D AP, MASSACHUSETTS
LABORATORY FOR -’"-' INSTITUTE OF
COMPUTER SCIENCE | TECHNOLOGY

S

MIT/LCS/TH-200

LSE Manual

Glenn Burke

June 1981

245> TECHNOLOGY SQUARE, CAMBRIDGE. MASSACHUSETTS 02139



L.SB Manual

June 1981

Glenn Burke

This report describes research done at the Laboratory for Computer Science of the Massachusetts
Institute of Technologv. Support for this rescarch was provided in part by National Institutes of
Health grant number 1 P41 RR 01096-04 from the Division of Rescarch Resources, and the
Advanced Research Projects Agency of the Department of Defense under Office of Naval Research

Contract number NO0014-75-C-0661.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
[ ABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE MASSACHUSETTS 02139



Abstract

LSB (for Layered System Building) is an integrated set of facilities for aiding in the
construction of highly-modular, multi-layered, implementation-independent  Lisp systems. It
provides for conditional inclusion of source text, documentation production, automated
declarations, and "high-level” definitions. Lisp code compiled with LSB in general does not
require LSB in its run-time environment. LSB has been in use for some time in PDP-10 Maclisp,
is operational in Multics Maclisp and Lisp Machine Lisp, and is being developed for NIL.

Acknowledgments

The rudiments of LSB were first conceived by Lowell Hawkinson in early 1978, and he and
John Thompson implemented a prototype version for Maclisp shortly thereafter. Since then,
Lowell has provided a constant source of ideas and inspiration that has been invaluable to the
design of LSB.

Among those individuals who have contributed strongly to the development of LSB through
their use of it are Bill Martin, Peter Szolovits, Bill Long, Ramesh Patil, Harold Goldberger, Ken
Church. and Brij Masand. Providing for their many needs and reacting to their assorted
experiences has much improved the design and presentation of LSB's facilities. David Moon,
Howard Cannon, and Peter Szolovits deserve special thanks for their comments on various specific
aspects of LSB.

This manual is dedicated to Bill Martin, who provided most of the ultimate support for the
work it presenis. Mever one for fancy programming tools, he nonetheless embraced LSB because
of its contributions to the buildability of large, layered systems — systems that might be made to
exhibit intelligence and expertise of a high order.

MNote

Any comments, suggestions, or criticisms will be welcomed. Please send Arpa network mail
to BUG-LSB@MIT-ML.

Those not on the Arpanct may send U.S. mail to
Glenn S. Burke
Labaratory for Computer Science
545 Technology Square
Cambridge, Mass. 02139

There is also an Arpa network mail distribution list for announcements pertaining to LSB.
Contact the author to be placed on it

@ Copyright by the Massachusets Institute of ‘Technology: Cambridge. Mass. 02139
Al rights reserved. ™




LSB Manual i Table of Contents

Table of Contents

1. TnrQAUCHOIE <% o wom wiin axe & B mpe w0 sue o e W80 el SRIETSeTaT A BT LS 1
11 ConventionsofthisManual, . . .« v i ci e s e e eme v amss s neoe 1
T R — s Ve LU e L G S 3
71 Derivability . . « c 2 o o5 a vave s 0 e e e s S e PG R W e 3
99, VisTDIHew CHE088 . . o oo % 0 ale e @i S50 e bin we ww aie g en B8 TR BT SRS 3
23 DIRBIONG. o o v 0000 wise e s 4% b6 408 558 405 §la Gl W@ BTe w78 wiw we s om0 4
AL ROUBAE: < srevain winsals e aue vt paw w4 06 Bhe e0F S5 SRR E STmERelmsn 4
2R NVEREBIEE: S0 s a5 o wE 0w w v S map m sie sl S eUa i STerwianeTenEe 5
24 Conditional INCIUSIONS » + « + v = +/e =4 o % a0 a8 we wop wn s mms me 08 S 5
2.5 DIVEISIONSLICAME « » o «v o4 oo = s 207 58 24 4w e s ¥ oo s opmzsen e e 7
26 Definition Availability . » « « « v v o v s v s e s s e e 8
27 Modulesand SYStemS. . « « « s s v s o s s s s s e e s st 9
VAT PARBIIIEE: . . o o % 5 ] L2 SR RS E) SRR e e (s iean wm =R 4R M €S R 10
3, TheSystemDefiItion . . o o o v oo v v s m s o te e v o e s T 11
3.1 The System Definition Location. . . .+ v v v oo e v oo v e s o s mme s mmm e n s 11
32 Searching for the System Definition. . .« v v o v v v i i m e s T 11
33 RolationshetweenSYSIems o . o o = 0 s ¢ sle s 8 o e ne s s Be ee s e m e 13
34 The LSB Processing Environment. . .« .« v v oo v oo sm e v mmemm i m s o 13
341 EnvironmentOptions < + + « o s s 0 s s s v s s ams pa sl 14
142 The Processing Support Options. . .« « = ¢+ = e v o v v m o v o m v mm s mmmmn b 16
3.4.3 The Diversion Stream Clauses . « ¢ v v o s s s s s s s s s e e s seine on s e s 17
3.4.4 Pathname Specification Clauses . . . « v v o v o v v v o v e v s mm s 17
345 The ModuleSpecification . - « « v v v o v o s s v v vm e mem e mm s e e s bsm s 18
346 EnvironmentSetup —Details . . . . . v .0 v o v i i i i e s 19
15 The LSBLOAHRE - v v v «wiw s sim e wid 0% + 0 als aia ols siie i aie B aie SLuEim 21
4 Conditional INCIUSIONS . « o v+ =« s s v o v s s m s s s s s s s s o m e e s b mmm s m s 24
4] Read Time Conditionalization . . . v v ¢ v s oo v s s v e s e asm s am s wn e r o 24
42 MultipleCONIEXES . . o oo +v s o sl o s @l wis &l 2% s e wie mienmein ond nn 25
5. Defining Operations . . . « v v v v s s v s s s s s m s s s oo n e s s 26
51 The PrototypeCall . s 54 isies wm aomreme e amre ey e e e e 3 8 S8 Bl 408 w0 26
£ Varlablo BIRGINER, . ... . 4605 e o @ EEI R S G e i T D e o B 27
591 Auxiliary-Dindings. . + « « o v v s v s s p e e s s 28
s P P et P o R O it i e 29
$:3 PeBRing ROUNGS o & o e & a5 @i ase o5 »20 o3 mo@iwie sin exe sue soe 88 810 S0 29
LR T o 1T ep—— B B LR R 32
55 DOANINEMACTOS . « = v v s oo v s v v s v s v s s n s s e s st 33
5§51 Unneeded MacTos, . . « v v v s s0s o @ 55 s s s s s s s 2 s s s na e s s s s s 34
5.6 Compiler Macros. . . . . o v o v o s a6 5iu ee sle wis Ble wia s e Sis wn s e n 0 35
ST SHAcial FOMBE .o von riw sox eon mom o0 a0 W68 WY WIS NI UK WSS R 8 35
5.8 Optimization and Transformation. . .+« v v v oo c e m s 36
5.9 Rest Parameter Implementalion. . . ¢ o v os o0 sn e m s en m e s s m e e e 37
510 MACTOMEIIOIZAtION. + 4 « « v v s o o 4 s s s s s e s o s s s s s oo m s ts s 39
511 Forward Referenors. o o v o s s0s o0 son s e w s v s ts =284 s o saes i wn 40
5.12 Definitionless Routine Definiions. . . o« v o o v v v o v v o e B st e mon MR SAE R 41

29-JUN-81



Table of Contents i LSB Manual

5.13 Defining Functional Properties. . . . . . ... ... oot s n e e 42
RS ORI SRR - oo nsncvs o smavsy witelbns Swsvs 98 W U0 Gk DU AR 43
6. Tohning Vamables. - . i st e 05 5T o 595 5% e e en et e v et s 45
T.DataTyPes . . . o it i e e e e e e e e e e 47
A1 DEReE DO IMDER v omramni e SR e B B B &% T W s 43
B. Diversion SURAMS. & & ¢ v v v v v v vt v e et e e e e e e e e e e e o 49
R s e e 51
&2 Texmal INVEYSION SHOUMIE . o cnne s aame e il aned 5 SIS N B T T 52
8.2.1 Documentation DiversionStreams . . . . . . . . .o .o ittt 53
8.3 Pre-Defined Diversion Streams . . . . . ... vt it i e e 53
2 TOCUmentalon DIVEISION.. o v vv wms o simnii Ba R T R e e 55
9.1 The Bolio Documentation TYPE. . + « v 4 v v v v v v v v e e e e e e e e e e 57
92 The TEX Documentation TYPE . . . . . v v v vttt e e e e et e e e e e e e e e 58
I AGABNELOR . oo s e woi v ws S BT W SR e R R e S0 S 59
I The ESBOCOmMDICE: n o 5% 905 50 a0 400 05 550 s eimia s et b 59
10.1.1 The Maclisp Compiler . . . . . . v vttt it it et e e e e e e e e e 60
012 O MELBPpMIBENINE . . vov v o oo 00 e i 5Bie Ss s i e e 503 i 60
053 0NRENBX oo e o e o o w05 06 03 B T R SRS R R D 61
02 Interpreted LB .. v sii &% il 55 55 N5 FF S ee mee e e et s o 61
E. COMMEAMBRHONS -+ oo sui sue s o0 id ite §0% 50 6 06 Hie S0l S50 SR TEra e i 62
L Baoendinp FER © cinioid 2 3 00 o0 5 BE B R B 35 0 2 e i mee e 63
121 1SB Keyword Comparison. . . . v v v v v v v v v o e v e e e e e et e e e e 63
12.2 Defining System Definition Oplons . . « « . v v v v v v v 6 v v v ot v s 50 vin oa v 64
123 Detining NewReadtable® . .. vv oo o5 o3 00 o 55 003 o 50 &5 40 @S 2% 9 e 65
124 Playing withthe System Definition. . . . . .0 o v v v v it i e e ot et e e e e 66
125 Inclusion Tests. & . o o v v v vt ot et e e e e e e e e e e e e e e e e 67
12.5] SImple InCIuSion TEE. o v = e ok 50 ww e s &% 405 5% 500 673 +i% ENE Auaecrats 67
12.5.2 Environment ModifyingInclusion Tests. . . . . . . . v v v v v vt v v v e e e o 68
1253 Text Diverting Inclusion Tests. . . . . . v v v v vt v e e e e e e e e e e a s 68
126 Dehning Documentatlon TYPeR . ... civwm o mis sis s s0a 0w dis 8% 5s 97 s 70
127 MacTo-MemOIZation . . < civsmsre st e miee s iv e 40% ok 65 SIOETE B wl mn S 71
13. Variable Binding - LBIND . . . . . . . . . it e e e e e e e e e e 73
. Uschl LR SYREME . © o v ve wonsinmimeme e e i e o5 siiere 5 ¥ 5 o8 @ U 75
14.1 Pre-Delned SYsemE] i o r s i e R T e e wm e eae are 75
FRE TIPS W05 500 750 300 M0l ks i im0 s e w6 SR b B § 76
MI-DEESTRUCT. . .0 v o0 w0 e simmm snime srslise e s sl s e s &6 s 39 3 7
15 ANEramplEBYSIEM = < 550 Did 305 G a0 5T M e B e e e teeeren (o rarie e o caie aee & 78
151 The System Definition . . . . . . . o L Lo e e e 78
BB 2 The INTERPOLATEMOIUIE &x iov win s wie 555 v i 8 e iioeiin sralon el s o 78
B3 THe VEABLEModule .0 oo sm vs o w8 900 00a 60 5% 5 50 500 0 6 e - B0
15.4 The Documentation Produced . . . . . o oot vt it s e e e e e e 81
16, VoDl Of ADBICVIBUONE . v v siw sin 03 o aom oo 608 575 ol Bl B9 W 0D U et B3

29-JUIN-81




LSH Manual iii Table of Contents

CAMRREIEE. o oy s o W e mm g wp md PAp MR S R MRS SIeaesing SE S0 85
T T P e S e T i 86
i 2o i i S s s e Ay TR R e s, e MY 2 S SR TR 87

20-JUN-31






.SB Manual 1 Inroduction

1. Introduction

LSB (for Layered System Building) is an integrated set of facilities for aiding in the
construction of highly-modular, multi-layered, implementation-independent Lisp systems. It
provides for conditional inclusion of source text, documentation production, automated
declarations. and "high-level” definitions. Lisp code compiled with LSB in general does not
require LSB in its run-time environment. LSB has been in use for some time in PDP-10 Maclisp,
is operational in Multics Maclisp and Lisp Machine Lisp, and is being developed for NIL.

The basic idea is that when a programmer defines something, it should not be nccessary 10
declare it separately; after all, the definition itself usually makes a separate declaration redundant.
Definitions should be able to be located where style and modularity dictate; their positioning,
both with respect to location in a particular source file and the position in the file, should not
depend on the basis of the vagaries of the Lisp compiler. Documentation, especially on a local
level. is also best positioned in close proximity to what it describes. This allows for ease of
updating the definition and the documentation together, reducing the tendency for them to
diverge as development progresses.

It is becoming increasingly common for the same source code to be used in different Lisp
implementations. The programmer should be able to easily make use of implementation-specific
facilitics, by having some mechanism for conditionalizing the source code. On the other hand, the
use of many facilities, particularly in the realm of function definition and type declarations, can
be specified at a high level, independent of any particular Lisp implementation.

In LSB. definitions are aggregated into modules, and modules into sysiems. From the source
text for a module, 1.SB derives the information necessary 1O compile and run code of that
module, of other modules of that system, and of modules in other systems which utlize that
systen. A sample LSB system can be found in chapter 15, page 78.

1.1 Conventions of this Manual

The reader of this manual is expected to have a working knowledge of Lisp, particularly one
of the dialects for which 1.SB exists (Lisp Machine Lisp [ILMMan], Maclisp [Moonual], and NIL
(VAX) [NILDoc]). Terms which are in common use in these dialects will be used freely here.

The LSI cnvironment establishes an initial default input radix of decimal. [Integers in text
and in examples should be so interpreted except where explicitly counterindicated.

In Lisp code examples, the symbol => should be read as "cvaluates to", and the symbol
= = as "macro-cxpands to".

Al Lisp code in this manual is written in lower case. Although most of the Lisp
implementations LSB runs in canonicalize lower-case symbols to upper-case, Multics Maclisp does
no. Al 1SB routines, macros. and variables are lower case in Multics. In genecral, in a
reasonably standard reading environment, awmic symbols may be typed in just as they are shown
in here. Al atomic symbols in this manual which are shown with colons in their names, such as
previously -loaded or lsh tokken -equal. are, in Maclisp. actually symbols with cxactly that print
name. colon and all. In Lisp implementations with packages, the package prefix part of the name
is intended w be interpreted as just that, Thus, the same source code can refer w these names in

M1 SBDOCINTRO 53 ! 29-JUN-81



Conventions of this Manual 2 LSB Manual

the same way in different Lisp implementations,

The null value is represented by the symbol nil, and its canonical complement by t. In the
NIL implementation, LSB will accept the atomic symbol t in various places as meaning #t or
"truth”. Most notable of these are as an "argument” to a two-state definition option, such as do-
argument-type-checking. and as the predicate of a diversion stream. No such compensation
will be guaranteed for the symbol nil: if one is writing source code to be used in NIL, use ()
instead.

Certain Lisp implementations have missing functionality, which makes it difficult, inefficient,
or impossible to implement certain LSB features. These deficiencies are noted in this manual
without further explanation, Most notable in’ this respect is Multics Maclisp, which has a severe
lack of functionality in dealing with the Multics file system.

In various places in this manual, atomic symbols may be referred to as keywords, and the
terms Aeyword eguality and foken eguality may be used. LSB token equality is simply case-
independent print-name equality; this is used in many contexts to make things independent of
packages or case distinctions. Keyword eguality is token equality extended to allow synonyms (a
table of which is given in chapter 16). The internal LSB primitives used for this are documented
in section 12.1, page 63.

MIZLSBDOCINTRO 53 29-JLIN-81



LSB Manual 3 Qverview

2. Overview

This chapter is intended as a descriptive explanation of how LSB works and what it can do.
It should provide a sufficient basis for casual and simple use of LSB. Precise and much more
detailed definitions of the facilities presented here occur in later chapters.

2.1 Derivability

One of the primary precepts of LSB is derivability. That is, it is assumed (although not
necessarily enforced) that all the information necessary 1o understand, compile, and execute some
code is derivable from a single source text. Thus, LSB provides facilities for

conditional inclusion
One may specify that parts of the source text are applicable only in certain environments
(e.g.. certain Lisp implementations), and therefore a single source text may serve as the
source in many cnvironments.

text diversion
Portions of the source text, while treated as comments by Lisp itself, may be copied
elsewhere (possibly transformed), perhaps to serve as documentation for the code.

Jarm diversion
Lisp objects may be sent L0 various places, to provide information needed for
compilation, exccution, debugging, efc.

combined definition and declaration
The definition faciliies in LSB use the forn diversion mechanism to produce the
declarations appropriate to the type of object being defined (e.g.. routine, macro,
variable). All of the information needed for these declarations can be included in the
definition syntax itself, obviating the need for scparate, and potentially implementation-
dependent, declarations.

module and system organization
Modules, corresponding to the source files, are grouped into systems and share
information which need not be propagated clsewhere. Definitions of systems specify what
other LSB systems they use, and may be used to customize the processing (e.g., loading.
compilation) environment o be used for cach module.

2.2 Visibility Classes

1.SB associates with every defined object (e.g., routine. macro, or variable) a visibility class.
This is essentially an indicator of "how far" information about the object should propagate. The
three visibility classes provided are:

private restricted to the module
system restricted o the system containing the module
public intended for explicit use by users of this system

‘The system visibility class used 1o be named intrasystem. ‘That name is still accepled, and
occurs frequently in existing code: define-intrasystem-routine is defined w be the same as
detine-system - routine, and intrasystem-compilation is synonomous as a keyword with system-
M1.:1.SBDOC;OVER 101 29-JUN-81



Definitions 4 LSB Manual

compilation, for example.

[.5B, using visibility classes, does not attempt to resolve naming conflicts. It makes no use of
packages or other name resolution techniques, where such exist. A visibility class is used only for
informational (e.g., declaration and documentation) purposes. (This may not be the case in future
Lisp implementations where package organization is not limited to a strict hierarchy.)

2.3 Definitions

Everything in LSB gels "defined”, even special variables. An LSB definition provides a means
for specifving all necessary information about what is being defined, and thus allows that
information can be localized. This includes such things as default or required initialization (for
special variables), argument types (for routines), and the value type (for both).

2.3.1 Routines

Routine definition is LSB’s counterpart to Lisp’s function definition. In a routine definition,
rather than specifying a function name and an argument list, one specifies a prototype call, This
is a form which describes what a call o that routine looks like. For cxample,

(print-decimal-number number (optional stream))
describes a call to the routine print-decimal-number, which can take one or two arguments,
The prototype call tells LSB what variables ("formal parameters”) are to be bound, the data types
of those variables, how many arguments the routine may take, the dawa types of those arguments,
and how to process a call to the routine.

Call processing is the mapping of a call into a lambda expression which takes a fixed number
of arguments. Because of the information available to LSB, it is able to decide at what point
(from compile time 10 run time) this mapping may be made most advantageously.

A full definition of print-decimal-number might look like
(define-public-routine (print-decimal-number
number (opticnal siream))
{(Tambda (base #*nopoint)
(princ number stream))
10. t}))
print-decimal-number is a rowrine, as opposed to (for example) a macro. When only one
argument is given to it, stream will be bound to nil. The prototype call might have been written
as
(print-decimal-number
number (optional stream standard-output))
if it were desired that the value of the varable standard-output should be used in lieu of a
missing second argument,

The following defines the routing square$, which operates only on flonums:
(define-public-routine (squaref (flonum n))
(declarations (value-type flonum))
(¢S 1 n))
It also shows the declaration format for LSB routine and macio definitions. In general, the cdr
of the declarations form s an a-list of keywords and any other informatipn specific to that

M1.:1 SBDOC:OVER 101 © 29-JUN-81



LSBE Manual 5 Conditional Inclusions

declaration clause. The value-type declaration says that this routine always returns a flonum.
declarations may be abbreviated as dcls. Multiple declarations forms may be used, as long as
they all precede any code.

macros may be defined in a form similar to routines; a prototype macro call has the same
format as a prototype routine call.
(define-public-macro (foo x)
(1ist 'caddar x))
defines foo as a macro that is synonymous with caddar.

2.3.2 Variables

In LSB, one can "define” special variables as well as routines. Having a definition provides a
distinct locus for giving attributes to the variable. In the definition, one may specify such things
as the type of the variable, and its initialization. The expression

(define-public-variable sprint-stm-props?
(default-initialization nil))
defines the special variable *print-stm-props?. A variable definition provides for the initialization
of the variable, if any, and appropriate declarations are gencrated to tell the compiler about the
variable. The default-initialization (or default-init) declaration says that if the variable is not
valued, it should be set to the value of the form specified, in this case nil. One could cause the
variable to be unconditionally initialized by using initialization (or init) instcad. The type can be
specified, as in
(define-system-variable sstack-level
(value-type fixnum)
(default-init 0))

2.4 Conditional Inclusions

LSB provides a mechanism for conditional inclusion of forms or subforms in a source file,
using the characters left brace ({) and right brace (}). When a left-brace is encountered by the
Lisp reader, a form (the inclusion test) i« read. That form should be a list whose car is an
atomic symbol (the inclusion tester). The inclusion test is interpreted to determine cither "success”
or "failure”. A failing test causes all of the text through the maiching right-brace to be discarded,
offectively making it disappear from the input sircam (as far as Lisp's read is concerned).
Otherwise, the text is left alone, and the maiching right-brace will be ignored (treated as a blank)
when encountered. Thus,

(define-private-routine (make-a-frob size)
{(only-for Lispm) (make-array size ':type 'art-g)}
{(only-for Maclisp) (=array nil t size)})
is like having
{define—private—rautine (make-a-frob size)
(make-array size ':type ‘art-q))
on the Lisp Machine, but
(define-private-routine (make-a-frob size)
(earray nil t size))
in Maclisp. ‘The only-for inclusion tester checks for implementation features of the environment,
c.g.. (status feature Lispm).

M1z SBDOC:OVER 101 29-JUIN-81
e



Conditional Inclusions 6 LSB Manual

Additionally, if the inclusion test is one of the atomic symbols -- or -+-, then the text
within the braces is always ignored, and acts as a comment. The -- keyword is an "em-dash”,
obscurely derived from ADA. The -=- is for usc in “file property lists", as used on the Lisp
Machine, and also by the Emacs editor. Thus, one may put at the very beginning of a file
something like

{-*- Mode:Lisp; Package:Format -s-
random text treated as commenis}

One may use a logical composition of implementation features in place of a simple one. For

example,

{(only-for {and string Multics)) ...}
is the same as

{(only-for string) {(only-for Multics) ...}}
Any composition of and, or, and not may be used in constructing these "featre predicates”.
Multiple "arguments” to only-for are treated as an implicit or; thus, (only-for Maclisp Lispm)
i5 equivalent w {only-for {or Maclisp Lispm)).

{(except-for Lispm) ...}
15 the same as

{(only-for (not Lispm)) ...}
In general, (except-for frob-! frob-2 ... frob-n) is the complement of (only-for frob-1 frob-2 ...
frob-n). There are some other inclusion testers, similar to only-for and except-for, which allow
the use of multiple "feature environments”, in order to facilitate cross compilation. These are
discussed in chapter 4, page 24.

An inclusion test which is an atomic symbol (and not -- or -*-) is treated as a simple
implementation feature test, and interpreted as (only-for zest). Thus,
{Lispm ...}
is the same as
{{only-for Lispm) ...}

Conditional inclusions may conditionalize any number of forms. They may also be nested, to
allow successive selections and defaultings, as in
(define-private-routine (make-a-frob size)
{{only-for Lispm)
{make-array size *:type 'art-gq)
}
{(except-for Lispm)
{(only-for NIL)
{make-vector size)
}
{{except-for NIL)
(*array nil t siza)
}
}

ML SEDOCOVER 101 29-JUN-8]



LSB Manual 7 Diversion Streams

2.5 Diversion Streams

Diversion streams are an abstraction used by LSB to handle derivation (see section 2.1). An
LSB definition processor partitions the various pieces of information it gathers, according to their
intended uses. and then "sends" them to. appropriate diversion streams. The cffects of this
partitioning range from immediate evaluation, to outputting text into a file, to0 compiling Lisp
forms into a file.

In the routine definition
(define-public-routine (square$ (flonum n))
(dcls (value-type flonum))
(*$ n n))
there are two different kinds of information data which need to be dealt with. One is the
definition of square$ itself, and the other is the set of declarations needed to compile square$
and calls to square$. Using primitive Maclisp, that would be written out as
(declare (#expr square$) (flonum (square$ flonum)))
and
(defun square$ (n)
(declare (flonum n))
(+3 n n))
LSB arranges for declarations similar to those in the declare form above to be sent to the
compilation-environment and pubdcl diversion streams. The first acts as a no-op when the
definition is being processed at run tme, but at compile time causes "immediate evaluation”, as if
the compiler had seen a corresponding declare form. The pubdcl (public declarations) diversion
stream also does nothing at run time. At compile time, it causes the declaration forms to be
written into a file, so that they can be used for the compilation of other modules. There is a
declaration diversion stream for each visibility class; complementing pubdcl are sysdcl (system
declarations) and moddcl (module declarations).

In additon to form diversion strcams, there are also diversion streams for text. Three
standard text diversion streams are pubdoc, sysdoc, and moddoc. Text diversion sitreams are
used in a different manner than form diversion streams: an extension of the conditional inclusion
mechanism allows the excluded text to be diverted 10 any number of of these streams. Typically,
these diversion strcams simply output the text to a file. By means of text diversion, a single
source can contribute to multiple levels of documentation, The documentation files of the same
visibility class for several modules could be recombined to produce (say) a manual. In this
manner, one can have the documentation of some code or of a module itself located with the
source text it describes. For example, onc might include in some module something like

{{pub11c—dGCUmentatinn]
.chapter "The Matcher”

The pattern matcher in FROBOZZ is guaranteed to
solve all of the world's problems. In order to do this,
blah blah blah.}

ML:LSBDOC:OVER 101 : 29-JUIN-81



Definition Availability 3 LSB Manual

2.6 Definition Availability

When objects are defined, it is sometimes necessary to specify where the definition is to be
diverted to. The most common casc is that of a routine which is called by a macro. L5B needs
to be told to divert the routine to the same place(s) that the macro goes. The needed-for
declaration clause handles this. There may also be random forms (e.g., calls to defprop) which
need to be diverted in a similar manner; the forms-needed-for special form will do the same
for arbitrary forms.

