MIT/LCS/TM-198

THE PROPOSITIONAL DYNAMIC LOGIC OF
DETERMINISTIC, WELL-STRUCTURED FROGRAMS

Joseph Y. Halpern
John H. Reif

March 1981

The Propositional Dynamic Logic of Deterministic, Well-Structured Programs

Joseph Y. Halpern,
Mathematics Department,
Harvard University,
Cambridge, Massachusertts 02138.

John H. Reif,
Aiken Computation Laboratory,
Harvard University,
Cambridge, Massachusetts 02138.

March, 1981.

Abstract: We consider a restricted propositional dynamic logic, Strict
Deterministic Propositional Dynamic Logic (SDPDL), which is appropriate for
reasoning about deterministic well-structured programs. In contrast to PDL, for
which the validity problem is known to be complete in deterministic exponential
time, the validity problem for SDPDL is shown to be polynomial space complete.
We also show that SDPDL is less expressive than PDL. The results rely on
structure theorems for models of satisfiable SDPDL formulas, and the proofs
give insight into the effects of nondeterminism on intractability and
expressiveness in program logics.

KEYWORDS: strict deterministic propositional dynamic logic, propositional
dynamic logic, decision procedure, polynomial space complete, expressiveness,
well-structured programs.

This research was partially supported by grants from the National Science and
Engineering Research Council, NSF Grants MCS80-10707 and MCS79-21024, and
ONR Grant N0OO014-80C0647.

1. Introduction

The major issue in logics of programs is finding a language appropriate
for reasoning about programs. We want a language which has sufficient power to
enable us to express in a natural way the kinds of properties we would like to
prove about programs, such as correctness, termination, and equivalence, and yet
is sufficiently tractable to admit an efficient decision procedure. With this
in mind, Fischer and Ladner introduced Propositional Dynamic Logic (PDL), a
logic based on modal logic. It was shown to have a decision procedure complete

in deterministic exponential time and many other desirable properties (cf. [FL,
Pr3, KP].

In analogy to regular languages, PDL makes use of the nondeterministic
program constructors * and U. However, in programming languages used today,
the programs are deterministic. Indeed, historically, much of the research in
logics of programs has dealt only with deterministic programs (cf. the work of
Salwicki and his coworkers in Algorithmic Logic; eg. [Sal] and [Mir]). One way
of excluding nondeterminism from PDL is by restricting the use of * and U so
that they only occur in contexts which yield deterministic, well-structured
programs, equivalent to those built up from the atomic programs using the
constructs while ... do ... od and if ... then ... else ... fi. Strict

Deterministic PDL (SDPDL) is the restriction of PDL to formulas where programs
are of this sort.

Two natural questions arise: (1) Does the restriction to deterministic
programs give us an easier decision procedure, and (2) does it lead to a loss
of expressive power; i.e. are there notions which we can express in PDL which
are not expressible in SDPDL? The answer to both questions turns out to be yes.

In section 5, we give a procedure for deciding if an SDPDL formula is
satisfiable which runs in polynomial space and show that the decision problem
is polynomial space hard. In section 6 we show that SDPDL is less expressive
than PDL, thus answering an open question of Harel ((Har]). Both the algorithm
and expressibility results are based on structure theorems for models of SDPDL
formulas which show that if a formula p is satisfiable, it is satisfiable in a tree
model with only polynomially many nodes at each depth. In fact, given any tree
model for p, we show that we can always find a subtree with only polynomially
many nodes at each depth which is also a model of p (cf. Theorems 4.12, 4.19).

These proofs give us insight into the effects of nondeterminism on
intractability and expressiveness in program logics. Essentially they show
that a deterministic (SDPDL) program cannot examine every node of a full binary
tree, while a nondeterministic program can. The first author has shown (in
[Hal]) that this situation holds even in the first order case. Thus first

3

order regular dynamic logic can be shown to be more expressive than its
deterministic counterpart, answering another open question of [Har]; (cf. [MW],
which studies the quantifier-free case). By contrast, Meyer and Tiuryn have
shown (in [MT]) that nondeterminism does not lead to more expressive power in
the case of first order dynamic logic with recursively enumerable programs,
since a deterministic r.e. program can do a breadth-first search of a tree.

The results similar to our Theorems 5.1 and 5.3 on polynomial space
completeness result have been announced independently by Chlebus ([Ch]).

2. Syntax and Semantics

SDPDL is in fact a restriction of Deterministic PDL (DPDL), the logical
theory with the same syntax as PDL but its semantics restricted so that in each
state an atomic program specifies at most one successor state. DPDL, like PDL,
i1s known to have a decision procedure which is complete in exponential time
(cf. [BHP]). We briefly review the syntax and semantics of PDL and DPDL.

2.1 Syntax: The alphabet for PDL (as well as DPDL), 7, consists of a set

20 whose elements are called atomic formulas, a set Zy whose elements
are called atomic programs, and the symbols U, ;, ¥, 7, =, (>, (,).

The set of programs, Z, and the set of formulas, &, are defined
inductively using the following rules:

¥ any atomic program in Zy is a program;

2. if a and b are programs, then so are (a;b), (aUb), and a*;
(we will occasionally omit the parentheses)

3 any atomic formula in @ is a formula;

4. if p is a formula and a is a program, then =p and <a>p are
formulas;

3. If p is a formula, then p? is a program.

We also use the following abbreviations: p A q for <p?>q, p V q for
=(-pA—q),p=qforpVag p=qfor(p=q Alg~ p), and [alp
for —<a>—p.

The size of a formula p, written |p|, is the length of p regarded as
a string over _/,

2.2 Notation: We will normally reserve P, Q, R, ... for members of
®y and A, B, C, ... for members of Zq The letters p, q, 1, ..

denote formulas, while the letters a, b, c, ... denote programs.

4

2.3 Definition: A PDL structure M is a triple (S, =, p) where S is a
set whose elements are called srares, 7: @ » 2(S) is an assignment of
formulas to sets of states, and p: £ » 948 x §) is a mapping of programs
into binary relations on § which satisfies the following constraints:

1. plasb) = p(a)°p(b) (composition of relations)

2. plaUb) = p(a)Up(b) (union of relations)

3. pla*) = (p(a))* = Unp{a“] (reflexive and transitive closure)
4. p(p?) = (s, s)| p € =(s)}

A DPDL structure satisfies in addition:

5. For all A € Z, p(A) defines a partial function;
ie. if (s, t), (s, t) € p(A), then t = t'.

If p € &, then we can view w(p) as the set of states in which p is
true. And if a € Z, then p(a) is the input-output relation of program a,
i.e., (u, v) € p(a) means that by starting in state u and running program a
we can halt in state v.

The size of a structure M = (S, , p) is the cardinality of S.

2.4 Definitiom: A (D)PDL model is a (D)PDL structure (S, x, p) satisfying
the following additional constraints on :

6. x(=p) = S - x(p)
T w(<a>p) = [s € § 3tl(s, 1) € p(a) and t € x(p))}

2.5 Remarks: 1. Given x': 85 » 98), p": 2 » FAS x §), we

can always uniquely extend «' to 7: ® » #%S) and p' to p: £ + ZUS x §)

so that conditions 1-4, 6, and 7 hold. Moreover, if p' satisfies condition 35,
then so does p. Thus, for a (D)PDL model, » and p are completely defined by
their actions on the primitive formulas and programs.

2. We will say r is an a-successor of s in a structure if (s, t) € p(a).
In a DPDL model, each s € § has at most one A-successor for all A € Z.

Any (D)PDL model M = (S, 7, p) can be viewed as a directed graph, with the
nodes labelled by states in S, We join s to t by an edge labelled A iff

(s, t) € p(A). Note that we allow multiple edges between s and t, each
labelled with a distinct program of T The graph together with uniquely

defines M.

3

2.6 Definitions: Let M = (S, v, p). Then

M, sk pl(pis true in s € 8) iff p € «(s),

M E p (p is satisfiable in M) iff, for some s € §, we have M, s F p,

a formula p is (D)PDL satisfiable iff for some (D)PDL model M, M E p,
ED) P (p is (D)PDL valid) iff for all (D)PDL models M = (S, , p)

and all s € §, we have M, s E p.

g L 1o

Note that p is valid iff —p is not satisfiable.

2.7 Now we are ready to define SDPDL. We would like to guarantee that the
only programs which appear inside boxes and diamonds are deterministic ones. We
do this by defining the set of SDPDL programs, Z, to be simply the DPDL

programs in which U and * appear only in constructs of the form ((p?;a) U (—p?;b))
and ((p?;a)*;7p?), and we abbreviate these to if p then a else b fi and

while p do a od respectively. This restricted class of programs clearly
corresponds to the well known while programs. The SDPDL formulas, $_, are

those formulas of @ involving only programs of Z.. The semantics of SDPDL
are the same as those of DPDL. For convenience , we will assume that 4![}
always contains the distinguished formula rrue, with x(rrué) = 8.

For p € &, let |p|; be the length of p measured as a string over
g Y Zy Y |if, then, else, fi, while, do, od, (,), < >, ;3. We omit the
subscript s when it is clear from context.

The following two lemmas describes the basic relationships among the
programs and formulas of Z, and ®.. While the proofs are trivial, the

results will be used throughout this paper and the reader should understand
them thoroughly before going on.

2.8 Lemma Let M = (S, », p) be a DPDL structure.

1. plif p then a else b fi) = {(s,1)] (s,t) € pla) and s € =(p)j U
i(s,0)] (s,t) € p(b) and s € x(—p)}.
2. p(while p do a od) = {(s,1)] 3s... 35 (s = s, 5 = t,
for all i < k ((s;5;,1) € p(a) and s; € x(p)), and s, € x(p)].
3. For all a € T, p(a) is a partial function.

Proof: Parts 1, and 2 are immediate from the definitions in 2.3, 2.4 and 2.7.

