B Nk MASSACHUSETTS
'Ul INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS/TM-205

CIRCUIT-SIZE LOWER BOUNDS AND
NON-REDUCIBILITY TO SPARSE SETS

Ravindran Kannan

October 1981

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Circuit-size lower bounds and
non-reducibility to sparse sets
R. Kannan*
Department of Mathematics
Massachusetts Institute of Technology
Abstract

As remarked in Cook (1980), we do not know any nonlinear
lower bound on the circuit-size of a language in P or even in NP.
The best known lower bound seems to be due to Paul (1975). 1In
this paper we show that first for each nonnegative integer k,
there is a language L, in 22f3ﬂ2 (of Meyer and Stockmeyer (1972)
hierarchy) which does not have O(nk)—size circuits. Using the
same techniques, one is able to prove several similar results.
For example, we show that for each nonnegative integer k, there
is a language Ly in NP that does not have O(nk)—size uniform
circuits. This follows as a corollarv of a stronger result shown
in the paper.

Finally, we note that existence of "small circuits" is in
suitable contexts equivalent to being reducible to sparse sets.
Using this, we are able to prove for example that for any time-
constructible super-polynomial function f£(n), NTIME(f(n)) contains
a language which is not many-to-one p-time reducible to any

sparse set,

Supported by NSF Grants MCS-8105557 and MCS-77-09906

I, Introduction

A circuit for us is a Boolean circuit containing AND, OR
and NEGATION gates with fan-in and fan-out of at most 2. (We
remark that since all the results are proved for all polynomials,
they are not changed if we allow arbitrary fan-out or allow other
gates - for example EXCLUSIVE OR etc. because under these changes
circuit-size as defined below changes by at most a polynomial (see

Savage (1976)). The circuit-size s(C) of a eirecuitiC i s ithie

number of gates in the circuit. Clearly, there are constants ko
and k such that every circuit of size s can be encoded into a
0,1 string e(C) of length at most ko(s(C))k.

We let P as usual denote the class of languages accepted
by a multitape Turing machine in polynomial-time. Zi(wi) is the
class of languages accepted in polynomial-time by machines with
i alternations beginning with an existential (universal) guess.
(Kozen (1976) and Chandra and Stockmeyer (1976)).

A family of circuits {Cn}::l is said to accept a language
L over {0,1} if for each n, Cn is an n-input circuit whose output

is 1 for precisely the n-length strings of L(0 for other n-length

strings). We say that a language L has 0(f(n)) circuits if

{Cn}z=l accepts L and there is a constant k such that s(Cn)gkf(n)

for all but finitely many n. A language has small circuits if it

has 0(nX)-size circuits for some fixed k. A class of languages

has small circuits if every member of it does. If one can show

that some language L in NP (or in fact in_Ei for some i) does not
have small circuits, then we would have proved that NP#P. (Since
P does have small circuits (Savage (1972)). At present however,
no nonlinear lower bounds are known on the circuit-size of any
language in P or NP or Zi for low i. The following lemma is
proved by classical counting arguments.

Lemma O: For any positive integers n and k, there is an n-input

2k+2

circuit of size n which accepts a subset of the 2% n-length

strings not accepted by any n-input circuit of size at most nk.

Proof: By our definitioncof icircuit,vsinee fan-out is:2:0x

less, there are at most

k k
n

3 5 (nk)cn different circuits of size n® or
less (where c is some universal constant). This is asymptotically

2k - n2k+l

at most (,n""). If s Jod 1 S {xl,...,x n}' there are 2 dis-
2

tinct subsets of {Xl’XZ""’Xn2k+l}' Thus one of these subsets,

say, S cannot be accepted by any n-input circuit of size nk or

less. But S is accepted by an n-input circuit of size at most

,p 2k+2

2 , because each individual string can be accepted by a

2k+1
n

circuit of siZe (2n) and S is an ™OR"™ of of these. Arguing

more carefully, one can drop the factor of 2 and prove the lemma.

28 A Circuit-size lower bound

Our strategy is to prove the result first for Z4nw4 and

then invoke the following very interesting theorem found in Karp

and Lipton (1980):

Theorem 1: (Karp, Lipton and Sipser): If NP has small circuits

then for all k 2 2,

Lemma 1: For each integer k, there is a language Lk in Z4nw4

such that L, does not have circuits of size O(nk).
Proof: The action of Lk is described by a first order formula

with 4 alternations. The formula simulates a circuit C* of size
2k+4 k+1
n

which is not equivalent to any circuit of size n (et.
lemma 0). The first three statements of the formula below ensure
this. But we also need to force Lk to simulate the same circuit

C* on all inputs of length n. This is accomplished by the last
4 steps that choose the "minimum" C* with the necessary property.
Lk is accepted by a 24 machine M which functions as follows:

On input x of length n, M accepts iff

: 5 . A +
1)::3 an encoding e(C*) of a circuit C* of size at most n2k :

2) [k/encodings e(C') of circuits of size at most n<tl
3) —la n-length 0,1 string y such that C* and C' differ
e
on y]

and

4) [kfencodings e(C) of circuits with e(C) £ e(C*) (as
binary integers)

: . . k+1
5) :23 an encoding e(CO) of a circuit of size at most n Hose

6) k/strings Zz of length n, C, agrees wisth €]
and

7) C* accepts x.

For any standard choice of encoding, it is not difficult to
see that given the encoding of a circuit and an input to the cir-
cuit, we can, in polynomial-time, find the action of the circuit

on; the input. (Savage ((1976}). Thus L 'i's in 24. Clearly, the

k

complement of Lk is accepted by a 24 machine whose description is

the same as that of Lk's except now step 7 reads "and C* rejects

x". Thus L, 18 in Lpnmy. It is obvious from the operation of Ly

that it does not have nk+l

k

size circuits, hence does not have

BifnEg) sizelclircutits:

Theorem 2: For any nonnegative integer k, there is a language Lk

in L,nm, such that Ly does not have O(nk) size circuits.
Breoeof: The proof is made extremely simple because of Theorem 1.

We just need to consider 2 cases:

Case 1: NP has small circuits: In this case, by Theorem 1,
our language Ly of lemma 1 is in 22 (because E4=Z2) and so also

its complement thus establishing the theorem.

Case 2: NP does not have small circuits: In this case, there

is a language L in NP such that L does not have O(nk) size circuits
for any k. L is of course in 22““2 and thus proves the theorem.
Remark 1l: In case 2, it is not difficult to see that NP-complete

language SAT given by:

SAT = {x| x is an encoding of a satisfiable Boolean formula}l

does not have small circuits. The reason for this is that since
P has small circuits and every language in NP is polynomial-time
reducible to SAT (Cook 1971), if SAT had small circuits, so would
every language in NP.

Thus we can assert that Lk of Theorem 2 is either SAT or L

k
of lemma 1. But of course we will not know which it is unless
we settle some really hard problems.

Remark 2: Theorem 2 leads to some curious observations, for ex-

ample, we can assert that if NP had O(nk) circuits for some k
fixed, then NP # P, However, since the hypothesis of the above
statement would seem to be rather more unlikely to be true then

the conclusion, it is not terribly useful.

3 Related Results

A language L ¢ {0,1}* is sparse if there is a polynomial
p(+) such that |Ln{0,;L}n £ p(n). Sparse languages obviously
have small circuits (a disjunction of p(n) conjuncts would do).
Thus given k, it is of interest to produce a sparse language
that does not have O(nk) circuits. If there was a sparse NP-
complete language, then by using the ideas in the proofs o
Theorems 2 and 3 (to follow), one could show that for each k,
there is a sparse language in Zznﬂz which does not have O(nk)
circujts. But unfortunately, there is no sparse NP-complete

language unless NP=P (Mahaney (1980)) and we have to contend our-

selves with working in Z3nﬂ3.

Theorem 3: For each positive integer k, there is a sparse lan-

guage Lk in Z3ﬂﬁ3 such that Lk does not have O(nk) size circuits.

