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(-Introduction and summary: This paper mainly deals with the models for type

fice A-calculus defined by Plotkin (Plo [1972]) and Engeler (Eng [1979)).

For every non empty set A, the model D A 1s built up in a very natural set theoretic way
and provides a code free generalization of early ideas of Scott, Scott [1976]. Namely, the
notion of application (interpreting formal application of A-terms) generalizes the classical
Myhill-Shepherdson-Rogers definition of application in Pw, introduced to define

Enumeration Operators (see Ro [1967], p.143). Abstraction is defined accordingly.

An interesting fact is that these definitions do not depend on codings of pairs or of finite .
sets, while the classical ones do. This doesn’t affect the Recursion Theory one should be
able to work out on it, but does affect the model theory of A-calculus (see BB [1979)).
Moreover, for various reasons which should become clear in the next sections, Plotkin-
Engeler’s structures are very "handy", particularly in Engeler’s version: it is easy to grasp
the intuition on which the definitions and abstraction rely and to modify them for the

purpose of the model theory of A-calculus we aim at.

Section 1 (part I) introduces A-terms and CL-terms (terms of A-calculus, AB, and of
Combinatory Logic, CL) of various orders, corresponding to levels of functionality or
number of A-abstractions. Part IT discusses the consequences in Combinatory Algebras of
an early remark of Wadsworth (and Scott) on how to interpret the "loss of information"

which is implicit in performing combinatory reductions, as in any effective process.

Section 2, following Barendregt’s terminology (Bar [1981]), deals with the local analysis
of Engeler's models, i.e. syntactically characterizes the true equalities in these models.
Actually the partial order on these structures (i.e. set theoretic inclusion) matches perfectly
well the very natural syntactical partial order over A-terms, given by inclusion of Boehm-
trees (the proofs are in Appendix B). This provides an algebraic characterization of A-

terms possessing normal form.



Section 3 gives a semantical charccterization of A-terms of any 7inite (and infinite)
order, ie., for n€w, characterizes the class of terms such as Axy..x,.N according to n. In
particular (closed) terms of order 0 are interpreted by the botton element of the lattice-
theoretic model considered and terms of order infinity by the top element. This is done in

amodel 4 la Engeler, with a different interpretation of A-abstraction.

Section 4 contains the model-theoretic applications of this paper. Theor. 4.1
summarizes what proved in the previous sections (different interpretation of A-abstraction
yield different sets of true equations). Theor. 4.5 deals with a purely algebraic consequence
of the previous results. As already mentioned, Engeler’s applicative structures generalize
application as defined for enumeration reducibility in <Pw, * >. In fact,<D, - > and <Pw, >
can be isomorphically embedded one into the other; but, using the previous local analysis,

it is shown that for no A they are isomorphic (w.r. to " - ).
An Intermezzo and Appendix A discuss extensionality and "non well founded" models.

The notation is mainly from Bar [1981] and Mey [1981] unless explicitly defined (or

elsewhere referred).



1. Approximation and Application.
Part I (Syntax): Let CLB be CL extended with the axioms tor strong reduction
(Bar [1981], 7.3.6)

ik Del. = (i) A CLterm M is of order 0 (MeOy) iff
—3INe{K,S,KU,SU,SVU/U,V CL-terms} CLB—M =N

(i) A CL-term is of proper order 0 (MEPOy) iff M€0, and (—3N CL-
terms CLB —M = xN).
(cf. C.F.J1958], p.145; NG ...are finite vectors (sets) of terms, possibly empty)

CLpB and A are nicely related at a syntactical level. In particular on can go from A-
terms to CL-terms (and vice versa) preserving provable equalities (see Bar[1981], 7.1.4. -
7.3.1). Barendregt’s translations ( ),:CL—AB and ( )cL:AB—CL, invertible up to

provable equalities, are a tidy way for doing this.

Working in AB, it is easy to define terms of order n, for any n€w, as well as terms of

order infinity.