Part 3 follows from parts 1 and 2 by induction on the structure of programs.
We omit details. B

6

2.9 Lemma The following are valid formulas of SDPDL augmented by A:

E <a;b>q = <axbxq

E <if p then a else b fi>q = ((p A <@q) V (7p A q))

E <while p do a od>q = ((mp A q) V (p A <axXwhile p do a od>q))
p»q=pAg

a>p = (Ka>7p V Xadirue)

~a;b>p = Waxbdp

=¢Gf p then a else b fidg = ((p A <adg) V (7p A Kb>q))
—«while p do a od>q = ((mp A 7q) V (p A ~<aXwhile p do a>q))
«ph»q = pV 7q

10. E <aXp V q) = <avp V <aXq

11. E <aXp A q) = (Ka>p A <adg)

12. E=-p=Ep

13. If E p = q, then E <ap = <adq.

YO 00 ol SR LR e Tab Pt I

-

TTTTTTT

Proof: Immediate from the definitions and Lemma 2.8.3. Note that the fact
that p(a) defines a partial function for all a € Z_ is crucial to the proof

of parts 5 and 10. These are not valid formulas of DPDL. &

In what follows we always assume, unless explicitly stated otherwise,
that all programs and formulas are in Z_ and & respectively.

2.10 Depth of Testing: Let DPDLg be all the DPDL formulas with no
occurrences of fests (programs of the form p?). Let DPDL;,; be those DPDL
formulas where, if p? occurs as a program in the formula, p € DPDL;. Note
DPDL = U, DPDL,. Let SDPDL; = DPDL; N SDPDL. Thus, for example, we have

«<(q?;A)*;gDp)%B U ((q AP gD p)?Cotrue =
<if <while q do A od od>p then B else C fi>/rue € SDPDL,.

Finally, let DPDLpt (poor test DPDL) be the variant of DPDL where A
is allowed as a primitive operation (i.e. if p, q are formulas, then p A q is a
formula rather than being an abbreviation of <{p?>q) and the only tests p?
allowed are where p is a Boolean combination of primitive predicates. Again
SDPDLpt (poor test SDPDL) = EPPE'LPt N SDPDL.

2.11 Remark: For technical reasons we have not allowed A as a primitive
operator in DPDL. Thus our hierarchy is somewhat different from that defined
in [B] or [Har]. For example, the formula P A Q is in DPDL in the hierarchy

a la Harel, but is easily seen not to be in DPDLj as we have defined it.
However, it is in our DPDL since it is short for <P»Q. The same holds true

7

at higher levels in the hierarchy. And our DPDLpt is called DPDLy, 5 in

[Har] and [B], but that choice of name seemed inappropriate here since in fact
it is nof less expressive than our DPDL;.

3. FLS-Clusures and Tableaux

3.1 The FLs—clnsurE of an SDPDL formula PO FLs{PU)= is a slight modification

of FL(pg), (cf. [FL]) the Fischer-Ladner closure of a DPDL formula py. It is
the least set F such that py € F and

<wop€F » peF

asb>q € F =+ <(axbyg € F

<if p then aelse b fixge F » -p, p, <a>q, q € F

<while p do a od>g € F » -, p, <a>¢while pdo aod>q, q € F
<p?>qg€F -+ p,q€F

p€F =+ peF

Ka)p € F » —peFforac€Z,

atdp € F » axbdp €F

=Gf p then aelse b fixg€ F » —p, Wayxq, <Xb>q € F

—«while pdo aod)q € F » -p, =g, <aXwhile pdo a od>q € F
«p?>q€F » —p, geF.

ot il Sl ot o el

et

3.2 Theorem: 1If |pgl = n, then [FL(pg)] < 2n

Proofi Let G be the least set containing py satisfying conditions 1-6. Then
a slight modification of the proof of Lemma 3.2 in [FL] shows |G| £ n. It is
easy to check that G' = G U =G (where =G = {~p| p € G]) satisfies 1-11 and
|G < 2n. Since FL(py) is the least such set, we must have [FL(pg)| < 2n.

3.3 Definition: 1f py € ., let Zg(py) = {A € Zg| A appears in py}. Let Z(pg)
be the least set containing Zy(py) such that if a, b € Z(py) and p € FL{pg)
then if p then a else b fi, while p do a od, and p? are all in Z(pg).

3.4 An SDPDL tableau for py is a DPDL structure M = (8, m, p) such
that x(pgy) 7 ¢ and for all s € § the following conditions hold for all
formulas of Fle:pOh

It is not the case that M, sEpand M, s E 7

M,seE " p-+M,sEp

M, s E <a;b>q = M, s F <axbdq

M, s E «if p then aelse b fi>g = [(M, s E pand M, s E <a>qg) or
(M, s E =p and M, s E q)]

e e 6 =

8

5. M, s E <while p do a od>q » [(M, s E p and M, s E <axwhile p do a od>q)
orM,sEpand M, s E q)]
6. M,sE<¢pg~»(M,sEpand M,s E q)
7. M, s E Xab>g = M, s E axbdq
8. M, s E —if p then aelse b fi>q » [(M, s E pand M, s F —<adq) or
(M, s E 7p and M, s E Kb>q)]
9. M, s E <while pdo aod>xg =+ [(M,sE “pand M, s E 7g) or (M, s F p and
M, s E <axwhile p do a od>q)]
,SEXpDg =+ (M,sEpor M, s E 9
, s E <A>q =+ 3t((s,t) € p(A) and M, t E @)
«KA>q - [3tl(s,t) € p(A) and M, t E —g) or Vt{(s,t) £ p(A))]
, s E <while p do a od>q -+ 3t{(s,t) € p(while pdo a od) and M, t E @)

10.
il.
12.
13

2ZZE
™

The following Lemma is a modification of Lemma 1 in [Pr2] (cf. Lemma 3.7
in [BHP)):

3.5 Lemma A formula PO is satisfiable in an SDPDL model iff there is an
SDPDL tableau for Po such that the two structures have isomorphic graphs.

Proof: It is clear that any SDPDL model satisfying py is automatically a
tableau. For the converse we need the following:

3.6 Sublemmma : Let M = (S, =, p) be a tableau then

(a) For all programs a, if M, s I <a>p then 3t((s,t) € p(a) and
M, t E p.

(b) For all programs a, if M, s E ~<ad>p then Vt{(s,t) € p(a) =
M, t E 7p.

Proofi We proceed by induction on the structure of programs. The only case
which presents any complications is M, s F —<Xwhile p do a od>q. Suppose, in
order to obtain a contradiction, that 3t((s,t) € p(while p do a od) and M, t E g).
By Lemma 2.8, there exist Sor S1» - Sk with =S S*=t such that for

all i<k, (M, s; F pand (s;,5;,{) € p(a)) and M, s, F 7p. It is easy to

show by induction on i, using condition 9 in the definition of tableau and the
main induction assumption, that M, s; F ~<Xwhile p do a od)q for all i £ k.

But this leads to a contradiction since M, s; F “pand M, s Fq. H

Returning to the proof of Lemma 3.4, suppose M = (8, 7, p) is a
tableau for py Let 7" = rlﬁo, p" = p|Z(and extend them to mappings

9

w': B =+ S) and p": T, » S x §) so that the model constraints

are satisfied. Let M’ = (S, =", p"). Then we can show by simultaneous
induction on the size of formulas and programs, using Sublemma 3.6, that for
all formulas p € FL(py) and all programs a € Z(pg) we have:

1. M,skEp-M,skEp,and M,skEp-=>M,s"Ep
2. (s,t) € p(a) = (s,1) € p'(a)
3. M, s E adp =+ Yi{(s,t) € p'(a) » M, t E —p)

Thus it follows that M' is an SDPDL model for py whose graph is
isomorphic to that of M. §

4. Tree Models

4.1 Definition: A tree model (for p) is a model (for p) where the graph
corresponding to the model is a tree (with no back edges).

4.2 Lemma: 1If a formula p is satisfiable then there is a tree model for py.

Proof: We convert a model for py to a (possibly infinite) tree model for pg

using routine arguments. We make extra copies of states so that no state is
the recipient of two distinct program arrows. We omit details here. &

4.3 Example Let py be the formula ~<while <AXB>true do A od>true, and
let M, sg E pp where M is the model whose graph is given on the left in the

figure below. Then M can be converted to the tree model for py shown on the
right:

O It
X

We will show that satisfiable SDPDL formulas have tree models with -
special properties. We are aiming for the following:

10
4.4 Theorem: Let pg be a satisfiable SDPDL formula such that lpgl = n. Then

1. If py € SDPDLy), then py is satisfiable in a tree model with one
branch of depth < n.

2. If py € SDPDL;, i 2 1, then py is satisfiable in a tree model
with < O(k}) nodes at depth k.

We need some preliminary definitions and lemmas before we can prove
this theorem.

4.5 Definition: For a € I, we define r(a), the set of a-trajectories in M =
(S, w, p) by induction on the structure of a (cf. [Pr2, p.328; BHP, Section 4.2])

1. 7(A) = p(A)
2. r(a;b) = r(a)°r(b)
= {{s, .oy 4, ooy B (s, ..., w) € 7(a) and (u, ..., t) € r(b)]
3. =(if p then aelse b fi) = (s, ...,)] M, s E p and (s, ..., 1) € 7(a)} U
{(s, .., O] M, s F p and (s, ..., 1) € (b}
4. r(while p do a od) = Uizl r((p?a); ~p?)

5. 7(p?) = {(s) M, s E p)
The length of the trajectory (sq, ..., s;) is k.

Note that (s,t) € p(a) iff there exists a (necessarily unique) a-trajectory
[sﬂ, weey S)) With s = 50 and t = Sk '

4.6 Definitions: A straight line path is a (possibly infinite) straight line
graph with each edge labelled by a primitive program and each node labelled by
a finite (possibly empty) subset of &

For typographical reasons we use the notation (ng, Ag, 0y, Ay, ver)
for a straight line graph, where n; < ®; and Aj €Iy Letg and h be
straight line graphs, with g finite; say g = [nﬂ, AO, Ny, Agy e Ap ny) and
h = (mg, By, my, ...). Then gh, the concatenation of g and h is the straight
line graph

{I'IU, AD, ng, Al’ waey Ak—l’ [“k u mo}, Bﬂ, ml, -

i.e. we place the graph of h at the end of g, fusing the first node of h and
the last node of g. The length of g, written g, is k. (For an infinite straight
line path f we say |[f] = =) For a node labelled n;, we define |nd z EpEnj Ipl-

11

Let L and M be sets of straight line paths. Then in analogy to regular
languages, we can define the operations of union, concatenation, Kleene star,
and exponentiation on these sets, namely:

[P

>

LUM={ggeLorgeM,

L'M=|ghlge L, h € M, and g is finite]

L* = ¢ U (U;5; L) (where ¢ denotes the empty sequence)

L® = {g| g = 818783-8y» & € L, for all i <k, g < =, and [g| = =}
U {el & = 818983, for all i, g; € L and [g| < =]

(i.e. the elements of L® are all of infinite length, and consist of

either a finite concatenation of elements of L of which the last
has infinite length, or an infinite concatenation of elements of L.)

4.7 Definition: For every program and formula in £, U &, we can
inductively define a corresponding set of straight line paths:

ki b e

10.
1l

12.
13.

WO B TR e

for A € Zg) L = (=, A, 2)}

La;b : La'['b

Lo? = e}

Lif p then a else b fi = Lprla Y Loy

Lwhile p do a od = Tzl Loy

for g = P, P, or ~KAdtrue, where P € &; and A € I, Lq = {(fqP}

L—casp = Lal-p Y Lcasrrue

—~<asbrrrue = Lxartrue ¥ Lal~byrrue

~<if p then a else b fiderue = Lp?Tcastrue ¥ Lpr o> rrue
- - - xl - - u

Locwhile p do a od>frue ” (Lp? Ly Lp? Lcastrue ¥ [Lp? Ly

Lcptyirue = Lapr

By comparing the inductive definitions given above with those in 4.5
and the tautologies of Lemma 2.9, we can see there are close connections between
straight line paths, trajectories, and satisfiable formulas. Intuitively, a
formula p is satisfiable in a model M iff there is a unique straight line path
in LP which is a witness to this. The straight line paths in L in some

sense contain the minimal syntactic information which forces p to satisfied.
These notions are formalized in Lemmas 4.9 and 4.10 below.

12

4.8 Definition: The straight line path g = (ng, Ag, 0y, -y Ap_ys ny)
is consistent with the trajectory a = (s, sq, ...) in M = (§, =, p) iff |a| = |g|
and for all i < |g], (s;, s;,1) € p(A), and for all i < [g, if p € n;; M, 5; F p.

4.9 Lemma Let M = (8, x, p) be an SDPDL structure,

(a) (s, ...y 53) € 7(a) iff there is a straight line graph consistent
with [-."rﬂ, vany Sk] in La.

(b) If M is a also an SDPDL model, then M, soF P iff there is a
(possibly infinite) trajectory in M starting with sy which is consistent with
some straight line path in Lp' This trajectory is unique; i.e. if M, sy F p,
then there is exactly one trajectory in M starting with sg which is consistent
with some straight line path in Lp.

Proof: Part (a) follows by a straightforward induction on the structure of
programs. We outline the steps needed to prove part (b):

(i) Using part (a), show that if the statement holds for the formula p,
then it also holds for <a>p.

(ii) By induction on the structure of programs, show that the statement
holds for —¢a>frue. As usual, the only case that presents any difficulty is
that of —<while p do a od>true. Note that M, s E —<a>rrue iff there is no t
with (s,t) € p(a) iff there is no a-trajectory starting with s. Moreover, it
is easy to show there is no t with (s,t) € p(while p do a od) iff for all k

there is a state t, with (s,t,) € p((p%a)X) or there is a k and state t, with
k k P k

(s,ty) € p[(p?;a]k;p?} and no a-trajectory starting with ty; i.e. tj F “<adfrue.
Using the induction hypothesis it follows that this is true iff there is a
unique trajectory starting with s which is consistent with some straight line

path in (L ?L)® U (L pLy*L =L

~a>true - “<while p do a od>true

(ii) Now we prove (b) by induction on the size of p. It is trivial
if p is primitive or the negation of a primitive predicate. If p is of the
form <a>q the result follows from part (i) by the induction hypothesis. If p
is of the form ——q, since M, s E =g iff M, s F q and L..,,.,':l = Lq, the result
again follows from the induction hypothesis. Finally, if p = =<a>q, we have
M, s B <adq iff (M, s E <a>7q or M, s F <a>true) iff there is an
a-trajectory starting with s consistent with a straight line path in
L<a),,q U Locasrue DY (1), (il) and the induction hypothesis, Then

we are done since L<3>"Ei ULcasirue ™ L"‘(a)q by 47.9. &

13

:.;0 Lemma Given a formula p with g € L]:1 and g = (ng, Ag, ny, Ay, i
en

(a) if p € SDPDLy;, then |g| < |p}, and for j < g, n; = 2, while
Nyg| = {q}, where q is of the form P, =P, or “A>true.

(b) if p € SDPDL;,{, then for j < g, n; < SDPDL; N FL(p) while if
lg] € =, gl c SDPDL; N (FL(p) U {~<Ad>true | A € EG]]. Moreover, if n; is
consistent in the sense that we do not have [q, =g} € n; for some q, then

Injl < Ipl

(Intuitively, given a path g = (ng, Ag, 0y, ...) € Lp, the formulas
contained in n; for j < |g| are those forced to be there due to tests contained
in p. Thus, if p € SDPDL,, the n; will all be empty, while if p is of test

depth i+1, all the formulas in n; will be of depth £ 1)

Proof: We first prove analogous results for programs by induction on
structure, and then prove it for formulas by induction on size. We leave the
details to the reader. Note that we need the condition in (b) that n; is

consistent to deal with such programs as while q do P? od. For then
(la, 7q, P) € Lypite q do P? od> and if |g| is too large we would have

(lgl + |~q| + |P) > |[while q do P? od|. Condition (b) disallows such cases. B

4.11 Definition: Given a model M = (8, =, p) and §" ¢ §, by Remark 2.5
there is a unique model M’ = (§', =", p'), such that for all A € Z,

p(A) N (§" x §) = p'(A), and for all P € &y, x(P) N S' = x'(P). M is said to be
the submodel of M determined by §', and we write M' < M. If M, s E p and
M’ £ M, then M’ is said to ser p at s if M, s E p and for all N with

M' <N <M, N, skEp Thus, if M sets p at s, not only is p satisfied in M,
but p is also satisfied in any submodel N of M which contains M’ as a submodel.

We are now ready to prove Theorem 4.4. In fact, we will prove the
following stronger result, which is the key theorem for the expressiveness
result of section 6.

4.12 Theorem: Suppose M is a tree model, M, sy E py, and Ipgl = n. Then

(a) If py € SDPDLy), there is a subtree M’ of M which sets py at
sg and consists of exactly one branch and that branch has length < n.

(b) If py € SDPDL;, i 2 1 then there is a subtree M’ of M which

14

sets pg at sg and has < n2k-1 nodes at depth k. Thus p is set by a

submodel M’ which has only polynomially many nodes at depth k, where the
degree of the polynomial depends on the test depth of pp.

Note that by Lemma 4.2 any model for py can be converted to a tree
model for py, so Theorem 4.4 follows immediately from Theorem 4.12.

Proof: Suppose pg € SDPDL;. By Lemma 4.%b), there is a trajectory in M
starting at sy consistent with some g € LPD’ where g = (ng, Ag, 0y, Ay, o).

(a) Leti=0. Then, by Lemma 4.10(a), |g| < n. Let (s, ..., s) be
the trajectory consistent with g. Note we have k < n. Let §' = [sB, sivy sk},

and let M’ be the subtree of M determined by §'. Then it follows from Lemma
4.10(a) that the trajectory (s, ..., s) in M is still consistent with g.

Thus, by Lemma 4.9%b), M/, sq F pg. Moreover, the preceding still holds
for any N such that M' < N < M. Thus M’ sets Pp at sg-

(b) We proceed by induction on i. For the base case, assume i = 1.
Let (sq, sy, ...) be the (possibly infinite) trajectory consistent with g. By
Lemma 4.1(b), if g = [n[}, Ag, ny, Ay, ...), each n; ¢ SDPDL; and |nj| <n
From part (a) above, for all j < |g| and all q € n; there is a set Sq, .. with
|Sq1ﬁ < |gl, such that Mq,j sets q at Sps where M_ . £ M is the subtree

L . ek . n) ;
determined by Sq‘]. Let SJ qEnj Sq]} and MJ be the subtree of M determined

by §; Note |SJ{ < qunj ISqdi < EqEnj|q| = |nj[< n (by Lemma 4.10(b)).

Then for all q € nj, Mj, 5 F q since Mq . £ M.. Since each qu
¥ L]

consists of one branch rooted at S of length < |g, Mj is a tree with < n

nodes. Let §' = Uj(g Sj, and M’ be the subtree of M determined by S

Thus we get the following picture, with the tree M, hanging off of s;:

15

The trajectory {sﬂ, S{» S, --) in M’ is still consistent with g, since
for every q € n, M, » 8§ F q (since] "’iq] $M; S < M). Thus M, sy F pp
Clearly the preceding still holds for any N w1th M’ € N, so M’ sets pp at sp-

All that remains is to calculate how many nodes there are of depth k in
M'. Let!? \IJ be the number of nodes in "'vi at depth m, and N the number

of nodes in M’ at depth m. Then

k
[*] Nk = Iﬁ'i} Nk-m.m

However, since each M: has £ n nodes, it follows that Nj,k = 0if
k_.n,and\l kinfurk{n Hence
n 1
Ny < rﬁﬂ] Nk-m,m (where we take Ni,j =0ifi<0)

< n?

Thus, at any depth in the tree M’ there are less than n? nodes. (This
result can be improved. It can be shown that at any depth in M’ there are less
than n nodes, but we do not need this fact here.)

