1:
Persistence is decidable for arbitrary VRS's.

Corollary 2:
If (T, m) is persistent Algorithm 2 yields GSL s.t. GSL = C(T, m).

Corollary 3:
There is an effective construction of semilinear representations of the reachability set of
persistent VRS's.

Proof:

Because of the reduction of the number of unbounded transitions in successive recursive
calls of the procedure fest, it is clear that Algorithm 2 terminates. I Algorithm 2 stbps
within rest the answer given is correct because of Lemma 3. Otherwise, if the condition

(3c € GSL, 3i € Ly)la(t;, m + Ve)A(c + ¥(t:) & GSL)]
in the last if-statement of Algorithm 2 evaluates to false, GSL equals C(T, m) because of
Theorem 2a), and (T, m) is persistent because, in fact, GSL\NPC = # has been verified
by the algorithm. Conversely, if (T, m) is persistent then so are all (T, m’) generated in the
recursive calls of rest as addition of a coordinate just bounding the number of times how
often some transition can be applied doesn’t hurt persistence. Furthermore, if ¢ € C(T, m),
then it follows from Theorem 1b), Theorem 2b), and Lemma 3.1 in [9] that

((Vi € I)[t; € T — BT(T, m)=c¢; > cmaxz;])=c € GSL.
Hence, by induction on the number of unbounded transitions and by the construction of
the (T!, m'), C(T,m) C GSL, and becausc of Theorem 2a), C(T, m) = GSL. Therefore, if
(T,m) is persistent, the condition in the last if-statement of Algorithin 2 evaluates to false.
This proves the theorem. The corollaries are immediate consequences.
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5. Conclusion

The algorithm presented in this report extends the results in [11,12] and answers some
of the questions asked in [9]. Thus, persistence of arbitrary VRS’s is decidable (by an
algorithm which does not make use of a solution to the general reachability problem), and
there is an effective method to construct semilinear representations for the reachability set
of persistent VRS's. As far as the author knows, m-reversible [1] and persistent VRS’s are
the only classes of VRS's for which an effective representation of infinite reachability sets
has been given so far. Thus there remains a number of open problems in extending this
result to other classes of VRS's of interest as well as in ¢stablishing the complexity of the
algorithm given here. Another open problem concerns the characterization of the class of
VRS’s that have semilincar reachability sets.

Addendum: While this report was being prepared. another algorithm for deciding persistence based on the non-
constructive proof in [9] was obtained independently in [18].
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