1.2 Def. Let M be a A-term. Then
(i) MeO, iff n is the largest such that
3N)\ﬁ M= }\Xl...Xn.N.

(ii) M¢€0y iff vn M40,
Example. YK€Qq, where'Y is a "fixed point operator™.

1.3 Proposition (i) LetM bea CL-term. Then
(1.0) MeQy = M, €0,

(i)  MePO; = M, €0 and ~3N AB M, = xN.



(i) Let M be a A-term. Then
M€l = VnImoniNABFM = Axj.x,N.

Proof. Easy. O

Clearly terms of order 0 are exactly the terms with no functionality.

(Un)solvable terms are defined in Bar[1981], p.41.

1.4 Lemma. M is unsolvable iff

) M€Qy, or
) In>03INe€PO; ABHM = Axp.x,N.

Proof. =. By def. of head normal form (Bar[1981], P.41). =. We prove (M¢0y
= (2)), when M is unsolvable. By 1.3.(ii), M¢0y, = In Ym>n ¥N AB M = Ax;..xp. N
[fn=0, then M€PO,, since M is unsolvable,
[fn>0, let n be the least such: then IN€0y AB =M = Axy..x,.N. Actually NePO, for M

is unsolvable. _ O
Part 11 (Semantics):

1.5 Def. Let " - " be a binary operation (application) on a set D. Then <D, * > is
a Combinatory Algebra iff D contains elements K and S satisfying K=8S
K-dy-d; =d,
S-dg-dydy = dydy(d; " dy) for all dy,dy.d, € D.

Thus in a Comb. Alg. <D, - > one can interpret s and k of CL, by some S and K. For
each choice of S and K in D, one obtains an expansion <D, - ,SK> = CL, where CL

contains s and k in the signature.

1.6 Def, <D, -, ¥y >is a Combinatory Model iff



(1) <D, >isaComb. Alg.:

(2) Let(D-D): = {D—D/3deD veeD fle)=d - ¢}
then ‘I’A(D—»D) —-D;

(3) For fe(D—D) and e€D, ¥\ e = Ke).

By combinatory completeness, ie. by 1.6(1), Comb. Models correspond to
Environmental Models, as defined in HL[1980] or in Meyer[1981]. Meyer’s Combinatory
Model Theorem proves the equivalence of this notion with his purely algebraic definition
of Comb. Model.

Let 7 be an algebraic expression over D (see Bar[1981], p. 89; ie. r is built up with
variables, constants from D and " -"). Let Ax€D.r be the function d — r[d/x]. By
combinatory completeness, i.e. by 1.6(1), Ax€D.r€(D—D)), possibly with parameters. We
write Ax.7 for \FA()\KD.T). So, for fe(D—D), Ax.f(x) is the element of D which
canonically represents the function f. Thus 1.6(3) reads (Ax.f(x)) ‘e = f{e), which better
recalls the schema (B) of A-calculus (cf. Bar{1981], ch.5). By a small abuse of language, we
will also write Ad.f(d) for Ax.f(x) and consider A as a map from (D—D) into D, writing <D,
LA for <D, - Wy .

Given <D, ">, there may be several choices of \: each one provides a specific A-
expansion of <D, ->. Each Combinatory Model <D, - A> naturally yields an expanded
Comb. Alg.: set K = Axyx: = A(Ay(x)) S = Axyzxz(yz) (we omit " *" in d "€).
Following Mey[1981], we call these expanded Comb. Models A-Models.

In view of Meyer's Lambda Model Theorem, we shall ignore the distinction between
these interchangeable notions of model of AS and use the phrase A-model throughout the

rest of this paper (cf. also Bar{1981] or HL[1980]).

We write Di=... for <D, - ,A> <D, S.K>) = ..., if there is no ambiguity.



1.7 Def.  Two (expanded) Comb. Alg. <Dy, - (;S1.K{)> and <D,x(,S,,K,)> are

Equationally equivalent iff Dj=M =N <= D,=M =N, for all CL-terms %1,N.

As well known (B8) or CL reductions entail a "loss of information". In (AxM)N —

[N/x]M, one knows "where one goes, but not where one comes from".