Assume as our inductive hypothesis that if ¢ € SDPDL; (i 2 1) and M
is a tree model with M, s E q then there is a subtree M’' of M which sets q at
s and has < |ql®*ki"! nodes at depth k. Now suppose p € SDPDL;,{, |pl = n,
and M, sgp F p as in the hypothesis of the theorem. We repeat the argument
given above. This time, each n; c SDPDL;, so by the induction hypothesis,
Mq, j has < |q]¢'ki"! nodes at depth k. Thus the number of nodes of ‘vlj
at depth k is

= EqE“j EQIz'kl.l

< Cgen, g2kt

< Cgen, jgp2-ki-1

< n2gi-l (using Lemma 4.10(b))
Ltk My S ot

Since equation (¥) above still holds, we have
k k . k : ;
N. =% N <3 npimi-l <3 kil = p2id
k™ meo k-mm =g R m=1

16

Thus M’ sets p at sy and has < n2ki nodes at depth k. (Again we
note that the n? can be improved to n.) |

For formulas in SDPDL_, we can do even better: we can always find a
finite tree model. We are aiming for the following:

4.13 Theorem: Let p be a satisfiable SDPDLpt formula with |pgl = n. Then
pg is satisfiable in a tree model with < n branches which has depth < P

We first need to prove some more detailed technical properties of
straight line paths.

4.14 Lemma Given a formula p with g € Lp and g = (ny, Ag, ny, Ay, vinke

(a) If p is of the form <ap..<a>q and g = fy...f h, with

feL, fori<m he Lq and Z;. . |fil = N 2 1, then for all i < N
: <

there is a formula p; of the form <A ...<b.>q € FL(p), such that
(2, A, 05,15 Apyps o) € Lpi and g € (ng, Ag, s App ni]-Lpi cL
In fact we have {nD, Ags - Ayt ni]'LAi'Lbi-...-Lbk c Lai-...-Lam.
(Intuitively, for any formula prefaced by ©'s and any g € Ly and for
any node n; occurring on g, we can find another formula p; in FL(p) such that

continuing from node n; with any path in Lp- leaves you with a path in Lp‘
1

Moreover, p; begins with <A so it marks the next step to take along g.)

P

(b) There exists a formula p’ of the form q or <a>q, where q is of the
form P, =P, or —true such that £ p’ » p, Lpf c Lp‘ and g € Lp"

Moreover, if |g| = =, then q is of the form —Xbbtrue.

(c) If p is of the form —<adtrue and |g| = =, then there exists a
formula p" of the form —Xwhile q do b od>true or ~<cXXwhile q do b od>/rue

such that k& p' » p, Lp- c Lp and g € Lp

(d) If p is of the form —<a>true and |g| 2 1, then for all

i L4 lgl, g,r = [HG, A‘D‘ HI, Al, - Ai_lj ni":' € Lp, “"here ﬂ.i* = ni u l_‘fﬁsi)frﬂ'd.

Proof: The proof of (a) proceeds by induction on i, m, and the structure of a;.
If i = 0 and m = 1, there is clearly no problem for a; primitive, or of the
form if r then b else ¢ fi. Nor is there a problem if a; is of the form r?,

"!

17

since then |f{| = 0. If a; = bic there exist g € Ly, gy € L, with f; = 8182-

If |g4| > 0, we are done by the induction hypothesis applied to <bX<c>q) € FLJ(p).
If |g4] = O, suppose gy = (ng). Then [gy] > 0, goh = (ny", Ag, 0y, ...) € L<c)q'
with (ny" U ny") = ny Now we are done by applying the induction hypothesis to
<c>q € FL(p).

Finally, if a is of the form while r do b od, then since |f;] > 0, by
Definition 4.7.5, f; = g8;83, where [g;| = 0, gy € Ly, |gy| > 0, and
83 € Lyhile r do b od- ABin we can suppose g; = (ng), and gg3h =

{“Dni AG, nl, ws) € L{bXWI'I“E rdo b ud)q. Since ig,zl pJ ﬂ, we can appl},'
the induction hypothesis to while r do b od>q € FL(p) and we are done.

There is no problem extending the result by induction to n > 1. For if we
have shown it for i, we have a formula p; of the form <Aby>...<by>q such that

{ﬂ01 A{}, p— Ai_l, ﬂl]'Lpl c Lp, thus [ﬂﬁ, AD‘ cany Hi, Jﬁi.i, H]'L{]]Pl"{bk)q c Lp
and (n; ¢, Aj,q,) € L{bl}"'(bk)¢ Thus we can just repeat the argument
given above for the case i = 0 for p’ = <by>..<by>q € FL(p) to get p;, .

The first half of (b) follows by a straightforward induction on the
structure of programs, using 4.7.2, 4.7.7 - 4.7.9 and 2.9.1, 2.9.5, 2.9.12, and
2.9.13. The second half follows immediately from the first.

Part (c) is proved by a similar induction on the structure of programs,
this time using 4.7.9 - 4.7.11 and 2.9.1, 2.9.4 - 2.9.7.

To prove part (d), we first need to show the following:

(%) if |f] < =, then f € L, iff there is an h € L, with |h| > |f]
such that h = (mg, By, my, By, ..., By, my), and for some i < k we have
f = (mg, By, ..., B_{, my) where my = m, U {<Bptrue|.

Intuitively, (¥) says that the finite length elements of L., .. . are
essentially prefixes of elements in L, (Note that elements in L, are always

of finite length). As usual, (¥) is proved by a straightforward induction on
the structure of programs.

Returning to the proof of (d), if |g] < = the result follows immediately
from (*). If |g| = =, then by part (c), there exists a formula p’ such that
g€ Lp: C Lp, E p = p, and p is of the form —(<c>)Kwhile q do b od>rrue.

18

Hence g € {Lc']{Lq?*Lb)“’. Given i, there exists j > i and k 2 0 such that
: 1.k
(ng, Ags s Ajp 1) € (UL Ly~ It then follows that

(ng, Agy 0y, s Ap gy 1) € LAL L)X Loy € LiLypite o do b od:
where nj“ = n; U {=q}. Thus by (¥),

(g, Ags - Aip 1) € Leos)cwhile g do b od>true € Tp B

4.15 Remark: The formulas p; of Lemma 4.14(a) correspond to the

derivatives of [BHP, Definition 4.4]. It should also be noted that with a
little more work, a more general form of 4.14(a) can be proved. Namely, we can
show that for any formula p, if g € Lp and g = (ng, Ag, 0y, Ay, ...) then
for all i < [g| there is a formula p; of the form <Apq or <Apq such that

g € {nﬂ,, AO, seey J!Li_l, ﬂi}'L = Lp and [E‘, Al‘ ni"‘l’ Ai"'l’ o oy

Pi Py
4,16 Definition: A formula of SDPDLpt is said to be elementary if it

is of the form <a>..<apq, i 2 0, where q is of the form P or
-'<b1>...<bj>P, j 2 0. The notion of straight line path is well-defined for

elementary formulas; Definition 4.7 carries over directly. (Unfortunately, for
general SDPDLPt formulas it does not carry over so well; conjunction causes

problems. It is not clear how to define a straight line path corresponding to
<ASP A (B>Q). Lemmas 4.9 and 4.14 also carry over to elementary formulas with
no change. In addition we have:

4.17 Lemma Letp € SDPDLpt,
(a) p is equivalent to a formula in "disjunctive normal form", i.e. one

which is the disjunction of conjunctions of elementary formulas. Moreover, each

disjunct is the conjunction of at most n elementary formulas, each of size £ n.

with |p| = n.

(b) If p is elementary, and g € Lp with g = (ng, Ag, 0y, Ay, o),
then for all j < |gl, n; < &, while if [g < =, gl € B U [<A>rue | A € Z).

Note that part (b) is analogous to Lemma 4.10. Since the only tests in
SDPDLpt formulas are primitive, the only formulas that appear in n; for j < |g|

]
are primitive.

Proof: Part (a) follows easily by induction on the size of formulas, using
2.9.5, 2.9.10 - 2.9.13. Part (b) is similar to Lemma 4.10, and the proof is
also left to the reader. B

19

Proof of Theorem 4.13: Let M, sq F py. By Lemma 4.17(a), p is equivalent to
a 'fc-rmuia py which is the disjunction of conjunctions of elementary formulas.
Thus M, s5 E q; A ... A qy, where () A ... A q}) is one of the disjuncts of py.
Note F (q; A ... A qy) + py, and by Lemma 4.17(a), k < n and for all j <k,
[qu < n. By Lemma 4.%b) (which, by the remark above, applies to elementary
formulas), for each qj there is a trajectory in M starting with s consistent

with some gj € Lq_. We could now show, just as in Theorem 4.12, that the

subtree of M determined by the union of the states in these trajectories is
also a model for q; A ... A gy, and hence for py. This model has < n branches,

but they are not necessarily be finite. To show that we can actually construct

a finite model we use Lemmas 4.14(b) and (d). Lemma 4.14(b) says that if there
is an infinite branch, it must essentially be due to a formula of the form
—a>true; Lemma 4.14(d) says that we can truncate this branch and still get a
model that satisfies this formula. In more detail we proceed as follows:

Note that by Lemma 4.14(b), there is a formula r; of the form q or <adq,

where q is of the form P, =P or —Xb>true such that E r* 4 L €L, and

8 € L.. If |gj| = =, then q is of the form —true. So gj = fjhj* where

hj € Lot rrue a9 fj €L, or fj = (#); in either case ifj| ¢ =. We now want
to truncate the infinite hj’s without affecting the finite paths. To this end,
let N = max({lgf | lgjl < =} Y ilfj | lgjl = <]). Thus, if [gj = = and g;

= (ng, Ag, ny, Ay, -.), then by 4.14(d) gj' = (ngy Ags Ny s Ap_p NN

€ L. where ny' = ny U {CA\prruef. Truncate the infinite trajectories

consistent with those 8 such that [gj{ = = to finite trajectories of length N.

Let §' be the union of the states in the truncated trajectories, and let M’ be
the subtree of M determined by §'. Since, by Lemma 4.17(b), the only formulas
mentioned at the nodes of gj or gy are in &4 or of the form —Ad>frue, it is easy

to see that for all j < k there is a trajectory in M’ beginning with sy which is
consistent with 8 (or 8 if 8 is infinite). Thus M, sy Eryp A .. A,
so we also get M, sp F py

M’ is a finite tree model with £ n branches, but we are still not done
since we require a model whose branches have length < 2P, We will get this
essentially by identifying states in M which agree on all subformulas of py

First note that by systematically replacing subformulas of py of the
form (p A @) by <pPq, we can find a formula p, of SDPDL such that lpyl = n
and E Pg = Py Now we define an equivalence relation £ between states in

20

M’ via s = s" iff for all q € FL(py), M, s k q iff M', s' E q. There

are < 2n formulas in FL(p,), but at most 21 distinct equivalence classes.

To see this, take the set G as in Theorem 3.2. Since FL(py) € G U G, it
follows that s = s" iff for all g € G, M, s E q iff M', s’ E q. And since

|G] € n, the result follows. Now suppose (sgs +») is @ branch of length > 20,
Then there must be two states s 55 on the branch with 5; a descendant of s;
and 5; S je Let M" = (8", =", p") be the structure whose graph is obtained
from that of M’ by identifying s; and 5 and eliminating all the descendants of
s; which are not descendants of S where x" is defined so that

(*) for q € FL(p), M", s F q iff M,sF q.

We get the following picture:

] %0 %
rd \'LI:\.\ ‘! :)
L .
5
] - ‘V
This section : = ;
is el_iminated \L :
SD.
Ml’ MII

We claim that M" is a tableau for py. All the tableau conditions except

3.4.13 follow immediately from (*¥). Now suppose M", s E <while p do a od>q.
In M’ there is a trajectory (tg «-y ty) € r(while p do a od) such that t5 = s

and M, t; E q. If this trajectory does not pass through s;, then it also

exists in M" and we are done, since clearly (ty,t;) € p"(while p do a od).
Otherwise, suppose g € LIq is consistent with a trajectory in M’ beginning with s.
This trajectory starts with (tgs ---s ty), and hence by assumption it passes

through s;. Suppose s; corresponds to node n, in g. Then by Lemma 4.14(a)
there is a formula q, € FL(<while p do a od>q) < FL(p,) such that q, is of the

21

form chm}(blh...(hh}q, where (ng, Ag, oy Ap 1o ﬂm}'LAm-Lbl-...-th c

Ly hile p do a od’ and (2, A, n. 1,) € Lqm. Again, in words, q,,, has the

property that continuing from (tg, ..., t}) with any path in Lq gives us a
m

path in L‘i starting with t,
Thus M', s; E q,,, and since s; = 5jp we also have M, 5; F Gy Since
M' and M" are isomorphic below s, there is a trajectory in M' and M" consistent
with some g’ € Ly "Ly, Ly, such that if t is the last state in the trajectory,
m “l m

M", t E q. But (g Ags vy Aoy nm]'g' € Luhile p do a od’ thus there is a
trajectory in M" starting with s and ending with t consistent with some path in
Lwhile p do a od: By Lemma 4.%a), it follows that (s,t) € p"(while p do a od),
giving us our result.

By Lemma 3.5 we can convert M" to a model with a graph isomorphic to
that of M", (In fact, using the stronger form of Lemma 4.14(a) mentioned in
Remark 4.15, it can be shown that M" itself is actually a model). And by
repeating the procedure described above a finite number of times, we can find a

model for p,, and hence py, with n branches all of length < 27, W

We cannot in general hope to find finite tree models for all
satisfiable formulas of SDPDL. Consider, for example, the SDPDL; formula

Kwhile <Adrrue do A oddrrue. It is easily seen to be satisfiable in the
following tree model, where s; <Adtrue for all i:

50

El
{/2

It is also easy to see that it is not satisfiable in any finite tree
model exactly because each s; F <Adtrue. However, we can get a finite

representation of the infinite tree by allowing backedges. This motivates the
following

22

4.18 Definition: A treelike model (for p) is a model (for p) whose graph

is a tree with backedges only to ancestors and no nesting or crossing of
backedges; i.e. each backedge induces a unique cycle. More precisely, if i, j,
k, and | are nodes on the graph of a treelike model and there is a backedge
from j to i and from k to I, then (i) i < j (where "¢" denotes ancestor of) and
(ii) if (i,y) # (k,) then we do not have i, k < j, l. Thus the graph on the

left is the graph of a treelike model, while the other three are not.

4.19 Theorem: If PO is a satisfiable formula of SDPDL;, then Py is

satisfiable in a treelike model of depth < in2ml 4

Before we can prove Theorem 4.19 we need one more definition, which will
also be crucial to the algorithm presented in section 3.

4.20 Definition: Let F = {qy, ..., q;} be a finite set of formulas. Then the

weight of F, written ||F|, is a pair (i,j), where i is the depth of the formula
in F of greatest depth, and j is the number of formulas in F of depth i. We
put an ordering on weights via

(i) < (ihj) iff i<i or(i=i andj<j)

Proof of Theorem 4.19: Let po € SDPDL;. It is easy to see from Definition 3.1
that FL(py) < SDPDL,. We show by induction on the weight of F ¢ FLS{pG) that
if F={qq, ..., q;} and ||| = (j,k), then if q A ... A q, is satisfiable, it

is satisfiable at the root of a treelike model of depth < IIjrtZ“+1 + (k-1)27 + n).
Since py is satisfiable and [[{ppl]l = (i,1), this will give us the desired result.

In the case [|F[| = (0,k), we have F ¢ FL(py) N SDPDL(). It is easy to
check that every element in FL(py M SDPDL has size < n, so it follows

immediately from Theorem 4.12(a) that there is a tree model of depth < n
satisfying the conjunction of the formulas in F.

In the general case, suppose ||F0|| = (j,k), where FO - {ays «s 9yphr and

23

M is a tree model such that M, sop F a4y A ... Agy. Using M as an oracle, we

will construct a treelike tableau M’ of the required depth such that all the
formulas in sq are true at the root. The first step is to "massage" all the

formulas of FO to the "right" form, either <A>r or 7<A>r. We do this in
stages: F8, F?, F?, R . Fg = FO and let

FE"] = zqat qﬂl q € F{x}l qa'l [{ﬁ £ F?: for ¥ < I} U
fal q € FE' and q is of the form <A>r or —<A>r},
where q,, qg are defined by the following rules. (Note that M is needed in

rules 4, 5, 8, 9, and 10 below. Roughly speaking, q, corresponds to the
tests in a program, while dg corresponds to the consequence of the test.)

1. If q is of the form <A>r, <Adr, P, or 7P, g = 4 = 4.

2. If q is of the form ==r, g, = qg = r.

3. If q if of the form <ajb>r, q,, = dg = <axbdr.

4, If q is of the form <if p then a else b fi>r and M, s E p, then
Qe = P, Qg = <@r. If M, s E 7p, then q, = ~p, dg = <bdr.

5. If q is of the form <while p do a od>r, and M, s F p, then q, = p,
qg = <aXwhile p do a od>r. If M, s F —p, then q, = 7p, qg = T.

6. If q is of the form <p®r, then g = p, qg = I.

T If q is of the form —a;b>r, then Qe = 98 = —Kaxbor.

8. If q is of the form —if p then a else b fi>r and M, s kE p, then
q, = p and g = ~ar. If M, s F —p, then g, = 7p, qg = —bor.

9. If q is of the form —<while p do a od>r and M, s F p, then g, = p,

qg = <axwhile p do a od>r. If M, s F ~p, then q, = ~p, qg = ~r.
10. If q = ~p?r and M, s k= p, then q, = qg = 7. 1f M, s = ~p, then

qaﬁqﬂ=_'p*

We require a technical sublemma to verify that we do indeed massage all
the formulas to the intended form. Part 7 of the sublemma will also be useful
at later stages of the construction.

4.21 Sublemma

1. For all x, FE c FL(pp) (i.e. the massaging process keeps us in FL(pp).
2. For allxandquFE, M, sy F q.

3. 1EQ 0 < 1EY.

24

4. For some x; < n, all the formulas in FEG are of the intended form
<ADT or AT

5. If qg = q,, then qu.‘s c Lq; if qg 7 q,, {{%}}.Lqﬂ c Li-'t' (Roughly, if
there is no test, then E dg * q, SO L"-lﬁ - Lflﬂ' If there is a test, then
any path in LQ3 where the test holds at the first node is a path in an.l

6. Define 2 ("leads to") to be the least reflexive and transitive relation on

UIFE such that q » qg for all q € UIFE. Then if q # r, there is

aGc UxF';) such that {(G)}'L, < Lq. (G is a collection of tests. If
they all hold, and we append to them a path in L, we get a path in Lq}-}

7. If pe u, F’}? of the form <a>r, then either p ® r or there exists r’ of
the form <AXb>...<by>r such that p 3 r.

Proof: Parts 1, 2, and 5 are immediate from rules 1-10 above. For 3, note
that qg has depth less than or equal to that of q, and if q, ¥ qg,

then q, has depth less than that of q. The result follows immediately.
To prove 4, note that if some formula of FE is not of the form <A>r or ~(A>r,
then it must be the case that the sets F8 and {Fg - F?_I], 0<y<x

are non-empty and pairwise disjoint. Since UIFE is a consistent subset of
FLpg) (i.e. does not contain a formula and its negation), by the comments

made in the proof of Theorem 4.13 we have iUngl < n. Thus x must be less than n,

and in particular all the formulas in FO have the desired form. Part 6

ID

follows from the observation that {(q,r)] q, r € UxFE and for some G ¢ UXFE,
{(GYL, < LQE is a reflexive transitive relation, which, from part 5, contains

all pairs (q,q g):

There are two possibilities in part 7. If the unique a-trajectory starting at
50 in M has length 0, we show by a straightforward induction on the structure

of a that p » r. (Note we know there is an a-trajectory starting at 50 since
sg F <@r.) And if the a-trajectory has length > 0, we show that an appropriate

r' exists, again by induction on the structure of A. It should be noted that
the formula r’ corresponds exactly to the formula pp of Lemma 4.14(a). W

We assume for ease of exposition that the formula py mentions only two
primitive programs, say A; and A,. It will be clear that the procedure is
not affected by the presence of more primitive programs. After we are done

25

with the procedure above, from Lemma 4.21.4 it follows that we have "massaged"
all the formulas into the form <Apror Apr, 1= 1, 2. Once we have the

formulas in this form, we know which formulas must be true at the states which
are successors of so Thus for i=1, 2, let

G;=1lq€ FE{}F q is of the form <Apr or ~<ApDr} and

G;" = {r | <Apr € Gj} U {~r | <Apr € G; and for some 1’ <ADr € G.
We call G;' the A;-successor of FO. Clearly G;' is made up of formulas which
must be true at the Aj-successor of s in M, and thus the conjunction of the

formulas in Gi' is satisfiable. Note that if all the formulas in Gi are of the
form KADT, then Gi* = #. We extend the relation » of 4.21.6 so that for <Apr

in FED’ <Apr 3 rin G similarly, if G ¥ 2, ~A»r in F’?{l » —rin G;.

Using Lemma 4.21.3 to obtain the second inequality, we can easily check

IG;" U Gyl € lIGy Y Gy = HF,?UH < IEQI = IFY.

Thus we have either |G, [IG,]] < HFOIL or, without loss of generality,
|iG1'|I = ||F0|| and [|G,]| < ||F{)|| (since it is easy to see that we cannot have
IG 1 = 1G4 = IF%. xf G = IFO, tet F! = G, and Gl - G,'. Repeat

the above procedure with Fl in place of O, Eventually one of two things
will happer. Either we have a finite sequence of subsets of FL(p(), say

FO, ..., Fm, Gl .., g™, with FO) = [FY = ... = [[F™, and |G| < F1]),
such that borh successors of F™ have weight less than [F™| = [[FY) (note
that [IG, IG5l < }|F0}| is a special case of this) or we get infinite

sequences FU, Fl, ... and G!, G2, ... with |F9) = |F}] = ... and [|GI| < [[F"]].
In either case there corresponds a trajectory (sgs S15 ---) in M such that for

all q € Fi, M, s; Fq. Andif G ¢ &, there is a state u; which is a

successor of s; such that for all q € Gi, M, v E g

In the first case we construct a tableau M’ as follows. The "backbone"
of M’ are the states tgs --» ty, which correspond to FU, ey FI. j e, the

formulas true at t; are exactly those in UxF}r Let G™1 and GM*2 be

the successors of F™. Each of Gl ..., G™2 has lower weight than FO, so,
by the induction hypothesis, if GY ¥ # there is a-treelike model MY of the

26

appropriate depth such that all the formulas of GY are true at its root. By
attaching these models at the appropriate places we get this picture for M":

to l\],\,‘ i

ok
e Mm+2
e {4 D

Of course, the edges not contained in Ml,_..‘, M™#2 are labelled by
either A} or A,, depending on whether F*l or G*l is an Ag-or

Az—successur of Fl.

To show that M’ is indeed a tableau, the only condition that requircs
checking is 3.4.13. 1In fact, we only need show it in the case M’,

<while p do a od>q for i £ m (the other possibilities are covered b:. the fact
that ML, ..., M™*2 are models). Let (Sgy +++» Syy) be the trajectory in M
cﬂrrespﬂndmg to (tq, ..., t). Then if M’ t; F <while p do a od>q, we

must also have M, s; k <while p do a od>q. Thus there is a while p do a od-
trajectory in M starting with s; and ending with a state t' such that M, t' E q.
Either this trajectory is completely contained within (Sgs «es Syp)y OF there

=+ b
is a state s;; where it branches away as shown in the figure below:

l 0
trajectory for

/‘\L s; F <while p do a od>q
while p do a od

}-E:?}‘“:}\thq
|

.Sm

27

In the former case we can easily check the corresponding trajectory in
M’ is a while p do a od trajectory whose final state satisfies q. In the latter,
combining the ideas of Lemmas 4.14(a) and 4.21.7, we can show there is a formula

rin Fl' of the form <A>{al> <ap>q (h 2 0) such that <while p do a>q in Fi »

rin F and (n;, By, ..oy By_g, mp)L_ € (where n; ¢ FJ

Lewhile p do a od>q j .
fori £ j<1i and Bj = AI or A, is the appropriate program joining Fl and Fi*l),

Then <ap...<apdq € Gi', and since the root of M' models all the formulas in
G, we are done. Essentially what has happened is that there is a formula r’
(= <ay>...<ap>q) true at a node which in not on the backbone, but is the

child of a node on the backbone, such that if r' is satisfied at this node,
<while p do a od>q will be satisfied at the root. (In the terminology of
[BHP], if <while p do a od>q is not fulfilled along (ty, ..., t,;), then there

o | ln
is a derivative of this formula in some GIJ, which will be fulfilled in M'.)

By Lemma 3.5, M' can be converted to a treelike model. By the induction
hypothesis each M has depth < jn2™*1 . {k 2)2% + n, so the treelike model
derived from M has depth < m + 1 + jn2™1 « (k-2)2" + n. If m < 20, the depth
is <]nZ“"1 + (k-1)2" + n as required. But the proof of Theorem 4.17 shows
that we can assume without loss of generality that m is indeed < 2.

Otherwise we can use the "cut and paste” argument of Theorem 4.13: if m 2 21
we will have i < i" < m such that t; = t;, and by identifying t; and t.,

and eliminating all the descendants of t; which are not descendants of ty we

still get a model for which all the formulas of 5o are true at the root. We

can repeat this procedure until we get a model of the required depth,

Now we must deal with the second case. Here we have an infinite
sequence F0 Fl ‘.F2 ., all with the same weight. Note that it follows that
no formula in G! can be of depth = j (since |G! U Fi| < [F). Thus for

all i, iIG‘i] < (j-1, n-1). Just as above, we can construct a treelike tableau,
whose backbone will be the infinite sequence to t v where the formulas

true at t; will be exactly those in UxF; Then if G*! # 2, we append to t; the

model Mi*l, at whose root all the formulas in G! are true. As in Theorem 4.17,
we can define an equivalence relation among the t; so that t; =t/ exactly if

Ungf UtFi. Since there are only finitely many equivalence classes, there must

be at least one class with infinitely many representatives. Choose such an
equivalence class and let t; be its first representative. The basic idea

'0

28

is that we will convert the infinite tableau to a finite one by identifying
equivalent states, but we must be a little careful.

Let qy, ..., q,,, be all the formulas true at tiﬂ of the form <AXa >...<ap>q,

where q is not of the form r. Turning our attention to q; for the moment, we
argue just as for <while p do a od>q above that there is a state t; such that

{tiﬂ, sl till € r{A;al;...,ah] and M/, fil, E g or the f{A;al;...;ah] trajectory in M

starting at siﬂ branches away from [sﬂ, S{» S9,) at s; . Similarly for q, ..., q
we can find states t s t

m

i - We can assume without loss of generality that
m

if iy £ ... S Choose N > i such that tiD =ty We get a new treelike tableau
M" by identifying tiﬂ and ty, and eliminating all the states in M’ below tN

N = 0

b
A tiohqlh.uhqm

t; [qq is fulfilled here or its satisfying

Fa
-

trajectory branches off here

MN“ I

29

To prove that M" is a tableau, just as above we must only check 3.4.13
in the case M", t; k <while p do a od>q. The only problem arises if the
while p do a od-trajectory in M’ starting at t; goes through ty. But in this
case, just as above there will be a formula r in ty; of the form <AXap>...<apd>q

such that <while p do a od>q in Fi 3 rin FN and (n;, B, ..., B,_{, n\)'L,

€ Lewhile p do a od>q- But ty; = tiﬂ, so that M’, tiﬂ E CAXap..<ap>q.

Our construction guarantees there will be an Ajay;...;ap-trajectory starting
at tiu which ends in a state satisfying q, so we are done.

Finally we must calculate the depth of M". Since ﬂGiIi £ (51, n-1) by
the induction assumption the depth of M" is < N + (F-Dn2™1 4+ (n-2)2" + n.
But note that by applying the techniques of Theorem 4.17 to identify equivalent
- states we can assume without loss of generality that ig £ 2, that for 1 < j < m

we have iy - iy < 27, and that N - i, < 2M Thus we can take N < (m+2)2™.
But there are at most n formulas in FLp) of the form <AXap>...<ap>q, so m

< n. Hence N £ (n+2)2", and the depth of M" is < jnZ“+1 +n 1
5. SDPDL is Polynomial Space Complete

5.1 Theorem: There is a deterministic algorithm for deciding if an SDPDL
formula is satisfiable which runs in polynomial space.

Proof: Let p be an SDPDL formula, |p| = n. For reasons of clarity we will
initially present an algorithm which is not optimal with respect to space, but
nevertheless runs in polynomial space. We will make some remarks on improving
the algorithm at the end of the proof.

The algorithm essentially tries to construct the treelike model of
Theorem 4.19 without the benefit of the tree model as an oracle. Thus it needs
to nondeterministically guess what the oracle would have said. Note that we
will need Theorem 4.19, which says that such a model exists iff p is
satisfiable, to establish the correctness of the algorithm. Finally, we use
the result of Savitch (cf. [Sav]) which allows us to eliminate nondeterminism
and still have a polynomial space algorithm.

At all times the algorithm will be working on a subset of formulas of
FL(p) analogous to the Fg of Theorem 4.19. There will also be polynomially

many other such subsets on a pushdown stack, waiting their turn to be worked on.
As in Theorem 4.19, these subsets represent states of the tableau. Since we

30

can work on only one branch of the tableau at a given time, the sets on the
stack represent formulas for which the tableau conditions will be satisfied
along a branch of the tableau other than the one on which we are currently

working. With each subset is associated a counter (a number < 220*1) and
(possibly) one other subset which we call the backpointer. This second subset

is one which must have the same weight (in the sense of Definition 4.20) as the
first subset. It corresponds to the state tiﬂ in the second half of the

proof of Theorem 4.19; i.e. the state to which a backedge (if there is one)
will go. (Remember that we are constructing a treelike tableau). Initially
we work on {p}, with the counter set to 0; the stack is empty.

Suppose at a certain time the algorithm is working on the set
{4y - Qi) € FL{p) with the counter set to N < 22041 call this set F8 and

apply rules 1-10 of Theorem 4.21 to get F?, F?, ... Of course rules 4, 5, 8, 9,

and 10 required the oracle M, so we replace them by 4', §', 8', ¢, and 10’
which guess what M would have said. For example, 4’ is:

if q is of the form <if p then a else b fi>r then nondererministically
set g, = p, g = @r or q,=7p dg = {br.

It is easy to check that parts 1, 3, 4, 5, and 6 of Sublemma 4.21 still hold,
so that in particular we have that for some xg < n, all the formulas in

FED are of the form <A> or =<A>r. Continue applying the rules until

this is the case. Then

1. If for some formula r, {r,7r} UIF?, terminate with "p is unsatisfiable"
(the particular sequences of choices made by the algorithm was bad).

2. For » defined as in 4.21.6, check that 4.21.7 holds. That is, for q € U_FO

of the form <a>r, check that either q # r or there exists r’ of the form
CAXb>...r such that ¢ » r'. If not, terminate with "unsatisfiable".

Let us again assume for ease of exposition that the only primitive
programs mentioned in p are Ay and A,. We then form the sets G{' and Gy’

just as in Theorem 4.19. If there is no backpointer associated with the
original set F8, we proceed as follows,

3. If both Gy’ and G,' are empty, then we work on the top element in the stack.

If the stack is empty, we have succeeded in finding a treelike tableau for p;
terminate and return "satisfiable".

3

4. If only one of G’ and G," is empty, we work on the non-empty one next

with the counter set to N + 1. If they are both nonempty, we work on the one
with lower weight with the counter set to N + 1, while the one with higher
weight goes on the stack, again with its counter set to N + 1. (If G;" and G5’

have the same weight, then we work on Gy' with counter set to N + 1.) If the set
with higher weight has weight equal IIFHIL we can (nondeterministically) choose

to associate FH with it as a backpointer. (Note that by the inequalities of
Theorem 4.19, it cannot be the case that both sets have weight equal |1F8||.}

In any case, if N + 1 > 220+1 e terminate with "unsatisfiable”,

(Note that in Theorem 4.19 we used as an inductive hypothesis that
satisfiable sets of lower weight had an appropriate treelike model. Here we
actually verify that the sets of lower weight have models before dealing with
the sets of higher weight, which get put on the stack.)

If there is a backpointer H associated with FS, we also assume as an
inductive hypothesis that some of the elements in this set have been "checked",
while the ones that have not been checked which are of the form <AXa 1>--<ap>q
are associated with a formula of the form <by..<b.>q (m 2 0) in FS. As
mentioned above, H corresponds to the set tin in Theorem 4.19. There we

had to find, for each formula of the form <AXap..<ap>q in tiD, a state tj

where the formula is either satisfied or its satisfying trajectory involves
branches off to a state of lower weight. The formulas for which such a state
has been found are the ones that are checked off. Once all the formulas of the
form <AXa>...<ap>q in the associated set have been checked off, we can look

for a state like ty; which is equivalent to ti{)' so we can branch back. We

proceed as follows:

5. We know that at most one of G’ or Gz* has weight equal to that of Fg. If
neither does, terminate with "unsatisfiable". Otherwise, suppose without loss

of generality that |G| = ||F8]|. We then associate H with G{', checking off

all the formulas that were checked off before. We check off other formulas as
follows. Suppose <AXap>..<ap>q has not been checked off. Thus it is

associated with a formula of the form <by>...q in FS. By the check made in
step 2 above, we know that either <bp...<b,>q » r where r is q or of the form
CAPLep..Cepd>q, 1= 1,2 If ris g or begins with <Ay, we check off the
formula CAXap..Capq. Otherwise we associate it <cp..<cp>q € Gy

32

6. If G;" = H and all the formulas in H have been checked off, we set Gy to
the empty set, forget about H, and proceed as in steps 3 and 4. (Essentially

we have branched back, so we do not have to worry about satisfying this set of
formulas any more. We can continue working on the other sets in the stack.) If
Gy" ¥ H and if G,' ¥ #, we work on G,' with counter set to N + 1, putting
(G, N « 1, H) on the stack, while if G,' = #, we work on (G, N + 1, H. Of

course, if N + 1) 22”*1 we terminate with "unsatisfiable".

Since the procedure is nondeterministic, we take p to be satisfiable
iff there is some sequence of choices which returns "p is satisfiable".

We must now show that the above algorithm is correct. To see that it
terminates for all possible sequences of choices, suppose in the general case
that there are k primitive programs mentioned in p. Then it is easy to show by
induction on i that the program works on a set whose counter is set to i at

most k! times. Since the counter is always < 220! for any sequence of

: " n+
guesses the algorithm terminates after at most k2 steps (where a "step"
is the whole process outlined above).

If a sequence of choices made by the algorithm returns "p is satisfiable",
the proof of Theorem 4.19 shows that we have indeed constructed a treelike

tableau for p, so p really is satisfiable. Conversely, if p € SDPDL; is satisfiable,

we know by Theorem 4.19 there is a treelike tableau for p of depth in2™1 . g

¢ 2201 (since i < n). Thus if the algorithm makes guesses corresponding to
the state of affairs on this tableau, it will output "p is satisfiable".

Finally, we must check that the algorithm works in polynomial space.
To see this, let j, be the number of formulas in FL(p) of depth x. Note
Z, ix £ 2n. The only weights attainable by subsets of FL (p) are those of
the form (x,y) where j, 2 1 and y < j.. Thus there are at most 2n weights
attainable by subsets of FL(p). Then it is easy to prove that if at a given
stage in the algorithm we are working on a set with weight (x,y) which is the
mth highest attainable weight, then there are at most m(k-1) triple of (set,
counter, (backpointer)) on the stack (where k is, as above, the number of
primitive programs appearing in p). The proof depends crucially on the fact
that we always work on the set of lowest weight possible. If any triples are
added to the stack at the end of a step (and at most k-1 triples can be added
at any step), then at the next step we must be working on a set of lower
weight. Since k < n, and m £ 2n, there are always < 2n? triples on the
stack. Thus the algorithm only uses polynomial space.

33

We now take a closer look at exactly how much space is required. First
of all note that instead of putting formulas on the stack, we can instead store
pointers to formulas in FL{(p). Moreover, it is easy to rework the argument

given in the previous paragraph to show that when we are working on a set with
the m'h highest attainable weight, there will be at most m groups of 2n

pointers on the stack. (Although k-1 triples can be added to the stack at the
end of any step, the proof shows that these triples involve < 2n formulas, and
hence < 2n pointers.) Since each pointer uses Olog(n)) space, the algorithm

runs in nondeterministic space {.'J'[nz-ﬂog(n}]. By Savitch’s Theorem, it runs
in deterministic space O{n%(log(n))?). &

5.2 Remarks: 1. Essentially, the algorithm attempts to construct a treelike
model for p in a depth-first manner. Every time there is a choice of paths to
follow, we follow one of them and put the other sons of the node on the stack.
Since we want to work in polynomial space we must be careful that the stack does
not grow too large. we ensure this by following the path defined by the son of
least weight. but the use of weights was not essential in the algorithm because

of the following general fact: we can do a depth-first search of a tree with n
nodes and outdegree k with a stack of height < k-logy(n). (of course, the

search will not necessarily proceed down the leftmost path; we must guess the
appropriate path at all times.) the proof follows by an induction on the

height of the tree. since the treelike model which the algorithm tries to
construct has depth < 227 and polynomially many nodes at each depth, the result
follows. however, the use of weights does eliminate the nondeterminism at this
stage and gives a slightly sharper upper bound on the amount of space required.

2. A similar theorem holds for SIIH'P[}lLF't formulas, but in this case the proof
is easier since by Theorem 4.13 SDPDL { formulas have finite tree models.

This means we do not have to take care of the possibility that a path might
branch back to an ancestor, and we do not need backpointers.

3. Polynomial space is equivalent to polynomial parallel time for a large

class of parallel machine models (including parallel RAMS, vector machines,
alternating machines (cf. [CKS, FW, G]). Thus our decision procedure can
perhaps be implemented on such a machine to run in polynomial time, and hence
might be usable for automatically verifying that real world programs written in

a deterministic well-structured language are correct.

4. A Ianov scheme is an uninterpreted deterministic program scheme with
only one program variable (cf. [Gr]). Two schemes are strongly equivalent if,
given any interpretation of the symbols in the schemes, they both compute the
same result or they both fail to halt. As noted in [FL], given a Ianov scheme
a we can effectively construct a PDL program, say a’, such that a and b are
strongly equivalent Ianov schemes iff <a»Q = <b»Q, where Q does not appear

34

in either a" or b". But we can easily show that without loss of generality, a’
and b’ are SDI"DLPt programs. Thus we have a polynomial space procedure for
deciding strong equivalence of Ianov schemes.

5.3 Theorem: The decision problem for SDPDLPF and hence SDPDL, is
polynomial space hard.

Proof: We use ideas are similar to those used in Cook’s proof that SAT is

NP-hard; (cf. [HU, pp. 325-327]). Given L € PSPACE, we can assume without

loss of generality (cf. [HU, p. p.289]) that L is accepted by a one-tape

deterministic Turing Machine M which, for some polynomial p, runs in space < pln)

on inputs of length n. We will construct an SDPDL ; formula f{x) which simulates the
computation of M on input x, where f(x) is computable in polynomial time (and

log space) from x. In particular f{x) will be satisfiable iff M accepts input x.

Suppose M has state space Q and uses tape alphabet I'. We can describe
the state of M at a given time by an ID (instantaneous description) of exactly
p{n) symbols in I'" = (Q x ') UT. To simulate this in SDPDLN we use primitive

predicates P ., P_. where 1 <i < p(n) and w ranges over I'. The formula

fx) will involve only one atomic program symbol, A, so if fix) is satisfiable
the satisfying model must look like:

A A A A

3. A
r r i

7

*0] 2 %

The intuition is that Pwi will be true at state sj iff, when we run M,
the ith position on the tape ‘at time j contains symbol w. (If w=(q,z2) € Q x I
then the head of M is also at the ith position reading symbol z and the machine
is in state q). Moreover P_. is true at state s, iff P is true at state s; .

J+
Thus the P_; keep track of the values of the P at the previous time.

b
-

We can assume without loss of generality that M has only one accepting
state, q,... Let the formula accepr be:

Vwel{gye 4T, 1<ipin) Pwi
The formula flx) will have to state the following:
1. The only Pwi*s true at sy are those that describe the initial ID.
2. In every state S the P_.'s that are true in s; correspond to a

string of symbols, in that for all i there is a unique w € I'" such
that P_. is true.

35

3. Pwi is true at 5 iff P;,i is true at sj+1.

4. The ID true at state s. follows from the one true at i1 (for j 2 1)
by the indicated move of M.

We take f{x) to be the conjunction of 4 the four formulas fllx}, fZ{x},
f3(x), and f4(x), which enforce conditions 1 through 4 respectively. Let

X = XgeXp 1> where X; € I, let g0 be the initial state of M, and let
b € I" denote the blank symbol.

Let string be the formula which says that the P_.'s correspond to a
string of symbols:

Mgigpin) Vwer” Pyi A (Aygzy Py
Then fy(x) is

P{Q{},XGI A le N A Pxn_,l*n_l A [hn£i£ﬁn} Phl} A .fffirﬂ'g

and fz'[x} is the formula
<while —accept do (A;string?) od>true.
Let f3(x) be the formula

<while —accept do (if P, then (AP..7) else (AP, .7) fi) od>irue

Clearly this enforces condition 3.

To see how to write the fourth formula, note that the symbol in the

ith position of a given ID is completely determined by the symbols appearing
in positions i-1, 1, 1+1 in the previous ID. We can therefore easily (again,

cf. [HU, p.327]) specify a predicate Qwy,W9,Wq,W,) that is true iff symbol wy
could appear in position i of some ID given that Wi, Wq, and wq appear in
positions i = 1, i, i+]1 of the previous, ID. (If i = 1 we-take wy = b; if i =

p{n) we take wq = b). Using the Pwi’s (which keep track of what happened

at the previous ID). We can now express the formula consistent:

M<igpn) Viu,v,y, 2] Quyv,y,2) Pui-1 A Pyi A Py A Py
Then fy(x) is the formula

<while —accepr do (A;consisten?) od>irue.

36

Clearly if x € L, then f{x) is satisfied in a model such as the one
above, where there are k states corresponding to the k steps of the accepting
computation by M. Conversely, if M, sp F flx) then the graph corresponding
to M looks like the one pictured above, except that it may be an infinite
straight line. Let k be the least number such that M, sy F accept. Then it

is easy to check that M accepts x in k steps, where M, 5 E Py, iff wis

in the ith position-of the tape at time j. W

From Theorems 5.1 and 5.3 and the fact that p is valid iff —p is not
satisfiable we immediately obtain

5.4 Corollary: The satisfiability and validity problems for SDPDL and
SDPDLpt are polynomial space complete.

5.5 Remark: In [BHP] it was already shown that every satisfiable DPDL (and

hence SDPDL) formula has a model of size < 4™n2. The question arises if we

can do any better for SDPDL formulas. The answer is essentially no, since by

using the techniques of Theorem 5.3 we can encode the computation of a Turing
machine which counts up to 2" and then halts into an SDPDL formula. This formula
will have size O(n), and the smallest model that satisfies it will have size 20,

6. Expressiveness

6.1 Definition: For two logical languages £ and .# we say s at least as
expressive as 4, and write /"< .4 iff, for every formula p € _7 there is a
formula p’ € .#'such that p = p’. .#and _#are said to be equally
expressive, written /"= & if /< #and #< £ _Lis less expressive than
A, written < & if £< #and L# &

Berman, Peterson, and Paterson show (in [B], [BP], and [P]) that for
all i 2 0, PDL; < PDL;,;. In fact, these proofs also show (SIDPDL; < (SDPDL;, ;.

We use our structure theorem (Theorem 4.12) to rederive these results and
extend them to show that SDPDLi ¢ DPDLE and SDPDL < DPDL.

6.2 Remark: Meyer and Winklmann show in [MW] that SEI]E"[}‘Lpt < DPDLpt,
by showing that the DPDLFt formula <A*X{AX]P is not equivalent to any SDPDL

formula. Their proof does not extend to full SDPDL. It is easy to see that
for any formula p,

pt

E <A*>p = <while —p do A od>rrue, and hence
E [A*]p = [while p do A od]false.

From these remarks, it is easy to see that CA*[AX]P is equivalent to an
SDPDL formula. However we still get

37
6.3 Theorem: For all i 2 (, SDPDL; < SDPDL;,, and SDPDL < DPDL.

Proof: Let Iy = {A,B], and let M be a model whose graph is a full binary
tree rooted at 50 s illustrated below:

AN

Let the formula py be frue, and let p;,; be
[while <AXB>p; do A od] false.

Clearly p; has depth i and M, t E p; for all i and all states t. Moreover, an
easy induction shows that there is a constant ¢ such that if N is any subtree

of M which sets Pj,1 @t sg (as in Theorem 4.12), then N has greater than ci'ki
nodes at depth i. Thus, by Theorem 4.12, p;,1 is not equivalent to any SDPDL;
formula.

Now consider the DP’DLPt formula p = [(AUB)*](<A>rrue A trud). Again
we have M, sg F p, but there is clearly no proper submodel of M which sets p at
sg- Thus, by Theorem 4.12, p is not equivalent to any SDPDL formula. It then
follows that the DPDLy formula [(AUB)*¥]P is also not equivalent to any SDPDL

formula, for if it were equivalent to some SDPDL formula g, then it is easy to
check that p would be equivalent to q with all the occurrences of P replaced by
(<A>rrue A <Brtrue). B

Essentially, the proof above shows that an SDPDL program cannot examine
every node of a full binary tree, while (AUB)* can.

Combining these results with those of [B] and [P], we get the following
picture, where languages not connected by a chain of <'s are incomparable in
expressive power:

DPDL; < DPDL; < .. < DPDL
v v v
SDPDL; ¢ SDPDL; < .. < SDPDL.

38

References

[B] F. Berman, Expressiveness hierarchy for PDL with rich tests,
University of Washington, TR78-11-01, 1978.

[BHP] M. Ben-Ari, J. Y. Halpern, and A. Pnueli, Finite models of

deterministic propositional dynamic logic, to appear in "Proceedings of ICALP,
1981". A revised version appears as Deterministic propositional dynamic logic:
finite models, complexity, and completeness, MIT/LCS/TM-190, January, 1981.

[BP] F. Berman and M. Paterson, Test-free propositional dynamic logic is
strictly weaker than PDL, University of Washington, TR77-10-02.

[Chl B. S. Chlebus, On the computational complexity of satisfiability in
propositional logics of programs, unpublished manuscript.

[CKS] A. Chandra, D. Kozen, and L. Stockmeyer, Alternation, Journal of
the Association for Computing Machinery, 28:1, pp. 114-133, January, 1981.

[FL]1 M. J. Fischer and R. E. Ladner, Propositional modal logic of programs,
in "Proceedings of the Ninth Annual ACM Symposium on Theory of Computing”,
286-294, Association for Computing Machinery, New York, N. Y., 1977. A
revised version appears as: Propositional dynamic logic of regular programs,
Journal of Computer and System Science 18:2, pp. 194-211, 1979,

[FW] 8. Fortune and J. Wyllie, Parallelism in random access machines, in

"Proceedings of the 10th Annual ACM Symposium on Thoery of Computing”, pp.
114-118, 1978.

[G] L. Goldschlager, Synchronous parallel computation, Ph.D. Thesis and
TR-114, Department of Computer Sciences, University of Toronto, December, 1977.

[Gr] 8. A. Greibach, Theory of Program Structures: Schemes, Semantics,

Verification, Lecture Notes in Computer Science, 36, Springer-Verlag, N. Y.,
1975.

[Hal]l J. Y. Halpern, On the expressive power of dynamic logic, II, to appear.

[Har] D. Harel, First-Order Dynamic Logic, Lecture Notes in Computer
Science, 68, Springer-Verlag, N.Y., 1979.

[HU] . E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,
Languages, and Compuration, Addison-Wesley, 1979.

39

[KP] D. Kozen and R. Parikh, An elementary proof of the completeness of
PDL, Theoretical Computer Science 14:1, pp. 113-118, 1981.

[Mir] G. Mirkowska, On formalized systems of algorithmic logic, Bull. Acad.
Pol. Sci., Ser. Sci. Math. Astr. Phys. 22, pp. 421-428, 1974.

[MT] A. R. Meyer and J. Tiuryn, The equivalence of several logics of
programs, to appear.

[MW] A. R. Meyer and K. Winklmann, On the expressive power of dynamic logic,
- MIT/LCS/TM-157, February, 1980. A preliminary report appears in "Proceedings
of the 11th Annual ACM Conference on Theory of Computing”, May, 1979.

[F] G. L. Peterson, The power of tests in propositional dynamic logic,
University of Rochester, TR47, 1978,

[Pr1] V. R. Pratt, Semantical considerations of Floyd-Hoare logic, in "17th
IEEE Symposium on the Foundations of Computer Science”, pp. 109-121, 1976.

[Pr2] V. R. Pratt, A practical decision method for propositional dynamic

logic, in "10th Annual ACM Symposium on the Theory of Computation", pp. 326-337,
1977. A revised version appears as: A near optimal method for reasoning about
action, Journal of Computer and Systems Science 20:2, pp. 231-254, 1980.

[Pr3] V. R. Pratt, Models of program logics, in "20th IEEE Symposium on
the Foundations of Computer Science", pp. 115-122, 1979.

[Sal] A. Salwicki, Formalized algorithmic languages, Bull. Acad. Pol.
Sci., Ser. Math. Astr. Phys. 18:5, pp. 227-232, 1970.

[Sav] Savitch, W.1., Relationships between nondeterministic and deterministic
tape complexities, Journal of Computer and Systems Sciences, 4:2, pp. 147-192.