Consider, for example,
(define-private-routine (bar x y)
R | '
(define-public-macro (foo arg)
(bar arg t))
Each definition tvpe (e.g., define-visclass-routine, define-visclass-macro) has a default
needed-for declaration, which may be overridden, or just added to (by use of the also-
needed-for declaration). In this example, the simplest way to achieve the desired effect is to
define bar using the also-needed-for declaration
(define-private-routine (bar x y)
(dcls (also-needed-for public-compilation))
PR
which says that not only do we need the definition of bar when we are running (the default for
ordinary routine definition), but also during "public compilation”. The way the default declaration
could be totally overridden (in this case for the same effect) is
(define-private-routine (bar x y)
(dc1s (needed-for running public-compilation))

L)
The needed-for keywords which may be used are:

running
This corresponds to the toplevel diversion stream. The definition will be output in
the compiled output file, or to the interpreter.

interpretation
This corresponds to the interpreter diversion stream. The definition will be made at
run time, but not in the compiled output file (unless that is implied in some other
way).

public-compilation

system-compilation

private -compilation
These map into both the declaration diversion stream of the appropriate visibility class
(pubdcl, sysdcl, or moddecl), and the compilation-environment diversion stream.

compilation
Just like the previous three, with the visibility class detennined from that of the
ubject being defined.

ainy diversion stream nanie
Ihis is 10 be used in case the ahove keywords are insufficient. as they would be if
one is defining one’s own diversion streams.

ML SBDOCOVER 10] 29-JUN-81



LSB Manual 9 Modules and Systems

A typical situation where also-needed-for and forms- needed-for are called for is
(define-system-macro (hack-it a b)
(do-it-up a b (get a 'hack)))
(define-private-routine (do-it-up x y z)
(dcls (also-needed-for system-compilation))
i)
{forms-needed-for (running system-compilation)
(defprop foo foo-hacker hack)
(defprop bar bar-hacker hack)
(defprop baz baz-hacker hack))

Occasionally one may have a routine or variable which may be implicitly referenced at a
higher visibility class than it is defined at. Obviously one could change its visibility class, but that
may not be the appropriate solution. Typically, the visibility class corresponds most closely to the
documentation: it is chosen on the basis of who should know about it. Take the case of a macro
hairy-frob, which expands into code which calls the internal routine hairy-frob-internal;

(define-public-macro (hairy-frob this that)
(1ist ‘hairy-frob-internal
this that t 0 ''hairy-frob})
In this situation, the declarations for hairy-frob-internal need to be public. The proper way 1o
achieve this is to use the referenced-at-visibility-class (or reference) declaration in the
definition of hairy-frob-internal:
(define-private-routine (hairy-frob-internal
this that flag
start-count caller)
(decls (reference public))

+)

2.7 Modules and Systems

In order to utilize the information derived from other modules during the compilation of one,
1.SB requires that modules be organized nto sysfems. Fach system must be defined to LSB, to
say what other systems it utilizes, what modules it contains, where to find it in the file system,
and environmental options, such as what input radix should be used. One puts a form like

(module print x1ms)
at the front of a module to tell LSB what module and system the file corresponds to; in this
case, the print module of the xims system. (Module and system names are compared by 1.SB for
token equality.) When this form is processed by the Lisp interpreter or compiler, LSB sets up the
environment necessary for the interpretation (loading) or compilation of the remainder of the file,
as specified by the system definition. If the source code is to be used in a Lisp implementation
which supportis "file property lisis" (such as Lisp Machine Lisp), one should also use the Isb
option in the file property list:
{-+- Mode:Lisp; LSB:Print,XLMS -+- 1-Jun-81
Copyright (c) 1981 by Grandiose System Building
and Massachusetts Institute of Technology.
A1l rights reserved.} '
This will then allow many other file property list options tw be derived from the LSB system
definition: most important of these are the package, readtable, and input radix.

MIL:LSBDOC:OVER 101 29-JUN-81



Modules and Systems 10 LSB Manual

System definitions typically reside each in a separate file; LSB has search and defaulting rules
for finding them when necessary, and also has initial knowledge of a large number of commonly
used systems. The system definition typically resides on the directory with the same name as the
system name, a (first) filename the same as the system name, and a fle-type of system. LSB will
also look for it on the directory which the source file is being loaded or compiled from. For
example,

(define-system string
{directory amber)
(built-on Toop Tbind)
(users-implicitly-need user-hunk)
(modules (string (needed-for-user-compilation)) strfn char))
is the system definition for the string system; it resides on the amber directory, as does the
source for all of the modules (string, strfn, and char).

2.7.1 Pathnames

LSB allows one to interact with the host file system in such a way that in many cases the
same LSB specification suffices in differing and incompatible implementations. This mechanism is
based on the assumption that the following “components” of a pathname exist as a superset of all
those a particular L.SB implementation might handle:

host This is the name of the "host machine” the file is to be obtained from (or sent to).
This is nccessary in implementations where one may need to reference multiple hosts,
such as the Lisp Machine,

device Whatever is meant by a "device" in the host implementation.

directories
LSB has provision for specification of a directory path.

names L.SB has provision for multiple filenames.

file-type
The "type” of the file, as used (for example) TOPS-20.

version
The version number of the file.
Thus, the TOPS-20 pathname "PS:<{MACLISP>DEFMACRO.FASL.259" has a device of PS, a
single dircctory of MACLISP, a single name of DEFMACRO, a file-type of FASL, and a version
of 259, That same pathname referenced from a Lisp Machine might also nced to have a host
specified. In gencral, LSB allows these components to be specified or defaulted scparately, so that
the same LSB specification suffices in different environments when the corresponding components
are the same.

MELSEDOC:OVER 1 ' 29-JUIN-8]



LSB Manual 11 The System Definition

3. The System Definition

The system definition is where information not specific to individual routines, macros, or
variables is kept. It tells 1.SB what other systems the one in question is built on, where various
things (including source files) reside in the file system, what Lisp environmental options should be
in effect, and how diversion streams should behave; much of this may be specified either per-
module or per-sysiem. For example,

(define-system write
(directory format)
{built-on Toop 1bind)
(modules write))
defines the systemn write, which uses (is built on) the systems named loop and lbind, contains a
single module named write, and resides on the format directory.

3.1 The System Definition Location

When LSB needs the definition of a particular system (say xIms), it attempts to find it if it is
not already known. One way it might know where to look is through the use of the define-
system-location macro:

define-system-location Macro
(define-system-location system-name location) tells LSB that the system definition for
system-name may be found in the file named by the pathname location. For our example,
someone could have done
(define-system-location xIms "XLMS;XLMS SYSTEM")
since "XLMS:XLMS SYSTEM" is the pathname of the file which contains the system
definition for xims on the MIT-ML host. When this form is seen by the compiler (at
top-level, like a defun) it is treated such that the location of the system definition is
defined at compile time, and also when the compiled output file is loaded (that is, it uses
{eval-when {eval compile load) ...) implicitly).
The pathname specified with define-system-location need not be complete; it may contain
unspecified components, which will get filled in: 1.SB has searching and defaulting rules which in
many cases obviate the need for define-system-location completely.

3.2 Searching for the System Definition

When LSB does not already know a system definition, it searches for it in a prescribed
manner. This scarching is done even if a system definition location has been specified, because
that system definition may have missing components: for instance, the Brand-X system definition
location may only state that the filename to look for is brandx. 1.SB maintains a dynamic stack
of where it should search: cach entry corresponds to a dircctory path (and device and host,
where implementationally appropriate). The entrics are pushed when 1LSB recursively looks at
systemns. for instance when it is establishing the compilation environment for a module: the details
of this procedure are described later. In any case, the first directory o be looked at will be the
directory with the same name as the system.  Where appropriate, the device will be the
“canonical” device for the implementation (eg.. PS for TOPS-20), and the host will be the
current default host. however that is maintained. ‘The last place to be looked at will be the

ML:LSBDOC:SYSDIF 157 29-JUN-81




Scarching for the System Definition 12 L.SB Manual

directory (including the device and host components) where LSB is kept. Somewhere in the
middle will be the directory (and device and host) where the source file being processed was
found. The searching involves iterating down this search list; of the components missing from the
system definition location (if there is one), missing directory, device, and host components are
filled in from the search lisk a missing filename defaults to the system name, and a missing file-
type defaults to system. A file with name of Isbsystems is also looked for (the file type will be
the canonical "lisp source file” type, e.g. lisp on Multics, "> on ITS, LSP on TOPS-20). If
during this procedure a system definition location is found for the system (and one was not
already known), the searching starts over again using that system definition location.

Take, for example, the xims system, which exists on MIT-MIL. The first place LSB will look
in the absence of a system definition location will be "DSK:XLMS:XLMS SYSTEM" — this is in
fact where the system definition for xims is kept.

There is one other way in which LSB may be told where to find a system definition: it may
be specificd with the name of the system.
(module print (x1ms "XLMS; TEST SYSTEM"))
(define-system write
(directory format)
(built-on (loop "LISPM2:") 1bind)
(modules write})
A location specified in this way overrides any known system definition location; it is not used to
aid the defaulting process for finding the definition of that system, but rather to respecify it, if
(for example) one wants to test a perturbed system definition or test a new system by that name.
For simply supplying a system definition location when onc might not be known, the Isbsystems
file should be used.

The Isbsystems file can be used for various purposes. It can be used to consolidate all of
the system definitions of systems which reside on the same directory. [t can also be used to
define the system definition locations of systems which systems on that directory are built=-on (or
otherwise reference). This last is often necessary because otherwise LSB might have no handle on
where to look for some system definition, if the referencing module is on a different directory.
One solution to where to look is simply to have the system definition location pre-defined to LSB.
Systems which may be of general use are welcome additions. The pre-defined systems are in the
Isbsystems file on LSW's directory. On ITS, this is the file named "IDSK:LSR:LSBSYS >, and
on Multics "dudd>Mathlab>1.SB>Isbsystems.lisp”. These files have identical contents, which are
conditionalized for the various implementions LSB runs in.

Due to certain implementation screws pertaining to remembering that a particular file has been
loaded, in Lisp implementations with packages, L.SB binds the package to the user package when
it loads a system definition (or Ishsystems) file. This provides a defawdt for the package that file
gets loaded into; it may be overridden, if necessary, by the use of the package option in the file
property list (since 1S system definition files are not themselves modules).

METSBDOCSYSDEF 157 29-JUN-81



L.SB Manual 13 Relations between Systems

3.3 Relations between Systems

The most significant relation between systems is the built-on relation. To say that the write
system is built on the loop system is to say that the code of the modules of the write system
utilizes public facilities of the loop system. The built-on relation is not transitive; that is, if x is
built on y and y is built on 2, it is not assumed to be the case that x is built on z. Of course,
the actual dependencies involved depend on what context is being considered: compilation,
interpretation, or running compiled code. In general the built-on relation is viewed from the
context of compilation.

If the built-on relation does need to be transitive. that information may be given 10 LSB by
the use of the users-implicitly-need clause in place of the built-on clause. The use of this
clause in the system definition for pretty - print-definition

(define-system pretty-print-definition
(built-on loop {pdpl0 user-hunk})
(users-implicitly-need write)
(modules ppdef ppdaesc))
says that the pretty-print-definition system ic built-on the write system, and that systems which
are built-on the pretty-print-definition system are also implicitly built-on the write system.

Another possible relation between systems is sideways extension. For system hair o be built-
beside of system kernel means that hair utilizes the facilities of kernel just the same as if it were
part of the kernel system, but implics that system kernel has no need for the facilities of system
hair. Thus, kernel could be a "core system” intended for extension, and hair could be a system
which does that extending. What this amounts 1o is that system hair utilizes both the public and
system information derived from system kernel.

3.4 The LSB Processing Environment

The "environment” which LSB establishes for the processing of a module consists of three
parts:
simple environmental options
These include such things as the package, readtable, and input radix. All of these map
into variable bindings: it is possible to bind this part of the LSB environment, and (o
calculate what it should be without actually modifying the current Lisp environment.

processing support
For compilation, this 15 typically declarations and macro definitions; all of the swuff
obtained by loading the various declaration diversion streams of the systems involved.
For interpretation, this is whatever the module or its system says needs o be loaded for
interpretation: usually nothing, as LSB's automatic loading is oriented solely towards
compilation at this time.

diversion streams
‘I'he diversion stream: definitions for the module.

The 1.SB processing environment may be set up in one of two ways. The most common, and
the only one available outside of the Lisp Machine, is driven entirely by the macro processing ol
the module special form. First. all loading necessary is performed; the processing support above.
Then, all of the environment options are determined, and the variables are side-cffected to their

M1 .:1.SBDOC:SYSDEN 157 [ 29-JUN-§1



The LSB Pro:essing Environment 14 LSB Manual

appropriate values. Finally all of the diversion streams appropriatc for the module are defined.
(These three steps are presented in much more detail in section 3.4.6, page 19.)

On the Lisp Machine (or in any Lisp implementation which interprets and heeds the file
property list, there is onc difference: the binding environment is determined at the tdme the file
property list is parsed, and so is cstablished around the entire loading or compiling operation.
The module special form then knows not to bother. One uses the file property list with LSB by
using the LEB option, as in

i —¢= Mode:Lisp: LSB:module-name, sysiem-name ~-#-

Mote that the "arguments” are in the same order as they are to the module special form. Use of
this option oes not obviate the need for the module special form at the beginning of the file.
Note also that if one uses the LSB system definition to specify the package a file should be
compiled or loaded into, it is necessary to use this. It is an error (which will have unpredictable
results) to specify any option in the file property list to which LSB provides a default, or which is
itself specificd in the system definition. All such options which LSB handles are enumerated
below.

3.4.1 Environment Options

input-radix radix
The value of ibase used for the processing of the module will be radix. The default
/alue is decimal,

readtable readtable-name
The readtable used will be the readtable associated with readiable-name, a symbol;
L.SB keyword equality is used. The default used is the name standard, which is
issociated with the readtable current when 1.SB was loaded/created. There are inigally
10 other choices; the cxpectation is that large systems with special input syntax will
supply special readtables of their own (see section 12.3, page 65).

inclusion -test-readtable readiable-name
‘This specifies the readtable to be used for reading in inclusion tests (chapter 4, page -
4). readtable-name may be unspecified or nil, in which case whatever readtable is
current at the point of the conditional inclusion will be used: this is the default.

package: package-name pathname

‘This option, which is ignored in Lisp implementations without packages, specifies that
he package to be used should be the package associated with package-name. If no
such package is defined. then a file is searched for similarly to the way a system
Jefinition is scarched for, using pathngme (which is optional) as a default. This, in
act, uses the same search list which searching for the system definition does. The
icfault filename looked for will be package-name, and the default file-type will be
akg. Also looked for will be the file Isbpackages, analogous to the Isbsystems file
ased for system definitions, OF course, scarching is less likely tw be useful in this case
ecause the package option already has at its disposal the default directory, host, and
ievice of the system whose definition the clause appears in. [t s unclear at this time
dat searching is an appropriate thing to do anyway. It s recommended ar this time
that the package pathnanye be given, i &t will por default correctly the first time
(directory of that given in the directory clause of the system definition. filename of the
ssiemr name, efe.).

ML SRIDOCZ:SYSDEF 157 29-JUN-81



1LSB Manual 15 The LSB Processing Environment

This option is somewhat special for two reasons: it can have side-cffects during its
interpretation (the loading of the file and creation of the package), and it also does
not provide a canonical default package if this clause is not given: the package used
in the absence of this clause would be just that used if LSB were not present, ie. one
specified in the file property list or barring that, the current package.

announce kwd-1 kwd-2 ...

Use of this option causes the module special form to produce in its expansion a form
which will "announce” the loading of that module. The message printed will contain
the module name, sysiem name, and the name of the source file. The only keyword
implemented at this ime is version: it causes the version of the source file to be put
on the version property of the module name. This hack is to allow the announce
option to supply a functionality similar to that of the Maclisp herald macro. This
functionality fits in poorly both with LSB (since only the module name is used) and
with non-Maclisp Lisp implementations, because of packages; outside of Maclisp,
both the module name and the property name (version) will be in the keyword
package.

do-macro-memoizing how
Controls macro memoization. If how is not supplicd, the default is assumed.
Otherwise how may be t for the default, nil for none, or some other keyword
describing a particular mechanism to use. For full details, sce section 5.10, page 9.

type-check-visibility - classes vis-class-1 ...
Routines defined with the named visibility classes will have argument type checking
code automatically gencrated for them. This augments the do-argument-type-
checking clause (below). and s discussed more fully in chapter 5.

number-check-visibility-classes vis-class-1 ...
Routines and macros with the named visibility classes will have number-of-argument
checking code automatically generated for them. This augments the do-argument-
number-checking clause (below), and is discussed more fully in chapter 5.

The following options are all "fag options™; they take a single "argument” which is
interpreted only as being t or nil. If the argument is not given, t is assumed.

do-argument-num her-checking

dn-argument—type—checking
Control automatic generation of number-of-argument or argument typc checking code,
for all visibility classes. Obviously. code is only generated when it is actually nceded.
This defaults to nil, ic. no checking other than what is implicitly supplied by the Lisp
definition LSB produces.

needed-for-user-compilation

needed-for-compilation
‘These have to do with specifying whether the module (or all of the modules in the
system) are needed for the compilation of systems built on this one. They also control
the redundant outputting of certain definitions (¢.a.. macros) o both a declaration
diversion stream and 1o the compiled outpul file. This is currently in a bad state, and
is heing revised.

inhibit-documentation -production
‘Ihis turns off documentation production. When one has source code which runs in
multiple  Lisp itnplementations, it may be wasteful for cach implementation o

ML:LSBDOC:SYSDEF 157 29-JUIN-81



The LS Processing Environment 16 LSB Manual

redundantly produce the same documentation. The flag this sets also inhibits the
recording of information used for producing automatic documentation, as discussed on
page 56. This option works by setting a flag which is checked by the Ish:divert-
documentation? function (page 51), which is a default diversion-stream predicate for
documentation diversion streams, Thus, it only works if the documentation diversion
streams actually use that function for their diversion predicate.

3.4.2 The Processing Support Options

Here are the system definition clauses which are interpreted for various reasons such as setting
up the compilation environment. Unlike the environment option and diversion strcam clauses,
these may only appear at top-level in the system definition, not in a module specification (a
component of the modules clause, below).

built-on sysrem-spec-I system-spec-2 ...
The built-on clause specifies that this system is bwilt on each of the other systems
specified.

users-implicitly-need system-spec-1 system-spec-2 ...
users-implicitly-need is like built-on, and additionally specifies that any systems
built on this one are implicitly built on all of the systems specified here: it is
transitive, whercas built-on is not.

built-beside system-spec-1 system-spec-2 ...
built-along-side-of ...
Sideways system extension, as described in section 3.3, page 13.

filas- needed -for-compilation pathname-1 pathname-2 ...
The named files will be loaded in during compilation environment setup, if they have
not been already. (This clause used to be named additional-files-needed; that name
is accepted as a synonym for files-needed-for-compilation, but that synonymization
will be flushed someday.)

users-implicitly-need-files pathname-1 pathname-2 ...
The named files need to be loaded into the compilation environment. This need
propagates to systems built on this one. This should properly be named users-
implicitly-need-files-for-compilation but that is quite a mouthful...

modules module-spec-1 module-spec-2 ...
Specifies the modules which comprise the system. A module-spec is either the name of
a module, or a list whose car is the module name, and whose cdr is a list of clauses
similar to those in a system definition. What may appear there is described in section
345, page 18.

default-user-options oprion-clause-1 option-clause-2 ...
These specify default values for 1LSB enviromment options {previous section) which
should be used for systems builr on this onc. The defaulting process is described in
section 3.4.6, page 19.

MLESBDOC:SYSDEF 157 " 29-JUN-81



LSB Manual 17 The LSB Processing Environment

3.4.3 The Diversion Stream Clauses

Diversion stream definition clauses allow one 1o define new (or redefine existing) diversion
streams, for either all modules in a system, oOF even per-module. In this way, they default
similarly to other LSB options discussed above. (Diversion stream definition defaults cannot be
inherited from systems being built-on. however.) A list of the keywords used for defining
diversion streams follows; they are discussed fully in chapter 8.

diversion-stream divstream-name clause-1 .
form-diversion-stream ..
form-divstream ..
declaration-diversion-stream
declaration-divstream
del-divstream
textual-diversion-stream ..
text-diversion-stream .
text-divstream ..
documentation-diversion-stream
doc-divstream

3.4.4 Pathname Specification Clauses

The following clauses may be used to specify default pathname components. These are not
only accepted in the system definition. but also within a module spec, and in various other places
where LSB looks for pathnames, such as in diversion stream definitions.

directory subdir-1 subdir-2...
dir subdir-i subdir-2 ...
(directory dir) says that the default directory to use is dir. In most cases this is all
that is needed, since typically the "eanonical” device of the host is the correct choice,
and there is no choice of host in most Lisp implementations. If multiple subdirs are
specified, then they specify a directory hierarchy path. In the Multics implementation
of LSB. one is also allowed to specify the entire path in a single atom, just as one
would for the Multics Maclisp namelist format:
(directory >udd>Mathlab>LSB>format)
is equivalent to
(directory udd Mathlab LSB format)
It is unfortunately necessary for this cntire path to be specified.

device device-name
For whatever it is worth, this may be specified. For example, (device arc). This is
especially useful for referencing an ITS machine which is not on the Chaos network
from a Lisp Machine:
(define-system Brand-X

(host mc)

(device ml)

(directory brandx)

-)

host hosi-name
Specified the host o be used. This is obviously only useful in Lisp implementations

ML:LSBDOC:SYSDEF 157 29-JUN-81




The LSB Processing Environment 18 LSB Manual

which as a matter of course access multiple hosts, namely Lisp Machine Lisp. It will
be ignored elsewhere.

pathname host-dependent-pathname
This clause is not actually a system definition clause; it is however used in many
places in conjunction with the directory, device, and host clauses, so is documented
here for completeness. It is used in places where a complete pathname is needed,
and will have its missing components defaulted from the other three clauses. For
example, the dumb-objects system is defined as follows:
(define-system dumb-objects
(directory 1sbl)
(built-on loop)
(modules (dumb-objects (pathname dumobj)))
(needed-for-user-compilation))
The pathname clause shown says that the dumb-objects module has a filename of
dumobj rather than the default (dumb-cobjects). The directory is defaulted to Isbi.
If that particular module were on a different directory (say, test-dir), the modules
clause could be re-written as either
(modules (dumb-objects (pathname |test-dir;dumobj|)))
or as
(modules (dumb-objects (dir test-dir) (pathname dumobj)))
The last is less dependent on the pathname conventions of the particular host, so may
be a reasonable choice if the pathname components will be the same for different
hosts or Lisp implementations.

3.4.5 The Module Specification

A module specification is a description of a module in the system. It may be either just the

name of the module, as in the system definition clause

{modules ppcode ppdesc)
or a list whose car is the module name, and whose cdr is a list of clauses:

(modules (dumb-objects (pathname dumobj)))
These clauses describe various attributes about the module, such as where it resides in the file
system and what environmental attributes its compilation environment should have. Most of these
can, in fact, be defaulted: the name of the file (both source and compiled output) defaulis to the
name of the module, with the directory, device, and host being taken from those defaults for the
system (as cither specified with the corresponding clauses or defaulted), and the extension or file
type for the source and compiled output default to whatever is appropriate for them in the Lisp
implementation. These can be sclectively overridden by usc of the pathname, directory, device,
and host clauses, as described above. Most of the clauses described above for system definitions
arc also applicable to single modules; those that are not are those which describe system relations,
listed in section 3.4.2. Thus,

(define-system mathematical-hacks

(built-on loop)
(modules arithmetic
(bit-twiddling
(input-radix 8)})))

describes the mathematical -hacks system, which consists of the two modules arithmetic and bit-
twiddling. Muodule arithmetic uses an input radix of 10 (decimal), which is |.SH's default, but
module Bit-twiddling uses octal,

MIESBDOCSYSDEF 157 29-JLIN-81



L.SB Manual 19 The LSB Processing Environment

3.4.6 Environment Setup -- Details

The LSB environment setup is performed in one of two ways. In general, most if not all of
the work will be performed when the module form which should be at the front of the source
file is processed, either by the compiler or by being evaluated during loading. In both cases there
are three fairly discrete actions:

(1) Loading whatever support code is needed for the type of processing being performed,
and making the appropriate declarations (when compiling)

(2) Establishing the binding environment (specified with the various options)
(3) Defining the diversion streams which will be used by that module

The module form first performs step /. For compilation, this involves loading all of the
pubdcl files of the systems this system is built-on (note the non-transitivity of the built-on
relation, and the implications of the users-implicitly-need clause), and any other files they have
specified with the users-implicitly-need-files clause. Then the pubdcl and sysdcl files for that
system itself are loaded. This is a depth-first operation; take, for example, the systems

(define-system write
(built-on loop 1bind)
(modules write))
(define-system pretty-print-definition
(built-on loop {pdpl0 user-hunk})
(users-implicitly-need write)
(modules ppdef ppdesc))
(define-system hacks
(tuilt-on pretty-print-definition)
(modules crock kludge))
If we are compiling the crock module of the hacks system, the following files will be loaded
{(assuming they cxist), in this order:
write pubdcl
ppdef pubdcl
ppdesc pubdcl
kiudge pubdcl
kludge sysdcl
Additionally, if the special LSB pre-processing compiler interface is not being used (sec scction
10.1, page 59: if available, this is the default action), the pubdcl, sysdcl, and moddcl files of
the module itself will be loaded. Note that by default there is no moddel file produced, but it is
provided for in case this sort of forward-reference capability is needed.

Next, the binding environment is set up. If the LSB option was given in the file property list
of the source file, and that option was actually used by whatever is doing the processing {(c.g.,
load, the compiler). then this has alrcady been done. It is expected thal environments which will
be using this will have the support necessary alrcady loaded (this mainly concerns values of
defaulted options. or new option definitions). in other cnvironments, this support should have
been lvaded in by the previous step.  This also is why the Isb-load (page 22) function exists—for
the loading of an interpreted module, the variables which comprise the processing environment
need 1o be hound so that the module form does not side-effect the global environment. Anyway.
1.SB sets up the binding environment by calculating all of the variables which will be affected,
and then filling them in with their specified values: first any per-module options for the module
being processed are looked at. then any for the system as a whole. Then, any opticns specified

MI :LSBDOC:SYSDEF 157 ) 29-JUN-81



The LSB Processing Environment 20 L.SB Manual

in any detault-user-options clauses of systems this one is built-on. The order in which options
are defaulted in this last manner is not extremely well defined at this time, but it can be
guaranteed that, when built-on relations only go one-level deep (as is normal unless the users-
implicitly-need clause has been used in one of these systems), it will be the order in which those
systems appear in the system definition. Thus, looking at the write system definition given above,
if the write module were being compiled, first any default user options of the loop system would
be looked at, then those for Ibind. Any options which are not either specified or defaulted from
other systems will have be set to their canonical default values.

Lastly, the diversion stream cnvironment is cstablished. This may implicitly make use of
support loaded during step /, and options (variables) set up by step 2. Essentially, what happens
is

(1) Al extant diversion streams are "killed”, if necessary, which it is not if the diversion
stream environment is "bound” (as done by the lsb-load function, or by the use of
LSB in the file property list). If this is done, a warning message may be printed, as
this could in theory involve closing and deleting files being written. But normally
nothing interesting is happening in the interpreter.