How can this be reflected in the semantics? Given a poset <D,<>, let first say that f:D—
D is w-continuousiff, for any w-chain {d_},¢ .. if Ud, exists, then flud,) = uftdy).

Using ideas from Wadsworth’s analysis of Scott’s model Deo, Wad[1976] (see also
BL[1980], Bar[1981])  define:

1.8 Def. A Comb. Alg. <D, - > has approximable application

iff (1) <D,-,<>isaposet, with least element L,
such that " - D2~ D is w-continuous

(i) There exists a map Seg:Dxw—D such that,
for d, = Seg(d,n), vd,e€D one has

- d=ud,
2" dO ==
3- le=41

4= d. se<{de )

> (dpy = dmin{n,m}
A way of understanding 1.8 may be the following;
- d,, is d up to "level n of information™;

- applying no information , L, to something, one gets no information:



- if the operator has level n+1 of information, then it uses at most level n of
information from the input and provides at most an output with level n of
information.

This has an immediate consequence for the semantics of the class of terms in CL where

one can always perform reductions at the leftermost outermost level, i.e. for CL-terms in
PO,,.

19 Theorem Let <D, - > be a Comb. Alg. with approx. appl. . Then
MePOy=DEM = L,

Proof. For the purpose of this proof, let’s introduce a labeled CL, CL; The
formation rules of CL-terms are extended by
MeCLy = M"€CLy, for all n€w;

the reduction rules are extended by

(Klab) 1. K'F1M - (kM)
2. (KM)*HIN MP
Slab) 1. S"Tlp_ (sp)"
2. (SP)"*1Q - (SPQ)”
3. (SPQ™'R - (PRYQR™)"

(M : n) (M n)m . Mmin(n,m)

MeCLy is completely labeled iff each occurrence of S and K in M is labeled. Interpret
CLy-terms in D, by adding [M"], = ([M],),, for all environment o.

Claim 1. Let MePOg and M' a complete labeling of M. Then CLy — M! - N°Q
for some 1\6 in CL,,.



In fact by definition of POy-terms, K and S (labeled) rules are alweys applicable at the
"head" of M(MI) and its contracts (i particular (Klab).2 and (Slab).3, up to label 0)

Claim2.  IfCLy+ M — N, then D=M<N

Use 1.8(ii) and monotonicity of " - ",

Let Me€PO,. Then
D =M = U{M/I complete labeling} by 1.8()-(i).1

< u{NDGIBI M- NDG} by claim 1-2

=1 by 1.8.(ii).2-3, Q.E.D..

So much for Combinatory Algebras; Theor. 1.9 in full generality will be applied in 3.6
and 4.5.

In the next sections we will use two notions of "tree of a A-term”. For the notion of
Bohm-tree of a A-term M, BT(M), we refer to Bar[1977] (or Bar[1981]). The partial order
"C" on Bohm trees is the usual syntactic one: informally, put the always undefined element
"1" at the bottom and then proceed inductively on the structure of the tree. Recall that

BT(M)= L iff M is unsolvable.

Then the Tree of M, T(M), is a Z-labelled tree defined as follows.

™M) =T if M€0y,
TM) = Axj.x,.L if M is unsolvable of order n,
T(M) = AXI...Xn.y

1.10 Def. (Informal) Let £ = {Ax..xp.L/n>0} U {T} U {Ax;..x,.y/n>0}.
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if M is solvable and has principal head normal form Ax;..x,.yMy..M,

A Tree may be infinite: just mimic Bar[1981; p.212] to give a formal definition. T(M) is
obtained from BT(M) "displaying" the order of the unsolvable leaves. This can be done

with the help of a Eg oracle, writing his answers on leaves.

1B Def. The set of Trees is partially ordered by
T(M) Cc T(N) iff some L’s in the leaves of T(M) are replaced by Trees of A-terms or

someAXx;...x,.L are replaced by T.

Example AX.y AX.y

N

AZ I Ak AzZv.X T

Given a A-model <D, - ,A>, embed (D—D) with the pointwise partial order.