Proof: First, we observe that in proving lemma 0, the set S ac-

cepted by a circuit of size at most n2k+4, but not by any circuit

k+1

of size n was "sparse"-- in fact it was a subset of

{xl,xz,...,x 2k+3} where {0,1}" = {Xl'XZ""'X n}' We can thus
n 2

restate lemma 0 as follows (with the notation that for any n-input

circuit C and n-length string x, C(x) = 1 if C accepts x, else 0):
" Lemma 2: There is a 0,1 string y of length n2k+3 say -
@) o) e

vy =Y v aye VAR such that for each n-input circuit C of

k+1

size at most n , thefe 18 a j, 1 2k+3

g == such that

lIA

Y(j) # C(xj) 5

Consider the Z3 machine M that behaves as follows:
On input x of length n M accepts iff (we use the notation

introduced so far):
= e ks

0) x. for some]O, 1 Jg = n and
2k+3 :
l)::} (2)...y(n) such that
2) (C) -~ encodings of circuit C of size at most nk+l
n2k+3
3) v (¥s # €(x:))]
j=1]]
and
2k+3
4) [Vz A Ll
2k+3 2k+3
n IR et
5 z(3) 53 7o gtitad,
F=1 3=t
l. 3 :] 3 k+l
5) +=e(C') of a circuit C' of size at most n s -
n2k+3
6 N Y e
j=1 y
and
(Jg)
7) v 9 = Lo

Here V stands for OR and A for AND. PFirst of all, M has at
most 3 alternations and is a Z4 machine. Secondly the disjunction

and conjunction in steps 3 and 6 respectively are of polynomially

many simple predicates and thus can be checked in polynomial-
time. The other steps are polynomial-time bounded as argued
earlier. Thus the language is in 23.

As before, steps 1 through 3 pick out a y that represents
something different from all circuits of size at most nk+l.
The other steps ensure that we use the same such y for all n-
length inputs. Thus the language above does not have O(nk)
circuits.

Step 0) ensures that the language is sparse.

The complement language results when we change to step 0

“oes and we change step 7

to read "x # xjo for any jO' jijoin
to read "y(30)= 0". Thus the complement is also in 23 and we
have proved the theorem.

We can use Theorem 2 to produce languages which do not have

small circuits. For a function £(n), Zi(n) (wg(n)) denotes the

class of languages accepted by a Zi(ﬂi) machine in time 0(f(n)).

Thus

5. = 1P= o z?k 3

. ¥ k=1 *
A function f(n) is said to be super-polynomial if for each k =1
integer, lim nk/f(n) = 0. It is known that for any "nice" "super-

n-—»-co

polynomial"” f(n), SPACE (f(n)) - the class of languages accepted

=] 0=

by a deterministic 0(f(n)) space bounded TM contains a language
which does not have small circuits. The proof is by what might
be called the "voting strategy" which is an elaboration of the

counting argument of lemma 0.

Definition: We say that a function f(n) 2 n is time-constructible

if a deterministic multitape 0(f(n))-time bounded TM computes

f(n) (in binary) on each input of length n.

Lemma 3: If £(n) is a super polynomial time-constructible
function, then SPACE (f(n)) contains a language which does not

- have small circuits.

Sketch of Proof: On inputs of length n, we diagonalise over all

n-input circuits encodable in vE(n) or less, /E(n) also being
super-polynomial this suffices. Care has to be exerted in the
diagonalization -- there are only'2n inputs of length n, but
2/?THT circuits to deal with. The "voting strategy" works as
follows: Assume without loss of generality that /E(@) < 2°/2,

Suppose {0,1}" = {xl,...,x n}and we have decided what to do on
2

inputs KyreeorX;, On input X;47r our machine finds out first,
what it decided to do on KyreeorXs. Next, it enumerates all
circuits of encoding size vE(n) or less. Among the circuits that
agree with our machine on XireeorXs, @ majority must either ac-

cept or reject x.

i+1® Our machine will do the opposite of the

majority. Thus for any circuit with encoding length at most
Yy

-11-

Y£(n), on at least one input, among {xl,...,x }, our machine
v (n)

will differ from the circuit. It is not difficult to reckon

the space requirements to complete the proof.

It is not difficult to see that the time taken by the above

machine is at least 2 f(n). Here, we show the stronger result:
Lemma 4: If f(n) is any increasing time =-- constructible

super-polynomial function, then there is a language L in Zg(n)nwg(n)

that does not have small circuits.

Proof: If SAT does not have small circuits, then of course SAT = L

would do. Thus we may assume that it does and hence ZE = Eg for alil ko
2 2

Suppose the language Ll of Theorem 3 is in ZE ﬂﬂnz. For any

integer N, we assume that {O,l}N = {xl,...,x N} where X <X, . .<X
2 2

(< reads lexicographically greater than). We further assume

N°

£(n) S 21/20 n/20,

, else we replace f(n) by min(f(n), 2 . Now, the

machine M accepting L behaves as follows:

1) On input x of length n, compute

£(n) s F (E6a)) Y ok =i tsmye.)

2) Accept x iff 0™x is in L, (of Theorem 3).

1
Since f(n) is time-constructible and once, f(n) is found,

m can be found in at most 0((log f(n))s) steps for some s, step 1
2
takes time 0(£(n)). Since I..l is in E? , Step 2 can also be done

in 0(£(n)) time. Thus the language L defined by 1) and 2) is

f(n)nﬂf(n)

certainly in 22 5 . (The latter because the complement of

e

A
Ll is also in Zg). We now wish to claim that IL does not have

0((f(n))l/2) - size circuits. For suppose it did. Then, sup-
pose N is any integer such that there exists an n with
N = F(f(n))l/gl + n. Consider Lln{O,l}N. This is a subset of the
N° lexicographically least strings of {O,l}N. By our assumption
of f(n), n>s log N and thus every string of Lln{O,l}N has at
least m 0's on the left. Let C be a circuit accepting Ln{0,1}™.
Then C' which is C plus a device to cherk whether there are enough
leading o's accepts Lln{O,l}N. Hence, if L has k.f(n)l/g size
circuits; then Ll has 0(n) circuits for infinitely many n. Going
back to the construction of Ll in Theorem 3, we see that this is
impossible. (Note: This is a stronger statement than the theorem
which only said that Ll does not have 0 (n) circuits.) Since f(n)
is superpolynomial, so is (f(n))l/2 and hence we have proved the
lemma.

What we have is actually the following:

Theorem 4: There is a universal constant % such that for any

time -- constructible function f£f(.) satisfying ngﬁf(n)§2n/20\/ﬁ,

there is a language in Zg(n)nwg(n) that does not have 0((f(n))l/2)—
siZe circuits.

This implies Theorem 2 and in fact points out another way
of establishing Theorem 2 -- first establish the existence of Lys
then apply "padding arguments".

=33~

4, ‘Other Nonuniform Measures

A Zk(ﬂk) formula is a quantified Boolean formula with k
alternations beginning with an existential (universal) quantifier.
The size of a Zk formula is the total number of quantified
variables plus Boolean connectives. (We could have included the
length of subscripts of variables etc. -- but these do not change
the length by more than a polynomial and thus do not affect our
results). We can then define the concept of a language or a
family of languages "having 0(f(n)) size Ek(ﬂk) formulas" just
as in the case of circuits. By a development gquite similar to
that of Theorem 1, one can then show:

Lep 3% k3.

i Zk+l and Tt have small Zk formulas, then I.

Using this and the method of Theorem 2, it is easy to show that:

For all j Z 1 integer, there is a language Lj in (Ek+2nﬂk+2)
such that Lj does not have O(nj) - size Zk—formulas.

Similar theorems can be proved about the nonuniform versions
of first-order expressibility of Immerman (1980).

We will now focus attention on a guasi-uniform measure which
we call "provable circuit-size"., On the one hand we have the
measure "circuit-size" which is totally nonuniform, in the sense
that even if {Cn}zzl accepts language L, the function n » C may
not even be recursive. At the other extreme are definitions of
uniform circuit-size (Cook (1980)) where the above function is
required to be computable in log space. Provable circuit size is

in between.

A

Definition: A family of circuits {Cn}:zl provably accepts L
+F C, accepts L n {0,1}® for all n and the language

(1" # e(Cn)|n=l,2,...,} is in NP, where e is some natural encoding.
The reason for the terminology is that the latter language

being in NP would imply that there is a "short" proof that C, is

in fact the right circuit. Note that we only require the proof

to be polynomially long in e(Cn).

A language L has provable 0(f(n))-size circuits if {Cn}:=1

provably accepts L and size (Cn) £ f(n) for all but finitely
many n. We then define a language/a class of languages have
probable small circuits, etc. as before. On the lines of Karp,

Lipton and Sipser, one can show:

Theorem 5: If NP has provable small circuits, then Zk = NP
for ald k.
The proof is quite simple -- under the hypothesis that NP

has provable small circuits, we can show that Ty does too (because
circuits are simple deterministic devices). The last statement
then implies that Ty < NP, thus proving our theorem. We leave

the details to the reader. Using Theorem 5 and arguing as for

Theorem 2, one shows:

Theorem 6: For each k £ 1 integer, there is a language Lk in NP

such that Lk does not have provable O(nk)-size circuits.

i

Remark 3: Neither Theorem 6 nor the following corollary of
it is provable by direct diagonilisation:
For each k z 1, there is a language Lk in NP that does not

nk) .

have uniform circuits of size 0
For example, in the case of uniform circuits,

since the log space machine can take O(ng) time for any fixed £,
‘one ND polynomial-time bounded TM cannot seem to simulate all the
log space machines to diagonilize over them.

Remark 4: Theorem 6 can be interpreted as saying that there is
a language L in NP such that the information about the 2D or 1less
strings in Ln{0,1}" cannot be compressed into length O(nk) by
any non-deterministic polynomial-time machine in a certain
fashion. This remark is related to Theorem 9 to come that talks

about reductions to sparse sets.

o1 Reductions to sparse sets

As observed by Meyer (Berman and Hartmanis, 1977), the
existence of small circuits for NP is equivalent to the ex-

istence of a sparse oracle for NP. (i.e., each language in NP

being Turing reducible in p-time to a sparse set).To see the
equivalence, first note that the second statement obviously
implies the first. Now suppose NP has small circuits. Say L is
in NP and has circuits {Cn}z=l such that |e(Cn)|§nk. Suppose
ool = {xl,...,x2n}. The sparse language S contains xg A5F

i £ nk and . the ith digit of e(Cn), the encoding of Cn IS ol il

Clearly L is p-time Turing reducible to S. We will say that a

B N

family {Cn}:=l of circuits is p-time constructible if a p-time
deterministic multitape Turing machine on input ji% produces out-
put e(Cn). Mahaney (1980) has shown that if every language in
NP is many-one p-time reducible to a sparse set then NP = P.
Using this it is not difficult to show that NP having small p-
time constructible circuits is equivalent to NP being many-one
reducible to a sparse set.

Finally, we defined the property of a language "having
provable small circuits". This property is also equivalent, in
the case of NP, to being reducible to a sparse set. To make this
more precise, we make the following definition:

We say that a language S over an alphabet I is an exact

sparse set if there is a time-constructible function p(n) which

is bounded above by a polynomial such that [Snznl = p(n)

Lemma 5: NP has small provable circuits iff NP is p-time Turing

reducible to an exact sparse set which is itself in NP.

Proof: Suppose L € NP has small provable circuits {Cn}. Let

{1" # e(C)[n=1,...,} =L'. L' ¢ NP and suppose |e(Cn)[é nk\fn.

Consider the sparse language S (again {0,1}" = {xl,...,xzn}) de-
k

Bl o {xiz]léién , 2=0 or 1 and the ith digit of

fined by Sn{0,1}
e(C) is z}. It is an exact sparse language. S is in NP be-
cause on input x of length (n+l), we guess e(Cn), use the fact

that L' is in NP, Clearly L is reducible to S.

e

Conversely, suppose language L in NP is p-time Turing re-
ducible to an exact sparse set S in NP. Then surely, L has
small circuits {C_} (C_ simulates the p-time reduction remembering-
"in memory"- the sparse set S.) These are provable small circuits
because S is in NP and is exact.

We observe that the stipulation that the exact sparse set
be in NP is crucial. By modifying Meyer's construction - say -
as in the proof of the lemma above one can easily show that NP has
small circuits iff NP is p-time Turing reducible to an exact sparse
set. The conditions in the above lemma are stronger because the
sparse set is required to be in NP,

Corresponding to the three equivalences we have above (be-
tween particular reducibility of NP to a sparse set and NP
having a particular type of small circuits), our techniques
yield 3 theorems.

Theorem 7: For each integer k, there is a language L, in NP

k
such that L) cannot be many-one reduced in O(nk) deterministic
time to a language of sparsity O(nk).

Remark: Note again that direct diagonilisation cannot hope to
prove this result since we are not restricting the sparse set to

any complexity.

Proof: We consider as usual two cases:

—ig-

Case 1: NP is many-one p-time reducible to a sparse language.
Then by Mahaney (1980), NP = P and thus 22 = NP. Thus for each

2, NP has a language L2 that does not have O(ng)—size circuits.,
This wbuld be contradicted if every language in NP were re-
ducible in O(nk) time to a language of sparsity O(nk) for a
fixed k (because then for any language L in NP, there is a
O(nk)—det. time reduction f of L to the language S of sparsity
O(nk). Thus any string x belongs to L iff f(x) e S.

| @ = O(|x|k). There is a O(|x|k5)—size circuit that by
"table-look-up" checks if f(x) is in S. There is a 0(]x|3k)

size circuit that on input x produces output f(x). Thus L has

5
O(nk +3k

)-size circuits.)
Case 2: NP is not many-one p-time reducible to a sparse language.
Then, of course the theorem is obvious.

Theorem 8: For each k, there is a language L such

K in Zgnﬁ g
that Lk cannot be Turing reduced in deterministic time O(nk) to
a language of sparsity O(nk).

Proof: If not, we would contradict Theorem 2.

Theorem 9: For each k, there is a language Lk in NP such that
L, cannot be Turing reduced in deterministic time O(nk) to any

language L satisfying:

(i) Enlo 1 = nk kfn :
(ii) L ¢ NP.
Proof: If not, all of NP will have provable circuits of size

O(ng) for a fixed % as argued earlier in this section.

g Y

We can also use "padding" arguments to prove results about
superpolynomial functions. We state only one of the results
that we can prove:

Theorem 10: Suppose f(n) is a super-polynomial time-constructible

increasing function. Then there is a language L in NTIME (£f(n))
that cannot be many-one p-time reduced to a sparse language.

We remark that Mahaney (1980) shows that if NP # P then NP
itself has a language that cannot be many-one p-time reduced to
a sparse language. The above theorem assumes no such hypothesis
(as NP # P), but requires super-polynomial time.

Proof: Suppose the theorem is false. Then for following
"universal" language U for NTIME (f(n)) there is a sparse set

S and a p-time function g such that x € U iff a(x) € S:

U=1{M# x|M is a NDTM and M
accepts X in time f(n)}

Let k be such that g is computable in det. time O(nk) and S is
of sparsity O(nk). Since f(n) is super-polynomial, the languages
Lipqr Lygp oo of Theorem 7 are "sublanguages" of U. The above
reduction g of U to £ then contradicts Theorem 7.

To summarize the results, we introduce some notation. In
keeping with usual notation found in the literature we denote by

PSP the class of

—D

languages accepted in det. pPolynomial time with a sparse oracle -
i.e., the class of languages that are p-time Turing reducible
to sparse set. The class P may be replaced by other classes,
example DTIME (nk) = class of languages accepted in det.time

O(nk) etc. We may add conditions on the sparse set as follows:

SP

P- ;i SE e MECT RGOl o n¥

denotes the class of languages Turing reducible in p-time to a

sparse set S over the alphabet I in NP s.t.

<

A= |snx

npsimnok
ni-time' | =n".

B denotes of course that the language A is

many-to one reducible in time O(ng) to the language B.
Finally we remind the reader that a sparse set S over
is said to be an exact sparse set if there is a time-constructible

polynomial-bounded function p(n) such that |saz®| = p(n).

Ackwoledgment: I would like to thank Prof. Hartmanis for a

helpful discussion on sparse sets.

- mEﬂulmw

ur

((u)3F) EWILN

(T *Too se aueg)

asd P
z

C :
Cu)y aurs V(u) 3) aWIL

f(+)3F 9TATIONIFSUOD
4« A1od-a9dns A

«

(sosselo
- A1od-1a2dns) s3os osaeds
031 A3TTTIONpPaI-UON

S3TNOITO
aTqeaoaxd ﬁxzvo

aAaRYy 30U Ssa90p dN ‘YA

S3TNOITO mNﬁmlﬁMGvo

aABYy 30U S90p wﬁcmw »xb

punoq I9MOT
9ZTS-3TNOITD

-uoo awTtl-d sey dN

TTewus arqeaoxd sey dN

S3TNOATO TTews sey dJdN

Axcvow_am_ o e

u=|ds| *‘dN3ds +4)03|ds
(410 W san A wawrza Fan i e g X gl
s ur El - (W anIia D wus osaeds 03 A3TTTIATONP
‘A ds YA as A —9I-UOU U0 3TNEDY
(Xouayen) (xosdts 3 uo3ldrT ‘dIey) (g) I0 (¥) Iepun

z P
d dN 7 03 sesdeTToo AUoIeaTH
(KoueyeR) *S3TNOITO _

TTewWS STJT3IONI}S S3TNOITO (x2hoN) (g) A3xedoxg

3TNOITO JuaTeATnbI

swT3-d

ds a S dN

joex® ds _

" dN3 : ey
"dN3dS mmm dN

(¢) s3og osaeds
03 uoT3onpay

i SR T 1
£ A { f : by + v
PR b H ’ . i 5 oA e A
; ;
il
: P e, 5 O o A G :
T \ otz SR e P AR :
i _. V' s ! s
i y 5 & d
i , 8 i
\ , i

! Z A {

) s y i ;
Z A eSdEm(Ty ,
A i

NRETe ergn s "
- v 1 - 4
¥ i i
1
» . . & ; ! i
s O

-7

References

Adelman, L., "Two theorems on random polynomial-time",

Proc. of the 19th IEEE Symp. on Foundations of Computer
Science (1978).

Chandra, A. K., and L. J. Stockmeyer, "Alternation", Proc.
of the 17th IEEE Symposium on Foundations of Computer Science
(19306,

Cook, S. A., "The complexity of theorem proving procedures”,
Proc. of 3rd ACM Symp. on Theory of Computing (1971).

Cook, "Towards a complexity theory of synchronous parallel
computation", TR#141/80, Dept. of Computer Science, Univ.

of Toroento (1980},

Immerman, N., "Upper and lower bounds for first-order ex-
pressibility", 21st Annual Symp. on Foundation of Computer
Science (1980).

Karp, R. M., and Lipton, R. J., "Some connections between
nonuniform and uniform complexity classes", Proc. of the 12th
ACM Symposium on Theory of Computing (1980).

Kozen, D., "On parallelism in Turing machines", Proc. IEEE
Symposium on Foundations of Computer Science (1976).
Krapchenko, V.M., "Complexity of realization of a linear
function in the class of II-circuits", in Math. Notes Acad.

Sci. USSR (1971) pp. 21-23 (English Translation) .

18,

i

% Y

13,

14,

15,

D

Mahaney, S., "Sparse complete sets for NP: Solution of a
conjecture of Berman and Hartmanis", 21st FOCS (1980).
Meyer, A.R. and L. J. Stockmeyer, "The equivalence problem
for regular expressions with squaring requires exponential
space", Proc. 13th IEEE Symposium on Switéhing and Automata
Theory (1972).

Paul, W.J., "A2.5 N-lower bound on the combinatorial com-
plexity of Boolean functions", Proc. 7th ACM Symposium on
Theory of Computing (1975).

Ruzzo, W.L., "On uniform circuit complexity" 20th FOCS (1979).
Savage, S.E., "Computational work and time on finite
machines", JACM 19(4), pp. 660-674 (3972} .

Savage, J.E., "The complexity of computing”, John Wiley and
Sons (1976).

Berman, L. and Hartmanis, J., "On isomorphisms and density
of NP and other complete sets", SIAM J. Computing Gl

pp. 305-322,