(2) Al diversion stream definitions specified for the module only are processed

(3) Al diversion stream definitions given at top-level in the system definition, which have
not already been defined, are processed

(4)  All other diversion strcams which LSB uses and which have not been defined, are, using
default definitions determined from the type of processing being performed.
Most simple systems rely solcly on step 4.

Finally, the module form macro-expands into various potentially interesting things, in an
implicit progn. Some of this might involve bootstrap code (to load things up); this has not been
worked out yet. This is also the place where any actions dictated by the announce oplion are
performed. And:

ssource-file-information Variable
‘The module special form expands producing a setq of this variable to a disembodied
property list containing much information about the module, (At this time, this variable
may cither not get set or not contain much information when the module is loaded
interpretively.) The car of this list is the actual real pathname (truename) of the source
file (if it could be determined). The plist part may contain the following properties:

:module
The module name. In Lisps with packages, this will be a symbol interned in
the user package. It will be all in one case; lower on Multics, upper clsewhere.

:system
Similar

:lisp-version
‘The version number of the Lisp the processing was performed in. This will be a
fixnum,

system-version-info
Ihis is a hairier version of lisp-version. On the Lisp Machine. this will be a
string which is the result of calling siisystem-version-info.  Elsewhere, 158
will make do with what it can pet, but in any case. i this property is present,

M1 21 SBDOC:SYSDEF 157 29-JUN-81



LSB Manual 21 The LSB Loader

it will be a string (symbol, in PDP-10 Maclisp) containing some descriptive
information. See si:system-version-info and related topics in the Lisp Machine
manual for more information.

.site  Some name for the machine the processing was performed on. Presently, LSB
only knows how to do this for PDP-10 Maclisp. On Lisp Machines, it is
undecided whether this will be only the Lisp Machine name or possibly some
composition of the specific Lisp Machine and ifs site, as in (MIT CADR-6).

:culprit
The name of the user. On the Lisp Machine, this is simply the value of user-
id. On the TTS operating system, this is the uname rather than the xuname for
reasons having to do with INIT files: in that case, the xuname, which
supposedly represents the real user name as opposed to some instantiation of it,
will be under the :claims-to-be property.

-«claims-to-be
On ITS only, the xuname of the user, if it differs from the uname.

:compiler-version
Some type of description of the compiler version. This is a brief descriptive
history on Multics. On the PDP-10 this will simply be the version number of
the compiler. This will not be present on the Lisp Machine because the
compiler is an integral part of the basic Lisp Machine system, implicitly included
in the :lisp-version and :system -version-info properties, and no explicit
information is available.

-date Date and time of the processing, in the form
((year month day) hour minule second)
The year is excess-1900.

LSB also handles a few more mundane things automaticall. When setting up a compilation
environment in Maclisp, a genprefix is automatically performed on the concatentation of the
system name, a ".", the module name, and a "-"i €8, “mysys.mymod-". In the PDPLO
Maclisp implementation, .S does some hackery to avoid having the garbage collector thrash due
to array relocation during compilation environment sewup (this being a result of the large number
of arrays used by fasloading so many files). If one has a system which causes very many files o
be loaded and this seems to be happening (indicating that LSB's default handling is too modest),
a (getsp n) clause may be included in the system definition. LSB by default does this with n of
20000. This mechanism may be improved at some point. Obviously n should be significantly
smaller than the amount of free memory remaining.

3.5 The LSB Loader

Because of the possibility of an interpreted LSB module side-cffecting the environment. which
can occur in Lisp implementations which do not utilize the file property list or if the module does
not use the 1.SB option in the file property list, it may be necessary o use a loading function
which properly scopes all of the 151 environment variables.

MI:1SBDOC.SYSDEF 157 29-JUN-8]




The LSB Loader 2 LSB Manual

1sb-load pathname kwd-1 kwd-2 .. kwdn
This is the routine LSB uses to load in files. It causes the LSB environment to be scoped
around the loading; all of the flag variables are bound, as is the diversion stream
environment. Note that all of these things maintain their current values; if the file being
loaded is an interpreted LSB module, it is the module form in that file which will reset
them. The various keywords are as follows. In general the few keywords provided negate
default actions.

noerror
Do not cause an error if the file is not found. A message stating this may be
printed depending on other keywords given; in any case, Isb-load will return
nil.

conditional
If this file has been loaded already, do not load it again. The atom
:previously-loaded will be returned. Note that in the Lisp Machine
implementation this atom is previously-loaded in the user (keyword)
package, but in Maclisp it is an atom with a colon as its first character.

nodefault
Do not set the pathname defaults used by load (and Isb-load). MNormally,
they are set to the pathname that gets loaded. Programs that call Isb-load
may not wish to change the default pathname on the user without his
cognizance, in which case they should use this option.

verbose
Normally, the verbosity of Isb-load defaults to the value of *Isb-verbose?.
This explicitly says that Isb-load should be verbose.

silent The opposite of verbose.

uninteresting
This is primarily useful for searching for a file to load, as is done for system
and package definitions. Isb-load will not modify the file defaults, and will
not error out if the file is not found. Additionally, it will not even print an
error message if the file is not found: however, it may still print a loading
message if the file is found, dependent on the presence of the verbose or
silent keywords, or the value of *Isb-verbose?.

The default behaviour of Isb-load is for it to follow the standard system load function
fairly closely, simply augmenting it by “scoping" the LSB processing environment
appropriately.

In order for Isb-load to determine whether some file has alrcady been loaded, it
maintains a database about loaded files, In the Lisp Machine implementation, such a
facility alrcady exists, so Isb-load uses it; clsewhere there is none, so Isb-load is
incapable of determining that a file loaded with load or fasload has in fact been loaded.
In the common cases where Isb-load is used. such as lvading the various declaration files
into a compiler, this normally does not matter, The Multics implementation of Isb-load
is not able to determine that a more recent file of the same name as one previously
loaded his changed.

Ml T SBDOC:SYSDIEF 157 C O 29-JUN-8I



LSB Manual 23 The LSB Loader

Ish-load does (sstatus uuolinks) after loading, to avoid

In the Maclisp implementation,
out if it needs to bind fasload,

redefinition problems, It is not yet smart enough to figure

however.

MI T SBDOC:SYSDEF 157 29-JUIN-81

- e B - s e




Conditional Inclusions 24 LSB Manual

4. Conditional Inclusions

Conditional inclusions allow one to conditionally include portions of the source code being
processed. This may be done by the use of reader syntax which conditionalizes the input seen by
read, or by the use of conditionalization macros to conditionalize code being compiled or
executed. FEssentially, all forms of conditional inclusion require the specification of an inclusion
test. An inclusion test may be one of the following:

normal inclusion test
A regular inclusion fest is a list whose car is an atomic symbol, referred to as the
inclusion tester. The inclusion tester is examined using LSB keyword equality to
determine how the form should be interpreted to determine success or failure of the
inclusion LesL

--gr-%-
An inclusion test of either of these tokens fails.

atomic symbol
Any other atomic symbol used as an inclusion test is treated as being shorthand for
{only-for atomic-symbol).

only-for [Inclusion Tester

The inclusion test (only-for x) interprets x as an implementation feature fesi, and
succeeds iff that test succeeds. An implementation feature test is either the name of an
implementation feature, or a logical composition of implementation feature tests, made
with and, or, and not. An implementation feature name is tested for by looking in
(status features) (but note also scction 4.2, page 25); LSB token equality is used.
Multiple "arguments” to only-for are treated as an implicit or; thus, (only-for Maclisp
Lispm) is equivalent to (only-for (or Maclisp Lispm)), succeeding if either Maclisp or
Lispm are “features”.

except-for [nclusion Tester
(except-for il 2 ..) is equivalent to (only-for (and (not il) (not i2) ..)). Thus, it is
the complement of (only-for i i2 ...).

A mechanism for extending the composition operators for implementation feature tests is
under development.

4.1 Read Time Conditionalization

Read time conditionalization is effected by use of the { reader-macro. The general format is
{ inclusion-test anything-else-with-matching-braces}
Inclusion-test is read in (by calling read) and interpreted as described above, IF the test fails,
then the reader-macro gobbles down all of the text up to the maiching }; to the Lisp reader, the
result is like a space (i.c. an atom delimiter). |If the test succeeds, then the reader-macro
immediately returns, leaving anything-else-with-matching-braces intact in the input stream; the }
will behave like a space (an atom delimiter, but otherwise ignored) by the Lisp reader.

MI:TSBDOC:CONIDIT 54 29-JUIN-8]



LSB Manual 25 Multiple Contexts

When text is being skipped over due to a failing inclusion test, matching open- and close-
braces arc kept track of. There is no way to "quote" one of them in such a context; what one
should do is to match an unmatched brace by placing it in a comment appropriate for the syntax
of whatever is within the braces. For example,

{(only-for Lispm)
: Matching "{"
(princ "}" error-output)

Note that since excluded text is not read by the Lisp reader, it need not be syntactically valid
Lisp; thus, this mechanism is good for conditionalizing syntactic constructions which are not valid
in all Lisp implementations, as in

(member x '(0 0.0 {Lispm 0.0s0}))
where 0.0s0 is "small-flonum” zero, a syntax not supported in Maclisp. And of course, the
excluded text may be used as comments, by using either -=- or -- as inclusion tests:

{-+- Mode:Lisp; Package:PP -=- 1-Apr-84

This file defines a universal pretty-printer
with capabilities far exceeding any thus-far
eic}

When the inclusion test is read, readtable is bound t0 the readtable specified with the
inclusion-test-readtable system definition option (page 14). If nil was specified as the readtable
(which is the default), then the current readiable is used. This option exists to allow normal Lisp
syntax to be used (if desired) from within some abnormal syntax.

4.2 Multiple Contexts

Thus far, the test for an implementation feature has been said to be based on the
membership of the feature name in (status features). This is not strictly true, as very often what
is intended is examination of the rargel environment as opposed to the processing (e.g.
compilation) environment. The inclusion tester only-for and except-for are intended to refer to
the farger environment, which is normally assumed to be the same as the processing environment.
To guarantee that the test is based on the processing environment, one can usc:

only-on [nclusion Tester
except-on Inclusion Tester
These arc the same as only-for and except-for, cxcept that they always use (status
features), guarantceing conditionalization based on the environment in which the test is
made. Thus,
{(only-for tops-20) siuff}
includes snf if the code is intended to mun in a TOPS-20 Lisp, whereas
{(only-on tops-20) suf}
includes stuff only when it is being read into a ‘I'OPS-20 Lisp.

There is currently no mechanism for specifying multiple "feature cnvironments”. Sce section
12.5.1. page 67 for a description of the current facilities which may be used to implement the

above. It is expected to change drastically when a better facility is defined. and is only provided
as an nterim sulution.

M 21 SEDOC:CONDIT 54 | 9. JUN-81



Defining Operations 26 LSB Manual

S. Defining Operations

For the purposes of discussion, a defined object which is cither a routine or a macro will be
called an operation. A routine is one where the body of code in the definition form is to be
executed when the call is executed; a macro is one where the body of code is to be executed to
produce a form to replace the call. All LSB operation definition forms have the same general
format;

( define-visclass-definitiontype prototype-cail
(declarations del-clause-l del-clause-? . . .)
Jorm-1 form-2 ...)
where visclass is the visibility class, ie. publi¢, system, or private, and definitiontype is the type
of definition, e.g. routine, macro, optimizer. There may be any number of declarations
(abbreviated dcls) forms, but they must precede any of the body forms.

5.1 The Prototype Call

The prototype call shows what a call to a routine or macro looks like, defines the mapping
from the arguments into the formal parameters, and specifies the data types of both the
arguments and the variables. For example,

(frobnicate foo (optional bar 'ugh) (any-number-of bletch))

shows a prototype call for frobnicate, which takes one required argument, one optional argument,
and any number of other arguments. It shows how the call is to be mapped into the formal
parameters of frobnicate (foo, bar, and bletch): the first argument is required, and maps into
the foo variable. The second is optional: if it is not specified, then bar will be bound to the
symbol ugh. All remaining arguments map into the bletch variable, which will be bound to a
list of them. This process of mapping from the arguments into the formal parameters is known as
call mapping, and the keywords such as optional are known as call mapping keywords. Other
keywords which may be used like any-number-of are one-or-more-of and two-or-more-of
which require there to be at least one or two arguments corresponding to that formal parameter.
rest and body are synonymous with any-number-of; the latter is intended for macros which
take any number of forms to be used in some kind of implicit progn. If there is a minimum
number of arguments required for this type of parameter (a rest parameter), it is meaningless {and
an error) to have any optional arguments, There may only be one rest parameter, and it must
come last

One can also specify the data types of the arguments and variables in the prototype call, as in

the example shown previously,

(define-public-routine (sqrt$ (flonum n)) ...)
For optional and rest paramecters, note that the type of the variable and the type of the
corresponding argument(s) need not be the same. Onc can thus have:

(my-routine (notype (optional (fixnum count) nil))

(vector (any-number-of (flonum frobs))))

which says that my-routine takes an optional argument. count. which must be a fixnum. The
variable count, however, is of type notype. and will be bound to nil if no argument is given.
All other argumenis are required to be flonums, and are gathered int a vector which frob is
bound 1. The nil shown is a form 10 be evaluated 1w supply a default value for the variahle if
o corresponding argument s present: this evaluation will be done in an environment where only
the variables w the left in the prototype call have been bound to their arguments or default

ML:LSBDOC:DEFUN 181 29-JUN-81



L.SB Manual 27 Variable Bindings

values. In this instance, that nil is superfluous, because the default default value will be chosen
on the basis of the variable type, notype.

The optional syntax allows for the specification of a variable to be used as a flag for whether
or not the corresponding argument was supplied:
(frob-name frob (optional new-name nil new-name-p))
which could be the prototype call for the routine frob-name. The variable new-name-p will be
bound to t if frob-name receives two arguments, nil if it receives only one. This variable is
automatically declared to be of type truthvalue (chapter .

The any-number-of syntax allows for the specification of a variable to receive the count of
the arguments which were mapped into the formal parameter:
{dafina—pubﬁic—ruutine (average (one-or-more-of numbers count))
(quotient (apply (function plus) numbers) count))
This variable is automatically declared to be fixnum; a type must not be specified for it

Sometimes an operation takes an argument which is not actually used by the code of the
operation. This situation typically arises when the code is not totally complete, but that argument
position needs to be vallocated” for future compatibility. Since the author of the code knows of
the situation, it is undesirable to have the compiler warn him about it. One may use the unused
keyword to tell LSB that the variable so designated does not get referenced by the code, as in
this prototype call for hairy-routine:

(hairy-routine

file-to-be-processed

file-to-send-output-to

(optional die-on-errors?)

(any-number-of (unused kayworded-additiuna1-optiuns}}]
This option is applicable in all I.SB operation definitions. It should nof be used with the supplied-
p variable for an optional argument, nor for the count variable for a rest argument. LSB will do
whatever the Lisp implementation requires 10 ensurc that the compiler will not complain about a
lack of reference to the variable. It is an error for the variable to be referenced in the code of
the operation when the unused keyword is used.

5.2 Variable Bindings

LSB operation definition forms provide syntax for binding variables within the body of the
operation. When a form appearing af fop Jevel only in the definition body starts with one of the
keywords auxiliary -bindings or bindg, the cdr of that form specifics a binding cnvironment 1o
be used around the remainder of the definition form. Some may find this syntax distasteful and
prefer to use a form which textually shows the binding scoping (such as Ibind and Ibind*); others
may find it convenient to use, as it allows the bindings to be placed more naturally while not
producing deeply nested code. lbind and Ibind* arc macros which provide similar functionality,
but without restrictions on their positioning; they are documented in chapter 13, page 73.

MI1TSBDOC:DEFUN 181 29-JUIN-81



Variable Bindings 28 LSB Manual

52.1 Auxiliary-bindings

An auxiliary-bindings (abbreviated as either aux-bindings or auxs) form binds a set of
variables sequentially, allowing the value computed for one to depend on a previous variable.
This form looks like

(auxs aux-bind-spec-1 aux-bind-spec-2 ...)
where cach aux-bind-spec may take one of the following forms:

variable
The variable is bound to nil.

(variable value)
The variable is bound to the value of value.

({data-type variable) value)
The variable is bound to the value of value, and declared to be of type data-type.

(variable)
((data-type variable))
If a value is not specified, it will default to the initial value for the stated data type.
Thus, the body of the code in
(define-public-routine (frobnicate x)
(auxs (a (f x)) ((fixnum b)) ((flonum c) (g a)l))
do-this
(auxs (p (hack a b c)))
do-that)
produces the following binding contour:
((1ambda (x)
({1ambda (a)
{(1ambda (b)
{(1ambda (c)
do-this
((1ambda (p) do-that)
(hack a b ¢)))

(g a)))
0))
(f x)))
argument)
along with local declarations appropriate for the Lisp implementation. There is actually a bit of
optimization performed to try to bind as many variables in parallel as possible; this is done for
the sake of Lisp implementations where that may be more cfficient, especially if they are special.
In the above example, b would be bound in the same lambda as a, since it is being bound to a
constant.

ML SBDOC:DEFUN 181 © o 29-JLIN-81



LSB Manual 29 Defining Routines

5.2.2 Bindq

bindg is an alternative to auxiliary-bindings. In additon, it always binds variables in
parallel. A bindq form looks like
(bindq varspec-1 value-l varspec-2 value-2 ...)
and can be used in the same places as an auxiliary-bindings form. Each varspec may be either
the name of a variable, or a list of the data-type for the variable and the name of the variable.
The code for
(define-public-routine (frobnicate x)
(bindg a (f x) (fixnum b) 0 ¢ (g x))
do-this
(bindg p (hack a b ¢))
de-that)
produces the binding contour
((lambda (x)
{(lambda (a b c)
do-this
((1ambda (p) do-that)
(hack a b ¢)))
(f x) 0 (g x)))
argument)

5.3 Defining Routines

define-public-routine (= defpubr) Special Form

define-system-routine (= defsysr) Special Form

define-private-routine (= defprivr) Special Fonn
In LSB. one does not define ordinary functions; one defines routines. The difference is
that a Lisp function definition implies a specific implementation, whereas an LSB routine
definition simply says how one desires to call the routine. The actual implementation of
the call is left to LSB, and may differ across Lisp implementations. There are declaration
options to give LSB information which may be useful in choosing a particular
implementation, and to demand a particular gne.

Consider the following routine definition:
(define-public-routine (print-decimal-number
{number n)
{optional stream))
(bindg base 10. =nopoint t)
(princ number stream))
The functional specification of print-decimal-number ultimately reduces to the primitive lambda
expression (lambda (n stream) ..). Somewhere between the processing of a call such as (print-
decimal-number mun) and the evaluation of the forms in the definition body there has w be a
mapping made between the call and the application of that primitive lambda expression. One
possibility is to turn the call (print-decimal-number mwn) into a new call (print-dacimal-
number-aux man nil), with print-decimal-number-aux defined o take the same arguments as
print-decimal-number, except that they are all required. 1.SB does in fact make this kind of
transfonmation in Lisp implementations which have a significantly less efficient calling sequance for
functions of a variable number of arguments.

ML LSBDOC:DEFUN 181 29-JUN-81




Defining Routines 30 LSB Manual

The prototype call for a routine may also specify that the argument(s) mapping into a variable
be implicitly quoted, by use of the quoted keyword wrapper around the variable, as in the
prototype call

(foo (quoted x) (optional (quoted y))
{any-number-of ([quoted frobs)))
which says that foo takes one or more arguments, and none of them are evaluated. This implicit
guoting is done as part of the call processing. What actually happens is that foo is defined as a
macro which guotes the appropriate arguments, producing a call w foo-aux, just as done by the
optimization for routines taking a variable number of arguments (in fact, both of these
transformations may occur at the same time). The implication of this is that it is not possible in
gencral to apply or funcall a routine which takes quoted arguments. This restriction is based on
the "lowest common denominator” of the various Lisp implementations LSB is aimed at; this
restriction may be lifted at some point, at least for some of these implementations.

The following declaration options may be of use in defining routines:

value-type data-lype-name

data-type data-fype-name
This specifies that the value returned by the routine will always be of type daig-type
name. If the type and the Lisp implementation so warrant, this may produce
appropriate declarations which may affect the calling sequence of the routine.

do-argument-type-checking flag
This turns on argument type checking for this routine if flag is non-nil or unspecified,
otherwise turns it off. Thus, argument type checking can not only be specified per-
module or per-system (with the do-argument-type-checking system definition
keyword), but also per-definition.

do-argument-number-checking flag
Like do-argument-type-checking, but enables or disables number-of-argument
checking for this routine, and is also applicable to macros.

type-check-arguments var-f var-2 ...
If there are no vars supplied, this is equivalent to (do-argument-type-checking t);
otherwise, it cnables it for the arguments corresponding to only those variables named.

returnable
the declaration (returnable) causes the entire definition body to be formed inside a
prog, with a return wrapped around the last form. This is convenient for routines
which ordinarily would not need this except for a small number of extraordinary cases
which must be handied speciallv and return early. (returnable name) causes the prog
w be "named” mamme, so that it may be explicitly returned from (even through other
prog or do forms) by using the return-from special form, as in
{define-public-routine (hack 1)
(dels (returnable george))

(do ((11 1 {ecdr 11))) ((null 11))
{cond {(not {numberp (car 11)})
(return-from george "error}})
Loy
—_— .
Since naming the containing prog requires the Lisp implementation to support sained
progs, this extension docs not work in Maclisp.

ML SBDOC:DEFUN 181 29-JUIN-81



LSB Manual 31 Defining Routines

Where multiple values are supported. LSB uses multiple-value-return instead of
return, and multiple-value-return-from instcad of return-from so that they will be
passed back properly.

default-definition - from routine-name

If this declaration is given, there should be no "body” for the routine. The definition,
instead of being created, will be gouen from the definition of rowtinename, which
musi be defined. It is imperative that the prototype call and declarations for this
routine reflect those with which routine-name was defined, as they will be used to
produce declarations for the new name. This option should not be used lightly; it is
designed primarily to save away the definition of an existing routine so that that
routine may be redefined.

redefinition
This exists 1o tell LSB that the routine is a redefinition of some existing routine. LSB

will ry to keep the Lisp and compiler from complaining about the redefinition. Other
than that, you redefine things at your own risk,

primarily-applicable - routine

applicable-routine-only
This declaration tells 1.SB that the routine is used primarily w be funcalled or
applyed. so there is no point in doing sophisticated call processing on it. Appropriate
declarations will still be produced, however. It is illegal to have quoted arguments
for a routine with this declaration. applicable-routine-only is the old name for this
declaration: it should not be used in new programs, as it will be recycled to
additionally inhibit diversion of declarations.

slow-and - hairy

This tells LSH that the routine s complex cnough that time should be discounted
when a space/time tradeoff is made for deciding what (if any) calling scquence
optimizations should be performed.

perform-calling -sequence -optimizations
Tells 1.SB o perform calling sequence optimizations. Useful only if LSB's default
action is inappropriate,

inhibit-calling -sequence - optimizations
inhibit-calling -sequence-optimizations is exactly the opposite of perform-cailing-
sequence-oplimizations.

implemeant-as fow vl
This requests 1.SB to use a specific implementation for the routine being defined, and
supplies it. how should be one of the tokens expr, lexpr, or fexpr. and is uscd to
make the appropriate functional declaration for the routine. Information as to number
of arguments and the argument types still comes from the prototype call, however no
automatic argument type checking or number-of-argument checking will be performed.
The bound variable list for the funciion definition will be bvl, and any items after bl
in this declaration form will be prepended o the body of the definition,

assembly - language-definition
If this is present. then the body of the definition is assumed to consist of assembly
lainguage code (in Lisp format appropriate to the implementation) rather  than Lisp
code. 1SH will provide the approprisie header and args information e be oulput,
and will auwmatically default the declarations which would otherwise have 1o be

M SHDOCDERLUN 181 ’ 29-11LIM-¥1




Open Coding 32 L5DB Manual

supplied by such clauses as implement-as and inhibit-calling-sequence-operations.
Use of assembly code in this fashion kecps it in textual proximity to the “definition
form”, and also allows LSB to continue to automatically produce declarations.
Additionally, any pre- and post-definition forms implicitly gencrated by such clauses as
redefinition will be properly placed around the actual definition. For an example, see
page 42. This is only supported in PDP-10 Maclisp at present.

5.4 Open Coding

define-public-open-codable-routine (= defpubopen) Special Form
define-system-open-codable-routine (= defsysopen) Special Form
define-private-open-codable-routine (= defprivopen) Special Form
These define routines just like define-visclass-routine, and in additdon tell LSB that
compiled calls o such a routine should be open-coded.

open coding means that when a call to a routine is compiled, the body of the routine will be
compiled in place of a call to it. That is, if we have
(define-public-open-codable-routine (cube (number n))
(expt n 3))
then the expression
(plus (Ff x) (cube (g x)))
will be compiled as if it were
(plus (f x) ((lambda (n) (expt n 3)) (g %x}))
The routine cube will be defined just as if it were an ordinary routine, excepr that no calling
sequence optimizations will be performed, since they are obviated by the open-coding.

Defining somcething as an open-codable routine has some advantages over defining it as a
macro. First and foremost is the clarity of the definition. Also, the routine definition typically
uses less space in the runtime environment than a corresponding macro definition would. An
open-codable-routine, because it is a routine, may be funcalled or applyed if there are no
quoted arguments specified in the prototyvpe call. Lastly, the use of an open-codable-routine
makes the visible semantics of a call o that routine cbvious: if we have

(define-public-open-codable-routine (foo a b)
(bar b a))
then a caller of foo does not have to worry that foo will evaluate its arguments repeatedly or out
of order.

Obviously, there will be cases where it s med necessary to bind the formal parameters of an
open-codable-routine around the body of the code. This is the ease in the cube example. Rather
than producing (for compilation) an expansion like

({(1ambda (n) (expt n 3)) (Ff =x))
for (cube (f x)). it is obvious that

(expt (f x) 3)
would suffice. for any function (or special-form or macro) f. 1.SB has two mechanisms to handle
this.

The first, wsed by ddofaudt. is leedboke optimization.  Fssentially, the code expanded w be used
in plice of the original call s rescxamined. ond  wherever possible.  lambda-bindings are
climimated.  This succecds in making such mransfonnations as the one shown above for cube. 1.51
knerws mot o aptimiyse out the bindings of” special varialles,

MIELSBDOCDERLUN 181 29-JLIM-81




LSB Manual i Defining Macros

The second is to explicitly tell LSB that the arguments to the routine may be safely textually
substituted into the body of the routine. This is done by means of the use-sublis-for-open-
coding declaration. For example, cube could have been defined as

(defi ne*puh1ic*up&n—cuduhle*rﬂutina {cube (number n})

(dels {uaa—sub1is—fnr—cpan-cod!ng]]

{expt n 3))
Obvicusly this is unsafe and not recommended if the routine references the variables out of order
or anything but exactly once, as that destroys the implied semantics of function calling. And,
since sublis is actually used, there should be no name conflicts. The use of sublis does nol mean
thar the body of the rourine may be a pattern lo be suhstituted intor it must stifl be viable as an
ordinary routine. 1SB rescrves the right to not actually use sublis if it can preserve the
substitution semantics and produce better code in some other manner.

Open-codable-routines may  be defined with optional, any-number-of, and quoted
arguments. The checking for optional arguments will be performed at compile time, and the

argument or default value form inscrted into the code as appropriate. any-number-of arguments

work, but they can only be implemented as heap-consed lists, so arc not recommended; often in
this case a macro is called for, or perhaps an ordinary routine.

Occasionally a situation arises where one desires to have a routine open-coded only in certain
Lisp implementations. For this. one may give an ordinary routine definition the open-code
declaration, which may be placed inside of a conditional inclusion:

(define-public-routine (cube (number nj})
{Lispm (dcis {open-code))}
{expt n 3))
which causes cube to be open-coded only if is being compiled for a Lisp Machine.

A note is in order with respect to the setf special form: since an open-codable-routine is not
a macro, setf cannot determine what a call to it will expand to, so if one is being used to create
a synonym for some sort of structure reference and is meant to be invertable with setf, either
setf must be informed how o make its transformation, or the routing should be defined as a
macro. The same is wue for the loct special form in Lisp Machine Lisp.

5.5 Deflining Macros

dafine-public-macro (= defpubmac) Special Farm

define-system-macro (= dafsysmac) Special Form

define-private-macro (= dafprivmac) Special Form
Macro definition format in LSB is similar te routine definition format. The same call
mapping keywords (c.g. optional. any -number-of) may be used, but typed and implicitly
quoted arguments may not be. If any type of rest paranteter 15 used, no implementation

tvpe should be specifica for it as the varlable will be bound w0 a sublist of the original
call.

Thus,

(define-public-macro (frob-name frob)
*{caddr ,Ffrab))

cffectively defines frob-name to be a synonym of caddr. I his particular example is defined as a
macro rather than as an open-codable-routine so that the setf special form can invert it

MIZLSBDOC:DEFUN 181 29-TUN-81




Defining Macros 34 1.SB Manual

(setf (frob-name x) 'new-name)
==> (rplaca (cddr x) 'new-namea)

The flag variahle which may be specified to flag whether an optional argument is supplied may
be useful with macros as well as with routines:
(define-public-macre (frob-name
frob (opticonal val nil val?))
(cond ((null wal?) *(caddr ,frob))
{t "(rplaca (cddr .frob) .vall))))
And, of course, macros arc the best way to write code which changes environments or control
flow:
(define-public-macro (if predicate consequent
{any-number-of else-forms)})
{cond {(null else-forms)
‘{and ,predicate ,consequent))
(t "(cond (.predicate ,conseguent)
{(t . ,else-forms)})))
(define-public-macro (using-decimal-radix (body body))
*{(1lambda (basea =nopoint) ,@body) 10. t))

5.5.1 Unneeded Macros

Quite ofien one needs macros around in the runtime environment for funning interpreted code
(which may or may not be in the same module a macro is defined in) but it is undesirable for
them to be present in an environment where all of the code is compiled. This is often necessary
in small address-space lisps. and is often not unreasonable in even large address-space Lisps
which do not have packages, such as Multics Maclisp, to aveoid cluttering up the runtime
environment with definitions which are only needed for running code interpreted, or for
debugging.

define-public-xmacro (= defpubxmac) Special Form

define-systam-xmacro (= defsyszxmac) Special Form

define-private-xmacro (= defprivxmac) Special Form
The only differcnce between this and normal macro definition (define- visclass -macro) is
that the (compiled) macro definition will be sent to the macros diversion stream rather
than output into the compilation output file. The wutility of this is that the macros
definitions {(which are normally not necded if all callers are compiled) will not be present
in the compilation output file, but will be in the file written as the macros diversion
stream, s0 may be loaded when needed. This type of macro definition s common in
systems which define many (or large) macros which are not normally used, such as pretty-
printers. MNote that the semantics of this depends on how the macros diversion stream
hehaves—see page 54,

AL SBODOCDIEFUN 181 29-1UN-21



LSB Manual 35 Compiler Macros

5.6 Compiler Macros

Sometimes one wishes o define something as a routine (for efficiency or argument checking
when it is called from inwerpreted code, or for its ability to be funcalled), but desires special
handling of a call to it when it is compiled, that only a macro can provide. Anocther scenario is
where one is defining a special form (section 5.7. page 35), and it is imperative 1o have special

handling of the form when it is being compiled. LSB allows onc 1o define macros which only are
used for the expansion of code being compiled.

dafine-publ jc-compile-time-macro Special Form
dafine-system-compil a-time-macro Special Form
define-private-compile-ti me-macro Special Form
‘These have syntax identeal 1o that of define- visclass-macro, bul the definition is onaly
used for expanding code being compiled.
The definition of cube as an open-codable-routine
{defina—pubi1c-upen—¢ndab19-rnutinﬂ {cube (number n))
(decis {usn-5uh1iS*fﬂF—OpEn—cuding}]
(expt n 2))
is performed by LSB just as if the user had done
(defi ne-public-routine {cube (number n))
(dcls {1nhihit—ca]1ing-saquancahuptimizations}]
(expt n 3})
{dafina-punlic—campi19—t1mn-ma=ra (cube n)
(sublis (1ist (cons 'n ny) ‘(expt n 3})}
More examples are given with the descriptions of definition constructs

which may also require the
use of compile-time-macros.

Mote that use of this facility may compete with automatically gencrated code for calling
sequence optimization or open coding: if this is suspected, one should explicitly
seguence optimization as in the above example, by use of the
optimization declaration.

disable calling
inhibit-calling -sequeance-

5.7 Special Forms

special forms are consirucis which do strange non-functional things with their arguments, like
eval them. cond is a special form, as are do, prog, and go. In most cases it is best to define
special constructs like this as macros, so that only one definition is needed., and so that code
analyzers (and the like) need not understand the form gpecially. Thus, if can he defined as a
macro as it is on page 3. There may be situations where there are overriding reasons for using a
gpecial form instead, even considering the extra effort of defining n compile-time-macra so that
such a forn can be properly compiled. One possible scenarie (in fact, the one which led to the
implementation  of special form definition in LSB) is a sysiem (cspecially in a limited address
spage Lisp) where there arc many special constructs  defined, and they get much use. The
averhead of expanding and remembering all of those macros, combined with the occasional

endency of macros definitions w0 take up mare space than the corresponding roiitine  definitions,
may be just o large a price 1o pay.

M1 SBDOC:DEFUN 181 29-JLIN-81




Optimization and Transformation 36 L.5B Manual

define-public-special-form (= defpubspec) Special Form
Only public special form definition is provided for. Automatic type checking is not
handled here. Use of the guoted keyword to specify implicit quoting of arguments is an
error; all arguments are implicitly quoted. (This is a special form, after all.)

As an example, we can define if as a special form:
(define-public-special-form (if predicate consequent
(any=-numbar-of else-forms))
(cond ((eval predicate) (eval consequent))
{{null else-forms) nil)
(t (do ({1 else-forms (cdr 1))}
((null (ecdr 1)) (eval {(car 1)))
(eval (car 1))))))

To be properly compiled, if would also need to be defined as a compile-time-macro, in the same
way it is defined as a macro on page 34: that is, simply defined with define-public-compile-
time-macro instcad of define-public-macro.

5.8 Optimization and Transformation

define-public-optimizer (= defpubopt) Special Form

define-system-optimizer (= defsysopt) Special Form

dofine-private-optimizer (= defprivopt) Special Form
An optimizer it similar o a compile-time-macro (scction 5.6, page 35), and additionally
has the option of deciding nor to expand the call. Although the specific mechanism used
to signify that the optimizer “did nothing” differs in differing Lisp implementations, LSB
optimizers should indicate this by returning nil; if nil is desired as the actual value,
{(quote nil) should be returned, as it is entirely equivalent in any context the optimization
will be performed in.

When the compiler compiles a call, it will try the optimizers for that call before it tries a
macro definition (if any)., Additdonally, LSB arranges for compile-time-macros (and thus 1.SB
generated enlling sequence optimization code) to come last, if it could conflict with any user-
defined optimizers (since compile-time-macros and calling sequence optimization may use the
optimizer mechanism o do their work)., User optimizers will get tried in the order they are
defined in.

When an LSB routine or macro 15 defined, code is gencrated (as part of the declaration
information) to flush any existing optimizers and compile-time-macros. Thus, optimizer definitions
should come afier the routine or macro definition they are for, and they should appear in the
same file. It does nol work o mix visibility classes cither: that is. if the routine is public, it
does not necessarily work fur an optimizer o be private or system.

Since a given name can have multiple optimizers associated with it, it is helpful for
redefinition purposes w associate some kind of identifier with each particulur one. This should be
spoecificd in the identilier (abbreviated id) declaration clause:

(define-public-optimizer (foo argl arg2)
{dcls {(id number))
(and (numberp arqgl) (numberp arg?2)
"{super-Too ,(plus argl argZ))))
Ihis identilier should be a symbaol, and need only be unigque with respect o the aperation npame

MLILSBINOCDERFUN 181 2a-JUIN-81




-]

LSE Manual Rest Parameter Implementation

)

the optimizer handles. It is highly recommended that the identifier clause be used., If it is not
used. in environments such as Lisp Machine Lisp, incremental recompilation of an optimizer will

not properly redefine the old one.
¥ J

Optimizers do not work in Multics Maclisp. Do not try w use them.

5.9 Rest Parameter Implementation

lects is the
parameters. L3B attempts o compensate for this by providing a consistent

One of the most obvious points of incompatibility between various [isp dia

implementation of res

allowing explicit specification of how the data object the formal
= ¥ ] 4
nented.

and safe default, and

parameter is bound 1o 15 10 be im

he default implementation of sramieter is as a heap-consed list: a list 15 a simple data

representation guaranteed 1o be cor to all Lisp implementations. It is heap-ce nsed to prevent

obscure and erratic behaviour nter to it is passed up outside the dvnamic scope of the

function call.

The single common
This means that (in t
some sort of indexing routine. One may thus declare in the prototype call that the variable is to

ality between Lisp dialects is that cuch an object is a kind of seguence.
the object by

ory at least) one should be able to access componcnts of

be implemeonted as a sequence.
(dafine-pub ie-routine (print-items
(sequence (any-number of items nj}))

(terpri)
{do ((1 0O (1+ 1))
(princ (81t it

goneric sequence

({= 1 n)}

5 1))1)

aecossor (defined in NIL, but not in Lisp Machine Lisp, nor by
implementation is still heap eonsed, however; it could lead to

where elt is
default in Mac

the production of quantities of

isp) This particul

nost of the dme one uses a rest
parameter one is only going to usc it within the dynamic scope of the rol it is a parameter of,
used to hold this sequence to not be temporary. ‘Thus, 1.58 provides

free storag Since

it is wasteful for the st

the concept of the argumeni-Sequence scquence Lype and rest parameler implemer

tatio.

anoe (abbreviated argseq) rest parameter implementaion Causes the rest

hiod which dees not consume Irec SIOTIgEc provided

mented as the bes

tation here are

b cchanisms defined for manipulating them, which map
dir |
Machine Lisp,

actually used in the Lisp implementation, What happens is that in Lisp
» i anl -sequance. s ¢ specifving pdi-list; n NI, it is iike
specifying pdl-vector, and in PDP-10 Maclisp, the variable is bound to a Hfxnum which
1 1

argurm

incorporates the ir ormation which is .'.'r:ll__l_'a'”'f-_l.' present In the call 1o a lexpr. and also acis as a

fixnum declaration.
argref argsey index

IThis K nent-scquence argseg. Jndex is sero-origined
In PIIP-10 Maclisp. this is almost the same as A call tw the arg function; in Lisp

hes the indexth clement of the arg

ne Lisp, i is the samo s gimilar call wy nth, and in NI, it turns Into @ vriaf
In all imp

E

lemoentations, this will be inline-coded when compiled.

MLALSBDOC: DEFLUN 181 3 JLIMN-B]



Rest Parameter Implementation 38 .58 Manual

argset argseg index wval
This clobbers the indexth clement of the argument-sequence argseg to be wal. In all
implementations, this will be inline-coded when compiled.

argseq-length argseg
This returns the length of the argument-sequence argseg. MNole that this is often not
necessary, as one can get a variable bound to the length of the argument seguence in the
prototype call. This will be inline-coded in all implementations.

argseq-l1ist argseg
Returns the clements of argseg, in a list. This routine is mor inline-coded, and its use is
discouraged. It is provided so that ore can get the elements out of an argument-sequence,
as a lisy; this is primarily for debugging, and primarily for PDP-10 Maclisp. where an
argument-sequence is implemented as a data-type which does not print out its components.
It is reasonable 1o declare a variable which is not a rest parameter to be an argument-sequence.
Consider the following:
(define-public-routine (print-items (argseq (any-number-of items)))
(terpri)
(print-items-aux items))
(define-public-routine (prinl-items (argseq (any-number-of items)))
(print-items-aux items))
(define-private-routine (print-items-aux (argseq itams))
(do ((¥ O (1+ 1)) (n (argseq-length items)))
((= 1 n))
(prinl (argref Hitems i))
(princ ™ "))}
For use with the loop iteration macro [LOOP], LSB defines the argseq-elements (aka argseq-
element) sequence iteration path, so that one may iterate over the elements of an argument
sequence (or some subset of them):
(define-private-routine (print-items-aux (argseq items))
(loop for x being the argseg-elements of 1items
do (prinl x) (princ "™ "}))
In Lisp implementations where an argument-sequence is a kind of list (Lisp Machine Lisp and
Multics Maclisp), the argseq-elements iteration path is guaranteed to produce just a simple
itcration over the list in simple cases like the above; that is, in these cases the list will not be
repeatedly indexed into.

Faor those who know what they are doing, the following data-type keywords are recognized as
specifying rest parameter implementations:

argseq

argument-saguance
This is as deseribed above.

list A heap-consed ordinary list. In the Lisp Machine implementation, this list will be
made with all the clements cdr-next cxcept for the last, which will be edr-normal
rather than edr-nil—this s presumed o be a reasonable compromise.

vector A heap-consced vectlor. This exists primarily for NI,

sequencea
A heap-conscd sequence of the type appropriate lor the implementation:  equivalent to

AT LSBIDOCERFUN 181 29-JLIN-81

-



L5B Manual 39 Macro Meomoization

list in Maclisp or Lisp Machine Lisp, vector in NIL.
The following additional implementations exist, but are less general, and primarily exist for onc to
take advantage of particular Lisp implementation features.

pdl-list

temporary - list
This says to implement the rest parameter as a stack-allocated list. This is only truly
possible on the Lisp Machine: in PDP-10 Maclisp, it causes explicit reclamation of
the list on normal exit of the routine, and clsewhere is equivalent to list.

pdi-vector

temporary -vector
The rest parameter is o be implemented as a stack-allocated vector. This is only
possible in MNIL. Elsewhere it may attemptl to coerce the argument sequence into a
heap-consed vector, but that of course will not work unless there is vecLor support

OF course, if one is very concerned with efficiency and nceds to take advantage of particular
implementation features, one can always specify an implementation-dependent implement-as
clause, such as the following (for the Lisp Machine): .

{define-public-routine (print-items (any-number-of items))
(dels (implement-as expr (&rest items)))
{do ({1 items (cddr 1))) ((null 1})
(print (car 1)) (prinl (cadr 1)})})

5.10 Macro Memoization

It is normally the case that any particular call 1o a macro will expand into the same code. It
is thus a sipnificant incfficiency for interpreted macro calls o be repeatedly expanded cvery time
they are cvaluated. The term macre memoization tefers to the process of somchow remembering
the expansion of a particular macro call so that it does not need to be repeatedly expanded.

There are various mechanisms for accomplishing this. The easiest and most efficient s o
simply clobber the ealling form with the expansion, by use of rplaca and rplacd. Another way is
o clobher the form with another macro call which encodes both the original form and the
expansion: this intermediate macro form can then be recognized specially by pretty-printers, which
can choose to show either the original form or the expansion. If additional information like a
definition count is encoded. then the clobbered expansion can be checked for validity and re-
expanded when the macro is redefined. Yet another way to perform macro maomoization is to
store the expansion in a hash table; this has the advantage of not medifying the call at all, and
also not showing the expansion in the code. The datn swored in the hash table can also encode

information like a definition count, so that the form can be re-expanded if the macro definition
has changed.

1SR supplics three methods for macro memoization. They differ in the code which will be
produced in the macro body: any particular option conld additionally be under runtime control.
The method chosen may be specified with the do-macro-memoizing clause. cither in a system
definition. module specification. or in the declarations of the macro itselt,

pene 1 the "argument” given w do-macro-memoizing s nil. then s nucro mmcinaization
code is produced.  Bvery time a call o such o macro is encountered, the expansion will
be re-computed.

MIZLSBROC:DEFUN 18] 20-JLIN-81



Forward References 40 L.SB Manual

the implementation default
This is the default used by LSB. The actual method used varies according to the Lisp
implementation; the intent s for the code generated in the macro definition to be
runnable in a default environment of that Lisp implementation.

In Multics Maclisp, code is generated to clobber the original form with the expansion by
use of rplaca and rplacd. In Lisp Machine Lisp. the displace function is called (g.v.).
The PDP-10 and NIL. implementations produce slightly more complicated code, calling
functions which allow virtwally all of the macro memoizing possibilities described above,
under runtime control.

displace
This mav be specified by use of the keyword displace as the "argument” to do-macro-
memaoizing. The code generated for the macro definition will call the displace Minction.
MNote that this is equivalent to the (current!) default action for Lisp Machine Lisp. IF
one uses this in Multics Maclisp, one should be sure that a displace function will be
available at runtime. Again, the precise runtime semantics of this depend on exactly
what displace does.

It is anticipated that a mechanism similar (if not identical) o that used in PDP-10 Maclisp
and NIL will be implemented for Multics Maclisp and Lisp Machine Lisp. Even if not supported
by the Lisp systcms themselves, it would be usable in environments where it could be ensured
that the necessary runtime support was loaded. and may aid in problems cvident in those Lisp
implementations due o redefinition of macros not affecting already-cxpanded calls w those macros.

5.11 Forward References

declare-routine Special Form
(declare-routine preforype-call

del-clause-1

del-clause-2

ie i)
produces all of the information needed to compile a call to the specified routine, in the
currcnt compilation environment, without defining the routine. This is not nceded if one
is using the 1.SB compiler interface (described in scction 1001, page 59) which makes a
pass over the file extracting all information needed for compilation. It may be needed,
however, if one is using 1SHB on Multics (which does not currently support the LSB
compiler interface). or if one has specifically disabled this interface in the PDRP-10
implementation.

Consider two routines which call each other:
(define-public-routine (foo a (optional b 0}))
{cond ({(zerop b) a)
{(t (bar (times a b) (subl b))))}
(define-public-routine (bar x (optional y 0))
({cond ((zerop ¥) 2)
(t (Too (plus = ¥) (subl ¥)3)}))

If the definition of bar has oot been processed when foo gets compiled, the compiler will make
detiunlt assumiptions about bar when it compiles the call o i These asumptions, if incorrect,
contld make the call less effcient: they might even make the compiler orror out., or gencrate

MEZESBIROCDEFUN 18] © O 29-JUN-8I




LSB Manual 41 Definitionless Routine Definitions

incorrect code.

The fix for this cxample is to put
(declare-routine (bar x (optional y 0}))
before the definition for foo. 1 SB will extract from this the very same declaration information

which it extracts from the definition of bar, including any code needed to perform calling
sequence optimizations.

A declare-routine form should be constructed from the same prototype call and declaration
clauses which are used in defining the routine, with the exception of any declaration clauses
pertinent only to real definitions. The clauses which may be used are implement-as, value-type,
primaflly—app1icable=rouline. slow-and -hairy, called-as-lexpr, and  perform-calling-
sequence - optimizations.

5.12 Definitionless Routine Delinitions

Sometimes one would like o use LSB to propagate declaration information about a routine,
but cither the routine is defined clsewhere (possibly without 1L.SB) or it is not defined in Lisp.
For this. onc can simply omit the body of the definition. it is the responsibility of the user to
ensure that the calling scquence 1SR determines for the routine 1o in fact be identical to what it
actually is. by usc of the appropriate declarations. For cxample, the following defines for the
PDP-10 a flonum-only + function which checks for overflow:

{define—pub1ic—ruutine (f+ (flonum x) (floenum ¥))
{dels (value-type flonum) (implement-as axprl)
)
(lap-a-1ist
*{(1ap T+ subr)
(args T+ (nil . 23)
{push p (% 0 0 floatl))
(move tt 0 a)
(jrst 2 @ (% 0 O foo))
foo (fadr tt 0O b)
{jsp T (= 1))
(tinn f 40000) : this is octal
{popd P}

(lerr 0 (% sixbit |FLOATING-POINT OVERFLOW! |))
nil)}

Actually, this example is simple enough that it would be best written with the assembly -
language-definition clause, as follows:

MLLSBODOCDREFUN 181 29- JLIMN-%1



Defining Functional Properties 42 LSB Manual

(define-public-routine (f+ (flonum x) (flonum y))
(dels {(value-type flonum) (assembly-language-definition))
(push p (% 0 0 floatl))
(move tt O a)
(jrst 2 @ (% 0 0 foo))
foo (fadr tt O b)
(jsp T (= 1))
(tinn f 40000) ; this is octal
(popd p)
{(lerr O (% sixbit |FLOATING-POINT OVERFLOW!|)))
Of course, not all such cases arc this simple, and it may not be possible to share code between
various routines when the assembly code for them is in separate LSB definition forms.

5.13 Defining Functional Properties

Very often it is necessary to put a "function” on some property of a symbol. Lisp has the
syntax
{defun (foo propname) (this that) ...)
such that one may do
(funcall (get °"foo ‘propname) this that)
in order to invoke this function. LSB supports a similar syntactic construct.

For rourines, one may simply use a list of the symbol and the property in place of the name

of the routine, as in
(define-public-routine ((foo propname) this that) ...)

which is the LSB wayv of deing the previous example. Although it may seem that there is no call
for a visibility ¢lass in such a definition. there is: such a definition might need to be
documented, and a visibility class is needed to determine where the documentation may need to
be sent to. There is unfortunately no mechanism for remembering this information at this time,
however, so one should not attempt to use document-routine (page 55) on such a thing.

For such a definition, LSB automatically inhibits declaration production and calling-sequence
optimizations.

In PDP-10 Maclisp. one may also usc the "three-Hst” format:
(define-public-routine ((foo hackexpr hacksubr) a b) ...)
being essentially the same as
(defun (foo hackexpr anksuhrj {a b) ..:.)
which puts the interpreted definition on the hackexpr property, but the compiled subr pointer on
the hacksubr property.

If one considers macres 1 he simply a way to perform a mapping from one call-like form to
some other form, then this extension s applicable o them also.
(define-public-macro {((foo frobnicate) x y)
(list "cons x ¥))
puts a# function on the frobnicate property of foo such that
(funcall (get ‘foo “frobnicate) ‘(foo 1 2))
"> (cons 1 2)
Macro memuoization {scction 5.10, page 39) is turned off by default for this type of construct

MI:LSBDOC: DEIFUN 181 29-JUIN-R1



LSB Manual 43 Protwotype Call Summary

T'he syntax for this is both cumbersome and moderately unaesthetic. Tt is expected, however,
that such constructs will rarely be written oufl, but rather constructed by macros which can hide
the property-list implementation:

(define-system-macro {define-frobnicator name bvl (body forms))
‘(define-private-routine ((.name frobnicator) ,@bvl }

(decl1s {also-needed-for puhlic—:ompi1at1nn]}
,@farms))

5.14 Prototype Call Summary
A wvariable specification in a prototype call has the full form shown below.
varspec ::= simple-varspec | optional-varspec | rest-varspec

simple-varspec = 1= typed-variable | { quoted nyped-variable)
| {unused fped-variable) | (unused {quotad npedvariable))
| (quoeted {unused iyped-variable) )
The guoted option may only be used with routines, and is described on page i0. The
unused is applicable to any type of LSB operation definition, and is described on page 27. If
a simple-varspec appears in a prototype call to the right of an optional-varspec. it is interpreted
as if it were (optional simple-varspec).

typed-varfable : := variable-name | ( data-type-kwd variable-name)
All pre-defined data type keywords are enumerated in chapter 7, page 47.

optional-varspec 1 1=
simple-optional-varspec | (data-type-kwd simple-aptional-varspec)

simple-optional-varspec ::=
(optional simple-variable)
| (optional simple-variable defauli-value-form)
| (optional simple-value default-value-form variable-name)
The uses of default-value-form and variable-name are explained in section 5.1, page 26.

resi-varspec 1=
simple-rest-varspec. | ( rest-variable-implemeniation-type simple-rest-varspee)

simple-resi-varspec 3 : =
( rest=varspec-kwd  siimple- variable)
| (resr-varspec-kwd simple-variable variable-name)
The specifics of the optional variable-name arc discussed in section 5.1, page 26.

resi-varspec-kwd 1 1= a rest-implementation keyword
These are Rully discussed in scction 5.9, page 37.

ML SBDOCHEEUN 181 29-JL!IN-81




Prototype Call Summary 44 LSE Manual

resi-variable-implementation-type ::=
any-number-of | one-or-more-of | two-or-more-of | body | rest
The specific keyword used implies the minimum and maximum number of arguments which
are to be mapped into the particular rest-variable. There are none currently defined which
specify a maximum. one-or-more-of and two-or-more-of specify one or two arguments as
a minimuem; any-number-of, body, and rest have no restriction.

ML SBDOC:ATHFUN 181 29-JUIMN-81




LSB Manual 45 Defining Variables

6. Defining Variables

An LSB variable definition allows for all declaration and initialization information normally
needed. The definition form thus provides a distinct locus in the source text for that information
and the documentation. Defining a variable constitutes declaring it o be special, the specification
of type information for variables which are not special (i.e., local or lexical variables) is handled

by the constructs with which the binding is specified, as discussed in the previous chapter, and
chapter 13.

dafine-public-variable (= defpubvar) Special Form
define-systam-variable (= defsysvar) Special Form
define-private-variable (= defprivar) Special Form
‘These are the special forms with which one defines variables. As with all LSB definition

forms. they should only appear “at top level” in a module, w be processed by the
compiler or interpreter.

The general format of variable definition forms is
(define-visclass-variable variable- name
clause-1
clause-2
Rret |
as in
(define-public-variable smaximum-Tine-length
(value-type Fixnum)
(dafault-init 78))
which declares *maximum-line-length tw be special, says its value is always fixnum, and will
initialize it to 78 if It is does not already have a value.

“The clauses which may be supplied in addition to the common definition clauses (scction 2.6,
page 8) are:

value-type npe-name

data-type [ype-name
Assorts that the value of the variable is always of this type. Appropriate type
declarations may be produced if warranted in the Lisp implementation.

initialization fnitialization-form

init indtialization-form
When the module is loaded. the variable will be unconditionally initalized to the
value of initialization-form.

default-initialization initfalization-form

default=init inftializarion-form
Like the initialization clause, but unly seis the variable if it is not already valued.

divert-reinitialization -to divstream-1 divstream-2 ...

divert-reinit-1o divstream- 1 divsireane2 ...
This clause causes a setg form of the variable to its imitinlization 1w be owipul to each
of the nmomed diversion sircsuns, It thus may only be specified if cither the
initialization or default- initialization clauses are given. MNote that the reinitialization is
alwavs unconditional.  This can be used W prodice a file which when loaded will

MIILSBDROCDERFVAR 26 2-JLIN-3]




Defining Variables 46 LSB Manual

reset a collection of variables to their initial states.

also-divert - reinitialization-to divstream-1 ...

also-divert-rainit-to divsiream-1 ...
Although this probably is not needed because there are no default reinftialization
diversions, it is included for uniformity. It could conceivably be of use if one had a
macro which produced an LSB variable definition which provided for reinitializatdon
diversion and also passed along declaration clauses.

The LSB variable definition facility may also be used purely for declaration purposes. This is
useful in cases where either forward references occur (but see section 1001, page 59), or where the
variable is not really a part of the module but sill needs o be declared for some reason.

declare-variable Special Form
This is a wvariant of the wvariable definition special forms which can be used for
implementation-independent  declaration purposes. It only accepts the value-type
declaration clause, as none of the others are applicable.
Example:
(declare-variable scounts=
(value-type fixnum))

S SE O D EFVAR 26 29-JLIN-51




LS Manual 47 Data Types

7. Data Types

LSB provides a scheme whereby one may symbolically specify the data lLype of something.
This data type is used w0 provide variable and function wvalue declarations {when appropriate to
the Lisp implementation) and also to default the initial values of bound variables and unspecified
optional arguments. 1t is also used to provide automated type checking for arguments.

Here are the data type keywords which LSB defines initially.
notype
This essentially means "untyped”. This is what you get when no data type keyword is
specified, and there is-no default for the particular context.
fisnum A limited-precision integer.
integer
Any sizc Inleger.
number
Any number.,
flonum
A flonum. This in general corresponds o the Lisp object with typep of flonum.
small-flonum

Similar w flonum. This exists only in Lisp implementations which have such a data-
type. such as Lisp Machine Lisp.

character-code
In practice, this is equivalent 1o fixnum. In theory,
strategies to be used because of the limited rangc.
truthvalue

In practice, this is the samc as notype. In theory, it might be used to optimize
returned-values of conditionals (and the like). It cssentially states that only the t-or
nil-niess of the value is of interest.

argseq
argument-sequeance
list

temparary -list
pdl-list

vector

temporary -vector
pdi-vector
sequence

These data type keywords are all specially recognized as specifying the implemeniation
of rest parameters. This is fully discussed in section 5.9, page 37.

it might cause special storage

ML SBROCHYIYPE 20 29-JUN-81




Defining Data Types 48 LSB Manual

7.1 Defining Data Types

One may define a data-type keyword to LSB in terms of an already defined wpe it is a
specialization of.

define-public-data-type Special Form
dafine-system-data-type Special Form
define-private-data-type Special Ferm
(define-public-data-type dara-fypekeyword
clause-1
clause-2
P |
defines data-type-keyword 1o 1.SB. The information is declared in the current environment,
in the compiled output file, and in the declaration file appropriatc for the visibility class.

All the normal definition keywords may be used in the clauses. One may additionally use
the following clauses:

continue-with dara-type-keyword

This says we should get other information from the dafa-fnype-keyword data-
type. This defaults to notype.

predicate routine-name

This says that roufine-name is a predicate of one argument which defines this
data-type.
initial -value initial-value
Specifies the default inital value to be used for this data-type.
For example., the Brand-X system defines the [ollowing data-types:
(define-public-data-type Brand-X-object
{predicate Brand-X-objectp))
(define-public-data-type triple
(predicate triplep)
(continue-with Brand-X-object))

Each data-type which has a predicate associated with it can also have automaltic argument type
checking performed for an argument of that type. When one defines a daw-type. the code to do
this is automatically generated. The way in which this s donce wvaries in different Lisp
implementations:  in Maclisp, the (output from) define-visclgss-data-type is neceded for this
argument checking o be performed. but on the Lisp Machine it is not {although the predicate is
if it will not be open-coded). For example, Brand-X gets automatic type checking for the
argument given to the ilk routine, which is defined:

(define-public-routine (ilk (triple x))
(dels (check-args))
)

M ESTHDOC LYY 20 29-JEIMN-81



LSB Manual 49 Diversion Strcams

8. Diversion Streams

Diversion streams are used by L3B to implement derivability {section 2.1). They can be
loosely divided ino two categorics, depending on the kinds of objects and operations they handle:
farm diversion streams. which are used generally for Lisp code or forms., and fextual diversion
sireams. which handle text. Within each of these broad divisions there are various additional
types which determine how the diversions are w take place. and the iransformations to be made
on the objects diverted, For example, a declaration diversion stream is intended to divert
declarations—that is, forms to be executed and operations to be defined, to tell the compiler how
to compile things. The forms diverted 1o a declaration diversion stream will be compiled into a
file. A form diversion stream is similar, but does not imply that the contents are for the use of
only the compiler. A textual diversion stream is one which accepts ext—it is copied directly to a
file. A documentation diversion stream is similar, but additionally fmplics that the text is some
form of documentation, and transformations may be made on it in the diversion process. There
are also types of form diversion streams which cause the diverted forms to appear "at top level”,
as if they had not been diverted (since all form diversions can only occur by means of toplevel
special forms), and those which cause the diverted forms to be immediately evaluated.

The definition or redefinition of diversion streams, if it becomes necessary, may be done by
using the diversion-stream clause in the system definition. This clause has the format
(diversion-stream name clause-1 elause-2 ...)
as in
(diversion-stream interpreter
(type toplavel)
(predicata {1sb:not-compiling?}))
(diversion-stream toplevel
(type toplevel)
(predicate t})
which are the default definitions used for by LSB for the interpreter and toplevel diversion
stireams. I general, every diversion stream has a fpe. which determines how it handles data
sent to it (and the restrictions on that data, i.e. forms versus text), and a predicate which is
evaluated every Ume an attempt is made 10 divert something to that diversion stecam, o Sc¢ if

the diversion should be performed. The type toplevel handles only forms, and says that they
should be treated as if they were "scen at toplevel” in the module.

The types of diversion strcams arc:
toplevel
This handles forms only, and makes them “appear at toplevel”.

form A diversion stream of this type saves the forms in a file.

This is done by compiling
them.
declaration

Currently the same as form. This is for saving information needed for compilation of
things (like declarations and MAacros).
text Handles text. The text is copied to a file.
documeantation
Like text. but additionally implics that the text is documentation
be made on it when it is diverted, See section §.2.1, page 53.

M1 SHDOCIIVDEF 63

transformations may

29-1LIN-81




Diversion Streams 50 LSB Manual

eval Forms diverted to such a diversion stream are immediately evaled.

non-existent
Attempting to divert anything to a diversion stream of type non-existent is an error.
Atiempting to “load” one, if for example the pubdcl diversion stream of some
module is of this type, does nothing. This is used by some LSB sysiems which are
not actually implemented with LSB.

The other clauses of & diversion stream definition are only pertinent to diversion streams
which produce files; these are the same clauses which may be specified for a module: host,
device, directory, and pathname. When [LSB constructs the pathname for a diversion fle,
missing components default to the corresponding components of the pathname of the module (as
LSB calculates it to be from the system definition), except for the file-type and the version. The
version defaulis to the version of the module being read or compiled. The file-iype defaults to
the name of the diversion stream, with some exceptions dependent on the host file system:

Divaersion Stream LispM NIL Three-character
pubdci pubdgql pubdvl pdec
tysdel sysdqgl sysdvl sdc
moddel moddgl sysdvl mde
pubdoc pubdogq pubdov pdo
sysdoc sysdoq sysdov sdo
moddoc moddog moddov mdo
macros magros mavros mac

These exceptions exist either (as in the case of TOPS-10) to compactify the name into 3
characters, or (more commonly) because corresponding diversion files for different Lisp
implementations will be kept on the same file system. If for some reason these name defaults
need to be hacked, see Isbh:*diversion-in2s, page 67.

There are additdonal system definition (and module specification) keywords which define
diversion streams, and additionally default the type and predicate of it

taxtual -diversion =stream

text-diversion -stream

text-divstreaam
This defaults the diversion stream to be of type text. The predicate defaults o
(Isb:compiling-to-file?); the text will only be diverted if a module is being fully
compiled,

documentation -diversion -stream

doc-divstream
This defaults the diversion stream to be of (ype documentation. The predicate defaulis
o (Isbh:divert-documentation?).

form-diversion -stream

form-divsiream
The diversion stream will be by default of type form. Forms (lisp code) diverted Lo it
will be compiled inte a file. The predicate defaults w (Isb:compiling -to-file?).

declaration -diversion -stream

dcl-divstream
The diverstion stream will be by default of type declaration. Forms divenied w it will
be comapiled into g files the predicate used by defiull & (Ish:diverl-declarations?).
This type of diversion stream s distinet from form bocause it may do  additional

MZLSBDOCDIVIIEE 63 29-11IN-81



LSB Manual 51 Form Diversion Streams

processing or sctup on the forms, such as implicitly diverting some kinds of setup forms
first; this is not donec yet however,

Here are some predefined predicates for use with diversion stream definitions.

1sb:compiling?
This returns t if evaluated during a compilation, nil otherwise. It will return nil if called
during the loading of a file (by Isb-load only, sorry), even if during a compilation.

1sb:not-compiling?
Equivalent o (not (Isb:compiling?)).

I1sh:compiling-to-T1le?
This returns t if evaluated during the compilation of a file 1o a file, nil otherwise (and
during loading of a file). This is the default for randomly defined diversion streams,

1sb:divert-documantation?
This returns t if Isb:compiling-to-file? would, and if the inhibit-documentation-
production flag was not set by specification of that clause in the system definition or
module specification. This is the default diversion stream predicate for all diversion
streams defined with the textual-diversion-streamn clause. MNote that if one uses the
diversion-stream clouse but specifies a type of text or documentation (as explained
below), the default predicate is sill (Isb:compiling-to-file?).

isb:divert-declarations?
This is the default predicate used for declaration diversion streams. It is currently
equivalent to Isb:compiling-to-file? (g.v.). but may become more complex as facilitics
become better adapted to the use of a Lisp environment with a resident compiler, such as
Lisp Machine Lisp.

8.1 Form Diversion Streams

When an LSB definition is processed, the information from it is partitioned up on the basis
of what needs to be known where, and the forins generated are “sent™ o various form diversion
streams. An example of this is given in section 2.5, page 7:

{defina-public-routine (squaref {flonum n}})
(dels (value-type flonum))
(+$ n n))
This says that sguare$ is a routine of one argument (n#, a flonum) which always returns a flonum
result. What is actually produced from this definition is something more on the order of
{divert-farms-to (pubdcl compilation-environment)
declaraiions farsquored )
{divert-forms-to (toplevel)
(defun squared (n)
local-declaraiions i needed
(=3 n n})))
That is, the definition of square$ s sent 1o the toplevel diversion stream. which is like having it
specificd ot toplevel in e source file. ‘The declarations for square$, however, are sent o the
pubdel and compilation -environment diversion streams:  the former is o declararion  diversion
streceny for public declurations, and the latter is eval diversion strecvn which hos a predicate such

MLLSBDOCIDIVDEF 63 G- JUIN-81



Textual Diversion Streams 52 LSB Manual

that the forms will be evaluated immediately, but only during compilation.

divart-forms-to Special Form
(divert-forms-to diversion-siream-names
Jorm=i jorm-2 ...)
This is the primitive macro for initiating form diversions. It is only wvalid as a “toplevel
form” in a module (similar 0 defun and eval-when). One may not nest this construct,
and the behaviour of eval-when and declare inside of it is not defined. What is usually
more convenient to use than this is forms-needed-for:

forms-needed-for Special Form
(forms-neadad-for needed-for-keyword-list
Jorm-I foarm-2 ...)
This is similar to divert-forms-to, but accepts needed-for keywords., as described in
section 2.6, page 8. If a keyword implicitly needs a visibility class, private is assumed;
hence, in this context, the compilation keyword is equivalent to private - compilation.

8.2 Textual Diversion Streams

textual diversion streams are diversion streams whose primary operation is manipulation of
text, rather than Fforms. There are two types of diversion streams defined which handle text:
text, which transcribes the diverted text literally, and documentation, which may perform some
transformations in the process.

Text diversion is effected by an extension of the read-time conditional inclusion mechanism:
the exclusion of text by the { reader macro allows its inclusion rfest o specify what diversion
streams the excluded text should be diverted . There is additionally provision for actions to be
taken before, after, and during the exclusion process.

divert-to [nclusion Tester
(divert-to divatream-1 divstream-2 ...) 5 the simplest inclusion test for diverting text. [t is
only for use in rcad-time conditional inclusions, as there is no other conditional inclusion
mechanism which can provide a source of “text™. Thus,
{({divert-to pubdoc)
This is some documentation.

diverts all of the text from the first ") o the last "} w the pubdoc diversion stream.

There are scveral other inclusion tests for use with diverting documentation in more
complicated ways., rather than just a literal transcription as divert-to doees. Tt is therefore possible
for tranformations on the diverted text to occur both as a result of the way the diversion stream
handles the diversion operation, and as a result of the way the text is sent (¢ the diversion
stream.  These complications are described in chapter 9. page 55, Many of them only function on
documentation diversion streams. as they implicitly perform  higher-level formatting operations
which only documentation diversion strcams can supply.

ML LSBDOC:DIVDEF 63 T 39 JUIN-81



LSB Manual 53 Pre-Defined Diversion Streams

%.2.1 Documentation Diversion Streams

Documentation diversion streams differ from plain text diversion streams mainly by extension.
A documentation diversion stream has a documentation-type. which may be specified with the
documentation-type clause in the diversion stream definition, and it may be defaulted for all
documentation diversion streams by being used as a system definition or module specification
clause. There are two documentation types currently defined: bolio. the default, and tex. This
normally only manifest themselves when the more complicated documentation diversion inclusion
tests are used; these are documented fully in chapter 9.
{define-system hairily-documented

(built-on this that the-other-thing)

{documentation-type tex)

(documentation-diversion-stream extra-doc

(documentation-type R))
{modules foo
(bar (documentation-type bolio})
({baz (documentation-diversion-stream pubdoc
{documentation-type bolie})}))

The hairily-documented system has a default documentation-type of tex: this is implied by the
(documentation-type tex) at wp level in the system definition. All documentation diversion
sircams which are not otherwise specified will default this way. For the bar module, however,
the default documentation type is bolio. Note that the type of defaulting going on here does not
affect the extra-doc diversion stream, since the documentation ype for that never gets defaulved;
for all modules. it will be of documentation type R. Likewise, for the baz module, all the
documentation diversion streams will have documentation type tex except for extra-doc and
pubdoc, which will be R and bolio. MNote that there is no R documentation type presently.

8.3 Pre-Defined Diversion Streams

Here are the diversion streams initally defined in an LSB environment.

pubdoc
A documentation diversion stream. intended for public documentation. lIts predicate
causes diversion to occur only when the containing module is being compiled and
documentation diversion is enabled: it uses the Isbidivert-decumentation? predicate.
sysdoc
Similar 1o pubdoc, but for system documentation.

moddoc
A documentation diversion stream, intended for private documentation. By default this
diversion stream has a predicate of nil, s0 text sent to it gocs nowhere: that predicate

may however be modified in the system definition.

info Like pubdoc. This is provided somewhat spuriously, Tt could be used for sucn things
as online documentation.

pubdel
This iz a declaration diversion stream, for public declarations.  ltis predicats causes
diversion w occur only when the module is being compiled.

sysdcl

like pubdel, fur system declarations.

MILLSBIXOC:DIVIIEL 63 29 JLIMN-81



Pre-Defined Diversion Streams 54 LSB Manual

moddcl
For private declarations. This normally has predicate of nil, causing no diversions. That
may be changed by the user if it = found to be needed for some obscure forwanrd-
reference problem.

compilation-environment
An eval diversion stream, with a predicate that causes the diversion (and hence
evaluation) w occur only in the compiler.

readtime-environment
In a compilation environment, this is defined as an ewval diversion stream, cauosing the
forms diverted to be immediately evaluated: otherwise, it is a toplevel diversion stream,
thus being equivalent to interpreter. The result of this is that the “diversion” occurs in
the processing environment, 50 may be used 10 modify the LSB environment, or the
reading environment. This may be renamed to processing-environment.

interpreter
This s a diversion stream of typec toplevel, decfined with a predicate which causes no
diversion when being processed by the compiler: thus,
(divert-forms-to (interpreter) ...)
acts like
{eval-when (ewval) ...)

compiler-toplevel
A toplevel diversion stream with a predicate complementary to that of the interpreter
diversion stream.

toplevel
A toplevel diversion stream with a predicate of t. This is useful if the forms to be
diverted not only should be processed "at top level”™ in the module, but alse sent
somewhere else (e.g.. to the pubdcl diversion stream).

macros
This diversion stream is used primarily for macro definitions which are not needed in a
totally compiled system (see section 5.5.1. page 34). In Maclisp, it is by default a torm
diversion stream which will compile its forms into a file, when used in the compiler,
and do nothing in the interpreter (like pubdcl). In Lisp Machine Lisp and MNIL, it will
by default be a toplevel diversion stream, so that the forms in it are put in the
compiled output file.

ML STBINDOC-DIVIIEF 63 M-JLINM-B1



LSE Manual 55 Documentation Diversion

9. Documentation Diversion

Section 8.2 described rexiual diversion streams, and how lext may be sent o them. This
chapter discusses more advanced facilities for diverting text and producing documentation.

public-documentation Inclusion Tester

systam-documentation [nclusion Tester

private-documantation [nclusion Tester

online-documentation [mclusion Tester
These routines are for use as inclusion  tesis. They are equivalent to (divert-
documentation-to divstregm) for the appropriate diversion stream: pubdoc, sysdoc.
moddoe, or info.

divert-documentation-to [nclusion Tester
(divert-documentation-to divsireamn-{ divsiream-2 ...} is an inclusion test which always
fails, and causes the text within curly-brackets to be interpreted as documentation and sent
o the specified diversion streams. Example:
{{diuert—documantat‘inn—tn pubdoc)
.chapter "Hacking Around”
This is a test of the amergency broadcast system.

It is only a test. Had it beaen a real emergency you
would have run out of 1ist storage.
3}

This inclusion test is mof eguivalent to divert-to (page 52).. The enclosed text is output
within a "documecntation bleck”, which means that it will be preceded by a blank line:
this is irrespective of whether a newline immediately follows the inclusion test, as such a
newline is ignored.

When 1.5 defines opcrations or variables, it rtecords various attributes of them in the
environment (cither compiler or interpreter). I'his information is then used by the following
routines to supplement user-supplicd documentation. For operations  (roulinés, mMacros, and
special-forms, but nor compile-time-macros), this information includes such things as the type of
definition, information about the prototype call, and the value-type. For both. most importantly,
it includes the diversion streamis) to which documentation about the object defined is o be sont

to. The following inclusion tests utilize this information in order 1o figure out where 1o send the
excluded text

document-routine [nclusion Tester
document-routines [lnclusion Tester

‘These two Inclusion tests are identical; both names are provided for cuphony.
(document-routing) as an inclusion test will document the most recently defined routine;
(document-routine a) will document a, and (document-routines a b c) will document
a, b, and ¢ as a group, for an effect similar w that n this text here. For cxample, one
might do

MLALSBDOC1OCIIY 43 20-JLIMN-81




Documentation Diversion 56 LSB Manual

(define-public-open-codable-routine (square (numbar n))
(dels (value-type number}))
(times n n))

{({documant-routine)

edsquarees= returns the square of its argument,.

3

(define-publicr-open-codable-routine (squared (flonum n))
(dcls (value-type Fflonum))
(=% n n}))

(define-public-open-codable-routine (square& (fixnum n))
(dels (value-type fixnum))
(= nnj))

{{document-routines square$ square&)

edsquarelSe+ and e3dsquareie+ are the flonum-only

and Tixpum-only wversions of e3squaress=.

What happens is the diverted text is output between stuff computed from the definition
information, to produce a special text-justifier construct for the partcular type of
definition. What is actually produced depends on the documentation-type of the
diversion stream(s); this is described later in this chapter.

documant-variable [nclusion Tester
document-variables [nclusion Tester
These is similar in form and function to document-routine.
(define-system-variable «frobozzs
(default-init (create-a-crock)))
{{document-variable)
This is a disgusting crock.

}

When onc is utilizing the same source text in different Lisp implementations, it is often
unnecessary to redundantly produce documentation from both. The default predicate used by
documentation diversion streams (Isb:divert-documentation?, page 51) checks the flag set by
inhibit-documentation-production system definition option, which says that documentation
should not be diverted. For example, the pretty-print-definition system is defined;

{define-system pretty-print-definition
(directory format)
(built-on loop sharpsign backquote {PDP-10 user-hunk})
(users-implicitliy-need writa)
{{except-for PDP-10) (inhibit-documentation-production)}
(modules ppdef ppdesc)

)

When address space is a consideration and the sbove operation and variable documentation
facilitics are not being used. one should alse use the inhibit-documentation -production option,
becavuse in addition w inhibiting the diversion of documentation, it tells 1S3 not o record
information about the definitions.,

S LSOO OCIY 43 - JLIN-81



LSB Manual 57 The Bolio Documentation Type

9.1 The Bolio Documentation Type

Bolio is a text justifier written in PDP-10 Maclisp. It comes with predefined operators and
conventions for documenting Lisp programs; because of this, it is the default documentation type.
Bolio was used to produce the Lisp Machine Manual, and this document.

The output produced for Bolio by
[defina~pub1ic—upan-codah194rnutine {square (number n))
(dels (value-type number))
(times n n))
{(documant-routine)
r3squarees returns the square of its argument.

3
looks like
.defun square el{numbere=Ynel)e~
e3dsquaree+ returns the sguare of its argument.
Lend_defun
All of that randomness after sguare on the .defun line is font switching and spacing so that
Bolio does not need to do any parsing of the argument descriptions, The output produced by
{define-public-open-codable-routine (square$ (flonum nj))
{decls (value-type flonum))
(#*% n n))
(define-public-open-codable-routine (square& (fizxnum n)})
(dels {(value-type Tixnum))
(= nn))
{({document-routines square$ square)
edsquareSes and ed3squarefes are the flonum-only
and fixnum-only versions of rdsquares=».

¥
looks like

.defun square$ c1{flonumesYnel)e+*

.defunl square& el(fixnumesYnel)e=

e3squareSe» and rdsquara&:s= are the Tlonum-only

and fixnum-only versions of r3squarecs.

end_defun
Different types of definitions produce different documentation operators, in a similar format,
differing only in the texi-justifier commands used and the argument descriptions: only routine
definitions. producing .defun, output any argument descriptions. Variable definitions use .defvar,
defvarl, and .end_delvar, macro definitions use defmac, .defmaci, and .end_defmac, and
special furms (or routines or macros which have the document-as-special-form option specified
in their declarations) use .defspec. .defspeci, and .end_defspec.

Except on Multics (which does not do case-conversion on input). variable, argument, data
type, and operation names are converted to lower case when output.  Call mapping keywaords,
such as optional. are capitalived. In Lisp implementations with packages.,  some heuristics arc
used o attempt to determune how the defined object’s name should be printed. For routines, the
names of the sguments will always be output withoul any pockage infonmation,

ML:LSBDOC:1XOCHIV 43 29-JLIN-81




The TEX Documentation Type 58 L5003 Manual

9.2 The TEX Documentation Type

The output produced by the tex documentation type for the square example of the previous
section looks like

“defun SQUARE “argtype{number}{n}.

user-rexi
MNote that no indication of the end of the text is given, although there will be a blank line there.
The tex format in general produces calls like argtype above rather than pre-formatting the type
and call-mapping keyword information; e.g., the routine

{define-public-routine (foo (quoted a) (optional (flonum b}})

e

would produce the “defun header

“defun FOD ‘quoted{quoted}{a}

voptional{optional}{rargtype{flonum}{b}}.

except that it would all be on one line. The reason quoted and optional appear to be duplicated
above is that the name in braces is the actual keyword used in the definition, which may be
different from the macro name. Currently, the routine., macro, or variable name is nor lower-
casified. although the variable names and keywords are. Like bolio, the tex documentation type
can produce multiple “defuns in a block, by using “defuni. It will also produce calls to
“defvar, “defmac, and “defspec, and “defvarl ctc. Unlike bolio, all of the operation
documenting macro calls produced will contain the argwment information from the prototype call.

The full list of argument descriptor macros used is:

soptional{ kwd}{ innards})

srest{ Awd}{ innards}
where kwd is the actual call-mapping keyword used, and innards is the remainder of
the argument description.

squoted { kwdH innards}
Similar to the above.

sargtype{ knwd} { variable}
The “argtype will be the most deeply nested macro call if it is present, so its second
“argument” ¢an only be the variable name.

Thus the output produced for the variable args in the prototype call (foo {(any-number-of
{guoted (lixnum args))) looks like

\vrest{any-number-of}{\quoted{quoted}{rargtype{fixnum}{args}}}

There is no existing package of TEX macros to do anything with this outpul, yet

MILSBDOC:DOCTIV 43 T 29-JUN-81




LSk Manual 59 Geuing LSB

10. Getting LSB

10.1 The LSE Compiler

LSB provides its own standard compiler interface. It 15 very similar to whatever standard
compiler interface is normally provided, but offers one option {(as a default) which none do: it
reads and macro-processes the input fle fully before it begins compilation. That is, it
incrementally reads in the file, expanding toplevel macros. LSB  definitions and diversions,
declares. eval-whens, and includes, but instcad of immediately putputting or compiling the
resuliant forms as an ordinary compiler would, they are buffered up. Only when all of the input
has been processed are the forms compiled.

This is a very useful action, due to the way LSB works Because all of the declarative
information about defined objects in LSB is derived from the definition form, one does not
declare everything that needs declaring at the front of the file: thus, this first pass allows LSB to
extract all of the declarations {(and macro definitions) which will be needed for the compilation
before the compilation starts. MNote that the reading of the file is done incrementally with this
form processing: one may. in something like an eval-when or In a toplevel macro call {which
the module form at the front of the file is) modify rcader atributes, such as syntax and inpul
radix. This also obviates the need for declare-routine (page 40) and declare -variable (pagec 46)
in many cascs.

Having the file processed in this manner docs not solve all forward-reference problems; only
those “one level deep”. if that much. LSB makes use of some declaration information when it
expands out definitions, and information it needs should be around before one of its forms is to
be processed. Thus, if one does something like

(define-public-routine (ilk (triple x))
(dels {type-check-argument x))
R
(define-public-data-type triple
(predicate triplep)
{continue-with brand-x-object})
the ilk routine will mof have tvpe checking performed for it. because at the time LSB crecates
type-checking code the triple duta-type (and the associated mechanism for doing argument type
checking for that type) has not been defined. The same could be true for top-level calls to
macros which are defined later in the file:
(defina-a-frob foobar)
(daefine-public-macro (define-a-frob name)
|
Whether or not the ordering matters in this last case depends on what (define-a-frob foobar)
expands into: for safety, constructions like this should be ordered properly. MNoie also that this
ordering constraint is in fuct that which would be necessary o load the code interpreted anyway,
since there is no pre-pass made when a source file is loaded into a lisp.

MI:LSHBDOC;COMPLR 25 29-JUIN-81




The LS Compiler &0 LSB Manual

10.1.1 The Maclisp Compiler

The PDP-10 LSB compiler is a normal PDP-10 compiler with LSB in it. running the LSB
compiler interface. The command interface to it is the same as the ordinary PDP-10 Lisp
compiler, although it will run the LSB file-processing interface as described above. If for some
reason this LSB interface is undesirable, say the file is particularly large and does not fit into the
compiler, then one can disabie this mode by negating the "L" compiler switch: for example, to
the compiler's command-processing loop, saying:

myfile (t-1)
On the ITS opecrating system, the LSB compiler may be invoked with the :ISBCL command.
There is currently no LSB compiler available on non-I'TS operating systems.

In Multics Maclisp. there is also currently no saved LSB compiler available, The special LSB
file-processing interface is not available either. One may. however, bootstrap up an ILSB in an
ordinary compiler by placing the following form at the front of the source file, before the module
form:

(eval-when {(compile)
(or (status feature L3SB)
(1cad ">udd=Mathlab>LSB>compilation-environment.lisp™)))
This form will thus work both in a compiler without LSB, and in a saved LSB compiler if and
when one becomes available, One must use a compiler/lisp which understands the eval-when
special form; 1.SB depends on it. If the source file is also to be used in Lisp implementations
other than Multics. the Multics Feature should be checked for too:
(eval-when (compile)
(and (status feature Multics)
(not (status feature L5B))
{1oad "=udd=Mathlab>LSB>compilation-environment.lisp™)]})

10.1.2 On the Lisp Machine
Al some Ruture time, LSB should exist saved on a disk band. Currently, one may cause LSB
0 be loaded by doing
(1load "MC:LSB;LISPM LOAD"™)
which loads everything, and is thus a bit time consuming.
To compile an LSB module, do nor use go-file:
1sbcom infile &optonal ouifile package-spec

This is similar 10 gc-file, but runs the LSB compiler interface. ‘The argumecnts Isbcom
takes arc interpreted the same way qe-file inerprets them (q.v.).

MILSBRDOCCOMPI R 25 I 29-JUIN-81




LSB Manual 61 Interpreted LSB

10.1.3 On the VAX

To be written when developed. It is suspected that it may not be possible 1o compile IS8 on
the 10 for the VAX because of address-space limilations, LSRB use on the VAX will probably not
differ drastically from rthat on the PDP-10.

10.2 Interpreted LSB

On ITS., LSB is available as a dumped environment under the name LLSB. This environment
contains some things which are not strictly a part of LSB but which are commonly used by most
current LSB users. If demand indicates, this can be cleaned up.

Dumped subsystems on I'TS very often will need LSE in them if any code is going to be run
interpreted in them, but for production purposcs this may be undesirable. [t is possible to create
versions of dumped subsystems which do and do not contain LSB. and which share the portion
of the subsystem not containing LSB. This is, in fact, a general feature of Maclisp on TI'S, and
has nothing to do with LSB; it is documented elsewhere. The file I.SB FILES on the ISB
dircctory will, when loaded, load in those parts of LSB normally needed for running interpreted
code, and set up autoload propertics for some others which are only rarely used. All LSB
autoload propertics in PDP-10 Maclisp are aof the form ({lsb) ..), s0 on a non-I'T'S system the
atom sty may be given a ppn property if needed. Much LSB code automatically defaults the I1sb
ppn property to that for lisp.

On Multics, the file >udd>Mathlab>LSB>sb-loader.lisp is cquivalent to the LSB FILES file
of PDP-10 Maclisp—it loads only those parts of LSB normally needed for interpretation.

The Lisp Machine programming environment is such that getting LSB for interpretation is the
same as getting it for compilation.

ML SBDOC:COMPLER 25 29-JLIN-3]



Coming Attractions 62 L.SB Manual

11. Coming Attractions

These are random notes on things which are either under development or are being
considered.

In PDP-10 Maclisp. it is possible for the file property list to be parsed and used in a
LEDIT/EMACS combination, to allow the proper binding environment to be cstablished when
code is transferred from the EMACS w the LISP. This can use the LSB option of the file
property list. An experimental version of this has been tried, but the minimal hooks necessary do
not yet exist with the system-supplied LEDIT.

One problem with using LSB is that things which are logically built-on it are then required
to use LSB if they are to properly have their compilation (for example) environment established.
In most cases. however, loading the various pubdcl files of the system(s) involved will suffice. A
relatively small amount of code would be needed to support the loading of these files into a bare
compiler. This is mainly applicable to Lisp environments like Maclisp where the compilation
environment is distinet from the runtime environment. For the Lisp Machine, the potential cxists
for either causing the contents of the declaration diversion files to be “expanded out”™ so that they
do not utilize LSB, or again, to simply have some special code to allow them to be loaded. The
latter would require there to be an LSB package. Yet another alternative for the Lisp Machine
{or similar) implementation is o cause all of the declaration information to be output into the
compilation output file; this differs from splitting it into multiple (e.g.. gfasl. pubdcl, sysdcl)
files in that there would be no duplication of code. Again, this might possibly be done cither by
having some bootstrap L.SB code around at load time. or by convincing LSB to “open-code” the
declaration info it outputs; this last is only moderately space-consuming, as much of the swff
output involves declaration info which is redundant with the runtime environment, and error
checking.

It is possible W compile portions of an LSB module "out of context”. All that neecds to be
done is to run the LSB pre-processing step (section 10.1, page 59) over the eoriginal file to extract
all private declarations, and then compile the file as if it were that module itself. Appropriate
fudging of the diversion streams is necessary to ensure that erroncous diversions are not created
for that module, but is not difficult. An experimental version of this has been tried, and all that
is necessary is o put a patch-module form at the front of the file, instead of using module.
This facility is not available by default yet, but probably will be soon.

MILSBIXOC:2COMES 29-JUIN-E]




1L.SB Manual 63 Extending LSB

12. Extending LSB

This chapter describes various methods and conventions which may be used to extend of
customize LSB in some way, The contents are somewhat haphazardly organized, and in many
cases there is missing description of how to do things, but it is suilable as a reference  for
relatively stable but internal facilities of LSB. Mothing in this chapter should be used frivolously:
it is primarily compensation for lack of better “public” facilitics. Also, any changes 1o the
contents of this chapter would warrant a warning to the INFO-LSE mailing list, so it is safer o
use what is listed here than just anything you might find in the source code.

If you usc any facilitics documented here, it is recommended that the system using them be
built-on the Isb system. Although use of some things here does not require this, not -all macro
definitions and declarations may be pre-loaded in all Lisp implementations.

12.1 LSB Keyword Comparison

Here are the various routines for comparing symbols for LSB keyword or token equality.
MNote that in all cases the "keywords” being compared are expected to be interned symbols; this
may matter in some Lisp implementations.

1sb:token-squal rtekenl token?
implements foken equality testing.

1sb:tokan-membar ioken lisi
1sb:token-assoc foken a-list
1sb:token-lookup foken a-list
are analogous to member and assoc. lsb:token -lookup is like using the Lisp Machine

function memass: it returns the sublist whose car is what would be returncd by
Isbrtoken-assoc. That is,

{defun 1sb:token-assoc (token a-list)
{car (1sb:token-loockup token a-1ist)))

1sb:kwd-aqual roken! ioken2
1sb:kwd-member roken [ist
1sb:kwd-assoc (loken a-list
1sb:kwd-lookup roken a-list

The versions of the above predicates which check using keyword equality.

i1sb:kwd-hassoc loken a-list

This is like Isb:kwd-assoe but bubbles an entry found forward in a-lisi. This should
only be used for things which may be safely modified.

Many LSB “mbies” arc implemented as association lists, Since the keys of the entrics cannot

necessarily be compared with eq or equal, the fwllowing macros may be used W push new cntries
on.

MI:LSBDOCEXTEND 37 29-JUN-81




Defining System Definition Options G4 LSB Manual

I1sb:push-pair Macro
(Tsb:push-pair (displace . 1sb:displace-macmem)
I1sb:*macro-memoizers)
pushes the entry (displace . Isb:displace-macmem) onto the list Ish:*macro-memoizers.
If the variable is not bound, it will be set to nil first If there is already an entry for
displace there, it will be removed.

This macro is defined such that its expansion can be run in a Lisp without LSB present
Therefore it docs not actually use keyword eguality. but cheats and only uses roken
equaliry. For that reason, it is imperative that only the “canonical” form of a keyword be
used in this manner. Note that if the compiler puts the call 1o Isb:push-pair rather than
its expansion in the compiled output file, then LSB will need to be around when the file
is loaded. The PDP-10 Maclisp compiler normally will completely macro-expand forms
before stuffing them inte its output fle.

1sb:push-sym Macro
This is just like Isb:push-pair, only it does use eq for comparing "keys”. It may thus be
used for adding entries to association lists of (say) wvarable names. Qualifications For
Isb:push-pair about runtime support apply here also.

12.2 Deflining System Deflinition Options

This section documents some facilities which may be used for defining L.SB options, which are
specifiable in system and module definitions. It may be safely skipped by those who are not
interested in defining their own. The facilitiecs here should not be used frivolously; they are
intended tw be used by the maintainers of systems which need to provide special processing
environments for their users.

An LSB option is cssentially a state which can be encoded in some variable(s). It has a
routing to determine the value(s) implied by the option clause., and each variable has a default
value which is used in the absence of a specification.

define-1sb-option Macro
(define-lsb-option option-keyword interpreiation-fn
varspec-! varspec-2 .. .)
defines optiom-keyword o be an option for inclusion in a system definition or module
specification.  imferprefation-fi is a function of one argument, the clause, which should
return an association list of the wvariables to be modified and their values. Each of the
varspec-i describes the variables which may be modificd (and thus may nced to be bound
o sct up an [.SB environment); it may be either just the variable, in which case nil is
used as the default value, or a list of the variable and a form to be evaluated to get the
value. For example,
(defun hack-input-radix (clause)
(1list (cons "ibase (cadr clause))))
(define-T1sb-option input-radix hack-input-radix
[ibase 10.))

MELSBIOCEXTENID 37 29-JUN-81



LSB Manual 65 Diefining New Readtables

define-l1sb-flag-option Macro

‘This is really a special case of define-Isb-option. The variable(s) will take on only t or

nil as values. For example,
(defina-1sb-flag-option dc—argumant—type—chnck1ng

1sh:=type-check?)

defines do-argument-type-checking such that either of the clauses
(do-argument-typa-checking)
{do-argument-type-checking t)

turns on tvpe checking (by seuting Isb:*type-check? w0 t), and
{do-argument-type-checking nil})

turns off type checking. The syntax (o define-lsb-flag-option is the same as that tw

define-Isbh-option, minus the function.

Mote that if one desires an option defined with define-lsb-option or define-lsb-flag-option
o take effect in the compilation environment, one must explicitly use a forms-needed-for form,
like
(forms-neaded-for (running public-compilation)
(defun hack-input-radix ...)
(define-l1sb-option input-radix ST

unless the module is needed-for-user-compilation and the option is not used by the system
which defines it

By special dispensation, in Maclisp it is possible o load compiled calls 1o define-Isb-option
and define-isb-fiag-option into a Lisp which docs not have LSB present. If LSB is loaded in
at a later time, these options will be in effect (unless otherwise redefined).

12.3 Defining New Readtables

1sb:*readtables Farigble

This is an association list of keywords and the readtables they represent. Each "readtable”

itself is allowed (and in fact recommended) to be a symbol whose value is the readtable
o be used. The initial value of this variable is

((standard . 1sh:=standard-readtable))

1sb:*standard-readtable Variable

The value of this is used as the "standard” and default rcadwble by LSB. It is initialized
to the readtable current when LSB is loaded iny it will typically be the one and only
readiable in the Lisp environment

Thus. one might define a new readiable o LSB by doing
{1sb:push-pair (readtable . Brand-X-Readtable)
1sb:=readtables)
in some appropriate place.

MIGLSBDOC:EXTENTDI AT 249-JLIN-81




Playing with the System Definition 66 LSB Manual

12.4 Playing with the System Definition

1sb:establish-sysdef svsiem-spec
sysiem-spec 15 exactly what might be specified inside of (say) a built-on clause, as
described on page 12: cither the name of a system, or a list of the name of a system,
and a pathname suggesting where to find the system definition. This performs all the
actions associated with searching for a system definition (if it is not already known!)
described early in this manual. [t returns a list, the car of which is the canonical name
for the system, and the cdr of which is the system definition body.

I1sb:*sysdefs Variable
An a-list of all known system definitions. The car of each entry is the name of the
system (which should be compared using LSB token equality), and the cdr is, if non-
atomic. the definition. If the cdr is atomic, then it is the name of another system whose
definition should be used instead (“indirected to").

Isb:*syslocs Varigble
An a-list of system names and locations. The location here is exactly that supplied with
define-system-location.

1sb:determine-module-file-group module-spec sysiem-def
sysiemi-def is a system definition, of the form returned by Isb:establish-sysdel. module-
spec is the entry for the appropriate module out of the modules clause of the system
definition. This returns a representation for the pathname of the module which does not
include a file-type or version; this is used for such things as finding cither the source or
compiled output file, or for defaulting the pathname for a diversion stream associated with
that module,

Isb:determine-diversion-filename divstream-clause module-spec system-def version?
This determines the actual pathname for the diversion stream specified by divstream-clause.
with respect o module-spec and system-def, using a version of version?. module-spec and
system-degf are the same as for Isb:determine-module-file-group. divstream-clause is the
clause defining a diversion stream. version?, if not nil, should be the version to be used
in the gencrated filename.

When LSB itself calls this to determine the owipur pathname for a diversion stream,
version? is the version of the module source file, modufe-spec is the module-spec of the
muodule being compiled, and systen-def is the system definition of the sysiem the module
is a part of. disrream-clause is whatever Isbifind -divdef would return for module-spec
and sysrem-def.

When 1.SB calls this w determine the fmput pathname for a diversion stream (say a
pubdel diversion stream o be loaded). version? is nil. In theory. cither it could be the
actual version of the “installed” source for the module in ouestion, or some symbaolic
indicator that that s what should be uwsed. For input it is assumed that an unspecified
version does something reasonable (typically, retrieving the "most recent” one).

MILLSBDOCENTENID 37 © O 29-JLIN-BI



LSR Manual 67 Inclusion Tests

1sb:find-divdef divstrean-name module-spec  system-def
This looks up the diversion stream definition for divstream-name for module module-spec in
system-def.  If there is a diversion-stream defining clause for divsiream-name in module
spec, that is returned: otherwise, if there is one in sysfem-def, that is returned;
otherwise, if there is an LSB default for divsiream-name, that is returned, otherwise nil.

1sb:*diversion-fnis Variable

This is an association list of diversion stream namcs and their default fle-types. It may
need to be hacked if cross-compilation is being done. Its value on the Lisp Machine, for
example, is:

{ {pubdoc . pubdog) (sysdoc . sysdoq) (moddoc . moddoq)
(pubdel . pubdgl) (sysdcl . sysdql) (moddcl . moddql)
(macros . magros))

The diversion stream names are looked up, as always, using LSE keyword cquality.

12.5 Inclusion Tests

A non-atomic inclusion test has a routine associated with it When the inclusion test is

performed, this routine should return nil if the text enclosed in curly-brackets is w be skipped
over, non-nil if it is not.

12.5.1 Simple Inclusion Tests

The variables, routines, and mMacros described here should be sufficient to define simpls
inclusion test routines, such as only-for, except-for, vnly-on, and except-on.

1sb:*4implementation-features Variable
I'his variable is normally nil. If it is set non-nil. then it is used as the set of “destination
features” used by the only-for and except-for inclusion 1ests, instend of the result of

(status features). MNote that the only-on and except-on inclusion tcsts  always use
(status features).

'Ish:parfnrm—1mp1amantat‘lnn—f&at.ur'nutast.s implementation-feature-1esis
return-first-null-result? return-first-non-null-reselt? features-to-consider?
This is the routing used W parse implementation  feature lesis, like those given to the
only-for inclusion tesi IF features-to-consider? is nil, then Ish: *implemeantation -features
is used if that is not nil, otherwise (stalus features). Scc define-inclusion-test. below.

define-inclusion-test Afacro
({define-inclusion-test name bvl
farmel form=2 ...)
AL this time. the function defined for an inclusion test gets exactly one argument, the cdr
of the inclusion est. At some future date it is antdcipared that bvl will be treated in some
other manner so thut there can be automatic number-ofFargument checking. I'he only-for
inclusion test is defined as:
{d:efina—inclusiun-—t.est_ only-for (tests)
(1sb:perform-implemnan tation-feature-tests
tests () "t (1))

M LSHDOC EXTENID 37 29-JUIN-81




Inclusion Tests 68 LSB Manual

12.5.2 Environment Modifying Inclusion Tests

LSB keceps a stack of data which is used around succeeding conditional inclusions. This is
used both for recording the location of the initiating left-curly-bracket, and for possibly
performing some specific cleanup action when the right-curly-bracket is encountered.

Isb:input-file-status
Rewurns some  information about the name and position of the current input fle.
Mormally this will be a list of the name of the file, and the current file position.

1sb:"asynchronous-environment-stack Wariable
This is the stack of information on how to deal with all currently unmatched left-curly-
brackets. Each entry on the stack is a cons of a description of the left-curly-bracket, and
how to undo it The latter if not nil, is a cons of a function to apply to do the cleanup
action, and the arguments w apply it o, The default acton performed for a succeeding
conditional inclusion is
(push (1ist (list+ (Isb:input-file-status)
"conditional dnclusion test"
the-inclusion-test) )
I1sb:=asynchronous-enviranment-stack)
If an inclusion test desires to manipulate Isb:*asynchronous-environment-stack, it may
do as as shown below, and instead of returning just any non-nil value, it should return
the atom Isb:*asynchronous-environment-stack to wll the caller that it has already
performed that action., For example, the following defines the gross-hack inclusion test
{(which for simplicity ignores it1s arguments) to make the variable *gross-hack® t for the
duration of the curly-brackers:
{define-inclusion-test gross-hack (ignore)

(push {(l1ist (1ist (Isb:input-file-status) "Gross Hack")
#'(lambda (val) (setg #=gross-hackes val))
sgross-hacks=)

Isb:=asynchronous-environment-stack)

(setq =gross-hacks= t)

"I1sb:=asynchronous-anvironment-stack])

12.5.3 Text Diverting Inclusion Tests

Text diverting inclusion tests are inclusion tests which always fail, and which also manage o
state where the excluded text should be diverted to. “The simplest way for this to be done is with
the following routines:

1sb:divert-to-1 lisr-ofdiversion streans-names
This should enly be called from within an inclusion test which s going to return nil,
Isb:divert-to-1 ttself returns nil so that it may be wsed as the last form of an inclusion
test routine. It cavses the excluded text to be transcribed verbatim to the named diversion
streams.  Multiple calls may be made to Isbidivert-to-1 i necessary:  specifving a
diversion stroam multiple times will have no effect. For example,
({define-inclusion-test divert-my-text (ignore)
[1sb:divert-to-1 *{mydoc)))

defines the inclusiom test routine divert-my -text tuch that (divert-my-text) is cquiralent
w {clivert -to mydoc).

ML SBDOC: EXTIEMNI 37 2-JUIN-8]



LSB Manual 69 Inclusion Tests

1sb:divert-doc-1 [isr-ofdiversion-streant-names
This is just like Isbidivert-to-1, but additionally defaults Isb: *diversion -routine (sece
below) to a routine which (1) starts the diversion output on a fresh line while (2) flushing
the initial newline (if any) at the start of the diverted twext. Thus, the public-
documentation inclusion test could have been defined by

{daf‘in&-inc'lusiun—t.ast pub]ic—dncumantatinn {ignore)
(1sb:divert-doc-1 *{pubdoc)))

Mote: the "-1" suffix on the preceding two routines is vestigial, and is expected to disappear,
someday.

If one is doing complicated textual diversions, such as those done by document-routine, the
following variables may be hacked by the inclusion test routine:

1sb:*diversion-bindings Variable

“I'his is an a-list of variables and values they should be bound to. These bindings are
established around the diversion of the text

1sb:*diversion-satup-forms Variable

A list of forms to be evaled before the diversion starts. This is done inside the binding
environment specified by lsbi*diversion-bindings.

1sb:*diversion-cleanup-forms Variable

A list of forms to be evaled after the diversion finishes. This also is done inside the
binding environment specified by Isb: *diversion -bindings.

1sb:*diversion-routine Variable

If this is not nil. it is a function to be called with no arguments. It has sole
responsibility for reading and diverting the text between matching curly-brackets.

1sb:diversion-tyo character-code
Diverts character-code to all of the diversion streams currently being diverted wo. This is a

special case of, and is slightly Ffaster than deing (Isb:diversion-operation ":tyo character-
code).

1sb:diversion-operation aoperation ( Any-number-of args)

Sends the operation message o all of the diversion streams currently being diverted to.
The operations which may be of interest inside a textual diversion are:

‘tyo characler-code
Outpuis the single character.
princ object
Does the obvious.
:print obyject
This too.
sterpri
This oo,
:fresh-line

Perfurme 4 tfresh-line operation on the stream:  if the stream is not at the start
of a line, then a newline is oulput.

MILSBDOCEXTEMD 37 29-JLIN-81




Defining Documentation Types 70 LE5E Manual

Other special-purpose operations may be defined for documentation purposcs, such as
:start-operation-documentation: see the discussion on documentation types., below.

12.6 Defining Documentation Types
The sgueamish and those prone to heart attacks read this section at their own risk.

Internally, diversion streams wuse a relatively simple message-passing mechanism. A
documentation type has associated with it a function which can field some subsct of the Messages
which get sent to documenttion diversion streams; if it does not support some message, the
default behaviour (that provided by simple text diversion strcams) will be obtained. The function
gets a first argument of the operation name, a sccond argument of the output stream, and
remaining arguments which depend on the operation. It should thus be prepared 1o accept any
number of arguments. MNote that this calling convention is that produced by a function defined
with the Lisp Machine defselect macro.

Here are some of the messages a documentation-type handler should support:

which-operations
The handler should return a list of the operations it supports. That list need not
include :which-operations. but :which-operations must be handled. The result of
this is cached by the diversion stream for efficiency, so it cannot dynamically change.
This operation is special in that the handler may be called on it before the stream has
been created. in which case the stream argument will be nil,

start-operation ~-documentation dara-list
We are starting to produce some operation documentation, as gotten from document-
routine. dafa-list is a list of datastructures which contain the information for each of
the operations being documented; see <not-yet-written> for using these datastructures.
The handler should output whatever is necessary to start the documentation: for Bolio,
this is the .defun and .defuni lines.

:end -operation -documentation dala-list
data-list is the same as for :start-operation-documentation. The handler should
“finish up” the documentation block.

start-variable -documentation data-fist
Like :start-operation-documentation, but for variables. The clements of dare-list
are in a different format: sce <nol-yet-written.

:end-variable -documentation dara-fisr
Analogous (o end-operation-documentation.
More operations like the above may be added in the future,

The messages listed above are exactly those supported by the bolio and tex documentation
types. L is possible. however, for the documentation type handler to have much finer control
over the output which is produced. Fuor this, it necds 1o ficld most if not all messages which are
passed on o diversion streams. These are:

Ao cliarictor-code
The character should be output tw the streim.  The informiation on  whether the
decumentition type handler fields this message is cached specially Tor efMiciency.

MIESBDOC; EX'TEND 37 29-JLIM-81



L.SB Manual 71 Macro Memoization

:princ object
The obiect should be princed to the stream.

:prinl object
The aobject should be prinied to the stream.

terpri A newline should be output 10 the stream. Note that newlines in fext being diverted
do not get converted to terpri operations, but are left as whatever character(s) they
woere read in aos. The decumentation producing routines, however, should not
generate newline character sequences, but rather use the :terpri operation.

fresh-line
A newline should be output to the stream iff it 5 not at the beginning of a line.

sab-to desiination (Optional increment)
see documentation on the ~T operator of format

:close The stream should be "closed”, This operation is only used for successful completion.

kil The stream should be “closed”, and aborted. What normally happens here is the
stream is closed and the partally written file deleted.

:open pathname

The handler can support this if it desires o produce a non-standard /0 strecam;
normally, open would be called. Mote that if the open mCSSage is passed to the
handler, no stream has yet been created, so the stream argument to the handler will
be nil. The handler should return an output stream: this will be cached by the
diversion stream mechanism, and passed in o the handler for all subscquent
operations.

If the handler is going to ficld character-level smuff. i.c. the tyo opcration, it must also handle

any of the other operations which may produce output (such as :princ and sterpri); the default

action in these cases does net involve breaking the high-level operation into its components and

passing them back to the handler. In Lisp implementations where general /O streams arc

available, it is probably beuer for the handler to feld the :open message and return an [/O

streamn which will then handle the output operations appropriately.

Finally, if one is willing 1o wade through a1l of this and nceds o associate a function with a
documentation Lype name:

1sb:*documentation-typas Variable
‘I'he value of this s an association list of documentation type names and their handler
functions. The documentation type namcs arc compared using [.5B keyword cquality.

12.7 Macro Memoization

1sb:*macro-memoizers Variable
This is an a-list of keywords acceptable to the do-macro-mamaoizing system  definition
{and macro decloration) clause. “The cdr of coch entry is a function which will be called
oy produce the macro memoization code, and any sctup code which must come before the
definition,  The arguiments are the mucro name, the name of the variable which will have
a5 s vualue the wsiginal eall form, and the form which will need w he evalumted o
produce the eapansion, The function should reurmn a list of forms, The first form will be

wsed as the body of the macro, and LSB will arrange for the remaining forms to precede

MUALSBDOC EXTENLD 37 29-J1IN-81




Macro Memoization T2 LSDE Manual

the macro definition itself, The original value of Ish:*macro-memoizers looks like
({t . 1sb:standard-macmem) (displace . 1sb:displace-macmem))
and the displace method of macro memoization is defined by
(defun Isb:displace-macmem (macro-name
original-form-var
new-Fform-form)
macro-name ; maybe unused
*((displace .original-form-form .new-form-form)
{(only-for {(or PDP-10 NIL))
This is so that any previous form of
macro-memoization will revert so we can undo it.
(flush-macromamos ' ,macro-name ())})}
1)

ML SBDOCIEX TIEND 37 9. JLIN-81



LSH Manual 713 Variable Binding - LBIND

13. Variable Binding - LBIND

The LBIND module, although not a part of the default LSB environment, is closely related
to it, and quite useful with LSB, both to supplant the use of the bindg and auxiliary-bindings
forms in operation definitions, and in places where those forms are not valid. It also is extremely
useful for writing implementation independent code, as the data types of the variables may be
specified using the standard 1.ST data type keywords, no implementation dependent declarations
arc needed. If it is used, the Ibind system should be noted in the built-on clause of the system
definition.

1bind Macro
lbind provides let-like syntax for binding variables. The syntax provides for the
specification of data types rather than destructuring. The general syntax is
{(1bind (bind-spec-! bind-spec-2 ...)

Jorm-1

form-2

ciicd
A bind-spec is one of the following:

variable
The variable will be bound to nil, and declared o be of type notype.

(variable value-form)
The variable will be bound to the value of walue-form, which is evaluated
outside the binding environment of the variables. [t is declared 19 be of type
notype.

({data-type variable) value-form)
The variable will be bound to the value of value-form, and declared to be of
type dala-rype.

(variable)
{(dara-tvpe variable))
({eara-type variable) nil)
An unspecified value-form is seen simply as being a value-form of nil, which
causes |bind 1o determine the initial value from dafa-fype. Thus,
{1bind (((fixnum foo) nil)) foo)
a> O
because foo gets bound to O rather than nil,
It should be noted that a bind-spee for Ibind has identical syntax to that of the auxiliary -
bindings form recognized in operation definition bodies (section 5.2.1. page 28). Thus,
the form
{1bind (((Tixnum foo) (mumble)) ((floenum bar)) baz)
ees)
- e
({lambda (foc bar baz) ...}
{mumble) 0.0 nil)
along with local declarations for the typed variables  approprisie to the Lisp
implementation.

MILLSBDOC;L.BIND 13 29-JUUN-81




Variable Binding - LBIND T4 LSB Manual

In many cases, one would like w compute a variable’s value as some function of other
variables’ value. For this, there is the Ibind*® macro:

Tbind®* Macro
Ibind* has syntax identical to Ibind. The bindings are nested, however. That is,
(1bind (({(fixnum foo) (mumble)) ((flonum bar)) baz)

==3
({1lambda (foo)
({1ambda (bar)
({lambda (baz) ...)
nil))
0.0)}))
(mumble))

ML SBIOWC: L BINII 13 29-JLIN-B1




LSB Manual 75 Useful 1. SB Systems

14. Useful LSB Systems

There are a number of pre-defined systems in LSB which may be of gencral interest. Many
of these are not written using 1.SB (in fact, LSB may require them to be bootstrapped), but some
have LSB-style definition extensions.

14.1 Pre-Defined Systems

Here are some of the systems which are pre-defined (either with define-system or define-
system-location) to LSE. This list is incomplete; the full list is in the file ML:LSR:I.SBSYS 2.

format The Maclisp implementation of the format funciion is wriltten using LSB. This same
source will be used to bring up format in NIL. The Lisp Machine format is a totally
different implementation, although the major public definition of it is compatible.
format is documented in the Lisp Machine Manual [LMMan], and documentation of
the Maclisp version is in preparation.

Brand-¥-Triple
firand X is a low-level extension to Lisp for use in building knowledge bases
[BrandX]. It is written using LSB, and runs in PDP-10 Maclisp and Lisp Machine
Lisp.

defstruct
defstruct is a structure defining facility which operates compatibly in Maclisp and Lisp

Machine Lisp (NIL?). There are LSB definition extensions to defstruct, described
later in this chapter.

loop loop is a hairy iteration macro already mentioned [LOOP]. 1u like defstruct, has LSB
definition extensions which are described later. loop is not wrilten using 1L.SB; being
{built- on loop), however, enables a system 1o not only use loop whether or not loop
is accessible by default in the given Lisp implementation, but also gives the system
aceess to the LSB definition extensions.

backquote

sharpsign
These are for the backquote (°) and sharpsign ( #) recader macros. These exist as
systems solely for the Multics implementation of LSB: they are available in PDP-10
Maclisp, Lisp Machine Lisp, and NIL by default, in which case being built—-on either
of them is a fast no-op.

Mathlab-Macros -
I'his, like backquole and sharpsign, exists only for the Multics implementation of
LSP. Fssentiully, it comprises all of the various utility files used by the Mathlab
group on Multics, which arc not covered by some other LSI system definition (such
as backquote, sharpsign, and defstruct). 1t includes such mucros as setf, if. push,
and pop—most of the things which are obtainable by default in PLOP-10 Maclisp, Lisp
Machine Lisp. and NiL.

LSB 1S itsell has a1 system definition so that cortain internal focilities may be accessed by
users it necessary. Sce chapier 12, page 63,

MI:LSBDOCEXTRAS 12 ' 29-JUIN-81




LOOP 76 LSB Manual

user-hunk
A low-level PIDDP-10 Maclisp interface w hooks in the Lisp for treating hunks as
extended-type objects [LSBUI].

ttyscan
Fancy parser-driven rubout processing, for PDP-10 Maclisp only. (Only runs on ITS
and TOPS-20 systems.) [LSBUt) ;

write A protocol for performing text output which can be used to build such things as
prewy-printers [pp/write].

pretty - print-definition
A layer built on write for pretty-printing Lisp objects [pp/write].

pretty-print
A layer built on pretty-print-definition for pretty-printing Lisp code [pp/writel.

14.2 LOOP
[.SB defines the following extensions to the loop iteration macro, for defining iteration paths.

define-public-loop-path Special Form

define-system-loop-path Special Form

define-private-loop-path Special Form
These are all essentially equivalent o define-loop-path, but arrange for the information
to be sent o the diversion streams necessary for appropriate compilation and runtime
support.

define-public-loop-sequence-path Special Form

define-system-loop-sequence-path Special Form

define-private-loop-sequence-path Special Form
These hack define-loop-sequence-path similarly.

One might thus do the following o define a public loop iteration path:
(defing-private-routine (parse-my-loop-path ...)
(dels (also-needed-for public-compilation))
pon )
(define-public-loop-path my-loop=-path parse-my-loop-path ...)

Because of the simplicity of the define-loop-path and define-loop-sequence-path forms,
if it is necessary to divert a loop path definition somewhere else, the forms-needed-for special
form may be used

(forms-needed-for (running public-compilation hacks)
(define-loop-path ...))

MIZTSHBIDDOCENTRAS 12 20-JLIN-%1



L5B Manual i DEFSTRUCT

14.3 DEFSTRUCT

defstruct is documented in the Lisp Machine Manual., and decumentation of the Maclisp

version is in preparation. On the ITS systems there is also online documentation in the file
LIBDOC:STRUCT 2.

dafine-public-structure Special Form

define-system-structura Special Form

define-private-structure Special Form
These are the LSB variants of detstruct. They will cause the structurc definitions o be
available at runtime, and in the compilation environment {propagated according to the
visibility class). In this respect, structure definition is similar 1o macro definition.

The arguments to these forms are the same as those to defstruct, with the addition of
optional LSB declarations clauscs, as in the example
({define-system-structure (matrix
(named)
{defau1t—puintar}
(size-macro matrix-structure-size))
{dels (reference public})
matrix-array
matrix-type
matrix-ncols
matrix-nrows)
which savs that although the matrix structure has a visibility class of system, it will be needed
for public compilation. This might be because there is an open-codable-routine or a macro which
expands into a reference to the matrix structure, The declarations allowable here are those
common to all LSB definidons:  the definition availability declarations (¢.g.. needed-for and
reference, ). and other similar ones like divert -documentation-to.

dafine-public-xstructure Special Form

dafine-system-xstructure Special Form

define-private-xstructurs Special Form
These are just like the corresponding define - visclass -structure forms, but divert the
structure definition the way the define- visclass -xmacro forms do (section 5.5.1, page 34).

That is. when compiled, the definition will be sent 10 the macros diversion stream
instead of the compiled output file.

MIZISBIDOCENTRAS 12 2-JLUIN-H1



An Example Svsiem 78 LSB Manual

15. An Example System

This is an cxample system written using LSB. Two modules are included here, with some
deletions for brevity.

15.1 The System Definition

This is the contents of the system definitdon file for the stats system. which is in the fle
ML:STATS:STATS SYSTEM. The fle ML:STATS:STATS PKG contains the package definition
for the statistics package. which is not particularly interesting. The source code is assuming only
that it will run in Lisp Machine Lisp or Maclisp. Note that the package refname stats is
equivalent o stalistics.

(define-system stats
{{only-for Lispm)
(host mc)
(device ml])
}
{({except-for Maclisp)
(package statistics)
}
(directory stats)
(built-on loop)
[type-check-visibility-classes public)
(modules interpolate ttable ctable ftable normal))

15.2 The INTERPOLATE Module
This is the contents of the interpolate module, which is in the file ML:STATS:INTERP >,
{-*- Mode:Lisp: LSB:interpolate,stats -=- 26-Jun-81

Copyright (c) 1981 by Grandiose System Building
and Massachusetts Institute of Technology. A11 rights reserved.}

{module interpolate stats)

{(system-documentation)
The r3interpolater+ module defines common routines to allow

trivial definiticen of two-parameter statistical functions.
1
MILSBIXOCEXAMIPL, 23 29-J1IMN-81



LSB Manual 79 The INTERPOLATE Module

(define-system-xmacro (make-stat-table dimension-1ist init-1ist)
{and (atom dimension-list)
(setq dimension-T1ist {1ist dimension-1ist)})
(bindg (fixnum implied-size) (length init-1ist)
{fixnum actual-size) (apply ‘e dimension-T1ist})
{and (not (= implied-siza actual-size))

(error {iF (< implied-size actual-siza)
*|initialization 1ist has too few entries|
*|Initialization 1ist has too many antries|)

{1ist 'make-stat-table dimensian-1ist))})
{(only-for Maclisp)

*(fillarray {-arriy nil ‘flonum . ,dimension-1ist) *Linit-Tist)
¥
{({only-Tor Lispm)
"{fillarray (make-array + dimension-list ':type rart-q)
*.init-11st)
}
)
{(document-routine)
Ldisp
(make-stat-table c2dimension-listes e2init-Jiste=)
.and_11isp

expands into a form which will create a table (implemented as an
array) which will contain flonum components and be initialized with
the elements from cZinit-Tistes=, e?2init-listes is required to
contain exactly the number of elements required to fill the table.
The array will be of type e3flonume* in Maclisp, but a normal array

(e3art-qe=) on the Lisp Machine so that accessing does not do
additional number consing.

}

(define-system-xmacro (stats:tabref table i j)
{(only-for Maclisp) *{arraycall flenum ,table .4 33}
{{en1ly-for Lispm) °(aref .table A 3N

{{uncumant—ruut1naj

.lisp

(stats:tabref c2tables= e2ie* g2jece)

.and_lisp

accesses a two-dimensional table created by e3make-stat-tablec=.
}

RMLLSBDOCEXAMPL 23 29-JUN-E]




The TTABLE Module 80 LSB Manual

(define-system-routine (table-interpolate
(Fixnum x1) (Flonum wvl1)
(fixnum x2) (flonum w2)
(fixnum xprime))
(declarations (value-iype Tlonum))
(+% vl (»% (//% (-% v2 vl) (float (- x2 x1)))
(float (- =xprime x1)))))

{(document-routine)
This calculates the wvalue corresponding to £2xprimes= by linear
interpolation, given £2xle* and eg2vlies, and e2x2e+ and e2v2ew.

3

(define-system-routine (table-2dim-Tookup
{(Fixnum n) (FfFlonum cf) cf-Tist basiszs-size
more-n-values infinity-index? table who)
{(decls (value-type Tlonum))

)
{{document-routine)

This implements the basic two-parameter lookup. eZne+ is the number
efc

}

15.3 The TTABLE Module

{-*- Mode:Lisp; LSB:ttable,stats =-#- 9=-Jun=-81

Copyright (c) 1981 by Grandiose System Building
and Massachusetts Institute of Technolegy. A1l rights reserved.}

(module ttable stats)

ML SHDOC EXAMPL 23 29-JLIMN-81



LSB Manual gl The Documentation Produced

(define-system-variable sbasic-T-table
(init (make-stat-table (34. 8.)
11 80% 7T5% a0% a5% a7.5% 99% 99.5% a9 ,.95%
(0.23256 1.0 3.078 6.314 12.706 31.821 63.657 636.619 sn=1
p.289 0.816 1.88B6 2.920 4,303 6.965 g.925 31.598 ;n=2
0.277 0.765 1.638 2.353 3.18z2 4.541 5.841 12.924 =3
elc. eic.
0.256 0.6883 .310
0.266 0.681 .303

1 .687 2.042 2.45b67 2.750 3.646 :1n=30
1
0.254 0.6879 1.296
1
1

.B84 2.021 2.423 2.704 3.6561 ;n=40
L,B71 2.000 2.390 2.660 3.460 1n=60
.658 1.980 2.358 2.617 3.373 sn=120
.845 1.960 2.326 2.676 3.291 in=inf

0.254 0.677 1.289
0.263 0.674 1.282
1))

T

(define-public-routine (stats:t-table (fixnum n) (flonum cf))
(daclarations (value-type flonum))
{table-2dim-locokup
n cf *(8000. 7500. 9000. gsp0. 9750. 9900. 9950. 9995.)
30. "(40. BOD. 120.) 300. sbasic-T-table "stats:t-table))

{(document-routine)
This implements a T-distribution locokup for degrees-of-freedom eZne=

and confidance-factor e2cfew. eZcfews may be either a fraction or

a percentage; they can be distinguished because the former must be
1ass than e21.0eg+. It may range from B0% to 99.96%.

X

15.4 The Documentation Produced

Here is what the system documentation for the interpolate module looks like when
formatted.

The interpolate module defines common routines to allow trivial definition of two-parameter
statistical functions.

make-stat-table AMacro
(make-stat-table dimension-list inie-fist)
expands into a form which will ecreate a table (implemented as an array) which will
contain Qonum components and be initialized with the elements from fni-list. init-list is
required to contain exactly the number of elements reguired to fill the table. The array
will be of type flonum in Maclisp. but a normal array (art-q) on the Lisp Machine so
that accessing does not do additional number consing.

stats:tabraef AMacro
{stats:tabref fable i)
acecsses a twosdimensional table created by make-stat-table.

MLLSBDOC:EXAMPL 23 ’ 29-JUMN-81




The Documentation Produced 82 LSB Manual

table-1interpolate (fixnum x/) (flonum »/) (fixnum x2) (fonum v2) (fixnum xprime)
This calculates the value corresponding to xprime by linear interpolation, given x/ and vf,
and x2 and 2.

table-2dim-lookup (fixnum n) (flonum ¢f} oflist basis-size more-n-values infinity-index? table
wito
This implements the basic two-parameter lookup. n is the number of degrees of freedom
desired. ¢f is the confidence-factor; if it is less than 1.0 then it is assumed to be a
fraction, otherwise it is assumed to be a percentage. fable should be a two-dimensional
table created by make-stat-table. The first dimension indexes different n values, and the
seccond different ¢f values. It is assumed that some low range of » values are complete,
and are in the (1- n)th components of the table. basis-size is the greatest n for which
these contiguous entries exist. Other n values may be sparse; more-n-values is a list of the
other n values. If infininy-index? is not nil, then it should be the value of n which is
considered to approximate infinity; in this case, rable should have one additional n row
(not accounted for by basis-size and more-n-values) which contains the ¢f values for n =
infinity. Values of n below infinity-index? will be linearly interpolated. who is simply used
for generating errors, and should be the name of the caller. For example: if we have
data points for n from 1-30, 40, 60, 120, and infinity, then the first dimension of table
should be of size 34, basis-size should be 30. and more-n-values should be (40 60 120).
infinify-index? should be an n value for which the data are not significantly different from
those for infinity. If this table contains data for confidence-factors of 60%., 75% 90%, 95%,
97.5%. 99%, 99.5%. and 99.95%, then ¢flist should be (6000 7500 9000 9500 9750
9900 9950 9995). These parameters are in fact those used by the stats:t-table Function,

q.v.

This routine always returns a flonum, obtained by linear interpolation from the points
surrounding the desired point

MISLSBIDOC: EXAMPL 23 2= JUN-81



LSBE Manual 83 Table of Abbreviations

16. Table of Abbreviations

Here are all of the predefined keyword synonyms defined. Reasonable suggestions for
additions are solicited.

also-divert -reinitialization-to

also-divert-reinit-to
argument-saquence

ATESeq, arg-s¢quence, arg-scq
auxiliary-bindings

auxs, aux-bindings
built-along -side-of

built-with, built-beside
declaration-diversion-stream

dcl-divstream
declarations  dcls
default-initialization

default-init

device dev

directory dir

diversion -stream
divstream

divert-documentation-to
divdoe, divert-doc-1o
divert-reinitialization-to
divert-reinit-to
document-routines
document-routine
document-variables
document-variable
documentation-diversion -stream
doc-divstream
files-needed -for-compilation
additional-Ales-necded
form-diversion-stream
form-divstream
identifier id
initialization init
number-check - visibility -classes
number-check-visibility-class
pathname filename
private-documentation
muodule-documentation

ML SBDOC:ABRTRL 14 29-JUN-81




Table of Abbreviations 84 [.5B Manual

quoted unguoted

referenced -at -visibility-class
reference

system intrasystem

system-compilation
intrasystem-compilation

system-documentation

intrasystem-documentation
textual -diversion-stream

text-diversion-stream, text-divstream
type-check-arguments

type-check-argument, check-arg, check-args
type-check -visibility -classes

type-check-visibility-class

value-type data-type

MISLSHIDOCABKTHO T - 29-JUN-E1



L.SB Manual 85 Relferences

References

[BrandX)

Szolovits, Peter, and Martin, William A., Brand X Manual, MIT Laboratory for Computer
Science Technical Memo 186 (Movember 1980).

[L.MMan])

Moon, David A., and Weinreb, Daniel L. Lisp Machine Manual, MIT Artificial
Intelligence Laboratory publication, March 1931.

[LOOP]
Burke. Glenn 5., and Moon, David A.. LOOP [teration Macro, MIT Laboratory for
Computer Science Technical Memo 169 (July 1980, revised January 1981.) LOOP is also
documented in the March 1981 version of the Lisp Machine Manual.

[LSBULil]
Burke, Glenn S., ¢t al., [SB Utilities Reference, MIT Laboratory for Computer Science
Technical Memo (in preparation). Documentation on various independent facilities which
gither extend or are convenient to use with LSB.

[Moonual]
Moon, David A., Maclisp Reference Manual, MIT Llab. for Comp. Sci, Cambridge,
Mass. (1974). Out of print; updated chapters may be available, revision in preparation.

[NILIDoc]
Unwritten documentation on NIL.

[pp/write]
Documentation on the write system, by lLowell Hawkinson, in preparation.

Documentation on the pretty-print-definition extension to the write facility, by Glenn
Burke, in preparation.

MLILEBDOC: MAMNUAIL 33 20-JLIM-51



index of Tables 86 LSB Manual

Index of Tables

Datatype KeywordE . . . o o v o o 4 s s s o = o o5 54 + 4 5 2 58 24 58 s s w4 4 a4 s a o wiarm R
Definition Availability (needed-ford keywords. . . . . . . . 4 & 4t & 4 4 s f e e ks e e e e . - B
Diversion Stream Definidon Optong . & .« & & ¢ 6 iih th o o 4 o 8 o= s = 28 2 &8 2. 2 5 2 = » = » . 50
D¥version Strearn "TVPEE: o 00 s aaiina e i B Ba we el BRe fod S o o ieirte i g
Environment OPtIONS oo o mmier me e e e el e o Ta S B W e SR | e e S S TR T R e T 14
PR AT E OO - 2w e saon s e e i I T T T A T T e T 3 e 10
Fathname Specification OpHONS © . .« & ¢ - v 2 4 5 s 5 5 5 5.4 + = & & = & = = v = = 2 5 = = = = 17
Pre-defined Diversion SHeamE. & o 0 6 alen v e wie ook 6 2 a o a6 & & 2 s as 5 s o s s sin s s 53
Pre-defined Keyword SYNORYMIS. o v v v v o o o 2 5 s = = s % 5. = 5% % 5 o2 52 s« 8 g3
Processing Support Options (system definftion) . . . & « 4 o o s 4 5 = o 4 o 5 5 2 5 2 v+ = = s + = = 16
Prototype Call BNF © . . ¢ o v o 5 o s 0 5 20 5 2 8.9 84 5.9 9 % 9 5 5 % 4 ¢ 5 % 5 % & = 43
Rest-paramcier Implementation TYPES. & & &« o ¢ ¢ 4 5 4 & ¢ & & o « 2 « 8 a @ = s « » = = T |
Boutloe Do AratbomE. e s e e e e e T ) R e T e e e o SN o
Vaniable Defnition OPIIONS. v e e w0 e iie i & sis 5w S e B S e e A e e e e
VT DIl CCIasoRE . o v caii arwas e aw a  e  R  e o T Y -

29-JLIN-81



LSB Manual 87 Index

*lsb-verbose? Variable . . . . . . o <« « 4 . S i 25§ S o W A TEIC e pEsE e o e 7
*conrce-file-information Parfable. . . . - ¢ o 4 o 2 o @ vos me cin s o0 224 e R !
abbreviations, table of - - .« v s ¢« 54 pe o m e e a pmomowoms E e E e e e e e 83
additional-files-needed Sysrem Definition Keyword . o o o o 0w v o s s v v m e s e s s e 16
also-divert- reinitialization-to  Variable Definition Clause . . . . . . . G S [ e [ T S, W TR A 4 46
also-needed-for Definition Clause. . . . - . e T e e L AT e I Wi R ok SIom Ao 8
announce System Definition Keyword . . . . . e ErE eem meiemeec e w mew mow BB EOE ww Woa 15, 20
any-number-of Protorype Call Keyword. . . . . <« « o o v v v v o o v s s v me v e 26, 44
applicable-routine-only Routine Definition CIgHBE: o 2 a's s b.w #o@ ¥ie @i mod &7 B e w4 #4w 31
ATHTEr PUNCIION v 5o s s/a =0a ¥'s &% $7a oi% #0% % 39 &ie of eip wie iR e0w ww wop woe 37
argseq Data Type Keyword. . o o v v i v s s o o v sp vin ms s 22 =@ ww mimmw o e 37, 38,47
argseq-length Function . . « « v ¢« s o v o0 o 0 0 0 o 0s e miw e emim sife SeG wihi WEE A PR |
argseq-lISt FURCHOM. o« o o o o4 ss 2 = = 3 5 ¢ = o & & 48 @& av o0 b s o Fp w0 =s 2ie s 33
AYREEE FUMCHOM . . o v - o v s % 4 aa s afe vih wa S @l g W6 @b moe de Rieiee e e 38
arpument-sequence Data Type Keyword, . . . ¢ o o v v o v v v v w0 a0 o0 v oo . « - 37,38,47
auxiliary-bindings Special Hack. « « « « « « o« o e v s s v s s s s a2 0 msm sl sy 28,29,73
bindg Special Hack . . . Pl SR S S KR e . T £
body Prototype Call K‘rvword .................... o R TR w R U K 26, 44
built-along-side-of System Definition Eeyword . o v o v o 0 v ST e R R WM mEE g 16
built-beside System Definition Keyword . . . . . . T P Y T . 13,16
BUilt=0m, v o o 6 = a5 = = =% pi® g% & & €& wow Wk ew mem mow B Fa BCE Wi EGe Wod B<H ok 13
built-on Sysrem Definition Keyword . . . . . . s it S G Eew G en wOE D mOE ROE RUE e 16, 19
CAllMAPPINR: .+ « = = « = « v s s 6.8 a'a 2.2 & & & % s 2a @@ aa Bs e ee AF e wie e ms 26
call mappinE KeyWords. . . « o & o s o« s ms 5w s an ms pw s mim s we ek e .« 26,33
Call processing . . = = = = = « « 4« = s .# ) e e W O ek . -4, 30
character-code Para Type Keywrd ........................... . .47
conditional inclusions . . . + « - « « & « 2 2 = & = o4 & 4 o= e s = a s T T e T L R R e 24
AOLE EVRE v s & ainn al & L wim el e W e (T L e T e e AR L e e s 47
data-type Routine Definition Clause . . . « « o s + s = s = s o s s s s s v s s s s v 0 =28 == 30
data-type Variable Definition Clause. « « « v o v v o v v s s o m v v s s oo v s s mwan e s 45
del-divstream Systemn Definition Keyword © . « « o 2 o o o o v o v v s o v b s v s n e e s 17, 50
declatation diversionsiream . . - .« « & s ¢ 52 o2 o= ox o= e s e s ow o= oo i WE e EE RS S w 49, 51
declaration-diversion-stream  Systemn Definition Keyward . . . . . . n oE AT ek A P . 17, 50
declaration-divstream System Definition Keyword . © . o o v o v o v v v s s s p e e s s s s e e 17
declarations, in routine/macrodefinition. . . . . -+« 4 4 s f c s dm s e e aw s s s e e el
declare-routine Special FOrm . o o o o o+ o 2 o = w28 38 = = + & = & 5 % s 3 &4 & & 00 e 40
declare-variable Special Form, . . o« © v v v s« v 5 e s 2 s s m ae s e ra n 8w e I ]
default-definition-trom Routine Definition Clause, . .« « o o v o o o o v o 0 s o v 0 0 00 228 0 31
default=init Varigble Deffrition Clalse. o o o o o+ v ¢ son =x v« = 8 & = 5 8 =2 2 « & & 0 04 == 45
delault=initalization Farigble Definition Clause . . o o o o 4 4 o o v 0 o s s & 0 0 0 s 4 = = .45
deline=-inclusion—test Maerd . . & ¢ & o a = s + 2 & & & & 2+ s 8 sim @ 3 & 4 &8 88 T 4 x = 2w o= &7
define-lsh-flag-option Maere . . . . o L v o v s @ s s s w8 s e a e s s e s e : . 65
define-lsh=option Maeft o o 0 o0 s v v 0 o v a0 8 0 a0 e e v ws I T T 4
define-private —r.::nnrnh.-trmc—nm-.lu ‘:pn gl Farm . . . . . - i vov s e s RN N 235
define- private-data-type Special Ferm . . . . . . .« - <« & et T T e a3 TR et e wac g
define-private-lovp-path Special Farm. . . . - o 00w i e v v iv i v v e e 76

29-JLIN-81




Index 88 1LSB Manual

define-private-loop-sequence-path. Special Form. . . « ¢ o o o v o i e i vn s a o s v 0 v a s T6
define=private-macro, Speclal Form o coiia v wiaia iwtie o tele wie e e w0 e e e e e e i3
define~private-open-codable-routine Special Form. . . o . o ¢ 4w o o« 5 o 5 = 5 o 5 = %+ = = & 32
definc-private-optimizer Special Form . . . ¢ o o 4 @ o o 4 o v 2 2 o 2 o 2 5 = 2 = 9 = & = = = = 36
define-privatt-routdne Special FOrm. o o s co s 8 5.0 a 6 s s 5 s sl o s 8 55 s 8 s 6.5 8 6 8 5.8 29
define-private=structure Special Formr. o o i v slasa siaia sie s s als s se sin e m & e s s s 77
define-private-variable Special Form . . . . . o i v i v o i a e a a8 s 5 i s o % 5 5 o e i s s s 45
define-private—-xmacrd Speclal Forml. . . o o« s e emm w e s & s e s jsis = e s 8 e s . i4
define-private-xstructure Special Form . . . .« . « ¢« &« « RO T 1
define-public-compile-tdme-macro Special FOrnmt. « « « o« « s s+ v s s o 5 o8 e s 8 8 8 5 s a & & 35
define-public-data-type Special Form. . . . o o i v s v cia o s b s b s o v 5 s &% b 5 8s & oa b 48
define-public-loop-path Special Form . . . . . . . . A R e TR A R R T T R BT LR R 76
define-public-loop-sequence-path Specfal Form . . « « « = ¢« o + 4.5 s s +. 5 s s s s+ s s v s « T80
define-public-macro Special Form . . . ¢ « v 4 o o o s = 5 5 + s & & T i P R e R
definc-public-open-codable-routine Special FOrm . . o« « o« o s o o o o s s s 8 ¢« s s = s = 4 = 32
define-public-optimizer Speclal FOormt. « .« i o s s o s o s o s s s b 2 s s o s s o8 % o 8 5 8 b 36
define-public-routine Specfal Formt.. oo ov voe e s aia o o 0w 58 olie wa e & o % 5 b 29
define=-public-special-form Special Form . . . . .« « « v & & & = N T 6
define-public-structure Special Form . . . . v« v o v v v i s s 2 2 2 2 5 =m0 2 5 2 on o ne n e 7
defing-public-variable Special Form. . . . . ¢ o 4 v 2 v v 4 2 i a o s o 2 s o 2 a a2 a a oo s = 4 45
define=-public-xmacro Special Form . . . . . . . . B T R - R O L S (s 33
define-public-xstructure Speclal Form. . . « o ¢ o s 4 s s 8 v v o s s a2 5.0 0% 2% s 5 v % & 7
define-system-compile-time-macro Special Form. . . . . . . & & o o 4 6 2o s 2 o = o = + = v = 35
define-system-data-type Special FOrm . . « « o ¢ s s o s o s s 2 8 68 5 8 8 8 5 8 5 8 s 8 s 8 = 48
define-svstem-location Macro. . . . . . . . . P SERERE Y SR eTdie BSRHEN e 65 e s 11
define-sysiem=loop=-path Special Form . | . . v v o o v i s o v o s m s a2 s % s s o 5 5 = o = = T6
define-system-loop-sequence-path Speclal Form . . .« + v v o v o v o s o m s s.8 s v 4 5 8. 8 4 76
define=system-machl Specfal Form .« v o v soie sonmim sm s w8 w8 $08 wom 8w &w wie wie o 33
define-system-open-codable-routine Special Form . . & . & & 4 & 4 &t 4 o 6 & o o 2 o 2 2 2 = = = a2
define-system=-optimizer Spoclal Form. . . . .« @ o 0 o 4 ih t h tw oo s e e ae ae e a e s 36
deline=-system-routine Special Form. , . . . . .. sl P @ BRF AT ORTE OOEY M O e s s 29
definc=-system=-structure: Special Forml . . . o o o v o o s ¢+ v v 5 o % 54 5% & % +7% 6% 505 &5 # T7
define-svstem-variable Special Form . .« o o o v 4 2 2 = 5 = = = o = = = = = = s+ = # = = = 2 = = 45
define-system-xmacro Specfal Form. . . .« & & & 4 s & = = = 2 = = 2 2 = = = = » = » = = = s = = 34
definc=system=-xstructure Special Form . . 0 . 0 L 0 o 4 o v f s th e e e s e s s s e ee s 77
AepvBBilliy: 6 sur a5 Se SR Mow I W IS i EIELE o3 U5R WECESE eoFEnE BIF GLE AR KUE WiE 3
device Systemt Definifion Keyword . o o« 4 4 s 6 vos a5 508 68 58 ss s ais s 8 & % 5 8 5 8 3 17
device, N PAANAMES . .« o o o -« o s 0 28 2.4 2.8 5.2 5 5 5.5 5.8 + o 2.8 s 2 8 b 8 so4 s8 w8 + 10
ArectoTios, MPAtROAMGS . (. .0 i s bod 6ir 4% Fd &8 FUF 5% Bi% B8 R bR e e eew wiE w 10
dirccrory Swvsiem Deffnition Keyword . . © . o @ i v s i ve s s e e s e e bE eE b E b 17
diversionStream THE-IPeS L - v 0 o EIE 1w e RN UTE bR SR aTE A T e A e Rl e 50
diversion streams. oo e FowE S b, W RN T e R S e R (S ELE BN 49
diversion-strecam Systemnr Dafinifion Keyword . . . - o o v v o o v m mm w = e wem e s 17, 51
divert-documentotion =10 frelusion Tester . . . o 0 0 v v o e e e v o m e m e e e e s s 55
b '3l Gad T g h ik | LS o ot ) R e S R A (e A N L PRy PP T P o TR Eer i o 52
divert=reinit=to  Variable Fhyfnition Clause . .« o v o v v ae 5 o 5 o & o s o o a 45
divert ~reindtialization=wy Varfalde Definitfon Clatse .« .« v v v 6 v s v 5w aia e s e o n s s 45
VETL—E0 TroTsfon TOSIr o o n oo iw v visiaimr e s iass e ra e a e T T I S L R [ i
do-argument-numbeor-checking Rowtine Dofinivion Clawse. . . . 0 o v o v o 4 o AT B 30
do-mrgument=-numbor-checking Svsecar fofinftionr Keyword . . 0 0 o 0 o 0 o 0 o v v a v . e . 15

29-JUMN-81



LSB Manual 89 Index

do-argument-type-checking Routine Definition Clause . .

do-argument-type-checking Systern Definition Keyword, . .« « « « - 2 0 0 2 o0 a0 e s v e s 15, 30
do-macro-memoizing System Definition Keyword . . . . . o o« 0 o o 0 o0 v v v 0 e 15, 39,40, 71
doc-divstream System Definition Keyword . . - . o« ¢« « o o v o a0 s S Fa RS e e .« X1.50
document-routine Inclusion Tester . . . - . - . . . e Wi i e AT T 55
document-routines Joclusfon TESIEr. « « « o « o + % s 5 = = = = * 2 s 3 = = « 8.+ + 2 2 = = = 4 &= 55
document-variable Tnclusion TESIEr . o o o v« o o s v o s = 2 2 = = 2 = = = & & s 5 = = = . oo 56
document-variables Jrnclusion TeSIEF . . . . < & « o & & s =+ = = = & = = = +# & = s & + + = = = = &= 56
documentation diversion SIream . . . -« ¢ = « & v 2 ¢ & 5= xow o= o= ox oGS ETEER W RO S WOR SR B 49
documentation-diversion-stream System Definition Keyword . . . . o« o v 0 o 0 0 v 0 e s . . 17,50
eval diversion SIFGamM. . . « « = = « = = 5 = = % * W RioE WUE soe EE Hom o 8 v rim mem mom BOE FiE 51
except-for Inclusion Tester . . . . . - <« « « & = & sim siwe mim LB BE WS &ile do atim wow e mooe 24
except-on fnclusionTester . . + o o + + + s 5 = = s & 52 =0 0 s s v sm =0 Hs = e s 25
file-type, MPatROAMEs , . . & =« o v o @+ 5 sia = 5+ & 478 28 24 a/s s % 54 o3 sr 0= =m0 10
files- needed - for-compilation Systern Definition Keyword . . . o o 2 0 0 0 v v 0 00 v v v o s . - 16
fixnum Data TypeKeyword . .« . o 4 o 4 o+ = 0 s s a4 5 8 2 2 5 s a8 sx 0 2 = 2 4= 37, 47
flonum PataTypeKeyword . . .« .« o 4 o 4 4 v o o s s 2 s 8 = 8 2 m 2 5 s & & o2 s 4 & 0w a s 47
formdiversion SIream . . . . « « « 2 = = = = = = = & = & 3 R AT Se oS e B UK ARSI 49
form diversion Streams. . . . « &+ = « + = = T R TR e e e LT LR DT ) e T 51
form-diversion—stream Sysierm Definition Keyword . . . . . . . IR e e e e e e . « 17,50
form-divstream Sysiem Definition Keywoard . « < < -« « o = = o 5 6 6 0 s v = o 2 s s IS0
forms-nceded-for Special FOFM. . . . . « « v o o = + = = = 4 o s s & = 2 8 & s & 2 b2 o0 oo 8. 52
host System Definition Keyword .« . . .« « « o o o . S e e S R el e @G R X7
host, in PatNDAImIeSs., . . & i % +55 « = ee sis £ia &0 408 FiF pw wm wiE fow Pw o rom bR s ss e e 10
ibase Variable. . « « + ¢ 4 & s c s s s v v 8 v % 5w v s . mew e waie BB o ew g gls B 50 14
implement-as Rowtine Definition Clause. . . . . <« « « « o« ot 0 v v v v s v b v an G a3 le 39
implementation feature 18t .« - . . L . o 2w s s s e s oww e s P owlE Ee Eme A BRR wE o e ROR 24
IMPHEIE GUOHNE & + 4 = 4+ = v sis 5% 50 o5 505 s 5% ='s o a8 a8 &8 208 £0% 478 &% wow =s wd 30
INCIOSTOT LESE & & o e s 6 5% s s %4 a8 ® 8 ®'% si® mor mis wom mos b e wowomor = & 8 5,14, 24,52
Inclusion tester: . . . « <« =+ » = = « » . met mam mm mew EFA RE Biw BoA W% a0 WUE EA P F. .5, 24
inclusion-test-readtable Sysrem Definition Keyword . . o o . . &« 4 o 0 v v v v s s s e e 14, 25
inhibit-calling-sequence-optimization Rowrine Definition Clause . . . . .« o 0« 0 2 0 o s .35
inhibit-calling-sequence-optimizations Rewtine Definiticn Clause .. . . - . - - « - . v e s L
inhibit- documentation-production System Definition Keyword, . . . . . . o+« o« - .« 15,51, 56
init Varfable Definition Clause . . . .+« « o o o o o 2 s 5 8 2 2 2 & & & s s s s 8 a2 0 00« v = 45
initialization Varigbfe Definition Clause . . . .« o« v s o o s s o = & o 5 % = = = & o & x = R
input-radix Swsrem Definition Keyward . . o« o« o v o v v o o s v o 0 0 m v v s s s e e .14
integer Data TypeKeyword .+ . . v o v v o U = ol e~ (L0 47
Keyword eauality . . . . v o o sow ra mm o om e = s oo om e w e ae s e e e e e e e w 2
keyword synonyms, tableof . . oL Lo 0L L L o a s s e s e e e T e I I 83
keywords . . . . . . - SO oRe Ui EE SR BN e o0 PO I e el GO e B BE e)E 6HW £y 2
lambda optimization. . « - = - 4« o % s s ss + s i m sek +E sa ome e ba o sia woxom w8 3z
Ibind AfQeri, . s soe s ws s s b b e miin me meym mE EOR e eE bee oTep ahw dlE ENR @ 73
IDANd™ MO » « « o = o s 5 = s 2 = = = = & & % & # & # 8 = « 2« = & & =& +°% 4.4 = = #ow 2ok L4 T4
list DataTypeKeyword . . . . o0 v v o s o n o m s s a5 s ss swm 2w ve se bw o 38,47
loop Macre . . . . .. o wm e Rd B GRS MUE S SR wE A T sg ENE NS M s wOs S soie
BB~load FumcllOr, i e wis 35% fio6 s s @ ss sie #p wom mes B mor o8 Ea a2oE B ow I e .
Ish:*asynchronous-environment-stack Varfable. . . . o o o o 0 0 v 0 0 00 v e s s s s e [
Ish:*diversion-hindings Farfable . . . . . & 4+ o 4 4 s 4 e a v e s s s e s s s e e e e e a s 69
h:*diversion-cleanup-forms Mariable . . . - o o viv v s ah b d i e de dis s s e s ]

29-1LIN-81




Index 90 LSB Manual

Eh:*diversion-fm25 MorlaBle. . . ¢ 2 3 27 5 2 5.8 5.8 #18 8% 5.4 5. % 8% 58 58 5w ww e w . 67
Isb:*diversion-routine Variable . . . . . . . . .« + « + . s T s e R R T &9
Isb:*diversion-sctup-Forms Parfalde. . 0 o L 0 Cl b Lh ah hie e de il e ms W Wl 69
Isb:*documentadon=types Fardable . . .. o0 v o eim wis wim wie wed mow Be Boa mle w0 Wi 71
Ish:*implementation- features Varfable. . . . . . . . e e s 67
Isbh:*macro-memoizers Farfable . . . L o i i a s s s vk 5s b e em e Ed B w s me e ww 71
Isb:*readtables Mariable . . . . . & o & 4 &4 4 4 o4 5 s o5 = R P P e S - e 65
Isb:*standard-readwable Variable, . . . . . . . . PowTe el Wit bR PSRN ST Ehs 2R S0 PR
Ehitsusdols Famable. . . . 2 u =0 sie 5% sia s s sid 6 wod wia i N ETE ELE Wit WERE RN 66
Ish:*svslocs Marigbfe., . . . . . . . @ v o 4 &« = s m: il aom] o) arioel mral mmriat it et 66
Isbicomplling—10-fle? FHRcllon . . ¢ & 4 4 = o s v = s 5 5 s 8 2 2 s.2 s & 5 # = 5 s » 5.2 s = 51
Isbrcompiling? FURCHOM . . . . - i c% 2is = 0 5% =n w.% w4 e m ERE PR v T S T i 51
Lb:determine-diversion-Hlename Fumelfon . . <. o i w'u 6 s w6 &4 w8 d72 aa &8 = = &4 & 4 66
Isb:determine-module-file—group FACHON . . . ¢ c @ v o & v 2 4 2 2 = = = s =5 =5 s '« s 2 = = 66
Isb:diversion-operation Function . . . . . . i e, . mopm mine 69
Ish:diversion=tyo FLuerfon. . . . . . ¢« 4 o 4 c o o 8 5 8 8 5 » T e § e Bah Wik Wi 69
Isb:divert-declarations? Fumellom & o0 0 &5 6i s s s 5% w% woa w4 sk s e e e aa 51
Ebh:diveri-doc-1 FUBEHOM. o v s s sice ais mid mie e06 6 s sie &ie %% W W We el 69
Isb:diveri-documentation? Funmclion . . . . « ¢ c v 4 6 o 4 4 2 4 4 5 8w s e e s s s e e s 51
Isb:idivert-to=1 FRRCIOM. . o o« v @ o 2 4« o o« s s 5 5 5.7 5.5 5 % % 5 % 4 5 2 5 5 & 5 & 5 = » = = 68
Ish:cstablish=sysdef Funclion . . . -« + = + =« 2 o s = 2 = o BN aa e w S TiG wth Eha BiaEis 66
Ebefind-divdel Fumelfor: . @w i a0 w0 S5 0 s S04 W R wieoaid e B B4 Foe Flem . &7
Ish:input- fle-stawis Function . . . . . v m EGE WNE WEa WOk UM aw s moe 8CE SHw wre e i 68
Isb:kwd=ass0C FURCHON . . .« « & @ 2 4 2 & o o = o = = = = = = & = = = » = = « # s = ¢ 5 = & « » 63
Ebikwd=bateor Fimetlon: . 070 0o vla chh el i wii e &g alvy Da g wi Sl e aha e e 63
Isbhokwd=cqual Famerffomr . <o i B 5 Wl W% e wEw atee WU WhwtWld G0% et mck Eod e elos 63
Bhkwd=lookup FRMEEIT : ow-aih ais wim mom S e wos Sd SEE R OETE W wTw S0 Wie cetle fEie 63
Bb:kwid=membDor FIolof . . v s sis osiw e wiie sie omie owiw micm mos wcw ok 0 s s s 63
Ishinot-compiling? Funcfion. . . . .« & v @ 4 v = 4 = 2 = = = 2 2 * = 5 4 ® o+ om e m e e oa 51
Isb:perform-implementation-feature-tests FRRelon. . . . . o o 4 o v« @ o 4 s 4 o 2 o s o 2 =« &7
Eh:push=paic Macre. 0 2l e v % 508 55 500 558 w8 B s erwihes o arn Wk e e e
Bhipash=sym MaomD, o ciw oowsw 5 moa e et s Sd R Bl siow e sd w0 wi wiie i e i 1
Isbitoken-assoc FHRCHOR . .« v ¢ 4 o 4@ ¢ 2 s o o o o 4 5 4 4 5 » 4 mEce T RN ANM msld eeUn e 63
Bhrtoken—equal FHRCHDN o o« via o 6 %8 5o b o8 8.5 547 5.7 & % 5.7 8.4 809 58 8 6 5 &5 e 63
Ehtoken=lo0kup Fieloi . . i vid Gid Sia wih whe e dYa i S0m ete Wi wie ald wie mow s . 63
Ebhitoken-member FHRCHON .. i 2o 52 595 a0 5% ¥/ 626 @76 &% #w @ &0 wie W a s S wiis 63
Bheom: PRI c.ri v 50t Foe . Fm Eioe Wiew cmih RO SR SIS wROE ST WO m SUW we wohe  Wran w0 60
MACTD MOMOIZATION . . . . « & & 4 4 & & = = 4 = % = = = 2 = = = & 5 = 5 + s s & + & + .« = + = 15, 39
mipke—SEnC=—tADle MDD . 57 50 S B wica e FLE O e W Wm Bk B Ree e wae ke moa £1
module Sysiem Definition Keyword. . . . . & @ o i 4 i v s o s w s s s s s e e e d e e 16
mModule specifoatloN . « o v o 5 ¥4 o % 24 sia 505 ww sw Ee wlw wE EE aiE B sw §le @a sw 18
OBEIIIBR L, . rwmnte s wns miie s s s e mA WNOE RO Wi WU P WNR MGk T wOd s wgd S5TR B 1
NAMCS, in PARANAMEeS . . . . . . . & v v o s o = = o » R i T 10
needed-Tor Dafafifon CIOUSE . o 2 au ole wa o5 5.8 5.8 5.8 5% #. % wew 5% 808 5% 8 ¢ & 4 5. 4 g
needed=-Torkeyworde . . . . . & 4 sih s wr e e s w FOE SN Wis 0% Ghe sid 503 SU0 S0 b B
needed-for-compilation Syvsrem Pefinition Keyward . . . 0 0 0 0 0 0 0 v h e b e b e e e e 15
neoded = for=user-compilation System fefinition Keyword . . . . & v v v v v s o 4 o« o » R
nptype v Type Kevwernd, . . . 0 . 0 . L . 3 T (LT OO (TS CTREY CETel iPEh Lo fent e Ml ey e 47
numbér PuteType Kevword . o o o 4 4 2 i ss 5.8 = 4 5.8 5% 5’5 = ¢ voim 5w % 5.8 = = o8 s . 47
number-check -visibility-classes Syaresn Deffnition Keyword . . . . . . . . . . . S T e i a . 15

29-JLIN-81



LSB Manual 9l Index

one-or-more-of Protonype Call Keyword . . . . . . © wTe EeW Gk A iR RUE R kue foe 8 26, 44
online-documentation fnclusion Tester . . . . .« . . u mim pom mem B8 FAE A8 ww wis s = =35
only-for Fnclusion TESIET . . . « + « 4 + = « v s & & 2 s & s s a2 & = =+ ax 0 s 2 0 & s .24
only-on [Inclusion Tester . . . « - = =« « « =« o« SNE SE P N shendin AVE DO AT W P -
opencoding . . . - v i s wle wid eis Wiw omla als wle aie 2ls mie W owE @ siw omod e IR 4
OPEERHOIL . 47 a6 w0 304 dow W Es wod S miy wE Wi sia wia wiw o wow sow wowomoyonod d4 26
OPUMITEE 3 w6 & % ooa o0 5w e sos wow =i s wow wor mor ooy Aod wok wa als wia AN |
optional Pmra.r}pe Call Keywrd ............................... .
package Sysrem Definition Keyword . . . . . . . . S G LR TR 1 e TR . 14
package hacks . . o - s . s ae e e e e wiw e e R e e e e e e TR L ] S 12 14 1520
packages. . . . . 3L UE L o T A TIPS 1o B T M i M S0 o b o e B B T e
pathname Clause . . . . o« =3 v a0 2w o = ol A e -t 18
PAthNOMECOMPONENES. . + « « = = o = = = & & = = = 3 ¢ & = &+ & & = &+ s 2 & w0 0 o woa add
DATAIEMEE, 2 o o = w3 o a 4w vin s als 6 2% v W RE SR e s eI e FOE v —— |
pdl-list Data Typc Kepword . i i oo v i evs éw o+ % wm a8 46 pie mie sw wie sw wm wow 3? 39, 47
pdl-vector Dara TypeKeyword . . . - - 2 ¢ v o i 4 s 2 s a s o s s s s 50 sn v = 55 37, 39,47
perform-calling-scquence-optimizations Routine Definition Clause . . . . . . .« o« - v o o0 os 31
primarily - applicable-routine  Routine Definition Clause . . -« « « « « « + o 2 s om0 0 v e sira ek
private-documentation Jnclusion Tester. . . . . . . o 0« v v s b nw s e s e e s e e s i A
Prototypecall o . - L i 4 w4 s s es o ae w aia m s ma o wa ss o seo=r o s as o . A @ 4. 26
public-documentation Frnclusion TESIEr . . . .« o o 2 o s s s s s s 8 s s w0 = 5 = = s s s s et 55
quoted Profopype Call Keyword . . .« o o . o it s v it s w ts s e am 0 s s 0 . . 30,43
readtable Systen: Definition Kevword. . . . o« 0 o o v o s i o v s s o m 2 s s s 5 saw s e e s o1
readiable Variable. .+ - « « = o o v aa s s 5 5 = = = 5 = » o W T 1 e i (T TRl S
redefinition Roufine Dr_ﬁmnﬂn CIaUSE . o = 2 o s = = % & % = + % % = » = v & = & & « =« & & = = = & & 31
reference Definition Clause . « o o« « v 4 o v o v & 5+ 8 % & 8 + = = = = & 2 4 & 8+ s & oy |
referenced - at- visibility -class Deffnition Clause . . + « « < =« « o v o o 0 o v s . i
rest ProtoiypeCall Keyword . . .« . o« v v v v s o o s o st s s a2 s s m s s s & 0 = 0 x 0w s 26, 44
PESLPATAITICIEE o o '+ s s v % =id sl iow w8 wis som sis & e e e e e e e e e e e e 26, 37, 47
returnable Rourine Definition Clause. . . . . o v« v o o v o v o o v n o 5 o n = a0 & & = s .30
TOUHO® . . . . o v 2o o o = = 2 = = & + s = & = = « & & & « & s & # 2 w4 + 2 & & & = & PRt e
rontine definitons. . . & 4 & v 4 b s i s v s om ose s e s e s sE o e we E b §oiTie R W W 29
sequence DataType Keyword . o 0 o 4 o i v i v 3 6 5 2 o s 4 5 v % + 2 2m 25 a5 2 37, 38, 47
sh:eystemni-version=info FURCHOM. . . . ¢ « ¢« ¢ 5 & 3 4 s % s 2 s 2 +.2 2 & 22 = 2 2 & 5 &+ & &4 = 21
STACWAYS SYSICIM EXICNSION & = + « « o = = & = = s = = & & & = = & = = = = & & « & = & & + 4 = 2 = = = 13
slow-and-hairy Rowrine Definition Clause. . . . « + « « « = o o o v n o 0 v s 0 0 0 s v & o . | i
small-flonum Data Type Keywoard. . « + « o 4 2 s o ¢ o = o s s s s & 2 3 2 2 = & ¢ & = = = R 1)
Special FOMM & 4 = & = s = = wim sp = ¥ = 8 % &% 84 4% mos mie e 4 ss Eow s omowomd s a5
S abTel MOCFD. « « « = v = s = = 5 #.5 5 5 5 % ®» % ®wow = 5 8 % 8 & a4 2w w4 a4 & a4 oa oo g1
SYRONYMS, WbICOF. . . 4 v ot e v s Ba me as A E o s aa wie omoa ww we ww W s AR £
sysiem-documentation fur.l'u:mn TRkl . o e T RTe i WUH TN e ek EER B el e s <
SPSEOMIS ol ate el 5 e R R A e e et e e WM T BT wE TR SO MY A woe e .. L3
table~2dim- 1nnkup J’mrc:rmi T LT s 8 e L T T T Rt R m s Rir, . v o B2
table-interpolate FROCHOM. . . . o « s v 2 3 s o v 3 = 5 = 5 & % & = 2 = 2 8 4 &3+ 4 s AN -
temporary-list Data TypeKeyword . . 0 o 0 00 0 i i i v i v s v s s s ma e w s n v ow e 39,47
temporary=vector Dot Twpe Keyward. o 0 0 o o o v v 0 0 0 s 0 s PR AT e P .- 17 )
text-diversion -stream Syastern Pefinition Keywoerd o . 0 0 o0 0 0 0 0 e e D L T T i R A
text~divsiream Systom Dofinition Keyword . . . . o+ v o 0 0000 o e T 17, 50
Xl dIVEISION SITCAIMT & .« v o w + = + = &+ = = 3 & & = = = = = = % = & = &+ & & & & & = = AT El 52,55
textual-diversion-sireamy System Definition Keyword, . . . 0« -« o o o NPt P Sy . |

29-JUIN-81



Index 92 .58 Manual

tokenequality . . . . . . . .. .« § BN MR B R BACE BloF BUiE BULUE M Ma Sk @04 B4 80§ 508 Sk 2
truthvalue Datae Tywpe Keyword . . . . . . . . EALIP e ST I R R S R s Ty 47
two-or-more-of ProfotypeCall Keyword . . . . . ¢« o v o v v v v d o v o R L - o . . 26,44
type-check-arguments Rowline Definition Clause. . . « « v « v 4 v s o o 4+ ¢ 2 2 & 2 2 2 2 2 « » 30
type-check - visibility-classes System Definition Keyword . . . . . o ¢ o v v 6 v o 0 4 0 2 o P
unused Prototype Call Keyword . . . . . . . . N WIhs M mIT Aty Sam T 3w Foa mha mRa pom.moe 27,43
ser=id FamahlE: U0 00 S0E wtd 20E S uvu et Sh Ghd B WRD DEE R0 BOH ZTH e Somow ol et el 21
users—-implicitly-need System Definition Keyword . . . . & ¢ 0 0 i 0 i i v i i 4 v 4 h e e e e 13,16
users-implicitly -need-files System Definition Keyword. . . . v . v ¢« o v v 4 o0 o2 o4 =« « 16,19
value=-type Routine Definivion Clause. . . . . . . R el T e e Py T e e 30
value—-type Variable Definition Clause . . . . . . . T W AT Ty T TR Gie BT WA ma . miwimlierk 45
variablebinding . . . . . . . .. oL o RGN SN A v hm s 3 BT e hEm Eea e EERrag e A i |
vector DaotaTiype Kevword . . o i i i v s i a ah wd 4 54 5 % 3w ae = G SN BT e e 38, 47
version,inpathnames . . . . . . « « « « « . G I AT ELARE N AT R R A R e S 10
visibIlity cJa58 . . . . . 4 4 . e s s a e mm s oeamm s oms meowa e e oae o 3

29-1LIN-81