112 Theorem Let <D, -, A> be a A-model with approximable application.

Assume also that A:(D—D) — D is monotone. Then

TM)C T(N) = De=MCN.

Proof. See Appendix C. ]

An easy consequence of 1.12 is that, in a A-model D as in 1.12, all fixed point operators
Y of AB coincide in D and they represent Tarski’s fixed point map Y-(f) = uf(.L). See §3

for an application to a specific model.

113 Def. A A-model <D, - ,A> has A-approximable application iff <D, > has

approximable application and Ax.L = L.

1.14 Proposition. Let <D, - ,A> be a A-model with A-approximable application.
Then
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BT(M) € BT(N) = D=M<N.

Proof. Forcing Ax.L = L, T(M) collapses to BT(M): see appendix C for details. O
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2. Engeler’s Models and Their Lo<al Structure
2.1 Def. Let A=@. Define
@ By=A
B,.1 = B, U{(B:b)/B finite A BCB, A beB_}

B = UBén)
DA = 2

() " "D,%- D,byd:e={b/3fce (8;b)ed}

¥y (D) = Ax.Rx) = {(B:b)/bef(B)}

(Notation: &,8,... range over finite sets; we omit" - " ind-e;

no element of A is denoted by (...;...))
This definition is due to Engeler (Eng[1979]; see also Plotkin[1972] and Scott[1980]).

2.2 Lemma For any A#@, <D,,C> is a complete lattice. Scott’s topology on

D, is given by the basis
{2} U {{deD,/BCd}/BeD,}

Preof. Obvious O

2.3 Lemma Let A=@. Then the following are equivalent, over D

1-  £iD, — Dy is continuous
-
> fld) = pchfB)

3= (Axfx)d = f(d).

Proof. Routine O

Thus <Dy, *,A> is a A-model and (Dp—=Dy) = C(D4.Dy), the continuous functions
(sce also Eng[1979]). Asusual Ax.dx: = Ax.f(x), for frepresented by d.
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The intuition on which the construction of D, is based in clea : (B;b) is an
“elementary instruction” giving output b any time the input contains 8. Thus vdeD,

Ad=g, since we assume A not to contain pairs such as (8;b).
Note also that, by definition,

24 VbeB3B,...B1 Ja€A b = (B,; ...(B1:a)...).

This makes D, "well founded" in the following sense: there is no infinite descending chain
w.r.. to (the transitive closure of) the binary relation < on B, where b < (8;c) = b€B Vv
b=c V (c€B\AADb=C).

The point is now to turn <D, - ,A> into a \-model with A-approximable application.

2.5 Def. (i) (Simultaneous definition of | - | on B and on the finite parts of

B, with range in w).

1 ifbeA

BI=" 18141 it b=(8:0)

IB] = max{|c|/ceB}+1

(ii) Let déDy. Define d, = {bed/|b|<n}.
Clearly |BLIb] <|(8;b)I.

2.6 Lemma <Dy, " ,A> has A-approximable application.

Proof (Part 1. Approximable application) We only check 1.8(ii).4, the rest is trivial.

dy.1e = {b/3BCe (B:b)ed A |B]+[bl<n+1}
C {b/3pce, (Bb)ed A [bl<n} = (de

e

since V8 vb |BLIbl>1 and max {Je|/c€f} = |8I-1.

(Part 2: A-Approximable application) Ax.8 = {(B:b)/bes} = @. O
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Thus 1.14 applies and BT(M)CBT(N) = D,=MCN.

To prove the reverse implication one can use the classical Bohm-out technique 4 la
Hyland. A revised version of it is in BL[1980].1 The point is to substitute Bohm’s operator
Cp = AX(uXpy1Xp41Xg--Xp DY @ CI_) whose properties depend on the structure of D, and
such that Lemma 3.3 of BL[1980] applies. The construction of such a CI') required 26
technical lemmas, in the case of Plotkin's Tw. For D, it turns out to be much simpler and

it is shown in Appendix B.

24 Proposition Let A=@. Then
BT(M)CBT(N) = <D,, - ,A> = MCN.

Proof. By the proceeding remarks and Appendix B. O

Putting together 1.9 and 2.7 one has that M is unsolvable iff <D A A E M=g, thus
<D4. " .A> is sensible in Barendregt’s sense (Bar.[1981], p.100).

We conclude with a simple characterization of A-terms possessing normal form.

Let (DA)0 = {ﬂM]}/MEAO} be the interior of DA:(DA)O, as the set of objects

interpreting closed A-terms, can be algebraically characterized by taking

S = Axyzxz(yz)eD, and K = Axy.x€D, and closing w.r. to " ".

28  Corollary Let MeA® Then M has a normal form «
{d€(D4) /Dy =dCM} is finite and [M] is maximal in (D ).

Proof. M has a normal forms iff BT(M) is finite and contains no ©’s. O

This fact is also true in the model Tw; but the authors of BL[1980] were too distracted

by the crazy hardware of Tw, to point this out.

Icorrection for BI[1980}, p.316, def. 3.4(ii), Tine 2: set yi:CI-J(ri instead of o = CI-)yi, 0<i<n.



15

3. A Semantical Characterizatioa »f A-terms of Order n, for any n€ wU{00}

In this section we define a different A-expansion of the applicative structure <Dy, *>
defined in 2.1(i)-(i)). Namely, for each fe(Dy—D,), A" :(D,—D,) —D, will choose a
representative in the extensionality class of f, say EC; = {d/ve fle)=de}, different from

A(D).

3.1 Def. Let A=g, <Dy, > as in 2.1(i)-(ii) and A as in 2.1(iii)). Define

AT:(D,—D,) — D, by
AT = ATxfx): = AxAXUA.

Note that for all A=@, the D,’s are objects of a Cartesian Closed Category (CPO’s),
with continuous maps as morphism. As already pointed out (Dy—Dy) = C(Dy,Dp): itis
then easy to show that also A and A™ are continuous maps. Moreover C(D}, D,) =~
C(D,, C(DX' Dy)). Thus

AT XX X X ) = AT Ry x Xy X))
is well defined for all fEC(DR,D A)- 3.3-5 show that DK = <Dy ',}\+> is a A-model, for

A#gand Dy, A and A defined as in 3.1.
3 Def. Define A(n) = A+X1...Xn.g.

3.3 Lemma (i) A)=92

(Il) A(n+1) = ?\+X.A(n) = AX1,...Xn.AU}_\_X1...XH_1.AU....UA
(iii) Am C A By

) Ay il R e A
for all feC(D}, D).

/
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WD N i ol = A dd )
for all feC(DR D) and &’ ={d;....d }. with p<n.

Proof. (1) Obvious; (ii) easy induction; (iii) by (ii).
(iv) by Ad=g, for all d€D, and continuity of " - " (recall that Ax.A = {(8;b)/b€A}).
(v) induction, again; (vi) by (iv) and (v). ' O

34 Lemma. vie(Dy—Dy), A *x.f(x) is the largest element in ECg.

Proof.  Let d€EC; Clearly dNACA "x.f(x). Let (8;b)ed. Then bedp, ic. bef(B)

and we are done. O

3.5  Corollary Dy = <D,, ,A™>isa A-model. Moreover it is the unique A-
expansion of <D, - > satisfying vdeD, dcatxdx.

Proof  The first partis by 3.3; note that if \B=M=Ax;..x,.N, then
1) Vo [MI; = Adp..dp.INT* ofd /X TU Ay, by 33(v).

Assume now that <Dy, *,A"> is a A-expansion such that vd dCA’x.dx. Recall that
(2) vd,e (dUA)e = de. Then, for all fe(D,~D N

AVAY)UA C  Nx(Ay.fy)UA)X by assumption
= AXQAyfy)x by (2)
= i) by 2.3
By 3.4, we are done. ' 0

Clearly <D,, - > possess Card (ZA) A-expansions. This A-model provides a semantical

characterization of the A-terms in POy. 0¢p and 0, for all n.

3.6 Theorem Let M be a A-term. