ALGEBRAIC DEPENDENCIES

Mihalis Yannakakis
Christos H. Papadimitriou

February 1981
ALGEBRAIC DEPENDENCIES

Mihalis Yannakakis
Bell Laboratories
Murray Hill, New Jersey 07974

Christos H. Papadimitriou
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

ABSTRACT

We propose a new kind of data dependencies called algebraic dependencies, which generalize all previously known kinds. We give a complete axiomatization of algebraic dependencies in terms of simple algebraic rewriting rules. In the process we characterize exactly the expressive power of tableaux, thus solving an open problem of Aho, Sagiv and Ullman; we show that it is NP-complete to tell whether a tableau is realizable by an expression; and we give an interesting dual interpretation of the chase procedure. We also show that algebraic dependencies over a language augmented to contain union and set difference can express arbitrary domain-independent predicates of finite index over finite relations. The class of embedded implicational dependencies recently — and independently — introduced by Fagin is shown to coincide with our algebraic dependencies. Based on this, we give a simple proof of Fagin's Armstrong relation theorem.

KEYWORDS: Relational database model, data dependencies, functional, multivalued, transitive, join, template, and algebraic dependencies, embedded implicational dependencies, tableaux, extended relations, complete axiomatization, project-join expressions, chase.
1. INTRODUCTION

The relational model for databases [Codd 1970, Ullman 1979] has gained recognition as a valuable formal framework for understanding the semantics, design, and even implementation, of databases. At the heart of the research on relational databases lies the notion of *data dependency*. Data dependencies are domain-independent (i.e., invariant under consistent renamings of domain elements) predicates on databases. Starting with functional [Armstrong 1974] and multivalued [Fagin 1977] dependencies, a dozen of different kinds of data dependencies have been proposed in the literature [Nicolas 1978, Paradaeens 1979, Sagiv and Wallace 1979, and others]. New, more and more general, kinds of data dependencies have been put forward in a rather arbitrary and heuristic fashion. This reflected two major frustrations of the research in this area: First, no natural, stable closure of this process was in sight. Secondly, the elegant complete axiomatizations of functional [Armstrong 1974] and multivalued dependencies [Beeri et al. 1977] did not appear to carry over to the more general kinds; thus the further generalizations were futile attempts at "enriching the language" enough so as to obtain a complete axiomatization.

Two important ideas that appeared to point towards a unified theory are the *tableaux* of [Aho et al. 1979], and the related concept of the *chase* [Maier et al. 1979] as a proof system for data dependencies. The tableaux, however, were introduced as models of queries. They were known to be strictly more powerful than the algebraic system that motivated them, and their exact power remained a mystery. Also, the chase was applied in a rather narrow way to functional and join dependencies, as a strictly combinatorial process. No connections to the underlying algebraic system were revealed.

More recently, [Sadri and Ullman 1980] proposed a new kind of data dependencies, the *template dependencies*. Template dependencies generalized most known data dependencies. They are defined in terms of tableaux, and as a consequence the rules of the chase provide an adequate axiomatization for them. However, template dependencies failed to model the functional dependencies, in some sense the most natural and fundamental kind. This inadequacy dramatized the fact that equality had been missing from most attempts at generalizing the notion of data dependencies. It was this absence of equality that caused an annoying dichotomy between the treatment of functional dependencies on the one hand, and that of multivalued dependencies and their relatives on the other.

In this paper we outline some new ideas and results that appear to comprise definitive positive answers to the main quests and open problems of the theory of data dependencies, as exposed above. We introduce a new kind of data dependency, the *algebraic dependency*. This dependency is a natural generalization of all data dependencies existing in the literature (including the functional

Work partially supported by NSF Grant MCS 79-08965.
dependencies) and is stated as an algebraic equation with operations projection and join. We achieve this unified treatment of functional dependencies with other data dependencies by considering extended relations, i.e., relations with arbitrarily many copies of each column. Because of its generality and simplicity, the algebraic dependency is a stable, natural concept. We present several pieces of evidence to this effect. We show that algebraic dependencies are equivalent in expressive power to tableaux — thus solving the open problem in [Aho et al. 1979] — and to algebraic equations with equijoin — an operator long forgotten since [Codd 1972]. More importantly, we show that deductions of algebraic dependencies are axiomatized by an extremely simple and natural set of algebraic axioms. All past proven (or conjectured) axiomatizations of data dependencies are derived as tedious special cases from ours. To further reinforce the belief that algebraic identities are a natural way of stating data dependencies, we show that all domain-independent predicates of finite index over data-bases can be expressed as algebraic identities, with union and difference allowed in addition to projection and join.

Our proof of the completeness of our axiomatic system is quite involved, and proceeds in several stages. It entails understanding the expressive power of tableaux, algebraic tautologies, and also an algebraic interpretation of the chase. It has some interesting side-products. For example, we exhibit two algebraic expressions which, although very different in structure, have the same tableau. We also show that the embedded join dependencies (EJD) are deductively complete, in the sense that any algorithm for testing whether a set of EJD's implies another EJD can be modified to work for general algebraic dependencies — thus theoretically justifying the apparent difficulty in obtaining such an algorithm.

It is well-known (e.g., [Nicolas, 1978]) that data dependencies can be expressed in a fragment of first-order logic. This fragment has equality, one relation symbol -R- of arity |a(R)|, and typed variables. Independently of the authors, Fagin [Fagin 1980] studied a further fragment of first-order logic, which consists roughly of Horn clauses quantified in the ∀∃ fashion. Fagin called this fragment of first-order logic embedded implicational dependencies, and showed that it generalizes all previously proposed kinds of data dependencies. Fagin showed that sets of embedded implicational dependencies are invariant under a version of the Cartesian product. Based on this, he went on to prove that any set of embedded implicational dependencies possesses an Armstrong relation; that is, a universal counterexample to any non-valid implication. Fagin's proof of this result is quite complex, and invokes certain results from logic. Fagin did not provide a complete axiomatization of his class.

Surprisingly, we show that the algebraic dependencies defined in this paper coincide with the embedded implicational dependencies of Fagin. This testifies to the naturalness of our class. Furthermore, the main result of [Fagin 1980] — the existence of an Armstrong relation — follows very easily using our algebraic approach (see Section 6).

The remaining of this paper is organized as follows: In Section 2 we introduce an axiomatic system for expression identities, which is complete for simple expressions. In Section 3 we introduce extended relations, and prove the equivalence between project-join expressions over extended relations, project-equijoin expressions, and tableaux. In Section 4 we introduce algebraic dependencies and an axiom capturing the semantics of extended relations. We show that the axiomatic system of Section 2 together with this axiom comprise a complete axiomatization of algebraic dependencies. This relies heavily on the results of Sections 2 and 3. In Section 5 we show constructively that algebraic dependencies with project, join, union and set difference can express arbitrary domain-independent predicates with finite index. Finally, in Section 6 we study the relation of algebraic to embedded implicational dependencies.
2. **Expressions over Projection and Join**

A relation R is a table. Its columns correspond to attributes; the set of attributes of R, $a(R)$, is a subset of a finite set (called the universe), $U = \{A,B,C\ldots\}$. The rows of R are called tuples. The attributes A,B,\ldots have disjoint domains $D(A), D(B), \ldots$. Thus $R \subseteq \prod_{A \in a(R)} D(A)$. If $X \subseteq a(R)$, and $t \in R$, t_X is t restricted to columns of X. The projection $\pi_X(R) = \{t_X : t \in R\}$. The (natural) join is $R_1 \Join R_2 = \{t \in \prod_{A \in a(R_1) \cup a(R_2)} D(A) : t_{a(R_1)} \in R_1$, and $t_{a(R_2)} \in R_2\}.

We shall deal with expressions over projection and join involving the variable R ranging over relations on U. If ϕ_1 and ϕ_2 are expressions, then $\phi_1(R) \subseteq \phi_2(R)$ denotes the identity inclusion, implicitly quantified over all R. This has meaning only if $a(\phi_1(R)) = a(\phi_2(R))$. $\phi_1 = \phi_2$ means $\phi_1 \subseteq \phi_2$ and $\phi_1 \supseteq \phi_2$. We are interested in devising a complete axiomatization of the deductive theory of sentences of the form $\phi_1 \subseteq \phi_2$, where ϕ_1 and ϕ_2 are project-join expressions over a single relational variable R. We shall be interested in axioms that are *algebraic* in nature, that is, they are rules that either modify expressions syntactically (e.g., commutativity, associativity, etc.) or state that a sentence implies a syntactic variant (e.g., monotonicity). In addition to the ordinary *modus ponens*

$$A \implies B$$

we also employ the transitivity of set inclusion as a deductive tool.

One important desirable feature of the axioms considered is that their applicability can be decided in polynomial time by tree isomorphism techniques. This should be a feature of any "reasonable" axiomatic system. A second positive property sought is that the axioms be reasonably "syntactic" and "local", in the sense that they should be stated in terms of local pattern matching on the expression tree, and not reflect global or semantic considerations. The axioms A1 through A7 that we are proposing below satisfy these criteria. Furthermore, they can be easily rendered to the format $\sigma_1 \land \sigma_2 \land \ldots \land \sigma_k \implies \sigma_{k+1}$ (where $\sigma_1, \ldots, \sigma_{k+1}$ are sentences and σ_{k+1}'s syntax depends in a straightforward way on that of $\sigma_1, \ldots, \sigma_k$) familiar from previous work on dependency theory [Armstrong 1974, Beeri et al. 1977, Sagiv and Wallace 1979].

It is not hard to see that projection and join satisfy the following identities for all R_1, R_2 and R_3 (recall that by writing $\pi_X(R_1)$ we are implicitly requiring that $X \subseteq a(R_1)$). Similarly, $R_1 \subseteq R_2$ assumes that $a(R_1) = a(R_2)$.

A1. (Idempotency of Projection)

(a) $\pi_X(\pi_Y(R_1)) = \pi_Y(R_1)$.

(b) $\pi_{a(R_1)}(R_1) = R_1$.

A2. (Idempotency of Join)

(a) $R_1 \Join \pi_X(R_1) = R_1$.

(b) $\pi_{a(R_1)}(R_1 \Join R_2) \subseteq R_1$.

A3. (Monotonicity of Projection)

$R_1 \subseteq R_2 \implies \pi_X(R_1) \subseteq \pi_X(R_2)$.

A4. (Monotonicity of Join)

$R_1 \subseteq R_2 \implies R_1 \Join R_2 \subseteq R_2 \Join R_3$.

A5. (Commutativity of Join)

$R_1 \Join R_2 = R_2 \Join R_1$.

A6. (Associativity of Join)

$(R_1 \Join R_2) \Join R_3 = R_1 \Join (R_2 \Join R_3)$.

A7. (Distributivity of Projection over Join)

Let $X \subseteq a(R_1)$.

Let $X \subseteq a(R_1)$.

- $\pi_X(\pi_Y(R_1)) = \pi_Y(R_1)$.
- $\pi_{a(R_1)}(R_1) = R_1$.
- $R_1 \Join \pi_X(R_1) = R_1$.
- $\pi_{a(R_1)}(R_1 \Join R_2) \subseteq R_1$.
- $R_1 \subseteq R_2 \implies \pi_X(R_1) \subseteq \pi_X(R_2)$.
- $R_1 \Join R_2 \subseteq R_2 \Join R_3$.
- $R_1 \Join R_2 = R_2 \Join R_1$.
- $(R_1 \Join R_2) \Join R_3 = R_1 \Join (R_2 \Join R_3)$.

Let $X \subseteq a(R_1)$.

- $\pi_X(\pi_Y(R_1)) = \pi_Y(R_1)$.
- $\pi_{a(R_1)}(R_1) = R_1$.
- $R_1 \Join \pi_X(R_1) = R_1$.
- $\pi_{a(R_1)}(R_1 \Join R_2) \subseteq R_1$.
- $R_1 \subseteq R_2 \implies \pi_X(R_1) \subseteq \pi_X(R_2)$.
- $R_1 \Join R_2 \subseteq R_2 \Join R_3$.
- $R_1 \Join R_2 = R_2 \Join R_1$.
- $(R_1 \Join R_2) \Join R_3 = R_1 \Join (R_2 \Join R_3)$.
(a) \(\pi_{x \cup y} (R_1 \Join R_2) \subseteq \pi_x \cup y (R_1 \Join \pi_y (R_2)) \).

(b) If \(a(R_1) \cap a(R_2) \subseteq Y \) then equality holds in (a).

Axioms A1-A6 hardly need any discussion, since they follow directly from the definitions of the two operations. Axiom A7, the only one that is not totally trivial, simply states that projecting one operand of a join may restrict the common attributes of the two operands, and therefore enrich the result of the join. A7(b) says that if, nevertheless, the common attributes remain the same despite the projection, then the result of the join remains unaffected. We have

Proposition 2.1. Axioms A1-A7 are sound. □

To illustrate the application of the axioms, we will give two examples. In the first one we derive a basic property of project-join expressions which we will use later on. The second example shows how the pseudotransitivity rule for multivalued dependencies can be derived from the axioms.

Example 2.1 For all expressions \(\phi \), \(\pi_{a(\phi)} (R) \subseteq \phi(R) \) (1).

We prove this property by induction on the structure of \(\phi \). For the basis, \(\phi = R \), and (1) follows from axiom A1b. For the inductive step, assume that (1) can be derived from the axioms for all expressions \(\sigma \) with fewer operations than \(\phi \).

Case 1 \(\phi = \pi_X \sigma \), for some set of attributes \(X = a(\phi) \) and some expression \(\sigma \).

From the inductive hypothesis, \(\pi_a(\sigma)(R) \subseteq \sigma(R) \) is derived from the axioms. From A3 we have \(\pi_X (\pi_a(\sigma)(R)) \subseteq \pi_X \sigma(R) = \phi(R) \), and from A1 we get \(\pi_{a(\phi)}(R) \subseteq \phi(R) \).

Case 2 \(\phi = \sigma _1 \Join \sigma _2 \), for some expressions \(\sigma _1, \sigma _2 \), with \(a(\phi) = a(\sigma _1) \Join a(\sigma _2) \).

From the inductive hypothesis, \(\pi_{a(\sigma _1)(R)} \subseteq \sigma _1(R) \) and \(\pi_{a(\sigma _2)(R)} \subseteq \sigma _2(R) \). We have now:

\[
\begin{align*}
\pi_{a(\phi)}(R) &= \pi_{a(\sigma _1) \Join \sigma _2}(R), & \text{by A2, A3} \\
\pi_{a(\phi)}(R \Join R) &\subseteq \pi_{a(\sigma _1) \Join \sigma _2}(R), & \text{by A7a} \\
\pi_{a(\phi)}(\pi_{a(\sigma _1)}(R) \Join \pi_{a(\sigma _2)}(R)) &\subseteq \pi_{a(\sigma _1) \Join \sigma _2}(R), & \text{by A3, A4 and i.h.} \\
\pi_{a(\phi)}(\sigma _1(R) \Join \sigma _2(R)) &= \phi(R). & \text{by A1b} \\
\sigma _1(R) \Join \sigma _2(R) &= \phi(R). & \text{by} \text{ A1b}
\end{align*}
\]

□

Example 2.2 Let us show how we can derive the pseudotransitivity property of multivalued dependencies [Beeri et al. 1977]. This property states that, if \(X, Y, Z \subseteq U \) then

\[X \rightarrow Y, Y \rightarrow Z \implies X \rightarrow Z - Y, \]

or, in algebraic terms,

\[
\begin{align*}
XY \Join X(U - XY) &\subseteq R \quad \text{and} \\
YZ \Join Y(U - YZ) &\subseteq R \quad \text{imply} \\
X(Z - Y) \Join XYW &\subseteq R \quad \text{where} \ W = U - XYZ.
\end{align*}
\]

(As is customary, union of sets of attributes is represented by concatenation, and we denote \(\pi_3(R) \) by \(S \).

The sequence of applications of the axioms establishing the implication is shown below. The expressions are shown as trees.

\[
\begin{align*}
&\text{by A2a)} \\
&\text{by A6)}
\end{align*}
\]
Monotonicity (axioms A3 and A4) are implicitly used almost at every step. Although the proof of this simple fact looks ad hoc, and quite formidable, we shall describe in Section 4 a systematic procedure for producing such derivations.

Do these properties completely axiomatize project-join identities? The answer is "no", but for very subtle reasons. To understand why, we will have to introduce tableaux. A tableau T is a mapping from relations to relations — a fragment of first-order logic, see [Aho et al. 1979]. For each $A \in U$ we define its standard domain $D(A) = \{A, a_1, a_2, \ldots\}$. A is called the distinguished symbol of $D(A)$; a_1, a_2, etc., are called nondistinguished. A tableau T over U is a finite relation $T \subseteq D(A) \times D(B) \times \ldots \times D(Z)$. For example, $T = \{(a_1, B, c_1), (A, b_1, c_1), (a_2, b_2, c_1), (a_2, B, c_2), (A, B, c_3)\}$ is a tableau over $\{A, B, C\}$. We represent a tableau as shown in Figure 1a. The top row, called the summary $s(T)$ of T, contains all distinguished symbols appearing in T, each in the corresponding column. The set $a(T)$ of attributes of T is the set of attributes in which T has a distinguished symbol. Tableaux represent mappings from relations to relations. Let $R \subseteq D(A) \times \ldots \times D(Z)$ be a relation with $a(R) = U$. A valuation p is a mapping from $D(A)$ to $D(A)$ for each $A \in U$. Then the mapping f_T corresponding to the tableau T is defined by

$$f_T(R) = \{p(s(T)) : p(w) \in R \text{ for all } w \in T\},$$

where p is extended to act on vectors in a componentwise manner. It turns out that every expression $\phi(R)$ over projection and join, when considered as a mapping from relations to relations, has a corresponding tableau T_ϕ such that, for all R, $f_{T_\phi}(R) = \phi(R)$. T_ϕ is constructed as follows:

1. $T_R = \{(A, B, \ldots, Z)\}$
2. $T_{u_1(\phi)} = T_\phi$, with all occurrences of each distinguished symbol in $U-X$ replaced by a new nondistinguished symbol
3. $T_{\phi_1 \land \phi_2} = T_\phi \cup T_{\phi_2}$.

For example, the tableau of Figure 1(a) can be readily seen to be T_ϕ, for the expression ϕ of Figure 1(b). Unfortunately, it is shown in [Aho et al. 1979] that not all tableaux are T_ϕ for an appropriate ϕ. In fact, we shall soon show that it is NP-complete to recognize those that do. Naturally, if $T_\phi = T_\phi'$, then $\phi_1(R) = \phi_2(R)$ is tautologically true. Under what circumstances is $f_{T_1}(R) \subseteq f_{T_2}(R)$ tautologically true? Let h be a set of mappings from $D(A)$ to $D(A)$ for each $A \in U$, such that $h(A) = A$ and $h(T_i) \subseteq T_i$. Then h is called a homomorphism from T_2 to T_1. [Aho et al. 1979] show the following Lemma:
Figure 1

Lemma 2.1 \(f_{T_1}(R) \subseteq f_{T_2}(R) \) is tautologically true iff there is a homomorphism from \(T_2 \) to \(T_1 \). \(\Box \)

We now return to the question, whether axioms A1 to A7 are sufficient for proving expression identities of the form \(\phi_1(R) \subseteq \phi_2(R) \). It follows from the above discussion that, besides the Axioms A1-A7 the following is undoubtedly true

\[T: \text{If } T_{\phi_1} = T_{\phi_2} \text{ then } \phi_1(R) = \phi_2(R). \]

It turns out that, surprisingly, \(T \) is independent of A1-A7. To see this, consider the two expressions shown in Figure 2.

Figure 2

They both have the same tableau, namely the one shown below.
However, we show below (Corollary 2.1) that they cannot be shown equivalent by A1-A7 alone. Let \(\phi \) be an expression. Let \(\text{Cl}(\phi) \) be the equivalence class of expressions that can be shown equivalent to \(\phi \) via the axioms A1, A5, A6 and A7(b) alone. In other words, \(\text{Cl}(\phi) \) contains all "simple syntactic variants" of \(\phi \). All expressions in \(\text{Cl}(\phi) \) have the same tableau, \(T_\phi \). We construct a digraph \(D_\phi = (N, E_\phi) \) with node set the set \(N \) of nondistinguished symbols in \(T_\phi \), and with \((a_i, a_j) \in E_\phi\) iff the projection that created \(a_i \) is an ancestor of that which created \(a_j \) in all expressions in \(\text{Cl}(\phi) \). For the two expressions shown in Figure 2, the corresponding digraphs are as shown in Figure 3.

![Figure 3](image_url)

We saw in Lemma 2.1 that \(\phi_1(R) \subseteq \phi_2(R) \) iff there is a homomorphism \(h \) from \(T_\phi_2 \) to \(T_\phi_1 \). We define now a restricted version of tautological inclusion. We write \(\phi_1(R) \cong\subseteq \phi_2(R) \) iff there is a homomorphism \(h \) from \(T_\phi_2 \) to \(T_\phi_1 \) such that for all nondistinguished symbols \(a_i, a_j \) of \(T_\phi \), we have \((a_i, a_j) \in E_\phi\) iff \(a_i = a_j \) or \((h(a_i), h(a_j)) \in E_\phi\), or \(h(a_i) \) is distinguished. \(\phi_1(R) \cong\subseteq \phi_2(R) \) stands for \(\phi_1 \cong\subseteq \phi_2 \) and \(\phi_2 \cong\subseteq \phi_1 \).

Lemma 2.2 Axioms A1-A7 are sound even if \(\subseteq \) is replaced by \(\cong \) and = by \(\Delta \).

Proof By inspection. For example to show that \(\tau_{XY} (R_1 \cong R_2) \cong\subseteq \tau_{XY} (R_1 \cong \tau_{Y}(R_2)) \), map the part
of the right-hand tableau that corresponds to R_1 to itself via the identity homomorphism, and likewise for $\pi_Y(R_2)$; only map the nondistinguished symbols introduced by π_Y to those introduced by π_X in the left-hand side. This homomorphism obviously preserves edges of D_ϕ. □

Theorem 2.1 Suppose that $\phi_1(R) \subseteq \phi_2(R)$, but $\phi_1(R) \not\subseteq \phi_2(R)$. Then $\phi_1(R) \subseteq \phi_2(R)$ cannot be proved from A1-A7.

Proof Since all axioms hold for \subseteq as well, and since \subseteq is transitive just as \subseteq, no proof can distinguish between \subseteq and \subseteq. □

Corollary 2.1 The two expressions ϕ_1 and ϕ_2 shown in Figure 2 cannot be shown equivalent by A1-A7.

Proof Obviously $\phi_1(R) = \phi_2(R)$; however, $\phi_1(R) \not\subseteq \phi_2(R)$, since there are only identity homomorphisms from T_{ϕ_3} to T_{ϕ_2} and back, and still $D_{\phi_1} \neq D_{\phi_2}$. □

This inability of the axioms to capture all aspects of expression equivalence has its roots at the inability of project-join expressions to represent arbitrary tableaux. The intricate combinatorics of this problem are dramatized by the following result.

Theorem 2.2 Given a tableau, it is NP-complete to decide whether it corresponds to a project-join expression.

To prove the theorem we shall make use of simple tableaux. A repeated symbol of a tableau T is a symbol that appears in more than one row. A tableau is called simple if it has at most one repeated nondistinguished symbol per column. For example, the tableau of Fig. 1a is not simple because it contains two repeated symbols in the first and third columns (A_1, a_2, e_1, e_3). An expression is called simple if its tableau is simple. [ASSU] gives an algorithm that determines whether a simple tableau comes from an expression and constructs such an expression if it does. The basic ideas behind their algorithm are summarized in the following lemma.

Lemma 2.3 Let T be a simple tableau. Let $G(T)$ be a labeled graph with one node for every row of T and an edge (u, v) labeled w if in some column the rows u and v have the same nondistinguished symbol and w has a distinguished symbol. The tableau T corresponds to an expression if and only if there is no connected nontrivial subgraph H of $G(T)$ with all edges of H labeled with nodes in H.

Proof (only if) Suppose that there is a connected subgraph H of $G(T)$ with all edges labeled with nodes in H, and suppose that there is an expression ϕ with $T_\phi = T$. Each row of T corresponds to a leaf of ϕ. Let x be the lowest common ancestor of all nodes in H. Let y_1, y_2, \ldots be the sons of x, and F_1, F_2, \ldots the subtrees of ϕ rooted at them. From our choice of x, at least two of the F_i’s contain nodes from H. Since H is connected, there is an edge (u_1, u_2) of H with u_1 and u_2 belonging to different subtrees, say $u_1 \in F_1, u_2 \in F_2$. Since u_1 and u_2 have the same nondistinguished symbol in some column A, the projection which created this symbol must take place above x; i.e., some projection in the path from x to the root does not contain A. Let w be the label of (u_1, u_2). Since $w \not\in H$, w is a descendant of x and therefore will not have in T_ϕ a distinguished symbol in column A.

(id) If the condition of the lemma is satisfied, then the algorithm of [ASSU] succeeds in finding an expression ϕ with $T_\phi = T$. We will describe here briefly, for later use, how such an expression is constructed. Let G_1, G_2, \ldots, G_k be the connected components of $G(T); k \geq 2$. Let T_1, T_2, \ldots, T_k be the subtableaux of T corresponding to the sets of nodes of the various components. From T_i we construct T_i' by changing a nondistinguished symbol into a distinguished if it appears in $G(T)$, is also in some other T_j. Since T is simple this can happen with at most one symbol for each column and T cannot have a distinguished symbol in such a column (from the construction of $G(T)$). Now, T_1', \ldots, T_k' are simple tableaux, and $G(T_i')$ is a subgraph of $G(T)$ for each i. Therefore, the T_i’s

This definition is slightly more general than the one in [Aho et al. 1979].
satisfy the condition of the lemma and we can find expressions ϕ_1, \ldots, ϕ_i such that $T_\phi = T'$. The expression ϕ for T is $\pi_X(\phi_1 \land \ldots \land \phi_i)$, where X is the set of columns in which T has a distinguished symbol. We call the expression that is constructed in this way, the canonical expression for T.

Lemma 2.4. Let T be a tableau and suppose that T has at most one repeated nondistinguished symbol in each column of $a(T)$ and at most two repeated nondistinguished symbols in each column of $U - a(T)$. Then if T corresponds to an expression, there is an expression $\phi = \pi_{a(T)}(\sigma)$ where $T_\phi = T$ and σ is a simple expression with $a(\sigma) = U$.

Proof. Let ψ be an expression with $T_\psi = T$. We can assume without loss of generality that all projections that create distinct (i.e. non repeated) nondistinguished symbols take place at the leaves. Let A be a column in which T has two repeated nondistinguished symbols a_1, a_2 and let v_1, v_2 be the two nodes in which the projections that create these symbols take place. At least one of the two nodes, say v_1, is not a descendant of the other. If we postpone the projection that creates a_1 until the root, then T does not change. Doing the same with all columns of $U - a(T)$ we get an expression $\phi = \pi_{a(T)}(\sigma)$, where σ is simple with $a(\sigma) = U$ and $T_\phi = T_\psi = T$.

Let T be a tableau as in Lemma 2.4. We construct a graph $G(T)$ as follows. The nodes of $G(T)$ are the rows of T. $G(T)$ has an edge (u, v) labeled w if in some column u and v have the same nondistinguished symbol and w has a distinguished symbol. In addition, $G(T)$ has two sets of edges $S_1(A)$, $S_2(A)$ for each column A in which T has two repeated nondistinguished symbols a_1, a_2 ($A \in U - a(T)$). $S_1(A)$ contains an edge (u, v) labeled w for each pair of rows u, v that have symbol a_1 in column A and each row w that has a_2 in column A, and similarly with $S_2(A)$. Lemma 2.4 then implies that T comes from an expression if and only if we can delete either $S_1(A)$ or $S_2(A)$ for each column A in which T has two repeated nondistinguished symbols so that the remaining graph satisfies the condition of Lemma 2.3. The proof of Theorem 2.2 is based on this combinatorial property.

Proof of Theorem 2.2. It is obvious that the problem is in NP: Guess an expression ϕ, construct T_ϕ, and verify that $T_\phi = T$. For the NP-hardness part we shall describe a reduction from the 3-SAT problem (satisfiability of a Boolean formula in conjunctive normal form with 3 literals per clause). Let C_1, C_2, \ldots, C_p be the clauses of a Boolean formula F over the variables x_1, x_2, \ldots, x_n. The universe U has $12p + n$ attributes; the first n, X_1, X_2, \ldots, X_n correspond to the n variables, and the rest are divided into p groups of 12 attributes each - one group for each clause. We will construct a tableau T over U such that T corresponds to an expression iff F is satisfiable. The attributes $a(T)$ of T are $U - \{X_1, \ldots, X_n\}$. The tableau T has the form of Lemma 2.4 with two repeated nondistinguished symbols x_i and \overline{x}_i in each column X_i, $i = 1, \ldots, n$. For each clause, T has 16 rows. In Figure 4 we show the symbols of these rows for a clause $C = y_1 \lor y_2 \lor y_3$ (where $y_i = x_i$ or \overline{x}_i) in the columns that correspond to this clause and X_1, X_2, X_3; the entries in the rest of the columns are distinct nondistinguished symbols.

The portion of the graph $G(T)$ corresponding to the rows for the clause C is shown in Figure 5.

In the figure we have labeled edges due to columns X_i, by the nondistinguished symbols rather than the rows. From our previous discussion, T corresponds to an expression iff deletion of all edges due to x_i or \overline{x}_i for each $i = 1, \ldots, n$, results in a graph satisfying the condition of Lemma 2.3.

Let us associate the deletion of all edges due to v_i ($y_i = x_i$ or \overline{x}_i) with the assignment of truth value 1 to the literal y_i. We claim that a truth assignment τ satisfies F if and only if deletion of the set $S(\tau)$ of corresponding edges results in a graph satisfying Lemma 2.3.

(only if). Let τ be a satisfying truth assignment for F and suppose that $G' = G(T) - S(\tau)$ contains a nontrivial connected subgraph H all of whose edges are labeled with nodes in H. G' contains a clique for each false literal and all these cliques are node-disjoint and disconnected from each other. Therefore, in order that H satisfies the previous condition, it must contain at least one edge from a clause construction that is not labeled by a literal. Let $C = y_1 \lor y_2 \lor y_3$ be such a clause.
Table 1

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>A_1</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>A_2</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>A_3</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>B_1</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>B_2</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>B_3</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>D_1</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>D_2</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>D_3</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>E_1</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>E_2</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>E_3</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>F_1</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>F_2</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>F_3</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Figure 4

A □ denotes a distinguished symbol; a ● denotes a repeated nondistinguished symbol; blank denotes a distinct nondistinguished symbol.

Case 1 $y_1 = y_2 = y_3 = 1$ in τ.
Then, C and the A and B nodes are isolated from the rest of G'. Since the edges that connect them are labeled with E-nodes they cannot be in H. But then none of the other edges (all of them labeled C) of the construction for C can be either in H.

Case 2 C has a false literal.
Since τ is a satisfying truth assignment C has also a true literal. Then for some $i = 1, 2, 3$ we have $y_i = 1, y_{i+1} = 0$ (addition is mod 3). From the symmetry of the construction we can assume without loss of generality that $y_1 = 1, y_2 = 0$. Then the nodes D_1, E_1, F_1 are isolated from the rest of G'. Therefore, the edges $(C, A_2), (A_3, B_3)$ are not in H. Deletion of these edges isolates C, A_1, B_1, A_3 from the rest of the graph. Therefore, no edge labeled C is in H, and H cannot contain again any edge from the construction for C that is not labeled by a literal.

(i). Let τ be a truth assignment and suppose that deletion of $S(\tau)$ leaves a graph satisfying the
condition of Lemma 2.3. Let \(C \) be a clause of \(F \). If \(\tau \) does not satisfy any literal of \(C \), then the
construction for \(C \) is a connected graph \(H \) all of whose edges are labeled with nodes in \(H \). (Note
that an edge \((B_i, D_i)\) has label \(F_{i-1} \).)

It turns out that Theorem 2.2, besides characterizing the complexity of compiling expressions
from their tableau also reveals that most probably there can be no usable axiomatization of expression
equivalence.

Corollary 2.2 Given an expression \(\phi \) it is NP-complete to test whether there exists a \(\phi' \in \text{Cl}(\phi) \)
such that \(T_{\phi} = T_{\phi'} \).

Proof In the construction in the proof of Theorem 2.2, two expressions \(\phi \) and \(\phi' \), both having the
same tableau \(T \), satisfy \(\phi' \in \text{Cl}(\phi) \) iff \(\phi \) and \(\phi' \) come from different truth assignments for \(F \). The
Corollary now follows from the observation that it is NP-complete to decide, given a Boolean formula \(F \) and a truth assignment \(\tau \) satisfying \(F \), whether there is another truth assignment that satis-
ifies \(F \).

Therefore the apparent difficulty in axiomatizing expression equivalence can be viewed as a
consequence of the difficulty involved in transforming an accepting non-deterministic computation
to another by formal manipulations. In the next two Sections we show how to overcome this diffi-
culty by replacing \(T \) by another, purely algebraic, axiom. This difficulty does not arise in the case of
simple expressions. This is reflected in the following result:

Theorem 2.3 Any identity of the form \(\phi_1(R) \subseteq \phi_2(R) \) for simple expressions \(\phi_1, \phi_2 \) can be proved

The proof of the theorem proceeds in two steps. At first we show that a simple expression \(\phi \)
can be shown, using the axioms, to be equivalent to the canonical expression for its tableau \(T_{\phi} \), and
then we prove the theorem for \(\phi_1, \phi_2 \) canonical simple expressions.

Lemma 2.5 Let \(\phi \) be a simple expression and \(\phi^* \) the canonical expression for \(T_{\phi} \). Then \(\phi = \phi^* \) can
be shown using A1-A7.
Proof We prove the lemma by induction on the depth of \(\phi \). The basis is trivial. For the inductive step, let \(\phi = \pi_a(\phi_1 \& \phi_2 \& \ldots \& \phi_t) \) where \(a = a(\phi) = a(T_\phi) \). Let \(F_1, F_2, \ldots, F_t \) be the trees for \(\phi_1, \ldots, \phi_t \). If the last projection of \(F_t \) creates in some column \(t \) a nondistinguished symbol that appears in leaves of only one of the \(F_i \)’s then we move this projection below the join and incorporate it into the corresponding \(\phi_i \), using A7b. Thus, let us assume that each nondistinguished symbol created in the last projection appears in leaves of at least two of the \(F_i \)’s. Let \(M_i \) be the rows of \(T_\phi \) that correspond to the leaves of \(F_i \), for \(i = 1, \ldots, t \). Let \(T_i \) be the subtableau of \(T_\phi \) defined by the rows of \(M_i \), and let \(T_i' \) be obtained from \(T_i \) by changing a nondistinguished symbol into a distinguished if it appears in a row of another \(M_j \). From our assumption above, \(T_i' \) is the tableau of \(\phi_i \). Let \(N_1, \ldots, N_k \) be the nodes in the connected components of \(G(T_\phi) \).

Claim 1 For all \(i \), there is a \(j \) such that \(N_i \subseteq M_j \).

Proof of Claim 1 Similar to the proof of the (only if) part of Lemma 2.3. \(\Box \)

Thus, each \(M_j \) is the union of some \(N_i \)’s. Let \(M_1 = N_1 \cup \ldots \cup N_l \). (Similar arguments hold for the rest of the \(M_j \)’s.)

Claim 2 The \(N_i \)’s are disconnected from each other in \(G(T_i') \).

Proof of Claim 2 Let \(v_1 \in N_1, v_2 \in N_2 \) and suppose that there is an edge \((v_1, v_2) \) labeled \(u \) in \(G(T_i') \). Then \(v_1 \) and \(v_2 \) have the same nondistinguished symbol \(b \) in a column \(B \) in which \(u \) has a distinguished symbol. Since \((v_1, v_2) \notin G(T_\phi) \), the row \(u \) has in \(T_\phi \) a nondistinguished symbol \(b' \) which appears also in a row of another \(M_j \). Thus, there are at least two repeated nondistinguished symbols in column \(B \) contradicting the simplicity of \(T_\phi \). \(\Box \)

Thus, in \(G(T_i') \) each \(N_i \) is a union of connected components. Let \(\phi_i^* \) be the canonical expression for \(T_i' \). By inductive hypothesis, \(\phi_1 = \phi_1^* \) can be derived from the axioms. From the construction in the proof of Lemma 2.3, \(\phi_i^* = \pi_{a(T_i')}(\psi_i \& \ldots \& \psi_i) \) where each \(\psi_i \) corresponds to a component of \(G(T_i') \). Using associativity of join and Claim 2, \(\phi_i^* \) can be transformed to \(\sigma_1 = \pi_{a(T_i')}(\psi_1 \& \psi_2 \& \ldots \& \psi_i) \) where \(\psi_1 \) is the join of the \(\psi_i \)’s that correspond to the components whose union is \(N_i \). Let \(\psi_i' \) be the set of attributes in which some row in \(N_i \) has a distinguished symbol or a common nondistinguished symbol with another \(N_j \). \(a(\psi_i') - X_i \) is the set of attributes in which two rows in different components of \(G(T_i') \) that are contained in \(N_i \) have a common nondistinguished symbol that does not appear in any other \(N_j \). Thus, \(a(\psi_i') - X_i \cap a(\psi_j') = \emptyset \) for all \(j \neq i \), and we can replace \(\psi_i' \) in \(\sigma_1 \) by \(\pi_{a(\psi_i')} \) using A7b. The tableau of \(\pi_{a(\psi_i')} \) is obtained from the rows of \(N_i \) by changing nondistinguished symbols that appear in other \(N_j \)’s into distinguished. Let \(\tau_i \) be the canonical form for this expression. The canonical expression for \(T_\phi \) is \(\phi^* = \pi_{a(\psi_i')}(\tau_1 \& \ldots \& \tau_i) \). By induction hypothesis, we can derive \(\tau_i = \pi_{a(\psi_i')} \) and consequently, \(\sigma_1 = \pi_{a(T_i')}(\psi_i \& \ldots \& \psi_i) \). Proceeding similarly with the rest of the \(M_j \)’s we can transform \(\phi \) into \(\pi_{a(T_i')}(\tau_1 \& \ldots \& \tau_i) \). \(\Box \)

Proof of Theorem 2.3

Let \(\phi_1, \phi_2 \) be two simple expressions with \(\phi_1 \subseteq \phi_2 \). Let \(\phi_1^*, \phi_2^* \) be the canonical expressions for the tableaux \(T_\phi_1 = T_1, T_\phi_2 = T_2 \). From Lemma 2.5 we can prove \(\phi_1 = \phi_1^* \) and \(\phi_2 = \phi_2^* \) using A1-A7. Thus, it suffices to prove \(\phi_1^* \subseteq \phi_2^* \). We will use induction on the structure of \(\phi_2^* \).

From Lemma 2.1 there is a homomorphism \(h \) from \(T_2 \) to \(T_1 \). Suppose \(h(b) = B \) for a repeated nondistinguished symbol \(b \) of \(T_2 \) in column \(B \). Let \(T_3' \) be obtained from \(T_2 \) by changing \(b \) into \(B \). \(T_2' \) is simple and comes also from an expression since \(G(T_2') \) is a subgraph of \(G(T_2) \). An expression \(\psi_2' \) for \(T_2' \) can be obtained from \(\phi_2^* \) as follows. Let \(v \) be the node of \(\phi_2 \) in which the projection that creates \(b \) takes place. From the construction of a canonical expression, all
projections that create a nonrepeated nondistinguished symbol take place at the leaves of \(\phi^* \). Therefore, no projection above \(\psi \) creates a nondistinguished symbol in column \(B \). The expression \(\psi' \) is obtained from \(\phi^*_B \) by including \(B \) in all projections at node \(v \) and its ancestors. Since \(h(b) = B, B \in a(\Phi^*_1) = a(\Phi^*_2) \) and \(a(\psi') = a(\phi^*_2) \).

We can show \(\psi' \subseteq \phi^*_2 \) using A7 (and A3, A4): Let \(u \) be the lowest ancestor of \(v \) in \(\phi^*_2 \) such that the subexpression corresponding to the tree rooted at \(u \) has \(B \) in its attributes. The expressions \(\psi' \) and \(\phi^*_2 \) differ at the projections along the path from \(u \) to \(v \). Let \(u_1 \) be the son of \(u \) in this path (see Figure 6), and \(X_1 \) the set of attributes of the subexpression of \(\phi^*_2 \) rooted at \(u_1 \). From the choice of \(u \), no subtree joined at a node in this path has \(B \) in its attributes. Therefore, using A7b, we can postpone in \(\psi' \) the projection that creates \(b \) until \(u_1 \) while preserving equality.

![Figure 6](image)

Changing then the projection of \(u_1 \) from \(\pi_{X_1} \) to \(\pi_{X_1,B} \) (to get \(\psi' \)) will shrink the expression by A7a; thus, \(\psi' \subseteq \phi^*_2 \).

Let now \(\bar{T}_2 \) be obtained from \(T_2 \) by changing all repeated nondistinguished symbols \(b \) of \(T_2 \) such that \(h(b) = B \) into the corresponding distinguished symbols. As above, we can find an expression \(\bar{\psi} \) with \(\bar{T}_2 = \bar{T}_2 \) and prove that \(\psi' \subseteq \phi^*_2 \). Let \(\phi^*_2 \) be the canonical expression for \(\bar{T}_2 \). From Lemma 2.5 we can show \(\bar{\psi} = \phi^*_2 \), and therefore also \(\bar{\psi} \subseteq \phi^*_2 \), using the axioms.

The restriction of \(h \) to the symbols of \(\bar{T}_2 \) is a homomorphism from \(\bar{T}_2 \) to \(T \) that maps all repeated nondistinguished symbols into nondistinguished symbols. Let \(G_1 = G(T_1) \), \(G_2 = G(T_2) \). Let \((u,v) \) be an edge in \(G_2 \); then \(u \) and \(v \) have a common nondistinguished symbol \(b \) in some column \(B \) in \(a(T) \). Since \(h(b) \) is a nondistinguished symbol, we have that either \(h(u) = h(v) \) or \((h(u), h(v)) \) is an edge of \(G_1 \). Therefore, the image (under \(h \)) of a connected subgraph of \(G_2 \) is connected.

Let \(N_1, \ldots, N_k \) be the nodes of the connected components of \(G_2 \), and \(M_1, \ldots, M_l \) those of \(G_1 \). We have, \(h(N_i) \subseteq M_j \), for each \(i \), some \(j \). The canonical expressions for \(T_2 \), \(T_1 \) are \(\phi^*_2 = \pi_{\sigma_1}(\pi_{\sigma_2} \ldots \pi_{\sigma_i}) \), and \(\phi^*_1 = \pi_{\tau_1}(\pi_{\tau_2} \ldots \pi_{\tau_j}) \) where \(a = a(\phi^*_2) = a(\phi^*_1) \). Using associativity and commutativity of join we can write \(\phi^*_1 \) as \(\pi_{a}(\pi_{\sigma_1} \ldots \pi_{\sigma_i}) \ldots \pi_{a}(\pi_{\tau_1} \ldots \pi_{\tau_j}) \) where the \(\sigma_i \)'s of those \(N_i \)'s that are mapped into the same \(M_j \) are grouped together. Let \(W_j \) be the set of attributes in which two \(N_j \)'s mapped into \(M_j \) have a common repeated nondistinguished symbol that does not appear in a row mapped to a different \(M_j \). Using A7b we can move the projection that creates these nondistinguished symbols below the first join. That is, \(\phi^*_2 \) is transformed into \(\pi_{a}(\pi_{\tau_1} \ldots \pi_{\tau_j}) \) (\(i = 1 \)) where \(a(\pi_{\tau_1}) \) is the set of columns in which some \(N_j \) mapped into \(M_j \) has (1) a distinguished symbol or (2) a common repeated nondistinguished symbol with a row mapped in another \(M_j \).
Let X_i be the first set of columns and Y_i the second set of columns. Note that from the construction of $G(\bar{T}_2)$, $Y_i \cap a(\bar{T}_2) = \emptyset$ and therefore $X_i \cap Y_i = \emptyset$. The tableau \bar{T}_2 is formed by taking the rows of T in the N_i's that are mapped to M_i and changing repeated nondistinguished symbols in Y_i into distinguished. The attributes of τ_i $(1 \leq i \leq r)$ are (1) those columns in which a row of M_i has a distinguished symbol, and (2) the columns in which a row of M_i has a common nondistinguished symbol with a row of another M_j. Let X_i be the first set of columns and Y_i the second set. Clearly, we have $X_i \subseteq X_i$ and $Y_i \subseteq Y_i$. Let $Z_i = X_i \cup Y_i$. Let $S(r)$ be the set of columns in which a row r of T_i has distinguished symbols, and F_i the family of such sets $S(r)$ for all rows r in M_i. From A2 and Example 2.1 we have $\phi^*_z = \pi_a(N \bar{T}_i) = \pi_a \left(\bigvee_{i \in F_i} N \bar{T}_i \bigwedge \left(\bigvee_{i \in S(r)} \pi_a \left(\bigwedge_{i \in S(r)} \tau_i \right) \right) \right)$ (by A5, A6) $\pi_a(N \tau'_i)$, where $\tau'_i = \bar{T}_i \bigwedge \left(\bigvee_{i \in S(r)} \pi_a \left(\bigwedge_{i \in S(r)} \tau_i \right) \right)$. Now, $a(\tau'_i) = Z_i$; the tableau of τ'_i is that of \bar{T}_i with some additional rows, each of which has only distinguished and nonrepeated nondistinguished symbols, and therefore is simple. The tableau of $\pi_a \tau_i$ is obtained from the rows of M_i by changing repeated nondistinguished symbols in Y_i into distinguished and therefore is also simple. Now, h gives a homomorphism from the tableau of τ'_i to that of $\pi_a \tau_i$ (with the new rows in T_i, mapped to the corresponding rows in the tableau of $\pi_a \tau_i$). Thus, $\pi_a \tau_i \subseteq \tau'_i$ can be proved from the axioms.

We have $\phi^*_z = \pi_a(\tau_1 \cdots \tau_i) \subseteq \phi^*_z$ (by A2) $\pi_a(\tau_1 \cdots \tau_i) \subseteq \phi^*_z$ (by A7a) $\pi_a(\pi_a(\tau_1 \cdots \tau_i) \subseteq \phi^*_z \subseteq \phi^*_z$. □
3. EXTENDED RELATIONS

Let \(R \) be a relation with attributes \(a(R) = U = \{A, B, \ldots, Z\} \). The extension \(\bar{R} \) of \(R \) is a relation with \(a(\bar{R}) = U = \{A_1, B_1, \ldots, Z_1, A_2, B_2, \ldots, Z_2, A_3, \ldots\} \), and such that \(\bar{R} = \{(\tau \bar{R}) : \tau \in R\} \). \(\bar{R} \) is therefore an infinite collection of copies of \(R \). The attributes \(A_1, A_2, \ldots \) of \(\bar{R} \) are said to be associated with (or copies of) the attribute \(A \). We can have projection and join applied to extended relations. We adopt the convention that projection to a finite subset of \(U \) is applied first to \(R \). If \(\phi_1 \) and \(\phi_2 \) are expressions over \(U \), we write \(\phi_1(\bar{R}) \subseteq \phi_2(\bar{R}) \) to denote the identity inclusion under the assumption that \(\bar{R} \) is an extended relation, that is, the elements of each tuple of \(\bar{R} \) corresponding to \(A_1A_j \) are restricted to be the same.

If it appears that by the above definitions we are introducing infinitary operations in our algebraic language, we really are not. We could achieve the same effect by considering expressions over project, join and a new operation called say, duplicate, where duplicate\((R) = \{t\bar{R} : t \in R\} \). A formalism similar to ours, only with a limited number of copies (namely, 2) of each attribute allowed, was used in [Sciore 1979].

Extended relations can be used to express dependencies that were previously thought of as non-algebraic. For example, the functional dependency \(A \rightarrow B \) can be written as \(\pi_{AB}(\bar{R}) \subseteq \pi_{AB}(\bar{R}) \).

Expressions on extended relations play a very important role in our development. To show their inherent stability as a concept, we prove that they are equivalent in expressive power to two important existing systems: project-equi-join expressions, and tableaux.

So far, a relation for us was a set of sets of mappings, one for each attribute of \(U \). In the customary mathematical sense, however, a relation is a subset of a Cartesian product; that is, the columns are ordered. We shall use the term ordered relation for these. Our relations will be sometimes called attributed for distinction.

The equijoin operator was defined by Codd on ordered relations. To compare the power of equijoin to expressions over extended relations we will associate each column of an ordered relation with an attribute in \(U \). If \(R_1 \) is an ordered relation with each column associated with an attribute, and \(R_2 \) an attributed relation with the number of columns of \(R_1 \) equal to \(|a(R_2)| \), we say that \(R_1 \cong R_2 \) if we can order the attributes of \(R_2 \) so that the resulting ordered relation is equal to \(R_1 \). (Note that this implies that corresponding columns in \(R_1 \) and \(R_2 \) are associated with the same attribute, since the domains are disjoint.) If \(R_1 \), \(R_2 \) are relations, and \(I_1 = \{i_1, \ldots, i_n\} \), \(I_2 = \{j_1, \ldots, j_m\} \) are sets of columns of \(R_1 \), \(R_2 \) respectively with columns \(i_k, j_k \) associated with the same attribute for \(k = 1, \ldots, n \), the equijoin of \(R_1 \), \(R_2 \) on \(I_1 \), \(I_2 \) is the relation \(R_1 \bowtie_{i_1} R_2 = \{t_{1,2} : t_1 \in R_1, t_2 \in R_2, t_{1}i_{1} = t_{2}j_{2}\} \). The columns of \(R_1 \bowtie_{I_1} R_2 \) are associated with the same attributes as in \(R_1 \), \(R_2 \).

Thus, the definition of equijoin includes the notion of repetition of columns. A project-equijoin expression is an expression built using projection and equijoin over the single variable symbol \(R \) ranging over all relations with \(|U| \) columns, each of which is associated with an attribute of \(U \).

Theorem 3.1 (1) If \(\phi \) is a project-equijoin expression, then there is a project-join expression \(\phi' \) such that for all relations \(R \), \(\phi'(\bar{R}) = \phi(R) \).

(2) Conversely, for every project-join expression \(\phi' \) there is a project-equijoin expression \(\phi \) such that for all relations \(R \), \(\phi'(\bar{R}) = \phi(R) \).

Proof (1) The proof is by induction on the structure of \(\phi \). The basis (\(\phi(R) = R \)) is trivial. For the induction step, suppose first that \(\phi = \pi_\sigma \), for some expression \(\sigma \) and set of columns \(I \). By the induction hypothesis \(\sigma'(\bar{R}) = \sigma'(\bar{R}) \) for some \(\sigma' \). Let \(X \) be the set of attributes of \(a(\sigma') \) that correspond to the columns in \(I \). We take \(\phi' = \pi_\sigma \sigma' \). If \(\phi(R) = \sigma_1(R) \bowtie_{I_1} \sigma_2(R) \), let \(\sigma_1', \sigma_2' \) be such that \(\sigma_1(\bar{R}) = \sigma_1'(\bar{R}) \), \(\sigma_2(\bar{R}) = \sigma_2'(\bar{R}) \). By changing the names of some attributes we can choose \(\sigma_1', \sigma_2' \) so that \(a(\sigma_1') \cap a(\sigma_2') = X \) where each attribute in \(X \) corresponds to a column in \(I_1 \) of \(\sigma_1(\bar{R}) \) and the corresponding column in \(I_2 \) of \(\sigma_2(\bar{R}) \). For each attribute \(A_i \) in \(X \) we introduce
an attribute A_i that does not appear in σ_1' or σ_2' and change every projection in σ_1' that includes A_i to include also A_j. Let τ_1 be the resulting expression. For every R, $\tau_1(R)$ is $\sigma_1'(R)$ with some new columns which are copies of the columns in X. From the definition of the equijoin then, $\phi(R) = \tau_1(R) \sqcap \sigma_2'(R)$.

(2) Let ϕ' be a project-join expression. Using equijoin of R with itself a sufficient number of times we can create a relation which contains one column for every attribute A_i that appears in ϕ'.

It will be useful for our further discussion to introduce tableaux also for project-join expressions over extended relations; we call them extended tableaux. An extended tableau T is a (usual) tableau over a finite subset X of U, and defines a mapping f_T from relations R over U to relations over the set $a(T) \subseteq U$ of attributes in which T has a distinguished symbol: this mapping is obtained by taking the projection of R onto X and applying to it the mapping f_T defined by T in Section 2 as a usual tableau. From an expression $\phi(R)$ we can construct an extended tableau T_ϕ over the set X of attributes which appear in ϕ — note that since projection of R to a finite set of attributes is applied first, the set X is finite. The tableau T_ϕ is constructed from ϕ as in Section 2 by treating ϕ as a usual expression on a relation symbol over X.

To understand how the semantics of the extension of a relation enter into the determination of f_T, we must introduce an operation on tableaux called chase [Maier et al. 1979]. If Σ is a set of functional dependencies and T a tableau, the chase of T under Σ, $\text{chase}_\Sigma(T)$ is the tableau obtained from T applying the following transformation repeatedly whenever possible: If $X \rightarrow Y$ is a functional dependency in Σ and two tuples u, v of T satisfy $u_X = v_X$ then for every attribute A in Y we make u_A and v_A identical; if one of them is distinguished, so is the resulting symbol. The final tableau $\text{chase}_\Sigma(T)$ is unique up to renaming of nondistinguished symbols. Now let F be the set of functional dependencies $A_i \rightarrow A_j$ for every two distinct copies A_i, A_j of the same attribute A of U. We will show that the semantics of extended relations are captured essentially by these functional dependencies. If T is an extended tableau, the chase of T under F can be constructed in a very simple way as follows. For every attribute $A \in U$ form a graph $G_A(T)$ with the tuples of T as nodes and an edge between two tuples that have the same symbol in some copy of A. For each connected component K of $G_A(T)$ and each column A_i of T make the entries of the tuples in K identical; the common symbol is distinguished if some tuple of K has a distinguished symbol in column A_i. In the resulting tableau $\text{chase}_F(T)$, columns corresponding to copies of the same attribute are identical up to renaming of symbols.

Lemma 3.1 $f_T(R) = f_{\text{chase}_F(T)}(R)$.

Proof [Aho et al. 1979] show that if a relation I satisfies a set Σ of functional dependencies then $f_T(I) = f_{\text{chase}_\Sigma(T)}(I)$. The lemma then follows by noting that $\pi_X(R)$, where X are the columns of T, satisfies the set F of functional dependencies.

If T is an extended relation with set of columns X, and X' is a superset of X, we can form an (extended) tableau T' with set of columns X' and $a(T') = a(T)$ by adding to T' new columns with distinct nondistinguished variables. Obviously, $f_T(R) = f_{T'}(R)$ for every R. Thus, if T_1 and T_2 are two extended tableaux with sets of columns X_1, X_2 respectively, we can consider them as tableaux over the same set of columns $X_1 \cup X_2$ by adding new columns. The following lemma says essentially that the set F of functional dependencies captures the semantics of extended relations, at least as far as comparison of tableaux (and therefore also expressions) is concerned.

Lemma 3.2 Let T_1, T_2 be two tableaux with the same set X of columns and $a(T_1) = a(T_2)$. $f_{T_1}(R) \subseteq f_{T_2}(R)$ for every relation R over U if and only if $f_{\text{chase}_F(T_1)}(I) \subseteq f_{\text{chase}_F(T_2)}(I)$ for every relation I over X.

Proof

(if) $f_{\text{chase}_F(T_1)}(R) = f_{\text{chase}_F(T_1)}(\pi_X \overline{R})$. Let $\overline{I} = \pi_X \overline{R}$; then $f_{\text{chase}_F(T_1)}(R) = f_{\text{chase}_F(T_1)}(I) \subseteq f_{\text{chase}_F(T_2)}(I) = f_{\text{chase}_F(T_2)}(R)$.

(only if) [Aho et al. 1979] show that if Σ is a set of functional dependencies then $f_{\text{chase}_F(T_1)}(I) \subseteq f_{\text{chase}_F(T_2)}(I)$ for every relation I iff $f_{T_1}(I) \subseteq f_{T_2}(I)$ for every relation I satisfying Σ.

Suppose now that $f_{\text{chase}_F(T_1)}(l) \not\subseteq f_{\text{chase}_F(T_2)}(l)$ for some relation I over X. Then there is a relation I over X satisfying F such that $f_{T_1}(l) \not\subseteq f_{T_2}(l)$. In I, columns corresponding to renamings of the same attribute of U are copies of each other. Let R be a relation over U obtained from I by keeping one column for each attribute of U and adding columns with distinct new symbols for attributes of U that don’t have copies in X. It is easy to see then that $f_{T_1}(R) = f_{T_2}(\pi_X R) \not\subseteq f_{T_2}(\pi_X R) = f_{T_2}(R)$. □

Our proof of the equivalence between tableaux and extended expressions is based on a useful lemma. Call an expression shallow if it has the form $\pi(X \setminus \pi_X R)$ where the X_i’s are finite subsets of U. That is, a shallow expression is one whose tree has (at most) one node with outdegree greater than one. A tableau that corresponds to a shallow expression is called also shallow. Each column of a shallow tableau has either (i) a distinguished symbol and no repeated nondistinguished symbol, or (ii) one repeated nondistinguished symbol and no distinguished symbol. And conversely, a tableau T that satisfies these conditions is shallow: Let X_i be the set of attributes in which the i-th row has either a distinguished or a repeated nondistinguished symbol. Then $T = T_b$, where $\phi = \pi_{a(T)}(X \setminus \pi X)$. Thus, shallow tableaux are a very special case of simple tableaux.

Lemma 3.3 Let T be an extended tableau. Then there exists a shallow extended tableau T' such that $f_{T}(R) = f_{T'}(R)$ for all R.

Proof Let T_1 be the chase of T under F. In T_1 columns corresponding to copies of the same attribute of U are renamings of each other. Therefore, if A_i, A_j are two copies of the same attribute A, then the corresponding columns in T_1 have the same number of repeated symbols and in exactly the same sets of rows. Let a_1, a_2, \ldots, a_k be the repeated symbols in a column that corresponds to a copy of attribute A_i, and S_1, S_2, \ldots, S_k the sets of rows in which they appear. (One of the a_i’s might be a distinguished symbol.) Suppose that the rows of S_1, \ldots, S_k have only nondistinguished symbols in the columns that correspond to copies of A and S_{i+k}, \ldots, S_k have a distinguished symbol in at least one such column. We introduce k new attributes of U that are copies of A. A row in $S_i (1 \leq i \leq k)$ has a repeated nondistinguished symbol in the i-th new copy of A and distinct nondistinguished symbols in the other copies. For each attribute in $a(T_1) (=a(T))$ we change all repeated nondistinguished symbols into new distinct ones. Finally, we delete all old attributes that are not in $a(T_1)$. Let T' be the constructed extended tableau. In Figure 7 we show an example of this transformation.

<table>
<thead>
<tr>
<th>T_1:</th>
<th>T':</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>A_1</td>
</tr>
<tr>
<td>A_2</td>
<td>A_2</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>a_1</td>
<td>a_1</td>
</tr>
<tr>
<td>a_2</td>
<td>a_2</td>
</tr>
<tr>
<td>b_1</td>
<td>b_1</td>
</tr>
<tr>
<td>a_3</td>
<td>a_3</td>
</tr>
<tr>
<td>a_4</td>
<td>a_4</td>
</tr>
<tr>
<td>b_2</td>
<td>b_2</td>
</tr>
<tr>
<td>a_5</td>
<td>a_5</td>
</tr>
<tr>
<td>b_3</td>
<td>b_3</td>
</tr>
<tr>
<td>c_1</td>
<td>c_1</td>
</tr>
<tr>
<td>c_2</td>
<td>c_2</td>
</tr>
<tr>
<td>c_3</td>
<td>c_3</td>
</tr>
</tbody>
</table>

Blanks indicate distinct nondistinguished symbols.

Clearly, T' is a shallow extended tableau. Let X, X' be the sets of columns of T (or T_1) and T' respectively. Let T_2 be obtained from T_1 by adding for each column A_i in $X' - X$ a renamed copy of an attribute $A_i \in X$ with all symbols nondistinguished. Clearly, chase$_F(T_2) = T_2$. Let T'' be obtained from T' by restoring the columns of $X - X'$ that we deleted. Now T_2 and T'' have the
same set of columns. Let \(T_3 = \text{chase}_c(T'') \). From the construction of the chase that we described before Lemma 3.1, \(T_3 \) is identical to \(T_2 \) up to renaming of symbols: just note that for every \(A \in U \), \(G_A(T_2) \) and \(G_A(T'') \) are both unions of the same disjoint cliques \(S_1, \ldots, S_n \). Therefore, \(T_2(I) = T_3(I) \) for every relation \(I \) over \(X \cup X' \), and from Lemmas 3.1 and 3.2 we have \(f_{T_2}(R) = f_{T_1}(R) = f_{T_3}(R) = f_{T''}(R) = f_{T'}(R) \) for every relation \(R \) over \(U \). □

The tableau \(T' \) constructed in the proof of Lemma 3.3 is called the canonical shallow tableau for \(T \) and the corresponding shallow expression \(\phi' \) is the canonical shallow expression for \(T \). It is unique up to renaming of some of the attributes that are not in \(a = a(\phi') = a(T) \): \(\phi' = \pi_{a(X')}(\pi_X(R)) \) is characterized by the fact that no \(X_i \) contains two or more copies of an attribute \(A \in U \) unless they are all in \(a = a(\phi') \); furthermore, if two copies \(A_i, A_j \in a \) of \(A \) belong to some \(X_i \), then they are in exactly the same \(X_i \)'s.

Lemma 3.3 says that the difficulties that arose in the case of usual project-join expressions, due to the fact that not all tableaux come from expressions, cease to exist when we go to extended relations since every extended tableau corresponds to an expression (and one of a very simple form actually) over extended relations.

We will now show a converse to Lemma 3.3 which characterizes the power of (usual) tableaux in algebraic terms.

Theorem 3.2 Let \(T \) be a (usual) tableau. Then there exists a (shallow) project-join expression \(\phi \) with \(a(\phi) = a(T) \subseteq U \) such that for all relations \(R \), \(f_{T}(R) = \phi(R) \). Conversely if \(\phi \) is an expression over extended relations such that \(a(\phi) \subseteq U \), then there is a (usual) tableau \(T \) such that \(f_{T}(R) = \phi(R) \) for all relations \(R \).

Proof The first part follows immediately from Lemma 3.3 since every (usual) tableau \(T \) is also an extended tableau with \(\overline{f_T} = f_T \).

For the second part, let \(\phi \) be an expression over extended relations with \(a(\phi) \subseteq U \). From \(\phi \) we construct an extended tableau \(T_{\phi} \). Let \(T_1 \) be the chase of \(T_{\phi} \) under \(F \). We have \(\overline{f(T)} = \overline{f_{T_1}(R)} \) for every \(R \). Let \(T \) be the (usual) tableau obtained from \(T_1 \) by keeping only one copy of each attribute in \(U \) (the one with the distinguished symbol if there is one). We claim that \(f_{T}(R) = \overline{f_{T_1}(R)} \) for every \(R \). In proof, let \(R \) be a relation over \(U \). (1) Let \(t \in \overline{f_{T_1}(R)} \). Let \(X' \) be the set of columns of \(T_1 \). There is a valuation \(\rho \) of the symbols of \(T_1 \) such that \(\rho(w) \in \pi_{X}(\overline{R}) \) for all \(w \in T_1 \), and \(t = \rho(s(T_1)) \). The restriction \(\rho' \) of \(\rho \) to the symbols of \(T \) satisfies \(\rho'(u) \in R \) for each \(u \in T \) and \(t = \rho(s(T)) = \rho'(s(T)) \). (2) Let \(t \in f_{T}(R) \) and let \(\rho \) be a valuation of the symbols of \(T \) such that \(\rho(u) \in R \) for all \(u \in T \) and \(t = \rho(s(T)) \). Extend \(\rho \) to a valuation \(\rho' \) of all the symbols of \(T_1 \) by mapping a symbol in a deleted copy of an attribute \(A \) to the image of the symbol that appears in the same row at the copy of \(A \) that we kept. This is possible since columns in \(T_1 \) that are copies of the same attribute are renaming of each other. Clearly, \(\rho'(w) \in \pi_{X}(\overline{R}) \) for each \(w \in T_1 \) and \(t = \rho(s(T)) = \rho'(s(T_1)) \). □

Another interesting consequence of Lemma 3.3 concerns the complexity of the inference problem for data dependencies. An embedded join dependency (EJD) is a statement of the form \(\pi_X[\pi_{X}(R) \land \pi_{X}(R) \land \ldots \land \pi_{X}(R)] \subseteq \pi_X(R) \). That is, an EJD is a statement \(\phi(R) \subseteq \pi_{a(\phi)}(R) \) where \(\phi \) is a shallow expression. From Lemma 3.3 every expression over extended relations has an equivalent shallow expression. We say that a set of statements (or dependencies) \(\Sigma \) logically implies another statement \(\sigma \), denoted as \(\Sigma \models \sigma \), where \(\Sigma \) and \(\sigma \) are statements about a single relation \(R \), if every relation \(R \) satisfying \(\Sigma \) satisfies also \(\sigma \). The inference problem for a class of dependencies is to decide whether a set \(\Sigma \) of such dependencies implies another dependency \(\sigma \) in the class. We will show that the inference problem for dependencies of the form \(\phi(R) \subseteq \pi_{a(\phi)}(R) \) is polynomially reducible to (and thus not significantly harder than) the inference problem for EJD's (on an ordinary relation, not an extension of one).
At first we must extend the definition of the chase to dependencies of the form $\phi(R) \subseteq \pi_X(R)$, where ϕ is a project-join expression. Let T be a tableau and σ a dependency $\phi(R) \subseteq \pi_X(R)$. Let T_1 be a tableau obtained from $\phi(T)$ by adding one column for each attribute in $a(R) - X$ with all entries distinct new symbols (i.e. not appearing in T). An application of the rule for σ to T is the replacement of T by $T \cup T_1$. If Σ is a set of dependencies and T a tableau, the chase of T under Σ, chase$_\Sigma(T)$, is the result of repeated applications of the σ-rules for each $\sigma \in \Sigma$ as far as possible. Note that chase$_\Sigma(T)$, which might be an infinite relation, satisfies all dependencies in Σ. The chase is a procedure that searches for a counterexample to an implication $\Sigma \models \sigma$. Let $\sigma = \phi(R) \subseteq \pi_X(R)$ and let T be the tableau of ϕ. Then $\Sigma \models \sigma$ iff $s(T) \in \pi_X(\text{chase}_{\Sigma}(T))$ [Maier et al. 1979, Sadri and Ullman 1980]. If $s(T) \notin \pi_X(\text{chase}_{\Sigma}(T))$ then chase$_\Sigma(T)$ does not satisfy σ, and thus it provides a counterexample to the implication $\Sigma \models \sigma$. We express this fact as follows.

Proposition 3.1 (The Chase Partial Decision Procedure, [Maier et al. 1979])

Let Σ and σ be as above. Then $\Sigma \models \sigma$ if and only if $s(T) \notin \text{chase}_\Sigma(T)$. □

In the next section we shall give an interesting dual interpretation of the chase.

To extend the theory of deductions to dependencies of the form $\phi_i(R) \subseteq \pi_X(R)$, we must somehow capture the semantics of the copies of the attributes of extended relation. Our next Lemma says that this can be done by a set of functional dependencies. In fact, multivalued dependencies are enough (Lemma 3.6)

Lemma 3.4 Let $\Sigma = \{\phi_i(R) \subseteq \pi_X(R), \ldots, \phi_j(R) \subseteq \pi_X(R)\}$ and $\sigma = \phi_{i+1}(R) \subseteq \pi_{X_{i+1}}(R)$. Let Σ' and σ' be as Σ and σ with \subseteq replaced by \in (i.e. with the expressions regarded as applied to an ordinary relation). Let F be the set of functional dependencies $A_i \rightarrow A_j$ for distinct copies of the same attribute that appear in some expression in $\Sigma \cup \{\sigma\}$. Then $\Sigma \models \sigma$ if and only if $\Sigma' \cup F \models \sigma'$.

Proof Let X be the set of attributes that appear in some ϕ_i.

(i). $\Sigma' \cup \{F\} \models \sigma'$ means that every relation l over X that satisfies the functional dependencies F and $\phi_i(l) \subseteq \pi_X(l)$ for $i = 1, \ldots, n$ satisfies also $\phi_{i+1}(l) \subseteq \pi_X(l)$. Let R be any relation over U satisfying Σ. Then $l = \pi_X(R)$ satisfies F and Σ' and therefore $\phi_{i+1}(R) = \phi_{i+1}(l) \subseteq \pi_X(l) = \pi_{X_{i+1}}(R)$.

(only if) Suppose that $\Sigma' \cup F \not\models \sigma'$. Then there exists a relation l over X which satisfies Σ' and F but not σ'. Since l satisfies F, any two columns of l that correspond to attributes A_i, A_j, copies of the same attribute A of U, are renamings of each other. Let R be a relation over U formed by keeping from l one copy of each attribute of U. Then R satisfies Σ but not σ. □

Lemma 3.5 Let T be an extended tableau (viewed as a relation) with set of columns X. Let T' be obtained from T by adding one new copy of each attribute in U with any symbols as entries, and let Y be the set of columns of T'. Let F be the set of FD's $A_i \rightarrow A_j$ for distinct copies $A_i, A_j \in X$ of the same attribute and M be the set of MVD's $A_i \rightarrow A_j$ for $A_i, A_j \in Y$ copies of the same attribute. Then $\text{chase}_{F}(T) \subseteq \pi_X(\text{chase}_{M}(T'))$.

Proof It suffices to show how an application of an FD-rule in T can be simulated by MVD-rules in T'. Suppose that the FD-rule $A_i \rightarrow A_j$ is applied to two rows u, v of T. Let $u_{A_i} = v_{A_i} = a_i, u_{A_j} = a_j, v_{A_j} = a_j'$. Suppose that all occurrences of a_j are replaced by a_j (for both i and j, a_j could be a distinguished symbol). Let w be another row of T with $w_{A_i} = a_j'$. The row w will be replaced by another row w' which has a_j in the A_i column and agrees with w in the rest of the columns. We must show how to generate from T' using the MVD-rules a row whose projection on X agrees with w'. Let A_i be the copy of attribute A in $Y \setminus X$. Applying the MVD-rule for $A_i \rightarrow A_k$ to tuples u and v of T' we get a row $w_k | v_k$ that agrees with v in A_i and with w in $Y \setminus A_i$. Applying the MVD-rule for $A_i \rightarrow A_j$ to tuples u and v we get a tuple v_1 that agrees with v in $Y \setminus A_i$ and has a_j in column A_j. Now, w_1 agrees with v_1 in column A_i. Applying the MVD-rule for $A_i \rightarrow A_j$ to w_1 and v_1 we get a tuple w_2 that agrees with w_1 in $Y \setminus A_i$ and with v_1 in column A_j. Thus, w_2 agrees with w in $Y \setminus A_i A_k$ and has a_j in column A_j. Therefore, its projection to X is w'. □
As a corollary of Lemmas 3.4 and 3.5 we have

Lemma 3.6 Let \(\Sigma = \{ \phi_1(R) \subseteq \pi_X(R), \ldots, \phi_n(R) \subseteq \pi_X(R) \} \) and \(\sigma = \phi_{*+1}(R) \subseteq \pi_X(R) \). Let \(\Sigma' \) and \(\sigma' \) be as \(\Sigma \) and \(\sigma \) with \(\subseteq \) replaced by \(\subseteq \) (i.e. with the expressions regarded as applied to an ordinary relation). Let \(Y \) contain the attributes appearing in some \(\phi_i \), and in addition one new copy of each attribute in \(U \). Let \(M \) be the set of multivalued dependencies (on \(Y \)) \(A_i \rightarrow A_j \) with \(A_i, A_j \in Y \) distinct copies of the same attribute of \(U \). Then \(\Sigma \Vdash \sigma \) if and only if \(\Sigma' \cup M \Vdash \sigma' \).

Proof From Lemma 3.4, \(\Sigma \Vdash \sigma \) iff \(\Sigma' \cup F \Vdash \sigma \) where \(F \) are the functional dependencies \(A_i \rightarrow A_j \) with \(A_i, A_j \in X \), the set of attributes that appear in the \(\phi_i 's \).

1. Suppose that \(\Sigma' \cup M \Vdash \sigma' \). Let \(I \) be a relation on \(X \) satisfying \(\Sigma' \cup F \). Let \(I' \) be obtained from \(I \) by adding one column for each attribute in \(Y \) which is a renamed copy of a column in \(X \) that corresponds to the same attribute of \(U \). (Since \(I \) satisfies \(F \), all such columns are renamings of each other). Clearly, \(I' \) satisfies \(\Sigma' \cup F' \) where \(F' \) is the functional form of the MVDs in \(M \). Therefore, \(I' \) satisfies also \(\Sigma' \cup M \) and \(\sigma' \). Thus, \(I \) satisfies also \(\sigma' \). Consequently, \(\Sigma' \cup F \Vdash \sigma' \) and \(\Sigma \Vdash \sigma \).

2. Suppose that \(\Sigma' \cup F \Vdash \sigma' \). Let \(T \) be the tableau of \(\phi_{*+1} \) with set of columns \(X \), and \(T' \) with set of columns \(Y \). The tableaux \(T \) and \(T' \) satisfy the assumptions of Lemma 3.5. Since \(\Sigma' \cup F \Vdash \sigma' \), \(\text{chase}_{\Sigma' \cup F}(T) \) contains a row \(w \) whose projection to \(X_{*+1} \) is the summary \(s(T) \). Since \(\sigma(\phi_i) \subseteq X \) for each \(i \), if the rule for \(\sigma_i = \phi_i(R) \subseteq \pi_X(R) \) can be applied to a set of rows of \(T \) to produce a new row \(u \), then the rule can be applied also to the same set of rows of \(T' \) to produce a new row \(u' \) that agrees with \(u \) on \(X \). Combining this observation with Lemma 3.5 we conclude that using the rules for \(\Sigma' \) and the MVDs in \(M \) we can generate from \(T' \) a row \(w' \) which agrees with \(u \) on \(X \). Thus, \(s(T') = s(T) \in \pi_{X_{*+1}}(\text{chase}_{\Sigma' \cup M}(T')) \), and consequently \(\Sigma' \cup M \Vdash \sigma' \). \(\Box \)

Combining now Lemma 3.6 with Lemma 3.3 we have

Theorem 3.3 Let \(\Sigma = \{ \phi_1(R) \subseteq \pi_X(R), \ldots, \phi_n(R) \subseteq \pi_X(R) \} \) and \(\sigma = \phi_{*+1}(R) \subseteq \pi_X(R) \). Then we can find a set \(\Gamma \) of embedded join dependencies and another EJD \(\gamma \) (over some set of attributes \(Y \)) such that \(\Sigma \Vdash \sigma \) if and only if \(\Gamma \Vdash \gamma \).

Proof From Lemma 3.3 we can construct for each \(\phi_i \) an equivalent shallow expression \(\phi_i' \). Let \(Y \) contain the attributes that appear in all \(\phi_i 's \) and in addition one more copy of each attribute of \(U \). The set \(\Gamma \) consists of the set \(M \) of MVD's \(A_i \rightarrow A_j \) with \(A_i, A_j \in Y \) copies of the same attribute of \(U \), and the set of EJD's \(\phi_i'(I) \subseteq \pi_X(I) \), for \(i = 1, \ldots, n \) where \(I \) ranges over relations on \(Y \). The EJD \(\gamma \) is \(\phi_{*+1}'(I) \subseteq \pi_{X_{*+1}}(I) \). \(\Box \)

Note that the transformation of the proof of Theorem 3.2 is polynomial. Thus, the inference problem for dependencies of the form \(\phi(R) \subseteq \pi_X(R) \) is within a polynomial factor of the inference problem for EJD's. At present, however, it is not known whether this inference problem is even decidable.

Let us return now to the axiomatic theories of functional dependencies. We showed in the previous discussion that the functional dependencies in \(F \) (which capture the semantics of extended relations by Lemma 3.2) can be replaced by the corresponding MVD's, at least as far as inference of identities \(\phi(R) \subseteq \pi_X(R) \) is concerned. Let us therefore introduce the following axiom.

A8: for all \(X \subseteq \phi(R) \), and \(A_i, A_j \) copies of the same attribute of \(U \),
\[
\pi_{A_i A_j}(R) \times \pi_{A_i A_j}(R) = \pi_{A_i A_j A_j}(R).
\]

Note that this axiom is the embedded multivalued dependency \(A_i \rightarrow A_j | X \).

Let us see how some obvious (and useful) facts about expressions on extended relations can be derived from A8 combined with the axioms of Section 2. If \(\phi \) is an expression we denote by \(p(\phi) \) the set of attributes that appear in \(\phi \); \(a(\phi) \subseteq p(\phi) \). Let \(\phi_{AX} \) denote the expression obtained from \(\phi \) by replacing all occurrences of \(A \) in \(\phi \) by \(X \).
Lemma 3.7 (1) If $a \in a(\phi)$, $A_j \not\in p(\phi)$, then $A_j \not\in a(\phi)$ can be proved from A1-A8.
(2) If $a \in p(\phi)$, then $A_j \not\in a(\phi)$, can be proved from A1-A8.
(3) If $a \in p(\phi)$, $A_j \not\in a(\phi)$, then $\pi_X \phi = \pi_X (\phi_{A_j/A_j})$, where $X = a(\phi) - A_j$, can be proved from A1-A8.

Proof We prove (1) and (2) by simultaneous induction on the structure of ϕ.

(1) The basis ($\phi = \pi_X (\phi)$) is Axiom A8. For the induction step suppose that $\phi = \pi_X \sigma$. Since $A_j \not\in a(\phi)$, we have $\sigma \cap A_j \not\in a(\phi)$; also $A_j \not\in a(\phi)$. Thus, from the induction hypothesis for part (1), $A_j \not\in a(\phi)$ since $\sigma \cap A_j = \{A_j\}$, from A7b we have: $\pi_X (\phi_{A_j/A_j}) = \pi_X (\sigma_{A_j/A_j}) = \pi_X (\sigma_{A_j/A_j}) = \phi_{A_j/A_j}$. Suppose now that $\phi = \sigma \not\in \tau$. We have $A_j \not\in a(\phi) \cup a(\tau)$, $A_j \not\in p(\tau) \cup p(\tau)$. If $A_j \notin a(\phi) \cup a(\tau)$, then $A_j \not\in a(\phi)$ since $X \not\in a(\tau)$. Thus, $A_j \not\in \pi_X (\sigma \not\in \tau) \cup \pi_X (\sigma \not\in \tau) = \pi_X (\sigma \not\in \tau) \cup \pi_X (\sigma \not\in \tau)$ (from the induction hypothesis for (1)).

If $A_j \notin a(\phi)$, then from the induction hypothesis for part (2), $\tau = \pi_X (\tau_{A_j/A_j})$ since $\tau \not\in a(\phi)$. Thus, $\pi_X (\tau_{A_j/A_j}) = \pi_X (\tau_{A_j/A_j})$. Suppose therefore that $\phi = \sigma \not\in \tau$. If $A_j \notin a(\phi)$, then from the induction hypothesis for (2) and A1b we have $\sigma = \sigma_{A_j/A_j}$ and $\tau = \tau_{A_j/A_j}$. Thus, $\pi_X (\phi) = \pi_X (\sigma \not\in \tau) = \pi_X (\sigma_{A_j/A_j}) \cup \pi_X (\tau_{A_j/A_j}) = \phi_{A_j/A_j}$.

(2) The basis ($\phi = \pi_X (\phi)$) follows from A1. For the induction step, the case $\phi = \pi_X (\sigma \not\in \tau)$ follows also from A1. Suppose therefore that $\phi = \sigma \not\in \tau$. If $A_j \notin a(\phi)$, then from the induction hypothesis for (2) and A1b we have $\sigma = \sigma_{A_j/A_j}$ and $\tau = \tau_{A_j/A_j}$. Thus, $\pi_X (\phi) = \pi_X (\sigma \not\in \tau) = \pi_X (\sigma_{A_j/A_j}) \cup \pi_X (\tau_{A_j/A_j}) = \phi_{A_j/A_j}$.

If $A_j \notin a(\phi) \cup a(\tau)$, then from the induction hypothesis for (1), $\phi_{A_j/A_j} = \pi_X (\phi_{A_j/A_j}) = \phi_{A_j/A_j}$. Let $A_j \notin a(\phi) \cup a(\tau)$, then from the induction hypothesis for (1), $\phi_{A_j/A_j} = \pi_X (\phi_{A_j/A_j}) = \phi_{A_j/A_j}$.

Lemma 3.8 Let ϕ be a project-join expression, and let ϕ' be the canonical shallow expression for T_ϕ. Then $\phi(\bar{R}) = \phi'(\bar{R})$ can be proved by A1-A8.

Proof We proceed in the tree for ϕ from the leaves to the root changing names of attributes so that the tableau of the resulting expression is shallow. Let v be a node of the tree of ϕ and suppose that we have already modified the subtrees that are rooted in descendants of v so that for each such subtree representing expression σ, the tableau T_σ is shallow, and $p(\sigma) - a(\sigma)$ does not contain any attributes appearing outside σ. Let ψ be the expression for the subtree rooted at v.

Case 1 $\psi = \pi_X (\sigma \not\in \tau)$, where σ is the (modified) shallow expression of the subtree rooted at the son of v. For each attribute A_j in $a(\sigma) - X$ that appears in another node that is not a descendant of v we introduce a new attribute A_j that appears nowhere else in the tree. Using part (3) of Lemma 3.7 we transform ψ into $\pi_X (\sigma_{A_j/A_j})$. Note that T_{ψ} is shallow, and $p(\psi') - a(\psi')$ does not contain any attributes appearing in the rest of the tree.

Case 2 $\psi = \sigma \not\in \tau$ where σ and τ are the (modified) shallow expressions corresponding to the subtrees rooted at the sons of v. Since $p(\sigma) - a(\sigma)$ (resp. $p(\tau) - a(\tau)$) does not contain any attributes appearing outside σ (resp. τ), we have $p(\sigma) \cap p(\tau) = a(\sigma) \cap a(\tau)$, and therefore, T_{ψ} is shallow. Also $p(\psi') - a(\psi') = [p(\sigma) - a(\sigma)] \cup [p(\tau) - a(\tau)]$ does not contain any attributes appearing outside ψ.

Proceeding bottom-up in this way we transform ϕ to ϕ_1 with a shallow tableaux. If we move now all projections in ϕ_1 that create repeated non-distinguished symbols to the root, move all
projections that create nonrepeated nondistinguished symbols to the leaves - possible using A7b since T_0_1_1 is shallow - and use associativity of join to collect all joins in one node we will get a shallow expression \(\phi_2 \) for T_0_2.

Let \(\phi_2 = \pi_a(\pi_X(\overline{R})) \) where \(a = a(\phi_2) = a(\phi) \). Each column of \(T = T_{\phi_2} \) has either a distinguished symbol or one repeated nondistinguished symbol. If two columns \(A_i, A_j \), copies of A have a repeated symbol in exactly the same rows (i.e. \(A_i \) is a renaming of \(A_j \)) then \(A_j \) appears in exactly the same \(X_i \)'s as \(A_j \). If \(A_j \notin a \) then we can delete \(A_j \) using part (2) of Lemma 3.7; i.e. \(\phi_2 \) is \(\pi_a(\pi_{X/\{X_i\}}) \) for some \(a \). If two columns \(A_i, A_j \) with \(A_j \notin a \) have both a repeated symbol in some row \(w \), then we can “merge” \(A_i \) and \(A_j \) as follows. Let \(S_1, S_2 \) be the set of rows that have a repeated symbol respectively in \(A_i, A_j \). We have \(A_j \notin X_k \) for \(k \in S_1 \), \(A_j \notin X_k \) for \(k \in S_2 \), \(A_i, A_j \notin X_k \) for \(k \notin S_1, S_2 \). Since \(w \in S_1 \cap S_2 \) we have \(\pi_{X_i}(\overline{R}) = \pi_{X_j}(\overline{R}) \cdot \pi_{X_k}(\overline{R}) \) (by A2 and Example 2.1). Thus,

\[
\phi_2 = \pi_a \left(\bigwedge_{k \in S_1} \pi_{X_k}(\overline{R}) \right) \cdot \left(\bigwedge_{k \in S_2} \pi_{X_k}(\overline{R}) \right) \cdot A_1 \cdot \ldots \cdot A_n \cdot \left(\bigwedge_{k \in S_1} \pi_{X_k}(\overline{R}) \right) \cdot \left(\bigwedge_{k \in S_2} \pi_{X_k}(\overline{R}) \right)
\]

\[
= \pi_a \left(\bigwedge_{k \in S_1} (A_1 A_2 \ldots A_n \pi_{X_k}(\overline{R})) \right) \cdot \left(\bigwedge_{k \in S_2} (A_1 A_2 \ldots A_n \pi_{X_k}(\overline{R})) \right) \cdot \left(\bigwedge_{k \in S_1 \cap S_2} \pi_{X_k}(\overline{R}) \right) \cdot \left(\bigwedge_{k \in S_1 \cup S_2} \pi_{X_k}(\overline{R}) \right)
\]

= (by A8) \(\pi_a \left(\bigwedge_{k \in S_1} \pi_{X_k}(\overline{R}) \right) \cdot \left(\bigwedge_{k \in S_2} \pi_{X_k}(\overline{R}) \right) \cdot \left(\bigwedge_{k \in S_1 \cap S_2} \pi_{X_k}(\overline{R}) \right) \cdot \left(\bigwedge_{k \in S_1 \cup S_2} \pi_{X_k}(\overline{R}) \right) \).

In the tableau the last expression the columns \(A_i, A_j \) have become identical up to renaming of symbols. Thus, we can delete \(A_j \) as above. Continuing this procedure we end up with a shallow expression \(\psi_1 \) such that the sets of rows in which any two columns \(A_i, A_j \) with \(A_j \notin a \) have a repeated symbol are disjoint. The expression \(\psi_1 \) is the canonical shallow expression \(\phi_1 \) of \(\phi \) up to changing the names of some \(A_i \notin a \) (which can be done using (3) of Lemma 3.7.).

Using Lemma 3.8 we can show:

Theorem 3.4 All valid identities \(\phi_1(\overline{R}) \subseteq \phi_2(\overline{R}) \) are provable from A1-A8.

Proof From Lemma 3.8 we can transform \(\phi_1 \) and \(\phi_2 \) to their canonical shallow expressions \(\psi_1 \)' and \(\psi_2 \). Thus, it suffices to prove the theorem for canonical shallow expressions. Let \(\phi_1, \phi_2 \) be two such expressions and \(T_1, T_2 \) their tableau. We can assume that \([p(\phi_1) - a(\phi_1)] \cap [p(\phi_2) - a(\phi_2)] = \emptyset \); if not change the names of the attributes in \(p(\phi_1) - a(\phi_1) \) using (3) of Lemma 3.7.

Let \(A \) be an attribute of \(U \) and \(A_1, A_2, \ldots, A_\ell \) its copies in \(p(\phi_1), A_1', A_2', \ldots, A_\ell' \) its copies in \(p(\phi_2) \). Suppose that \(A_1 = A_1', \ldots, A_m = A_m' \) are the copies that are in \(a = a(\phi_1) = a(\phi_2) \). Let \(M \) (resp. \(M' \)) be the set of rows of \(T_1 \) (resp. \(T_2 \)) that have a distinguished or repeated nondistinguished symbol in column \(A_i \) (resp. \(A_i' \)). Since \(\phi_1, \phi_2 \) are canonical shallow expressions we have \(M_i \cap M_j = \emptyset \), unless \(A_i, A_j \notin a \) and \(M_i = M_j \) similarly for the \(M_i's \). Let \(T_1', T_2' \) be \(T_1 \) and \(T_2 \) padded out with new columns of distinct nondistinguished symbols to \(X = p(\phi_1) \cup p(\phi_2) \), and let \(\overline{T}_1 = \overline{\text{chase}_X(T_1)} \), \(\overline{T}_2 = \overline{\text{chase}_X(T_2)} \). From Lemmas 3.2 and 2.1 there is a homomorphism \(h \) from \(\overline{T}_2 \) to \(\overline{T}_1 \). We will identify a row \(u \) of \(T_i \) (\(i = 1, 2 \)) with the corresponding row of \(\overline{T}_i \) and leaf of \(\phi_j \). A column \(A \) (copy of \(A \)) of \(\overline{T}_i \) has one different repeated symbol for each \(N_i \) and distinct nondistinguished symbols in the other rows - similarly with \(\overline{T}_2 \). Therefore, for each \(i = 1, \ldots, \ell \), either \(h(M_i) \subseteq h(N_j) \) for some \(j \), or \(h(M_i) \) has a single row.

We carry out the following procedure for all \(A \in U \).

(1) At first we group together the leaves of \(\phi_2 \) that belong to the same \(M_i \); i.e. we write \(\phi_2 \) as \(\pi_a(\tau_0(\pi_{M_1} X_{M_1} \ldots X_{M_{\ell}})) \) where \(\tau_i \) for \(i > m \) is the join of the leaves in \(M_i \) and \(\tau_0 \) the join of the rest of the leaves. Since \(A_i' \) appears only in \(\tau_i \) we can insert the projection that deletes \(A_i \) for \(i > m \) into
the join; i.e. \(\phi_2 = \pi_u(\tau_1 \wedge \pi_{Z_{m+1}} \wedge \ldots \wedge \pi_{Z_1}) \) by A7b, where \(Z_1 = a(\tau_1) - A_1' \). Suppose that \(M_i \)

is mapped into \(N_j \); using (3) of Lemma 3.7 we change \(A_i' \) into \(A_j \) in \(\pi_{Z_1} \). After doing this for all \(M_i \) with \(h(M_i) \subseteq N_j \) for some \(j \), we move the projections to \(Z_i \)’s back to the root and thereby shrink the expression by A7a. Let \(\phi_2' \) be the resulting expression.

(2) Suppose that \(h(M_i) \) is not in \(N_j \) for any \(j \). Then \(h(M_i) = \{ u \} \) for some leaf \(u \) of \(\phi_1 \) whose projection does not contain any copy of \(A \). We include \(A_i' \) in the projection at \(u \); since \(A_i' \) does not appear in any other leaf this preserves equivalence by A7b. Let \(\phi_1' \) be the expression that results by doing this for all \(M_i \) that are mapped by \(h \) into \(N_j \).

We have \(\phi_2' \subseteq \phi_2 \) and \(\phi_1' = \phi_1 \) provable from the axioms. Every leaf \(u \) of \(\phi_2' \) (corresponding to a leaf of \(\phi_2 \)) is mapped by \(h \) to a leaf \(h(u) \) of \(\phi_1' \) that contains the copy (or copies if they are in \(a \)) of \(A \) that \(u \) contains.

Let \(\psi_1 \) and \(\psi_2 \) be the expressions that are constructed from \(\phi_1 \) and \(\phi_2 \) by doing the previous procedure for all \(A \in U \). We have \(\psi_2 \subseteq \phi_2 \), \(\psi_1 = \phi_1 \), and every leaf \(\pi_R(\tau) \) of \(\psi_2 \) is mapped to a leaf \(\pi_{\tau}(\tau) \) of \(\psi_1 \) with \(X_i \subseteq Y_i \). We replace \(\pi_{\tau} \) by \(\pi_{\tau} \) in each leaf of \(\psi_2 \) to get an expression \(\psi_2' \) with \(\psi_2' \subseteq \psi_2 \) by A7a. Then we replace identical leaves with one of them to get \(\psi_1'' = \pi_a \tau = \psi_2' \subseteq \psi_2 \subseteq \psi_2 \) (by A2). Every leaf of \(\psi_1'' \) is now identical to a distinct leaf of \(\psi_1 ; \) i.e. \(\psi_1 = \pi_a(\sigma \wedge \tau) \) for some \(\tau \). From A2 we have \(\pi_a(\sigma \wedge \tau) \subseteq \pi_a(\sigma) \), and thus \(\phi_1 = \psi_1 \subseteq \psi_2'' \subseteq \psi_2 \). \(\square \)
4. ALGEBRAIC DEPENDENCIES

Definition An algebraic dependency is an assertion of the form

\[\phi_1(\bar{R}) \subseteq \phi_2(\bar{R}) \]

where \(\phi_1 \) and \(\phi_2 \) are project-join expressions. \(\square \)

Example 4.1 The multivalued dependencies are special cases of algebraic dependencies. In fact, so are the far more general embedded join dependencies since the EJD on \(X_1, \ldots, X_k \) embedded in \(X \) can be expressed as

\[\pi_X\left(\pi_{X_1}(\bar{R}) \Join \cdots \Join \pi_{X_k}(\bar{R})\right) \subseteq \pi_X(\bar{R}). \]

\(\square \)

Example 4.2 We have already seen that the functional dependencies are algebraic. For example, \(A \rightarrow B \) can be expressed as

\[\pi_{B,B_2}\left(\pi_{AB_1}(\bar{R}) \Join \pi_{AB_2}(\bar{R})\right) \subseteq \pi_{B,B_2}(\bar{R}). \]

We can say, informally, that the language of algebraic dependencies possesses some form of equality. \(\square \)

Example 4.3 Transitive dependencies [Paraadsens 1979] are algebraic. For example, the dependency \(Tr(X,Y,Z) \) can be expressed as

\[\pi_{XZ}\left(\pi_{XY}(\bar{R}) \Join \pi_{YZ}(\bar{R})\right) \subseteq \pi_{XZ}(\bar{R}). \]

\(\square \)

Example 4.4 Any template dependency [Sadri and Ullman 1980] can be rendered as an algebraic dependency. Let \(T \) be a tableau defining a template dependency. Let \(\phi \) be the corresponding canonical shallow expression. Then the equivalent algebraic dependency is

\[\phi(\bar{R}) \subseteq \pi_{a(T)}(\bar{R}). \]

\(\square \)

Apparently, the algebraic dependencies are quite general. More importantly, we shall show that if \(\Sigma \cup \{\sigma\} \) is a set of algebraic dependencies, and furthermore \(\Sigma \vdash \sigma \) (that is, all relations satisfying \(\Sigma \) must also satisfy \(\sigma \)) then \(\sigma \) is derivable from \(\Sigma \) by A1-8. This strongly suggests that the notion of algebraic dependency is the natural conclusion of the search for a general axiomatizable data dependency.

In order to show the completeness of A1-A8 for algebraic dependencies, we first revisit the chase (recall Proposition 3.1). The chase is essentially a combinatorial construction of a counterexample to an implication \(\Sigma \vdash \sigma \).

Example 4.5 Let us prove pseudotransitivity of MVD's (recall Example 2.2) by using the chase. \(k = 2 \), \(\phi_1 = \pi_X(\bar{R}) \Join \pi_{UX-XY}(\bar{R}) \), \(\phi_2 = \pi_{Y}(\bar{R}) \Join \pi_{U-YZ}(\bar{R}) \), \(\phi_3 = \pi_{X(\bar{R})} \Join \pi_{XW} \), where \(W = U-XYZ \).

\(T_3 \) is shown in Figure 8(a) - where we have, for simplicity, one attribute for each set of attributes \(X, Y, Z - Y \) and \(W \), respectively labeled \(X, Y, Z \) and \(W \).

If we apply \(\phi_1 \) to \(T_3 \) we obtain the relation (tableau) shown in Figure 8(b); if we apply \(\phi_2 \) to that we get the relation, of Figure 8(c). Since \((X,Y,Z,W) \in \phi_2(\phi_1(T_3)) \) we conclude that \((X,Y,Z,W) \in \text{chase}(T_3) \supset \phi_2(\phi_1(T_3)) \), and hence we have shown that \(\Sigma \vdash \sigma_3 \). \(\square \)

We introduce below another Proposition, (cf. Proposition 3.1) which shows the chase under a different light: as an algebraic construction of a proof of the implication \(\Sigma \vdash \sigma_{k+1} \). This point of
view is central in the proofs that follow.

We call $\psi(R)$ a substitution of ϕ_1, \ldots, ϕ_k if either $\psi(R) = R$ or if ψ is some ϕ_j applied recursively to other substitutions.

Proposition 4.1 (The Dual Interpretation of the Chase)
Let Σ and σ_{k+1} as above. Then, $\Sigma \models \sigma_{k+1}$ if there is a substitution ψ of ϕ_1, \ldots, ϕ_k such that $\phi_{k+1}(R) \subseteq \psi(R)$ is a tautology.

Proof If such a substitution exists, then, $\Sigma \models \psi(R) \subseteq R$ by monotonicity; thus, $\Sigma \models \phi_{k+1} \subseteq \psi(R) \subseteq R \iff \sigma_{k+1}$.

For the other direction, suppose that $\Sigma \models \sigma_{k+1}$. By proposition 3.1, chase (T_{i+1}) contains the tuple (A, B, \ldots, Z). We shall assign a substitution ψ_i to each tuple t of chase (T_{i+1}). If $t \in T_{k+1}$, then $\psi_t = R$. Otherwise, t was obtained by applying some ϕ_j to tuples t_1, \ldots, t_i. Then ψ_t is defined recursively as ϕ_j applied to $\psi_{t_1}, \ldots, \psi_{t_i}$. Now let ψ be the substitution associated with (A, B, \ldots, Z). We claim that $\phi_{k+1}(R) \subseteq \psi(R)$ is a tautology. But this follows from a result of [Aho et al. 1979], which states that $\phi_{k+1}(R) \subseteq \psi(R)$ iff $(A, B, \ldots, Z) \in \psi(T_{i+1})$; and this is true by the construction of ψ. □

Example 4.5 (continued) To show that $\{\sigma_1, \sigma_2\} \models \sigma_3$ it would suffice to observe that the following inclusion is tautologically true.
The right-hand expression is recognized as the substitution of \(\phi_1 \) and \(R \) into \(\phi_2 \) which corresponds to the tuple \((A, B, \ldots, Z) \). \(\square \)

We now embark on our proof of completeness of our axiomatic system. Recall the set \(F \) of functional dependencies defined in the previous section: \(F = \{ A_i \rightarrow A_j : A \in U, i, j = 1, 2, \ldots \} \). As in Lemma 3.4, a set of algebraic dependencies \(\Sigma = \{ \phi_i(R) \subseteq \psi_j(R) | i = 1, \ldots, n \} \) logically implies another dependency \(\sigma \Leftrightarrow \phi_{n+1}(R) \subseteq \psi_{n+1}(R) \) if and only if \(\Sigma' \cup F \models \sigma' \), where \(\Sigma' \) and \(\sigma' \) are as \(\Sigma \) and \(\sigma \) with \(\subseteq \) replaced by \(\Leftrightarrow \).

Theorem 4.1 Let \(\phi_i(R) \subseteq \psi_i(R), i = 1, \ldots, k+1 \) be algebraic dependencies. Then any implication \(\Sigma = \{ \sigma_1, \ldots, \sigma_k \} \models \sigma_{k+1} \) can be proved by the Axioms A1-A8.

Proof Let \(X \) be the set of attributes that appear in the \(\sigma_i \)’s. From our previous discussion, \(\Sigma \models \sigma \) iff \(\Sigma' \cup F \models \sigma' \) where \(\sigma' \) and \(\Sigma' \) are dependencies of the form \(\phi_i(I) \subseteq \psi_i(I) \) where \(I \) ranges over all relations on \(X \). The chase is a decision procedure that can be applied also for dependencies of this form. In this case, we start with the tableau \(T_0 = T_{\phi_{k+1}} \) corresponding to \(\phi_{k+1} \) (padded with distinct nondistinguished variables to the set \(X \) of attributes). The rule for FD’s is as in Section 3. The rule for a dependency \(\phi_i(I) \subseteq \psi_i(I) \) is as follows. Suppose that there is a valuation \(\rho \) from \(T_{\phi_i} \) into the current tableau \(T - \rho \) can map distinguished to nondistinguished symbols, i.e. all we require is that \(\rho(s(T_{\phi_i})) = \phi_i(T) \). Extend \(\rho \) to the nondistinguished variables of \(T_{\phi_i} \) by assigning to each one of them a distinct nondistinguished variable that does not appear in \(T \). An application of the rule for \(\phi_i(I) \subseteq \psi_i(I) \) is the addition to \(T \) of the rows of \(T_{\phi_i} \) with this valuation. The chase of \(T_0 \) under a set of dependencies is the result of the repeated application of these rules to \(T_0 \); note that the chase might be an infinite tableau. Now, \(\Sigma' \cup F \models \sigma' \) iff there is a valuation from \(T_{\phi_{k+1}} \) to \(\nu \cup (T_{\phi_{k+1}}) \) that maps distinguished symbols to distinguished symbols (a homomorphism), i.e. if and only if \(s(T_{\phi_{k+1}}) \in \psi_{k+1}(\nu \cup (T_{\phi_{k+1}})) \).

Suppose now that \(\Sigma' \cup F \models \sigma' \). Then there is a finite \(n \) such that the tableau \(T' \) that results after the application of \(n \) rules contains the image of a valuation of \(T_{\phi_{k+1}} \) that preserves distinguished symbols (i.e. a homomorphism). Let us construct the chase by applying the FD’s as far as possible between any two consecutive application of a rule for a dependency of \(\Sigma' \). That is, we have a sequence of tableaux \(T_0 = T_{\phi_{k+1}}, T_0', T_1, T_1', \ldots, T_n, T_n' \), where \(T_i' = chase_i(T_i) \) and \(T_{i+1} \) is obtained from \(T_i' \) by a single application of a rule for some \(\sigma' \in \Sigma' \). Let \(\chi_i \) be the canonical shallow expression for \(T_i \) (and \(T_i' \)). From Lemma 3.8 we have \(\phi_{k+1} = \chi_0 \) provable from A1-A8. Since
there is a homomorphism from T_{ϕ_*} into T_* we have $\chi_{i+1} \subseteq \psi_{i+1}$ and from Theorem 3.4 this identity can be proved from A1-A8. Thus, it suffices to prove that $\chi_i \subseteq \chi_{i+1}$ can be derived from Σ using A1-A8. Our proof uses essentially the ideas of Proposition 4.1 where the substitution must take into account that the dependencies are not full.

Suppose that T_{i+1} is obtained from T_* by an application of the rule for dependency σ_i. For each attribute A_i and $a = a(\phi_j) = a(\psi_j)$ we introduce one new attribute A_i' that does not appear in χ or χ_i. Let a' be the set of these new attributes. Let ρ be a valuation from T_{ϕ_j} into T_i'. If $\chi_i = \pi_{a(\phi_*)}$$\left[\chi_{i+1}\right]$, let θ_i be $\pi_{a(\phi_*)} \cup a' \left[\chi_{i+1}\right]$, where Z_i contains Y, and those attributes A_i' for which a row of T_{ϕ_j} mapped by ρ into i has a distinguished symbol in A_i.

Let $\bar{\phi}_j$, $\bar{\psi}_j$ be ϕ_j and ψ_j with the attributes in a renamed into a'. From Lemma 3.7 we have $\bar{\phi}_j, \bar{\psi}_j \in \pi_a(\chi_i \cup A_i, A_i')$ and $\bar{\psi}_j, \bar{\psi}_j \in \pi_a(\chi_i \cup A_i, A_i')$. Thus, from $\phi_j \subseteq \psi_j$ we can derive (using A1-A8) that $\bar{\phi}_j \subseteq \bar{\psi}_j$. But $\bar{\phi}_j = \pi_{a'}(\bar{\phi}_j)$ and $\bar{\psi}_j = \pi_{a'}(\bar{\psi}_j)$. Thus, from Theorem 3.4 we can derive $\bar{\phi}_j \subseteq \bar{\psi}_j$. Let $\bar{\theta}_i = \pi_{a'}(\theta_i)$. The valuation ρ is now a homomorphism from T_{ϕ_j} into the chase under F of T_{ϕ_j}. Thus, $\bar{\theta}_i \subseteq \bar{\phi}_j \subseteq \bar{\psi}_j$. Therefore, from Axiom A2, $\theta_i = \theta_i, \pi_{a'}(\theta_i) \subseteq \theta_i, \pi_{a'}(\psi_j)$, and $\pi_{a(\phi_*)}(\theta_i) \subseteq \pi_{a(\phi_*)}(\psi_j)$. Since ρ was a valuation from T_{ϕ_j} into T_i', the canonical shallow expression for $\pi_{a(\phi_*)}(\theta_i)$ is χ_i (i.e., the chase of $\pi_{a(\phi_*)}(\theta_i)$ under F will not identify any symbols of T_i'). Thus, $\chi_i = \pi_{a(\phi_*)}(\theta_i)$. On the other hand the rules for the FD's will copy the portion of T_{ϕ_j} that is in the attributes a' in the tableau $\bar{\Phi}$ for $\pi_{a(\phi_*)}(\theta_i, \psi_j)$ into the attributes a. Therefore, the chase E of $\bar{\Phi}$ (restricted to X) will be exactly T_{i+1}, and $\chi_{i+1} = \pi_{a(\phi_*)}(\theta_i, \psi_j)$. Thus, $\chi_i \subseteq \chi_{i+1}$ can be derived from σ_j and the axioms. \(\Box\)
5. EXPRESSIVE POWER

In this Section we briefly examine algebraic and related dependencies from a model-theoretic viewpoint. In order to prove an interesting result, we are forced to expand our algebraic language to contain the operations of union and difference. The goal of this section is two-fold. First, by exhibiting the power of the expanded language we further justify the usefulness of "equational" dependencies such as algebraic dependencies. Second, we point the way towards a host of interesting open model-theoretic questions concerning data dependencies.

Let \(P \subseteq 2^{D(\Lambda) \times D(\Delta) \times \ldots} \) be a predicate on finite relations. We say that \(P \) is domain-independent if, whenever \(R \in P \) and \(h \) is a set of permutations of \(D(\Lambda), D(\Delta), \ldots \) then \(h(R) \in P \). If \(P \) is domain-independent, its index \(\text{index} \) is the number of equivalence classes in which \(P \) is divided if one considers \(R \equiv R' \) whenever \(R' \) is a "renaming" \(h(R) \) of \(R \), as above.

Theorem 5.1 Let \(P \) be any domain-independent predicate of finite index. Then there is an expression \(\phi_P \) over project, join, union and difference such that

\[R \in P \iff \phi_P(R) \in E. \]

Proof Let \(E_1, E_2, \ldots, E_m \) be the equivalence classes of \(P \). For each \(E_j \) we are going to construct an expression \(\epsilon_j \) such that for all relations \(R \)

\[\epsilon_j(R) = \begin{cases} R & \text{if } R \in E_j \\ \emptyset & \text{otherwise} \end{cases} \]

The Theorem would then follow, since \(\bigcup_{j=1}^m \epsilon_j(R) \) would be the required expression for \(P \).

Consider therefore an equivalence class \(E_j \). Intuitively, if \(R \in E_j \) then

- \(R \) has a fixed number \(k_j \) of tuples, and
- \(R \)'s tuples conform to a fixed "pattern".

Let us first construct an expression \(\phi_k \) such that

\[\phi_k(R) = \begin{cases} R & \text{if } R \text{ has } k \text{ tuples} \\ \emptyset & \text{otherwise} \end{cases}. \]

Consider the expression

\[\phi_k'(R) = \pi_{U_1} \left(R_1 \times R_2 \times \ldots \times R_k - \bigcup_{1 \leq i < j \leq k} R_i \times R_j \times \left(\bigcup_{i \neq j} R_i \right) \right) \]

Here \(R_i \) means \(\pi_{U_i}(R) \), the \(i \)-th copy of \(R \). Then we have

\[\phi_k'(R) = \begin{cases} R & \text{if } R \text{ has at least } k \text{ tuples} \\ \emptyset & \text{otherwise} \end{cases}, \]

because if \(R \) has \(k \) tuples \(t_1, \ldots, t_k \) then the join contains a tuple \((t_1, t_2, \ldots, t_k)\), not contained in the union; similarly for the tuples \((t_2, t_3, \ldots, t_k, t_1)\), etc. On the other hand, if \(R \) has fewer than \(k \) tuples, then the join is a subset of the union. Finally, we may define

\[\phi_k(R) = \left(R - \phi_k'(R) \right) - \left(R - \phi_{k-1}'(R) \right). \]

Let now \(r = \{t_1, \ldots, t_k\} \) be any relation in \(E_j \).

Let the domain elements of \(A \) that appear in \(r \) be \(a_1, a_2, \ldots \). We define for each \(i \leq k_j \) the following subset of \(U \):
\[
\epsilon_j(\bar{R}) = \phi_1(\bar{R}) \times \left[\bigcup_{i=1}^{j} \pi_{X_i} \left(\bigtimes_{i=1}^{j} \pi_{X_i}(\bar{R}) \times \bigtimes_{A \in U} (A_p \times A_q - A_p A_q) \right) \right].
\]

The first part of \(\epsilon_j\) guarantees that \(R\) has \(k_j\) rows. The \(i^{th}\) argument of the union is either empty, or the relation consisting of the \(i^{th}\) row of \(r\), in case that there is a mapping \(h\) from the domains of \(R\) to those of \(r\) that creates all rows of \(r\). The second part of each argument prevents any two domain elements to be mapped by \(h\) to the same domain element of \(r\), and thus \(h\) has to be a renaming. Since \(R\) has also \(k_j\) rows, it follows that \(\epsilon_j(\bar{R}) = R\) if and only if \(R\) is a renaming of \(r\), and \(\epsilon_j(\bar{R})\) is empty otherwise. This completes the construction and the proof. □

Example 5.1

Let \(r = \{(a_1,b_1), (a_1,b_2), (a_2,b_3)\}\). \(\epsilon_j\) is as shown.

\[
\epsilon_j(\bar{R}) = \phi_3(\bar{R}) \times \left[\pi_{A \times B_1} \left(A_1 B_1 \times A_1 B_2 \times A_2 B_2 \times \delta \right) \right] \cup \\
\pi_{A \times B_2} \left(A_1 B_1 \times A_1 B_2 \times A_2 B_3 \times \delta \right) \cup \\
\pi_{A \times B_3} \left(A_1 B_1 \times A_2 B_2 \times A_2 B_3 \times \delta \right)
\]

where \(\delta = (A_1 \times A_2 - A_1 A_2) \times (B_1 B_2 - B_1 B_3) \times (B_2 B_3 - B_2 B_3)\)

and \(\phi_3(\bar{R}) = [R - \pi_{U_1}(R_1 \times R_2 \times R_3 - (R_1 R_2 \times R_3) - (R_1 R_3 \times R_2)) - \\
[R - \pi_{U_1}(R_1 \times R_2 \times R_3)]]. □\)
6. EMBEDDED IMPLICATIONAL DEPENDENCIES

An embedded implicational dependency (EID) [Fagin 1980] is a sentence of the form

\((\forall x_1 \ldots x_m)(A_1 \land A_2 \land \ldots A_n) \leftarrow \left(\exists y_1 \ldots y_k)(B_1 \land \ldots B_j\right)\).

Each of the \(A_i\)'s and \(B_j\)'s is of the form either (a) \(z = w\) for some \(1 \leq j \leq r\) and \(z, w \in V_j\), or (b) \(R(z_1, \ldots, z_r)\) for some \(z_j \in V_j, j = 1, \ldots, r\), where \(R\) is the only \(r\)-ary relation symbol and \(V_1, \ldots, V_r\) are disjoint sets of variables.

Intuitively, an EID says that if certain tuples exist in the relation \(R\) then (a) certain pairs of domain elements must be identified and (b) some tuples must exist in \(R\).

Theorem 6.1 For every embedded implicational dependency there is an equivalent algebraic dependency, and vice-versa.

Proof

(1) Let \(\sigma\) be an embedded implicational dependency, and let \(C_1, \ldots, C_r\) be the attributes of \(R\). Let \(X\) be a set of attributes that contains \(|V_j|\) distinct copies of attribute \(C_j\) of \(R\), one for each variable in \(V_j\), and let \(Y\) be the subset of \(X\) which corresponds to variables that appear both in some \(A_i\) and some \(B_j\). We shall construct two project-join expressions \(\phi, \psi\) on \(X\) with \(\alpha(\phi) = \alpha(\psi) = Y\) such that \(\sigma\) holds for a relation \(R\) if and only if \(\phi(\overrightarrow{R}) \subseteq \phi(\overrightarrow{R})\). The expressions \(\phi\) and \(\psi\) are shallow of the form \(\phi = \pi_x(\pi_{z_1}X \ldots \pi_{z_r})\) and \(\psi = \pi_x(\pi_wX \ldots \pi_w)\). If \(A_i\) (resp. \(B_j\)) is of the form \(z = w\) for \(z, w \in V_j\), then \(Z_j\) (resp. \(W_j\)) is \(C_j' C_j''\) where \(C_j'\) \(C_j''\) are the copies of \(C_j\) in \(X\) that correspond to \(z\) and \(w\). If \(A_i\) (resp. \(B_j\)) is of the form \(R(z_1, \ldots, z_r)\), then \(Z_j\) (resp. \(W_j\)) is \(C_1' C_2' \ldots C_r'\) where \(C_j'\) is the copy of \(C_j\) in \(X\) that corresponds to \(z_j\) for \(j = 1, \ldots, r\).

Let \(t\) be an \(X\)-tuple. Its projection \(t_y\) is in \(\phi(\overrightarrow{R})\) iff \(t_z\) is in \(\pi_{z}X(\overrightarrow{R})\). If \(Z_i = C_j' C_j''\) then we must have \(t_{C_j'} = t_{C_j''}\). Thus, a \(Y\)-tuple \(u\) is in \(\phi(\overrightarrow{R})\) iff there is an assignment of values to the rest of the variables in the \(A_i\)'s so that the left-hand side of \(\sigma\) is satisfied by \(u\) and this assignment. Similarly with \(\psi\). Therefore, \(\phi(\overrightarrow{R}) \subseteq \psi(\overrightarrow{R})\) if and only if \(\sigma\) holds in \(R\).

(2) Let \(\phi(\overrightarrow{R}) \subseteq \psi(\overrightarrow{R})\) be an algebraic dependency. Let \(T_\phi, T_\psi\) be the tableaux of \(\phi\) and \(\psi\) and let us assume without loss of generality that the only common symbols are the distinguished ones. For each symbol in \(T_\phi\) we have a variable \(x_i\); and for each symbol of \(T_\psi\) that does not appear in \(T_\phi\) a variable \(y_j\). The left-hand side of an EID \(\sigma\) over the \(x_i\)'s and \(y_j\)'s is constructed as follows. For every row \(i\) of \(T_\phi\), \(\sigma\) has one \(A_i\), of the form \(R(z_1, \ldots, z_r)\), where the \(z_j\)'s correspond to the symbols of \(i\) in the first copies of \(U\). and additional \(A_i\)'s of the form \(z = w\) that equate variables that correspond to symbols of \(r\) in different copies of the same attribute. The right-hand side of \(\sigma\) is constructed similarly from \(\psi\). It is easy to see then that \(\phi(\overrightarrow{R}) \subseteq \psi(\overrightarrow{R})\) if \(\sigma\) holds in \(R\). \(\square\)

Fagin defined an operation on relations over the same set of attributes as follows. Let \(R_1, R_2, \ldots\) be such relations. The direct product of \(R_1, R_2, \ldots\), denoted as \(\otimes R_1, R_2, \ldots\), is the relation

\[\{(a_1, b_1, \ldots, a_n, b_n) : (a_1, b_1, \ldots, a_n) \in R_1, \ldots, (a_n, b_n) \in R_n \text{ for } j = 1, 2, \ldots\}\].

The direct product is essentially the Cartesian product, compressed to the same number of attributes as the original relations.

It is easy to see that \(\otimes\) commutes with \(\pi, \preceq\) - (extension of a relation), and then for all algebraic expressions \(\phi\) over extended relations

\[\phi(\otimes R_1, R_2, \ldots) = \otimes \phi(R_1), \phi(R_2), \ldots\].

Furthermore, \(\otimes\) is componentwise monotonic when applied to nonempty relations. That is, if \(R_1, R_2, \ldots, R', R_2', \ldots\) are not empty then
\[\otimes R_1 R_2 \cdots \subseteq \otimes R_1' R_2' \cdots \text{ iff } \]
\[R_1 \subseteq R_1', R_2 \subseteq R_2', \cdots \]

A predicate \(P \) on relations is called \textit{faithful} with respect to direct product ([Fagin 1980]) if \(P \) holds of \(\otimes R_1 R_2 \cdots \) if and only if it holds of each \(R_i \) (whenever all \(R_i \)'s are nonempty). The next lemma follows now from the discussion above.

\textit{Lemma 6.1} [Fagin 1980] Algebraic dependencies are faithful with respect to direct product. \(\square \)

Let \(\Sigma \) be a set of predicates (of some class \(C \)) on relations. An \textit{Armstrong relation} of \(\Sigma \) (wrt \(C \)) is a relation \(R \) such that, for all \(\sigma \in C \), \(R \) satisfies \(\sigma \) iff \(\Sigma \vdash \sigma \).

\textit{Corollary} [Fagin 1980]. Any set \(\Sigma \) of algebraic dependencies has an Armstrong relation.

\textit{Proof} Let \(\sigma_1, \sigma_2, \ldots \) be all algebraic dependencies that are not implied by \(\Sigma \). Let \(R \) be a counterexample to the implication \(\Sigma \vdash \sigma_i \), and let \(R = \otimes R_1 R_2 \cdots \). Since the empty relation satisfies all algebraic dependencies, the \(R_i \)'s are nonempty. Thus, it follows from Lemma 6.1 that \(R \) is an Armstrong relation for \(\Sigma \). \(\square \)
REFERENCES

