S Ah: MASSACHUSETTS
(" INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

MIT/ICS/TM-196

ON CONCENTRATION AND CONNECTTON NETWORKS

Sandeep Nautam Bhatt

March 1981

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

ON CONCENTRATION AND CONNECTION NETWORKS

Sandeep Nautam Bhatt

May 1980

Keywords: Switching Networks, Rearrangeable
concentrators, Expanders, Superconcentrators,
Probabilistic constructions, Incrementally
Non-blocking connectors

ON CONCENTRATION AND CONNECTION NETWORKS
by
Sandeep Nautam Bhatt
Submitted to the Department of Electrical Engineering and Computer Science
on May 15, 1980
in partial fulfillment of the requirements for the

Degree of Master of Science

ABSTRACT

This thesis deals with the structural complexity of switching networks
which realize concentration and connection requests when operated in a re-
arrangeable or incremental manner. Some of the important results and con-
structions are briefly reviewed. On the basis of non-constructive proof
techniques used to obtain linear upper bounds on the complexity of rearrange-
able concentrators, it is shown that not only are certain random graphs very
likely to be rearrangeably non-blocking concentrators, but that if a randomly
constructed graph is not non-blocking, then, on the average, only a constant
number of edges need be added to the graph to make it non-blocking. Although
the problem of recognizing non-blocking networks appears to be a computation-
ally hard problem, the extra edges may be added to the graph efficiently,
during operation of the network. Finally, we obtain a constructive as well

as an improved non-constructive upper bound on the complexity of increment-

ally non-blocking connection networks,

Supervisor : Romald L. Rivest
Title : Associate Professor of Computer Science

ACKNOWLEDGEMENTS

My deep gratitude to Professor Ronald L. Rivest for his constant support
and excellent guidance throughout the period of this research. I am also
indebted to my professors who introduced and inspired me to study the methods

of computational complexity.

Many thanks to Gail Kinburn for her willing and efficient help in

pPreparing this manuscript.

This work was supported in part by NSF Grants MC 78-05 849 MCS A0l and
MCS 7719754,

Abstract .

Acknowledgements ¢« ¢ + ¢ . .

Chapter 1:
I.E:
1Lzl
1.3

Chapter 2:
2.l

Pis 7ot

2 53

2.4:
2.4.1:
25t 2
205

Chapter 3:
615 i+
Sjadboale

3.1 22
3R]
Sl
SHdit

References

TABLE OF CONTENTS

TREECAUCETOR o ar o o e o e o o a s anrebae
AcFormaill Meodedl ol tiise ol s e s s s e

The Complexity of Switching Networks

Overview of the THeSES « v o ¢ .6 ¢ & & o o o o o
Backgroand: o o o o ala s d L N
Basic ConsStrEueriIonsS: o & oo o' ¢ o o o o o s s s s
Lower Bounds il raaie ol o s s s D

Linear Upper Bounds on Rearrangeable Concentrators

Explicit Constructions of Linear Concentrators

Expander! GXaphis .+ » ¢ o ois o o o o o 2 o w5 o oa
Explicit Constructions of Expander Graphs
Attempts at Combinatorial Constructions
Ma:inSResuiliEaiaiEcie s s st
Probabilistic Construetions . . « « ¢ o+ « &+ + « o

Probabilistic Constructions of Linear

SuperconcentratoYs . . + + + + 2 « o & s o e s .
Guaranteed Non-blocking Superconcentrators
e-blocking Superconcentrators < .+ + ¢ o o
Incrementally Non-blocking Connectors . .
Conclusions and Open Problems

il
1.2

13
13
18
20
24
25
28
<hil

40
40

42
47
52
59
68

69

CHAPTER 1: INTRODUCTION

Switching networks are used to establish various combinations of inter-
connection assignments between a specified set of network inputs and a dis-
joint set of network outputs. For different purposes, different types of
interconnection assignments between inputs and outputs are required. The
.design of switching networks for different types of interconnection assign-
ments is central to the design of switched line communication systems, such
as in telephone, telecommunication, and computer systems. In many applica-
tions, the associated switching network contributes significantly to the
cost and performance of the overall system. The need for optimal switch-
ing networks has been the primary motivation for research in the design and

analysis of switching networks.

A switching network may loosely be described as a set of components
consisting of contact switches and disjoint sets of input and output termi-
nals, joined together by links. The interconnection of components establish-

es various combinations of simultaneous routes connecting inputs to outputs.

A signal entering an input is routed to an output via a series of
switches, with consecutive switches joined by links. For the purposes of
this thesis we may assume that each link allows at most one signal to pass
through at a time. The state of the network at any given instant is
described by the state of its switches; a switch is on if a signal is
currently being sent through it, otherwise it is gﬁﬁ,. The state in which
all switches are off is called the idle state. An input (output) is

said to be busy if it is sending (receiving) a signal, otherwise it is

idle. An input may send at most one signal at a time, but an output may

receive any number of signals simultaneously.

Whenever a signal is ready to be sent from an input terminal, a request
for connection is made. If the connection requested can be established by
connecting the corresponding input to an appropriate output via a series
of switches that are in the off position, then the request is said to be
realizable. Once such a connection has been found, all the switches on the
route are turned on. If no such connection exists between the input and

an appropriate output, the request is said to be blocked.

Although many different types of requests are possible, only the follow-
ing two will be considered here:

L) Connect the input to any idle output.

2) Connect the input to a specified idle output.

Furthermore, for any network, we restrict all requests to be of the
same type. For instance, if the set of outputs consists of a set of equi-
valent devices, each supplying identical service to at most one user at a
time, and the inputs correspond to users requesting that service, then it
is immaterial which set of outputs any set of inputs is connected to, as
long as each user is connected to a distinct output and the number of users
requesting service simultaneously does not exceed the number of outputs.

In this case all requests may clearly be restricted to be of type 1.
Networks which establish connections between inputs and outputs for requests

of type 1 exclusively are called concentration networks. Next, if no two

outputs provide identical service then each input must specify which output

it requests service from. In addition, if each input may request service
from at most one output at a time, then requests may be restricted to be
of type 2. Networks which are used to realize such requests exclusively
are called connection networks. An example is a network for a telephone
system where each input (caller) requests connection to a specific output

(called party).

Associated with each network are two modes of operation for handling
sets of requests for connection. These are analogous to "off-line" and

"on-line" computations.

1) Rearrangeable: 1In this mode all requests are assumed specified and a
network state realizing them is sought. The case where requests come
in at different times is conceptually easy to handle. Each time a new
request comes in, we have a new set of requests; consequently, we
seek a state realizing this new set of requests. Thus, realizing an
incoming request might involve rerouting previous connections, if

necessary.

2) Incremental: 1In this case, requests may arrive at any time and each
incoming request must be realized without disturbing busy routes
established for realizing previous requests. If a request cannot

be realized without disturbing busy routes, it is said to be blocked.

The topology of the network, the mode of operation, and the application
(concentration, connection, etc.) together determine the set of sequences

of requests which can be realized by the network. For rearrangeable operation

the sequential ordering of requests is irrelevant. A sequence of requests
of type 1 (2) is said to be consistent with respect to a mode of operation
if there exists a concentrator (connection) network which, operated in the
same mode can realize all requests in the sequence simultaneously. For
example, consider two requests of type 2 in which different inputs request
connection to the same output. Clearly, no rearrangeable or incremental
connection network can realize both requests simultaneously. Thus the

two requests form an inconsistent sequence for both modes of operation.
Similarly, a set of requests of type 1 is inconsistent in either mode if and
only if the number of requests exceeds the total number of outputs or if
more than one request for connection is made by any input. It is easy to
see that the number of distinct, consistent sets of requests

for rearrangeable concentrators and connectors with n inputs

and m outputs are (:;) and [n]rn respectively. If the network

is such that any consistent sequence of requests can be realized,

the network is said to be non-blocking. Although it is desirable to have

non-blocking networks whenever possible, sometimes we can comstruct much
smaller networks which we cannot easily prove to be non-blocking, but which
are non-blocking with a very high probability. Such networks also may be

of practical value. The capacity of a network, of a given type, operating

in a specified mode, is defined to be the largest integer k such that all
sequences of k or less requests of the same type are realizable in that

mode. This thesis is concerned primarily with the construction of rearrange-
able concentrators and incremental connectors which, with very high prob-
ability, are non-blocking. Finally, note that a non-blocking conunection

network operating in any mode is, trivially, also a non-blocking concentrator

network in the same mode, and that any non-blocking incremental network
of any type is also a non-blocking rearrangeable network of the same type.

However, the converse statements are, in general, not true.

1.1 A FORMAL MODEL

A Switching Network is formally defined to be a directed, acyclic
graph. The set of inputs of the network consists of the vertices of the
graph which have indegree 0. Vertices with outdegree 0 form the set of
outputs of the network. Each vertex has non-zero total degree; thus the
sets of inputs and outputs are disjoint. Associated with each network is
a set of states. A state is a function which assigns to each edge of the
graph either the value on or the vaue off. The set of states associated
with a network consists of exactly those states which satisfy the property
that the set of edges whose value is on forms a set of directed, vertex-—
disjoint paths, each path beginning at an input vertex and terminating
at an output vertex. Furthermore, each such path is said to connect the

corresponding input and output vertices.

The correspondence between the above definitions and the previous
informal description is straightforward. Edges in the graph represent
switches in the network and vertices with non-zero outdegree and indegree
represent links between switches. The restriction that paths of edges
that are on be vertex-disjoint corresponds to the restriction that each
link can allow at most one signal to pass through at a time. Thus, if
two edges emerge from a vertex of a concentrator or a connection network,

they cannot both be on in the same state.

10

We now give graph-theoretic definitions of some of the networks rele—

vant to this study:

1) A rearrangeable (n,m,k)-concentrator is a graph with n inputs and m
outputs with the property that any r inputs, r < k, can be connected

to some r outputs via r vertex—-disjoint paths.

2) A rearrangeable (n,m,k)-hyperconcentrator is a network with n inputs
and m outputs, (1,...,m), with the property that every set of r inputs,

r < k, can be connected to outputs 1,...,r via r vertex-disjoint paths.

3) A rearrangeable (n,m,k)-superconcentrator is a network with n inputs
and m outputs with the property that every set of r inputs r < k, can

be connected to every set of r outputs via r vertex-disjoint paths.

We will restrict attention to the case m = gn, where ¢ is a constant,
a < 1, to avoid triviality. From these definitions it is apparent that
every (n,m,k)-superconcentrator is also an (n,m,k)-hyperconcentrator, and
that every (n,m,k)-hyperconcentrator is also an (n,m,k)-concentrator. The
converse statements are, however, not true in genergl. In future, if m = k
we shall refer to the network as an (n,m)-concentrator. If n=m = k for
a superconcentrator or hyperconcentrator, we shall refer to them as n-super-
concentrators and n-hyperconcentrators respectively. Since we will be
concerned only with rearrangeable concentrators, the term rearrangeable

will frequently be omitted.

161

1.2 THE COMPLEXITY OF SWITCHING NETWORKS

Consider two networks, A and B, which realize identical sets of re-—
quests when operated in a certain mode. Also, suppose that A has fewer
contact switches than B, and that the time required to determine switch
settings in A to realize an arbitrary set of requests is not significantly
more than in B. In this case, A is preferable to B for the particular mode
of operation. In general, we are intersted in minimizing the number of
switches in a network without reducing its capacity, as well as minimizing
the time required to determine switch settings for realizing arbitrary sets
of requests. The structural complexity of a network is defined to be the
number of edges in the associated graph. The operational complexity of a
family of networks of different sizes is defined to be the minimum worst-
case time complexity over all algorithms which, given an arbitrary network
in the family and an arbitrary, consistent, set of requests, determine a
state realizing the set of requests. The time taken by an algorithm to
find a state realizing a given consistent set of requests is, informally,
proportional to the sum, over all edges, of the total number of times an

edge is examined by the algorithm.

Although this thesis is concerned primarily with the construction
of a family of concentrators whose structural complexity is minimized
asymptotically, we will comment on the operational complexity of the same.

In general, there appears to be a tradeoff between the two measures.

2

1.3 OVERVIEW OF THE THESIS

In the next chapter asymptotic upper and lower bounds on the struc-
tural complexity of rearrangeable and incremental concentrator and connection
networks is reviewed. We also consider some attempts at explicitly construct-
ing a family of expander graphs which may be used to construct supercon-
centrators with complexity linear in the number of inputs in the networks,
and develop a simple yet general technique for proving why these attempts
fail. 1In Chapter 3 a different approach, that of constructing graphs at
random and using them, if they satisfy certain specified properties, to
construct non-blocking networks is examined. The problem of determining
whether such a randomly constructed graph satisfies the specified property
appears to be a computationally hard problem whose complexity is open.
However, it is shown that not only are the randomly constructed graphs very
likely to satisfy the required properties, but also that if a randomly
constructed graph does not satisfy them, then, on the average, very few
edges need be added to a graph to make it satisfy the required properties.
The extra edges may be added during the operation of the network without
adding significantly to the operational complexity of the network. We
also derive constructive as well as nonconstructive upper bounds on the
structural complexity of incrementally non-blocking connection networks.

Finally, some of the open problems are mentioned.

13

CHAPTER 2: BACKGROUND

In this chapter we review some of the results concerning non-constructive
and constructive asymptotic upper and lower bounds on the structural com-
plexities of rearrangeably non-blocking concentrators, superconcentrators,
and related graphs. We also consider some attempts at explicitly construct-
ing a family of linear size expander graphs which may be used to construct
linear size superconcentrators, and develop a simple yet general technique

for proving why these attempts fail.
2.1 BASIC CONSTRUCTIONS

Probably the most commonly used switching network is the complete
crossbar switch which is represented as a complete bipartite graph with n
inputs, m outputs, and nm edges. An example with n = 5, m = 3 is shown
in the Figure 1. It is readily seen that such a graph is an incre-
mentally non-blocking connection network; if, in any state, a request of
type 2 appears, simply switch on the edge between the specified idle
input and idle output. It follows that a complete crossbar switch with n
inputs and m outputs is also an incrementally non-blocking (n,m,m)-con-
centrator, (n,m)-superconcentrator, etc. Assuming m = an, where a is a
constant, 0 <« 5 « 1, the structural complexity of an n-input, on-output
complete crossbar switch is wnz, thus establishing an asymptotic upper
bound of 0(n2) on all switching networks considered in this thesis. Moreover,
the operational complexity of a crossbar switch is O0(n), since exactly r
edges need be examined to realize a consistent sequence of r requests. This

is clearly optimal. In the rest of this thesis we will be concerned

14

essentially with the problem of constructing networks which minimize the
asymptotic structural complexity for different types of networks, at the

cost of increasing the operational complexity.

o
i, ¥,
3!

3 Y,
it

4 ¥3
5

Inputs Outputs
FIGURE 1.

Another classical switching network is the permutation network; a
typical example is shown in Figure 2. It consists of n inputs ii""’in’
n outputs AEEEETY A and has the property that if 7 is any permutation over

the set {1,...,n}, then there is a state of the network in which, for each

k input ik is connected to output yw(k)' In such state, m is said to be

15

realized by the network. Networks with O(nlogn) edges realizing all per-
mutations over {l,...,n} have been constructed independently by several
researchers. The network below appears in Waksman ﬁﬂ. The permutation
network on n inputs and outputs is constructed recursively by using A

. : ne .
and B which are permutation networks on - inputs and outputs, and connecting

2
them as shown. '
. il
. s
~ e YZ
\.\I l/
A ;]

f’h—\ B Yo\

L“ . e T \’“
—— ecges
—t——— 0 ‘identification of vertices
FIGURE 2.

To prove that this construction realizes all permutations over
{1,...,n} consider the following informal algorithm (from Bﬂ) which,

given m, finds a state of the network realizing w.

1)

2)

3)

4)

5)

16

Initially, let the network be in the idle state.

Connect Y1 to iﬂ?) via: A, ‘BF ﬂ—l(l) is even, then the edge
1

/
(iﬂd(u . i;”@)l is switched on, or else the edge (lﬂ—l(l) .

lH_l(l)) is switched on.

Connect the pair of iﬁdﬁ) to its corresponding output, say Vi 2
via a path of idle edges through B, switching on appropriate edges
along the way. Next, connect the pait of Y2 via A, to its corres-
ondi input. The pair of i is i i ; i id
ponding inpu X £ z ISVE. 5 (1x~1) wvhen x is even (o0dd).
Repeat the above process until all input-output pairs have been

matched, switching on edges along the way.

If 1 can be decomposed as a product of 2 or more cycles, a connection
to Yo via B will be made before all connections have been established.
At this stage, the above process may be restarted at any idle input or

output.

The proof that the above procedure is correct follows directly by

induction on A,B, and the fact that both A and B have each been connected

A

to exactly 5 inputs and outputs.

Letting P(n) denote the minimum number of edges sufficient to construct

a permutation network on n inputs and outputs, we have, from the construction

given:

P(n)\< 29(12‘-) + 4n - 2

17

Also, P(1) = 1, which implies P(n) < 4 nlogzn.

A similar construction based on dividing the network recursively into

three parts instead of two yields:

P(n) <

b
log23 nlogn - 3n

Or;

P(n)

| A

379 nlogzn - 3n

Since a consistent set of r requests of type 2, r < n, induces a set
of (n-r)! permutations, each of which realizes *the set of requests, a
permutation network is clearly a rearrangeably non-blocking connection
network. This means that the structural complexity of rearrangeably non-
locking connection networks is O(nlogn). In the next section we will see
that the strucﬁural complexity of such networks is also Q(nlogn); hence the
construction given is asymptotically optimal. Note, however, that the

operational complexity of the permutation network is O(nlogn).

If all but the first m outputs are eliminated from the previous
figure, along with their associated edges, the resulting graph is a re-
arrangeably non-blocking (n,m)-connector and hence an (n,m,m)-super-
concentrator. This means that the structural complexity of each type of
rearrangeably non-blocking (n,m,m)-concentrators is O(nlogn). Later we
will discuss how to construct rearrangeably non-blocking concentrators
with 0(n) edges, but with an additional asymptotic increase in operational

complexity.

18

2.2 LOWER BOUNDS

For both concentrators as well as connectors with n inputs and m

outputs, Q(n) is a trivial lower bound on the number of edges required.

In rearrangeably non-blocking connection networks, the number of re-
alizable sets of requésts is at most equal to the number of states asso-
ciated with the network. Furthermore, the total number of states in a net-
work with e edges is no more than Ze, since each edge can be in either of

two states, on or off. Thus, for a rearrangeably non-blocking connector

with n inputs and outputs,

e e
2" > number of distinct states

> number of distinct sets of requests

> [,
i=0

Thus, e 3_10g2 n!, or e = Q(nlogn) .

Thus we have a lower bound of Q(nlogn) for rearrangeably and hence,
also for incrementally non-blocking connection networks. Finally, for
incrementally non-blocking (n,yn,3n)-concentrators the following theorem

proved by Pippenger [é] establishes a lower bound of g (nlogn).

Theorem (Pippenger): Any incrementally non-blocking (n,gn,8n)-concentrator

G, where o, 8 are constant such that 0 < 8 < g < 1, has 0 (nlogn) edges.

19

Proof: Let S be a state in which m inputs, m > gn, are connected to m

outputs via the paths Gpser=s0s such that:
1) A request for connection from input x is blocked in S.

2) If any connection in S is disestablished, i.e., all edges along ags
for some i, 1 < i < m, are switched off, then a request for connection

from input x is realizable via path Oi A

We are guaranteed to find a state S and input x satisfying the above
conditions since the number of inputs in the network is greater than the

number of outputs.

Now, from (2) it follows that each busy path a4 in S must have at least
one vertex in common with the path 01 . Since, in any state, busy paths
are vertex—-disjoint, it follows that the Ui are distinct. Thus, there

are at least m distinct paths starting at x and ending at some output

vertices.

Next, if, for any i, 1 < i £ m, vertices on the path ci are removed
along with their associated edges, the remaining network G‘i must be in-
crementally non-blocking with capacity Bn-1. Otherwise, in some state T” of
G’i assume that fewer than Bn-1 connections exist and that some request
is blocked. Then in the state T of G in which the set of busy edges
includes exactly the busy edges in T”, plus the edges in Ui , there are
fewer than Bn connections, and at least one request is blocked. But,

this contradicts the fact that G has capacity fn.

20

Let E(n) denote the minimum number of states in any incrementally
non-blocking (n,an,gn)-concentrator. Then, for each i, G’i has at least
E(n-1) states. By the preceeding argument, G then must have at least

mE(n-1) states.

Thus, number of states in G > m E(n-1) > gn E(n-1).

Since E(1) = 1 it follows that E(n) > (Bn)!
Thus, if the number of edges in G = e, we have
28_1 E(n) > (Bn)!
or, e = Q(nlogn). 0.E.D.
2.3 LINEAR UPPER BOUNDS ON REARRANGEABLE CONCENTRATORS

Pinsker [4] used a non-constructive combinatorial argument to prove
the existence of (n,un,pn)-concentrators with 0(n) edges, where o and f are
constants such that 0 < 8 < ¢ < 1. Using these concentrators and a rela-
tively complicated construction he showed that (n,un)-concentrators require

at most 29n edges.

Valiant [7] first defined n-superconcentrators and n-hyperconcentrators
to study the possibility of establishing non-linear lower
bounds on the complexity of certain problems computed most efficiently, i.ev
to within a constant factor, by straight-line programs. Straight-line
programs may be represented as directed, acyclic graphs with vertices

representing operators and an edge from vertex v; to vertex Vo signifying

that the output of the operator corresponding to vy is an input to the

21

operator corresponding to V- If all operators are restricted to be
binary, the number of edges in a straight-line program graph equals twice
the number of instructions executed by the program. Now, the graph of any
straight-line program to compute the convolution of polynomials of degree
n-1 is an n-superconcentrator. Similarly, the graph of any straight-line
program to compute the Discrete Fourier Transform of an n vector is an
n-hyperconcentrator. Thus, the structural complexities of n-supercon-
centrators and n-hyperconcentrators provide lower bounds on the computation-
al complexities of the two problems. However, Pinsker's result may be
used to establish an 0(n) upper bound on the structural complexity of
n-superconcentrators and n-hyperconcentrators; consequently, as noted in
I?] » this approach does not yield non-linear lower bounds on the complex—

ity of the two problems.

We now show that the structural complexity of n-superconcentrators
and n-hyperconcentrators is linear in n. The following graph shows how an

. . n
n-superconcentrator may be constructed recursively, using (n,iﬁ—concentrators.

‘ \‘. A - 5/:/_/
N\ _ 4‘/

\ /
. 4
— e - —.-——A-—l----—-——-- |

—— ! edges
—"T"7T : didentification of vertices

Recursive construction of n-superconcentrator using

n
5 —superconcentrator C and (n,%)~concentrators A,B.

22

Proof of Construction: Given any set of r inputs and any set of r outputs,

there are two cases to consider.

n ; ;
Gase. (1), x <5 - In this case the r inputs and r outputs can be connected
via r edges of the concentrators A and B to r inputs and r outputs of the

n : 5 : -
§-~superconcentrator C. By induction since C is a superconcentrator the

r inputs and r outputs can be comnected via r vertex-disjoint paths.

Base:§2): Ty %-. In this case at least (r - %) inputs and (r - %) outputs
can be connected one to one by edges in the identity map. This leaves at

most %-connectiOHS to be established, thus reducing to Case 1 above. Q-E.D.

; n i :
Letting S(n) and C(n,EJ denote the minimum number of edges required to
n :
construct n-superconcentrators and (n,iﬁ—concentrators respectively, we

have:
S(n) <. 5G) +.2:C{n,3) +n
Also, S(1) = 1.
Since C(n,%) < 29n, the above yields S(n) < 118n.

If H(n) denotes the minimum number of edges in any n-hyperconcen-
trator, it follows that H(n) < 118n, since every n-superconcentrator is
also an n-hyperconcentrator. However, a different construction for

n-hyperconcentrators requiring fewer edges follows.

23

N

|

2

A is an (n,%)—concentrator.

B is a recursively constructed %—-hyperconcentrator.

0 and M are each identity maps from the outpﬂtSof A to bl""bn and to
the inputs of B regfectively. 3

N is an identity map from a

§+l

s eeesd to inputs of B.

Q and P are identity maps from outputs of B to bl""’bn’ and to
b ,...,b_ respectively.)
+ 1 2 2

[]}=]

Proof of Construction: We have to show that any r inputs can be connected

to the r outputs bl""’br' There are two cases to consider:

Case (1): "r E.%’- Connect the r inputs through A amd M to r inputs of: B.
By induction, these are connected to b‘l,...,b’r by r—vertex-disjoint paths,

which are connected to bl""’br via the identity map Q.

24
Case 2: r > %—. In this case connect the top %—inputs via A and O to

the outputs bn""’b The remaining (r --%) inputs yet to be connected

=
@
must lie wholly between a and a s and are connected via N, B, and
2 +1
2
P to the outputs b i “tobp br' Hence the r inputs are now connected to
- +1
2
bl""’br' Q. E.D.

From the construction it follows that:
H() < HE) + C(,3) + 53)
Also, H(1) = 1, C(n,%} < 29n , implying:
H(n) < 63n -
This is a tighter bound on H(n) than the one in Eﬂ.

In Chapter 3 we will see that S(n) < 40n, which gives tighter bounds
on both S(n) and H(n) than the ones obtained above. However, if reduced
bounds on C(n,%) are obtained, the construction of n-hyperconcentrators above
could yield tighter bounds on H(n) than those known for S(n). For example,
if it were true that C(n,B) < 16n, we have, from the above, that H(n)<§ 37,

which is less than any known upper bound on S(n).
2.4 EXPLICIT CONSTRUCTION OF LINEAR CONCENTRATORS

We now turn to the problem of explicitly constructing a family of
concentrators of different sizes whose structural complexity is bounded by
a linear function of n, the number of inputs to the network. The proofs

of upper bounds in the previous section were based on the result of Pinsker

25

[}] which, in turn was proved using non-constructive techniques similar to
those used in Information Theory. In such arguments, the existence of an
object which is, in some sense, good is proven by showing that, of all
objects of size n, the fraction of objects which are not good is always

less than 1. However, it can be extremely difficult to explicitly construct
a family of objects that are good. This problem has been experienced in

the construction of error-correcting codes as well.
2 arlt EXPANDER GRAPHS

Margulis Eﬂ gave an explicit construction for a class of bipartite

graphs called expanders, defined below:

An (n,d)-expander, where d > 0 is a constant, is a bipartite graph
with n inputs, n outputs, satisfying the property that if T(X) is the set
of outputs, each vertex in T(X) adjacent to at least one input in any set

X, then
T > [X| (1 +a (1 - |X[/n)).

Given a family {Gn} of (n,d)-expanders where, for each n, G ‘has

: 2+d)
at most kn edges, we may construct a family {Fn} of? (1% #n’ 242d

centrators where each Fn has at most n(k+1)%%$%%j-edges. This is seen from

n
3 2)-con—

the following construction, given in Eﬂ.

;.éﬁ.__

% p

Qn

An (n,p,n/2)-concentrator C

In the figure above, p = (%Igd) ;e aid, T SoB —ePy™ fj% n. A is

Qs 3 ig is an identity map from

a (p,d).-expander, and each Ij-l-l’

ahﬂ,...,an to yj+l""’y(j+1)1," We now show that C is an

(24d)

(e T == | Z)-concentrator.
(2+24d) 2

27

Let X be any set of inputs such that X = Xl XZ’ Xi g;{il,...,ip}

..,in} and IX| f_E-. By Hall's marriage theorem, C is an

X e >

2 p+l’’

(n,p ,%)-concentrator if and only if for each set of inputs X, such that

X E_E-,]T(X)I i_]X|. There are two cases to consider.

Case (1): |X2| > |X|t/p. Now each vertex in X, is connected to exactly
(p/t) output vertices, and each output vertex is connected to exactly

one input vertex in XZ' Hence,
T > |T(X2)] > |X| (/) (p/T) = |X|-
Case (2): |X2] < |X] ©/p . Thus, [X;| > x| (A -</p)

o Bl e

d
1] = _("2?))

or, |X;| > |Xl'(*(§f‘:g)—)

Let Y be any subset of Xl such that

s =t) / (2+d) n) i .p(2+2dﬂ
| Y| r IXI +d.] E-r(2+d)| (2+d)2 |

'g(l-wp>2).'
B

AL

Since A is an expander and Y C X, C X, we have:

1
|Tx)| > |T] > |¥Y] Q+d -] /p))

> Y| (14—;1-) =‘-[X| agi;‘)&}é 2 Izl oD

28

; 2+d My . n (k+1)(2+d)
Now, given an (n, n 2+2d ° 2) concentrator with at most 2124

edges, we can use the following construction to obtain linear size

Superconcentrators.

24d

n i : :
2404 ED—concentrators, B is a recursively

Here, A, C are the (n, n

+d : , :
constructed n(%;ia) —Superconcentrator and I is an identity map from the

inputs to the outputs. The proof of construction is similar to that of

Section 2.3. Furthermere, it is €asily shown that the above n-supercon-

2(k+1) (24d) +(2424) | 4 + o (n) edges.
: d

centrator has at most (

24,2 EXPLICIT CONSTRUCTIONS OF EXPANDER GRAPHS

From the last section we see that the problem of explicitly construct-
ing a family of linear superconcentrators is effectively reduced to the prob-
lem of explicitly constructing a family of expander graphs. 1In 1973, Margulis [i]

gave a simple construction for a family of graphs which, for some constant

29

d > 0 was shown to be a family of (n,d)-expanders. The proof is based on a

series of reductions which are proven by applying several deep theorems

from the theory of group representations. However, only the existence of a

non-zero constant d was proven$ neither the value nor any estimate (non-zero
lower bound) of d was given. Consequently, the expanders constructed cannot
be used to construct superconcentrators as in the preceeding section, since

the construction is based on the value of d.

In 1979 Gabber and Galil [ﬁ} gave a construction for (n,d)-expanders

with d 3_1%3 and at most 7n edges. Using these expanders the constructions

of the preceeding section give (n, n'%gy %D-con:entrators with at most

Gk%g)n edges and n-superconcentrators with 273n + o(n) edges. In fact,
it is easy to show that a family of superconcentrators with at most 274n
edges can be constructed simply by constructing n-permutation networks

instead of the above n-superconcentrators for n less than, say 250

The construction of a family Gn of bipartite expander graphs in f{],
similar to that in Margulis ES], is described below for the case when n
is the square of an integer m. Let Zm denote the additive group of integers
modulo m. Each input is associated with a distinct ordered pair
(x,y) ¢ ng Zm, as is each output. For each permutation Gi : Z; == Zi
given below, construct an edge between input pair (x,y) and output pair

ci(x,y), for each pair (x,y). This defines the set of edges in the

graph. The + below denotes addition modulo m.

30

op(xsy) = (x,¥)
o,(x,y) = (x,2x +y)
o,(x,y) = (x,2% +y+1)
o5(x,y) = (x,2x+y+2)
oy (x.y) = (x+2y,y)
os(x,y) = (x+2y+1,y)
ogxsy) = (x+2y+2,y)

Lemma[:g}:

6
(% BT F° i s
i=0

i=2,5
i$2,5

where ¢, (X) = a7 (%Y)
i \j}
(X,Y EX-

+22 | 6, - X _>_;1L—g~|xl (1-%—[—)

The above lemma is proved in [2] by transforming it into its continuous

2
version, i.e., mapping the discrete space Zm into the contin#ipus [O,l)}{ Bhl)

torus and proving the corresponding lemma via a series of reductions involv—

ing basic theorems in Fourier and Complex analyses.
From the lemma, it follows that
(VX czd) @ ®X [> D 1% Q-|¥ /n)
Sl | o > 15 | X| H
which in turn implies
2 U 2
Wxcz) [T 0. @ -H: 65 alzm

Since lJ
it

Ui(X) = T(X), we have :

(1)

(2)

31

. 2 9 o
(VXCz) |TA)] » |X| (A+G3) Q|| /n)
or, equivalently, Gn is an (n,l—g-)~expander.

It should be noted that (1) is ammuch stronger condition than
necessary to prove (2). It follows that for the construction, Gn is an
(n,d)-expander with d 3_1%-. From the construction of the previous section
we note that the higher the value of d, the fewer the number of edges
required to construct an n-superconcentrator. Unfortunately, since the
proof in Eﬂ of construction of the expander described above is rather
indirect, we do not get much insight into how a better lower bound for d
might be obtained, if, in fact, there is one. Also, it is not clear how
expanders with higher d, but without a drastic increase in the number of

edges, may be constructed. Finally, it would be somewhat more satsifying

to have a combinatorial proof for an essentially combinatorial problem.
2.5 ATTEMPTS AT CONSTRUCTING LINEAR EXPANDERS COMBINATORIALLY

In the previous section we saw how n-superconcentrators with no more
than 274n edges could be constructed using the construction of expanders.
Also, in Section 2.1 we observed that permutation networks with no more
than 3.79 nlogn edges could be used as n-superconcentrators. Now, the
explicit construction is more efficieﬁt than the permutation network when
274n < 3.79 nlogn, or, roughly, only when n > 1021. This means that for
all practical purposes the O(nlogn) construction is more efficient than the
0(n) construction. Furthermore, the operational complexity of the permu-
tation network is O(nlogn) which is lower than that of the linear super-—

concentrator, which, as will be seen in the next chapter is O(n/g).

32

In what follows, we describe some attempts made at constructing ex-
panders with the aim of providing purely combinatorial proofs for the con-
structions. Although the attempts have been unsuccessful, the techniques
used to prove why the constructions do not yield expanders seem effective
in ruling out various interesting possibilities and could be.extended
considerably to prove that larger classes of constructions do not yield
expanders, thereby, hopefully, providing some insight into the nature of

combinatorial structures necessary to construct expanders.

Given an undirected graph Gn = (E,V), V = {Vl, Vz,...,Vn}, we define
B(Gn) to be a bipartite graph with n inputs {Kl""’xh}’ n outputs

iy .,Yh}, and having edges as follows:

12°°

(1) " For each j, 1T < j < my an &edge (xj,yj)
(2) for each edge (\)k,vj) in E, an edge (styj).

Furthermore, if B(G) is an (n,d)-expander, then G is said to be an

(n,d)—-expander graph.

Definition: 1f G:= (E,V) is any graph and X C V then the set

C{iX)a=cdyce V—XICH:EX) (x,y) € E} is called the co-boundary of X.

From the definition of expanders it is clear that if G = (F,V) is an
(o,d)-expander graph, then the co-boundary C(X) of any set XV musi

satisfy the following condition:

lcx)| > a [Xl (1—%) :

33

Thus, the problem of constructing a family of linear d-expanders
is equivalent to the problem of constructing a family of d-expander graphs

Gn for which the number of edges grows linearly with the number of wvertices.

As a simple example, consider the square grid Zi, m2 = n, in which

each vertex is connected to its nearest four neighbors. If X is the set of

vertices consisting of the top t rows of the grid,]XI = tm, then IC(X)I =m
2

= lX|/t. Thus if t = am for some constant o, 0 < a < 1, we have |X1 = qm ,

and |C(X)| = m. Since for all constants d, m < d m2 (1-o) when m > E&T%:ET :

it follows that the grid is not an expander graph.

Similarly, it has been shown that if G = (E,V) is a planar graph,
then there is a subset X of vertices, [X| = c\V| for some c < 1, such that
|C(X)| = O(V/Tir). This implies that a family of planar graphs cannot be

a family of d-expander graphs for any constant d.

For any subset X of vertices in a graph (E,V), we define S(X) =

{(vl,vz) e E| v, € X and v, & V-X}, i.e., S(X) is the set of edges with

2
exactly one end point in X. It is clear that for all graphs and subset X
of vertices |S(X)| 3_[C(X)|. Thus for an (n,d)-expander graph (E,V) it
follows that for every X € V, |S(X)] Zed fXI(l—[X|/|VI). The number

w =min {|SX)|]|X| = |V|]/2 is called the minimum bisection width of a
graph. Informally, it is the smallest number of edges whose removal dis-

connects one half of the vertices from the other. From the above discussion

it follows that for a family of d-expander graphs Gn 5 L W, denotes the

dn

i In what follows we consider two

minimum bisection width of Gn, w2

34

families of graphs, and show that, for each)mn = o(n), thus proving that

neither is a family of d-expanders, for any constant d > 0.

Construction 1: Consider a full binary tree on n = 2k~l vertices. For
convenience, we shall restrict ourselves to the case where k is even. In
the tree, for any set X of non-leaf vertices, lC(X)I z X . Thus, as long
as we do not choose leaves, the tree has good expander properties. This
suggests that it might be possible to construct expanders by adding extra

edges to each leaf in the tree. One way to do this is as follows:

Create two copies of the tree. Traverse both trees left-to-right,
breadth-first, visiting the root first. 1In the first tree label the i-th
vertex visited i, while in the second tree label the i-th vertex visited

(n-i). Now, Gn = (E,V) is defined as follows

e
I

{(vi,v,)| vertices labeled i and j are adjacent in at least one of the
trees

The case n = 15 is shown mext

}

35

Note that in the two trees the labels of internal vertices of one

correspond to labels of the leaves of the other, and vice-versa, with the

exception of the left-most leaf which is labeled iﬁgll in both trees. The

intuitive justification for this construction is that for any set X of

vertices, the co-boundary will be 'large enough'" in at least one of the two

labeled trees and hence also in Gu'

36

(n-1)

It is straightforward to see that for x between 1 and s

the vertex
labeled x in the first tree has sons lébeled 2x and 2x 4+ 1, while in the
second tree vertex n + 1 - x has sons labeled n + 1 - 2x and n - 2x. Thus,
considering the binary representation of ﬁ, we see that if vertices labeled

x and y are adj;cent either in the first or the second tree, then lm(x) - m(y)|

< 1, where m(x) = number of 0's in the binary representation of x.
Now, consider the following subset of vertices of Gn

it k
H »k {V:’E Gn | m(y) < 2}.

2
Since - H = 2: (§)> 2k—1, consider a subset X C H such that]X} = 2k—l.
i=y

From the above observation it follows that

k k k
|sx)| _<_{vy | my) € {55 -1.5 + 11}
. i X
Ot IS(X)|.§ Jokk 3= c2 W%, for some constant c.
2
ciin i -
Hence, w g J oéa for some constant c”. Thus,(un = o(n) and the pro-

posed construction does not yield expander graphs.

We have considered only one scheme by which to connect leaves in a
tree to internal vertices. Obviously, other schemes are possible, many of
which may be ruled out on the basis of arguments similar to the one above,

or by simple extensions of it.

7/

Construction 2: We next consider a family of graphs Gn where the n-th
graph has n! vertices. Again, for convenience, we assume that n is even.

The construction of Gn is described below:

Let P be the set of all permutations over Zn. Each permutation 7 is
represented as a sequence m(1) T(2),...,7(n). Gn has n! vertices Vs
llg 1 < n!, each vertex vx is labeled with a distinct element & of P. The

set of edges is
=/ - = 2 1
{vx,gd) l Ui(x) y for i e {1,2,3}}

where each o is a bijective function over P, and defined as follows

(let a c..a € P):

1t
Gl(alaﬂj"an) = (azal...an)
Uz(alaz...an) = (az...anal)
03(31...an_lan) = (anal...an_l)

For this construction define a measure m on P as:
n/2
i@ e) - B v @
n it iff
i=1

T a; > n/2
where X(ai) =
0, a; < n/2

Thus, m(al...an) = number of integers in al...an/2 that are greater than

n/2. By construction, if (vx,vy) € E, then lm (%) - m(&)\ <ERL

Let X C ﬁ? n(}) < n/4} such that IX‘ = n!/2.

38

Then, as in the first construction, for any choice of X,

s g2 [iv, | m&) -—-12—} |

J

|

o (IV|) since iV! = n!

Thus we see that this proposed construction also fails since the
minimum bisection width is a sub-~linear function of the number of vertices
in the graph. Informally, we may state that if for a graph G there is a
"reasonable' measure on the vertices of G such that each edge connects
vertices whose measures differ only very slightly, then it is likely that
there are subsets of vertices with small co-boundary. The notion of what
constitutes a ''reasonable'" measure seems difficult to formalize. As an
extreme example a measure in which all vertices have identical value, is

elearly "unreasonable".

Arguments such as the ones discussed here obviously do not directly
help us in developing combinatorial techniques to prove the correctness of
constructions that are known to be correct. However, developing combina-
torial techniques to disprove interesting constructions as well as en-
larging the class of promising constructions which fail might be of inde-
pendent interest, and might even lead, indirectly to insights into the

nature of combinatorial structures required to comnstruct expanders.

39

Finally, the difficulty with developing combinatorial techniques to
prove the correctness of known constructions seems to lie in the observation
that, while it is comparatively easier to develop combinatorial techniques
to handle well structured or modular constructions, expander graphs seem to
require some, so far combinatorially intangible, notion of randomness. For
example, if the intuitive notion of a "reasonable" measure on vertices
were to be formalized, we would be required to find a construction for which,
at the very least, there is no reasonable measure such that all edges lie

between vertices whose measures differ only very slightly.

40

CHAPTER 3: MAIN RESULTS

In this chapter a probabilistic approach to constructing superconcen-
trators based on a proof technique of Pippenger [5], is considered in which
randomly constructed bipartite praphs are used as components in construct-
ing larger networks. The networks constructed are superconcentrators with
probability greater than any fixed ¢ < 1, and are efficient for reasonably
large choices of ¢ and large n as might be required in practice. Furthermore,
if the networks constructed are not superconcentrators then, on the average,
few edges need be added to make them superconcentrators. The problem of
determining which edges to add may be solved efficiently during operation

of the network.

In Section 3.2 we obtain constructive and non-constructive upper bounds
on the structural complexity of incrementally non-blocking connection net-
works. Both are based essentially on the approach in Eﬂ; the non-construc-
tive upper bound presented is an improvement over that in [ﬂ while the
constructive upper bound is achieved employing the expanders constructed in

[é]. Finally, some open problems are outlined.
3.1 PROBABILISTIC CONSTRUCTIONS

In Chapter 2 we noted that although the recent explicit construction in
[i]of a family of expanders and superconcentrators solves a long outstand-
ing open question, the construction of superconcentrators is not of practical

21

value as it uses fewer edges than a permutation network only when n> 10 .

In this section a different approach is considered, in which randomly

41

constructed graphs are used as components in constructing superconcentrators.
We term such constructions '"probabilistic constructions". This approach is
suggested by the nature of non-constructive proofs of linear upper bounds
on rearrangeable concentrators, wherein it is argued that the fraction of
graphs that are, in some sense, good tends to unity as the number of inputs
tends to infinity. In the context of switching networks, a network is good
if and only if it is non-blocking, i.e., each request can be realized as
long as the total number of requests does not exceed the capacity of the
network. Now, in practice, instead of requiring that a constructed net-
work be guaranteed to be non-blocking, the construction might still

be useful if we can show that the probability that it is blocking is less
than €, where € is some presepcified quantity, which might either be a

constant or a function of the number of inputs of the network.

Networks of the latter kind will be referred to as t-blocking net-
works. Note that, as in [g], for an e€-blocking network the probability
that a particular set of requests is unrealizable is less than £, the

probability that at least one set of requests is unrealizable.

In the following sections we discuss ways to construct non-blocking,

as well as e-blocking linear superconcentrators probabilistically.

For the e-blocking superconcentrator construction it is further shown
that if the construction is not non-blocking, then, on the average, few

edges need be added to the network to make it non-blocking.

42

Ze | PROBABILISTIC CONSTRUCTION OF TINEAR SUPERCONCENTRATORS

The construction discussed here corresponds to Pippenger's proof 13]

of the existence of linear superconcentrators.

Let 7 be an arbitrary permutation over 236m’ where m is a positive

integer. Construct the graph G1r which has inputs il""’i6m and outputs
Y10+ Vo The set of edges G_lT is{fix e ene B 4m) ‘ X g 236mji
Note that the outdegree of each input is at most 6 and the indegree of each
output is at most 9. Also, the minimum outdegree of any input iX is 1,
which occurs when {(x + i6m) mod 4m | 0 < i < 5} is a singleton set.
Similarly, the minimum possible indegree of any output is 2. The following

lemma is a slightly modified version of that in [ﬁ].

Lemma l: The fraction of all permutations 7 over 236m such that G1T is

not a rearrangeably non-blocking (6m, 4m, 3m)-concentrator is O(m~l3).

Proof: We first observe that G1T is a rearrangeably non-blocking (6m, 4m,
3m)-concentrator if and only if for every subset X of inputs such that
|X| < 3m, |T(X)[> [XI. Next, we obtain an upper bound for the fraction

of permutations 7 for which at least one set of k requests s, k < 3m, is blocked.

Choose any set X of k inputs, k < 3m, and a set Y of (k-1) outputs.
We count the number of permutations for which T(X) < Y, i.e., for which
the request X is blocked. The set X corresponds to a set X~ §;236mrsuch that

X7

6k and, similarly Y corresponds to a set Y~ §;236m such that

Y7

9k-9. The number of permutations for which T(X) .Y is then equal

to the number of permutations over 236m for which {7 (x) I e e }gE‘Y’, which is

43

6m 4m
s o | i ;
[?k'EIGk (36m-6k)! Now, since X and Y can be chosen 1n(k)and(‘_i) s

respectively, an upper bound on the fraction of permutations for which GTT

is not a rearrangeable (bm, 4m, 3m)-concentrator is

3m
6m Yy f4m 9k-53 6m‘5k)§
L. X (R)() Bla ettt
k=3

Observe that since each input has outdegree at least 1 and each output has

indegree at least 2, lT(X)[g;[x] for all subsets of size 1 and 2.

From the above,

) 6

m (36m)
- 6k

e C) 5 (0)) G2

3m 9k 9)
m-—-"m 26m
st)

Now, it is straightforward to show that the largest term in Jm is

either the first or last. Thus, there are two cases to consider:

Case (1): The largest term in Jm is the last.

44

(E7m—9
Thus I.:< &0 3m o 18m

26m
12m+1

(27&)
< 3m 18m i O(ZHm)

26m B
12m
Case (2): The largest term in Jm is the first.

18) = 9k-9
Thus I_ < J_ < 18 :E : 6k
m-—-"m-— — + LT

(26:11) (26m)
13 o b+l
£27I
< 1 3m- \ 24
i 26m
k7

i O(m—lB)

Combining Cases 1 and 2, the lemma follows. Furthermore, it is easy to

show that for m > 100, Im < 10_7 m_l3. Q.E.D:

As shown in Eﬂ , a slight refinement of the calculation above shows

that Im is strictly less than 1 for all m.
A generalized version of the lemma is now stated:

Lemma 2: The function of permutations over Z6imfor which G 1is not a

=3d+5

rearrangeable (6m, 4m, 3m)-concentrator is 0(m), where i > 6 is a

constant divisible by 2.

45

Proof: Similar to that of Lemma 1.

2 n :
Now using rearrangeable (n, 30 Ej—concentrators with at most 6n

edges, n-superconcentrators are constructed as shown below.

In the figure, A and B are copies of a rearrangeable (n, %ﬂ, %)-concen—
trator, C is a recursively constructed %n—superconcentrator, and I is an
identity map connecting the n-inputs to the n-outputs. The proof that the
network thus constructed is an n-superconcentrator is identical to that
in Section 2.3. From the figure we see that if S(n) denotes the number of

edges used in the construction, then

SR s([—%—;‘) 3

46

Also, S(1) = 1, which yields S(n) < 39n + O(logn). In fact, if for
n < 2187, we construct permutation networks in the recursive construction,

then Pippenger [3] shows that S(n) < 40n for all n.

It should also be noted that the above construction establishes a tight-
er upper boundlon the minimum number of edges required to construct a super-
concentrator than the construction of Section 2.3. Furthermore, in the con-
struction of Section 2.3 the degree of each vertex is not bounded since the
fns, %J—concentrators(?rom Pinsker [Z]) in that construction do not have

0(1) bounds on the degree of vertices.

To explain the operation of the network, consider equinumerous sets X
and Y of inputs and outputs respectively. First, all connections that can
be made directly via the identity map I are established, in time O(n). Then
the remaining inputs X, |X"| j_%3 are connected 1-1 to a set X" of inputs of
the %n-superconcentrator C by finding an]X’I (=|X”]) flow through A. Simi-
larly, the outputs Y (¢ Y not connected over I, are mapped onto outputs of
C. VFinding an |X"|-flow through A takes O(nl's) time. Finally, the above pro-
cedure is repeated for each of the inner superconcentrators until all connections

are established.

From the above, we see that if T(n) is the time required to extablish

1.5

2
connections in an n-superconcentrator, then T(n) < cn + T(§n), and T(1) = d;

for some constants c¢ and d. From this we have T(n) = O(nl's). This contrasts
with the O(nlogn) operational complexity of the permutation network of Section

2.1. The above discussion also accounts for the O(nl's) operational complexity

of the explicit construction of Section 2.4. Note, however, that in the

47

case of an €-blocking superconcentrator, it may happen that for some set X
of inputs of one of the probabilistically constructed e-blocking rearrangeable
concentrators there is no IK]-floW to the corresponding set of outputs. We

discuss a possible solution for this problem in Section 321 .3
312, GUARANTEED NON-BLOCKING SUPERCONCENTRATORS

In this Section we examine the possibility of probabilistically con-—
structing superconcentrators that are guaranteed to be non-blocking, i.e.
non-blocking with probability exactly 1. In general, the only possible
approach known is to exhaustively test the networks constructed to verify
that they are non-blocking. Unfortunately, the best known algorithm takes
exponential time as we shall see here. The complexity of the problem of
recognizing a graph that is not non-blocking is in NP, the class of problems
solvable non-deterministically in polynomial time, but its relationship with

respect to the NP-complete problems is not known . ¥

A rather naive way to test a probabilistically constructed supercon-
centrator would be to verify that for every choice of k inputs and k out-
puts, 1< k < n, there is a k-flow from the k inputs to the k outputs, using

a maximum network flow algorithm for the following network:

\

w
ot

0))

* C.R.Papadimitriou (perscnal communication) has recently shown that

the problem of recognizing a sunerconcentrator is co-NP complete.

48

s is the source vertex, il,...,in and Yis++esy, are respectively sets
of inputs and outputs of the n=superconcentrator S, and t is the terminal ver-—
tex. There are edges from s to cach input and from each ouLput to t. Capacities
of all vertices within S are 1. Given a set X of k inputs and a set Y of

k outputs, the following edge capacities are defined:

EsedsES il e g
X

C(x, ix)

D, else

C@y,, t) =

J, else.

With the edge capacities as defined, there is a k-flow from X Eo Y
and only if the maximum flow through the network from s to t is k. Thus)
to test a superconcentrator we could run a maximum network flow algorithm

once for each choice of input and output set pairs. However, using an

1

0(n '5) maximum network flow algorithm, the complexity of the above scheme ig

i 2

cnl'5 E E = 0 n2?'n

k=1

In other words, this scheme is worthless in practice for n > 50.

LS s

49

This naive approach may be improved by testing separately for each prob-

abilistically constructed bipartite graph Gm with m inputs and %m outputs to

; ARy 2
verify that it is a rearrangeable (m, 30, %)—concentrator. If for any m,

‘ 2 m e
Gm is not an (m, 3Ms Eﬁ—concentrator, it is replaced by another randomly
constructed graph Gm, which is then checked and replaced if necessary. This
process 1is jterated until an (m, %m, %)-concentrator is obtained. Since the
prbbability that a randomly constructed graph is not a concentrator is ex-
tremely low, not more than a few iterations will be required in practice.

. . . . k 2 m

Finally, when each bipartite graph Gm is known to be an (m, §m,-§)—concen—
trator, the overall construction is guaranteed to be a superconcentrator.
Now, Gm is an (m, %m, %)—concentrator, if and only if, for each input set X,
m
'é')

gl s |IT(X)| > |X|. So, we could check these

m

2
u o= Z (‘;‘)-—- 0(2™
i=1

conditions instead of checking that each subset of the inputs of size k,

k 5_%3 a k-flow to the set of outputs. This is done as follows:

m .
Generate the subsets of size at most E—sequentlally such that for

each i)Si and Si+ the i-th and (it+l)-st subsets generated satisfw:

1’

@ \sin Siﬂ[L {\si\ , \Si+1\] =

50

Next consider the graph Gm. Associated with each output vertex x is a
counter C(x) which gives the number of input vertices in Si that x is adjacent

S are stored in variables COUNT and SIZE

to. The quantities IT(Si)[and l|

respectively. the following program then verifies the required condition..

il Generate Sl’

2. SIZE« |35,

3. For each input xeSl do
For each output y adjacent to x do

C@pre— C(y) + 1

4. For each output y do

If C(y) # 0 then COUNT¢— COUNT + 1

sig For i = 2 untilﬂdo
Begin
a. Generate Si
b. SIZEe-\sil

c. For each output y adjacent to the single input in Si—l_si do

1) €Gxic—ely) - L
2) If C(y) =0then CcoUIT€—COQULT- 1

d. For each output y adjacent to the single input in Si—Si_l do
1) If C(y) = 0 then COUNT&— COUNT + 1

+

2) Céy¥e—Cly) + 4
e. If SIZE > COUNT then output '"Not a Concentrator' and halt

else if i =}L then output "Is a Concentrator"

and halt

else i&1i + 1.

5L

That the program is correct is straightforward. Furthermore, the initial-
ization steps 1 through 4 take O(m) time, while for each i, the loop of step
5 takes 0(1l) time; consequently, step 5 takes 0@) = O(Zm) time, Hence,

the complexity of testing an (m, %m, %D—concentrator is O(Zm).

Finally, the complexity of testing an n-superconcentrator is

logn 2 i
S b et sz
= . 2 = 0(27)
i=0

Thus, this algorithm cannot be used for n > 100, since the time required
to verify an n-superconcentrator is impossibly high. Besides, for n < 37 an
n-permutation network uses fewer edges than the proposed construction. This
virtually rules out any possibility of constructing networks guaranteed to
be non-blocking by exhaustively testing probabilistic constructions. How-
ever, the complexity of recognizing graphs that are not non-blocking is of
theoretical interest. It is clearly in the class NP; given a graph that is
not non-blocking, '"guess" a subset of inputs of size k for which there is
no k-flow to the set of outputs, and verify this fact in polynomial time using
a maximum network flow algorithm. The relationship of this problem with the
class of NP-complete problems is not knowﬁf‘ Furthermore, it would be of
interest if exponential algorithms whose complexity is o(2n) are found,
since these would probably involve combinatorial techniques more powerful

than Hall's marriage theorem.

*see footnote on page 47

52

33k3 e —-BLOCKING SUPERCONCENTRATORS

To construct an n-superconcentrator in general, if n < N, where N is some

constant we construct an n-permutation network with at most Iggg- nlogn - 3n
edges, and for n>N we obtain two copies A, B, of a probabilistically constructed

2 n 2 : .
(n, in, ﬁj—concentrator and a §n—superconcentrator constructed recursively

according to the above rules, and combine these as in Section 3.1.1. The
reason for constructing a permutation network whenever a superconcentrator
with fewer than N inputs is required is that for small graphs a probabilistic

construction is more likely to fail than for bigger graphs. In any case,

<

6
whenever (logB) nloge - 3n < 3%9n, i.e., n'% 37, a permutation network is at least
as efficient as the proposed construction. Thus N 3_37. For general N, the
probability that the probabilistic construction above fails to be a super-

concentrator Is calculated below:

Let

il

probability that the construction fails

= probability that at least one probabilistically constructed
bipartite graph G is not an (n, %n, %0—concentrator.

(Note: here 7 is a permutation over 26)
n

1 - probability that each G above is a (n, %n, %)~concentrator.

By the observation made in the proof of lemma 2, since m > 100, we have that

o TT(-(@) 8)

i=0

51

Now,
M
il i 2 M+1 M+1
i ‘ (1-4 % =} Cix + Cox” +...+ (-1) Copy1 X ;
{0
where
M
S 1 383 gy
1 < o-1
i=0

If ® << 1, neglecting higher order terms, we have:

M
I , (1-ox) < 1 - C x
i=0
13 -7
In the case above, o = (g) X =<%gq;--n l%l giving
i o -7 A28
e g (N 3t n l3) T0A 57

For, N = 3/, ¢ < 7150

which should be low enough for practical purposes.

In general, if we want the probability that the construction fails to

be less than 86 then it is sufficient to ensure:

ToRE S e

54

or

1
.26 13\ B3
N) @Q;&+h‘?

So N need at most equal the limit of the right side of the inequality as
-1/13

n > *, giving N v FZFO
Suppose we construct an n-superconcentrator probabilistically using a
permutation network only for n = 100. To ensure that the probability the
graph fails is less than €, we replace the subgraph which is an N-supercon-
centrator by an N-permutation network. Letting ss(n) denote the minimum
possible number of edges required to comstruct a network with n inputs and
outputs which is a superconcentrator with probability greater than 1 - ¢,

it 1is clear that

Se(n) < S + & NlogN - 39N

or

S

1 1
s\. 13 A . B3
e < 40n + (-E-)(E log € - 46 ¢

Given arbitrarily small e, we could make use of Lemma 2 to obtain
e-blocking superconcentrators, by simply increasing the number of edges in
each bipartite graph constructed probabilistically. However, to keep the
number of edges low, we should increase the number of edges in the smaller
bipartite graphs more than in the bigger graphs. 1In the expression above this
would correspond to reducing the second term on the right side asymptotically,

while increasing the coefficient of n only slightly.

55

Another way to increase the probability that the construction yields a
superconcentrator is to partially check each probabilistically comnstructed
G,. Given Gﬂ, check whether or not for each subset X of inputs of size at
most c, where ¢ is a constant, IT(X)I i_]XI. If not, either replace G%
by another probabilistically constructed graph, or add extra edges to G
so that the above condition is satisfied. This partial verification can be
done efficiently, i.e. in time polynomial in m. From the argument in
Lemma 1 we observe that if G1T is partially correct in the sense above, then it
is extremely likely to be an (m, %m, %)—concentrator. Furthermore, as we shall
see further on, on the average, only 0(l) edges need be added to Gy, given that

S 2 m
it is:net:an-{m, 3, E)—concentrator.

Suppose that one of the probabilistically constructed bipartite graphs
Gﬁ with m inputs and %m outputs with at most 6ém edges, is not an (m, %m,
%)—concentrator. This means that during the operation of the network, for
some set k of inputs, k 3_%, there is no k-flow to the outputs of %T. Ar
this stage one possible approach would be to replace G by another randomly
constructed graph G1T . Another alternative is to add extra edges to %T S0
that for the k inputs a k-flow is now obtained. Determining which edges to
add may be performed efficiently; simply obtain a maximal flow for the k

inputs in G and add edges from the remaining unconnected inputs to an equal

number of unconnected outputs.

Since the second alternative involves increasing the number of edges in
the network, we must be careful that not too many edges are added. Otherwise,
the structural complexity of the network could become non-linear in the number
of inputs. We now show that the expected number of edges added to the net-

work is 0(1).

First we note that each time edges are added to a set of inputs X of
G1T to obtain an |X|—f10w, there is at least ome subset Y € X such that,
before edges were added, |T(Y)| < |Y|, but after the addition of edges to
G,]T(Y)| 2]YI. Also, of the extra edges added, at most lY] would have an
endpoint in Y. Letting E(A) denote the expected value of A, and E(A[B) the
conditional expected value of A given event B, we have:

E(number of edges added G-is not a (ém, 4m,3m)~-concentrator)

(Note: As in Lemma 1, Tr is now a permutation over Z36m)
3m

< E i.E Number of subsets X of Gq is not a
$ inputs such that }X| =83 (6m, 4m,3m)-concentrator p
i=0 and |T(X)| < 1

For convenience, we term a subset X of inputs bad if lT(X)I <;|X|. Also

term GH bad if it is not a (6m,4m,3m)-concentrator.

Lot 7% 7e number of bad subsets Qﬂ_is bad
e ST of size 1
= (number of subsets of size i) * fprob a given subset G _is bad
of size i is bad
. . - PCARE). | PN
Now, in general if A € B then P(A‘B) = TP (®) = F@) -

Since a bad subset implies G is not a concentrator, we have:
T

= = 6m prob(subset X of size i is bad)
i ! prob (Gﬂ is bad)

Now, as seen in Lemma 1, prob(X is bad)

(TEJ) [51-9] g1 (36m-61)

(36m)!

57

Thus,

6m Am) (9i—9
- 1 A1-1/ | 61 : 1

Gl 36m prob(G is bad)
6i U
(91~9) '
6i 1
= 72ém i prob(G dis bad)
4i+l %
So,

2]
o I 9i-9

* X. 1 3 .ﬂ"__
§ : 1 = |prob(Gc is bad)) : EE: 5 (Z&n)
: b 4i+l
_1=3 i 3

As in the proof of Lemma 1, cither the first or the last term in the
summation on the right side 1is the largest. If the largest term is the last.

3m
: 1(91—D
i
26m -
i=3 (41+l)

If the largest term is the first,

0@?2™)

3m
. [9i-9 18
E 1(6i)ﬂ < 3__._£1§)_ (B8 - 0@ D)
26 36m
i=3 4i+1 13

Combining the above cases for m larger than some constant m o,

i 91‘9) -13
E 6i < ‘ecm v, for some constant c

s S 2 B e i T i G T s e e M b ST e e L il S T SR S R B e Sl st S

idle outputs. Given such a family of graphs, an incrementally non-blocking

connector with n inputs and outputs is formed as shown below:

Here both A and B are copies of Ga(n). In any state in which r
connections have been made, any idle input and any idle output can both be
connected to at least one common idle vertex in C. It follows that the above

construction yields an incremental n-connector.

Let C(n) and ga(n) denote the minimum possible number of edges in an
incremental n connector, and a graph}with n inputs,in Ga(n) respectively.
We have that C(n) §_2ga(n). Note also that the problem of constructing

incremental n-connectors is reduced to the problem of constructing a family

{6, (n)} .

61

To construct.iGa(n)§ we define a family iﬁ& 8 k(n?} of networks where
3 3

Fa 8 k(n) is a network with n inputs, kn outputs having the property that
£) H

for every set X of n inputs, |T(X)] > Bkn. We construct Ga(n) recur-—

: . 3 ; sy > (afl)
sively using the famlly’%%ao’sogk(n)g with o= s BO S shown

below:

s &« o @ & o ¢

By
hi

In the above, each Ai (1 <1< k) is a copy of Ga(n) and each Bi is
a co of F (an).
Py aO,BO,K
First we show that the above construction is correct. Suppose that r
input-output connections have been established. We have to show that in

this state, if im (an input of Ai) is idle, then there are paths consisting

kan-r .
solely of idle vertices from i to at least —*2 idle oulputs.

62

Let |A, N I|= r , where I is the set of busy inputs. By induction,
1

an—r |
there are paths from im to at least [ﬁfL}ll idle inputs of B, . Now,
n-r an—n an-r
T = fini f; s
,'-2 -,_>_ 5 aoan. By definition o Bj these [2 -'inputs of Bj'
are adjacent to at least Boank = Eé%iﬁ& -r outputs, of which at least
Eé%ikﬁ - r must be idle.

Now, r < kn-1 since im was assumed to be idle, and hence we see that

there are paths consisting solely of idle vertices from i to at least

Eé%tkﬂ - T = [éé%:;] idle outputs.

The basis of the recursive construction could be a complete bipartite

graph with t inputs and t outputs, where t is some suitable constant.

Letting f (n) denote the minimum possible number of edges in

dO,BO’k
n any . d

; =) o+ =

luo,so,k(n), we have ga(n) < k 2, (k:) k qu,BO’k (k) or:w >t andd

ga(n) ﬁ_at2 fer ni< t.

In what follows, we will show that F (n) < sn where s is a constant

uo:ﬁo:k

for fixed o Bo, and k. Thus it will follow that

ks

8a(n)‘i (iigﬁ) nlogn + 0(n).

We first establish a non-constructive upper bound on F

k=13, a =-%, and B = %—. It is straightforward to generalize what follows;

n) with
a»Bsk(g

however the above values of a, B, and k chosen seem to minimize C(n) for

the construction technique adopted.

63

Consider bipartite graphs, with 3n inputs and 9n outputs such that for
any set In of n inputs, |T(In)| > 6n. Such bipartite graphs clearly satisfy

the requirements of the family Fl 2 3(n) . We show that the bipartite graphs
3’ _3_3
with 3n inputs need have no more than 45n edges when n > 20. The proof

is similar in spirit to that of Lemma 1 in Section 3.1.1.

Consider the set P of permutations over Z,. . Let m be an element of P

Define GTT to be the bipartite graph with inputs il,...,i and outputs

3n
Ty ey #0¢ eet Of edges {(ix mod 3n’ yﬁﬁj mod 9n) | e thn}' Ve

term G good if every set of n inputs is adjacent to at least 6n outputs, and
m

bad otherwise.

Let X be any set of n inputs, corresponding to 15n elements of 245n

and let Y be a set of k outputs corresponding to 5k elements of Z The

45n°

fraction of permutations w such that, in Gw’ T(X) € Y is bounded above by

the expression

(45n-15n) !
[5@ 15n (45n)!

Thus the fraction of permutations m for which G is bad, is bounded above by

6n-1

1, - 2 () () el G
k=3n
- e 0 ()
e =

64

The lower limit of 3n for k coreesponds to the fact that if]X]

= n then
]T(X)[> 3n because of degree constraints

Thus

- Ei? &) 6

15n =35
o 5k 9n
At (1511) (k)
L 5k+5) (Qn
H 150) \k+1
Then, —= =
lSn) ()
o (9n-k)

15n 15n
(k) (1 3 5k+5) (5k+1)
We see that as k increases, the numerator in the expression above decreases,

while each term in the denominator increases Thus,

decreasing function of k. Furthermore, the last ratio in the serics
is

L6n _ Butl) (30n) ... (36n-4)
Leno1 6h . (15m) (15n-4)

65

which is greater than 1, for all n. Hence, we conclude that the largest

term in the summation is the last, and therefore,

) (3 @
n 15n 6n
In < 3o 45n

lSn)

= 0(n2™ ™

For n > 20 we find that the right side of the inequality above is less than
1. For n < 20, we would have to check directly from the definition of In,

using a table of binomial coefficients, that IrL <l

However, in any case, we have

15n s n > 60
&) 9 b
EY) '3‘3
3n2 . n < 60
~
Thus,
3. =0+ 0% 60
g3 (3 & 2 s =
83(n) -

0(1) < n < 60
~N

66

which yields g3(n) i_(’45

10g3) nlogn + 0(n) and, hence,

C(n) < 1%&3) nlogn + 0(n)

or,
C(n) < 56°79 nlogn + 0(n),
as compared to C(n) < 67°26 nlogn + 0(n) in [i].

Next we obtain an explicit comstruction for a family {Ga(n)} with

a v 30°064, using the explicit construction of (n, I%)—expanders in [2].

Consider the following construction for Fu 8 k(an)
L] >

E,

Each Ei above is an (an, i%ﬂ—expander such that, for every X

2 X
Izl > x| (1+52 (-1l

67

For any set X of inputs, since the outputs of Ei are disjoint,

T®)| > k[x| [1+-2 (-J—Xl)

15 an
Now we require the property that if]X] = gan then |T(X)| > Bkan, where
a = i%ill and B = i%gll as argued earlier. Setting |X[= gan, we note it

is sufficient to have

kana (} + __.(1 —- a)) 2o kaBtE.n)

or equivalently

a a=l l+—-~(—a:5> a+l
2a

which reduces to a - 30 = 1> 0, which is satisfied by a n 30-064,

Thus we obtain fa’B’k(an) < 7ank for the values of o,B8 determined

by the value of a above, since each Ei has at most 7n edges. Now,

n an
ga(n) 3 kga (k) thedk fOt,B,K ("K'

or

g(n) & kg (%) + 7ank

Also, ga(l) 1, which yields g (n)-:(i§§£§nlogn + 0(n),

With a = 30:034, and k = 3 which minimizes the tenncfai) we finally have,

C(n) g_2ga(n)_i_795 nlogn + 0(n)

68

3.3 CONCLUSIONS AND OPEN PROBLEMS

We have studied constructive as well as non-constructive upper bounds on
the structural complexity of concentration and connection networks. Although
the 0(n) and O(nlogn) cpnstructions for rearrangeable concentrators and in-
cremental connectors respectively are asymptotically optimal, they are
inefficient in practice. The non-constructive proofs of upper bounds suggest
that these networks may be constructed efficiently in a probabilistic manner,
with arbitrarily small, fixed, blocking probability. In addition, blocking
networks may be made non-blocking by adding edges to the network during
operation. On the average, very few edges need be added to a blocking
network. Although we have shown this only for rearrangeable concentrators,

the argument is easily extended to other networks.

Probably the most intriguing open problem is to find a combinatorial
construction for linear expanders and concentrators. It would also be inter-
esting to obtain tighter upper bounds on the complexity of concentrators and
hyperconcentrators than those obtained by utilizing Pippenger's super-—
concentrators. Finally, the structural complexity - operational complexity

tradeoff for networks needs to be better understood.

69

REFERENCES

L.A. Bassalygo and M.S. Pinsker: On the Complexity of Optimal
Non-blocking Switching Networks Without Rearrangement, Problems
of Information Transmission, vol. 9 (1973) 84-87.

0. Gabber and Z. Galil: Explicit Constructions of Linear Size
Superconcentrators, 20th Annual Symposium on Foundations of Computer
Science, (October, 1979) 364-370.

G. A. Margulis: Explicit Constructions of Concentrators, Problems
of Information Transmission, vol. 9 (4) (1973) 71-80.

M. S. Pinsker: On the Complexity of a Concentrator, Seventh Interna-
tional Teletraffic Congress, Stockholm (1973).

N. J. Pippenger: Superconcentrators, SIAM Journal of Computing (6)
(1977) 298-304.

N. J. Pippenger: The Complexity Theory of Switching Networks,
Ph.D. Thesis, Department of Electrical Engineering, Massachusetts
Institute of Technology, August 1973.

L. G. Valiant: On Non-linear Lower Bounds in Computational Complexity,

Proceedings of the 7th Annual ACM Symposium on Theory of Computing,
Albuquerque, New Mexito (May 1975) 45-53.

A. Waksman: A Permutation Network, Journal ACM 15, 1 (January 1968)
159-163.

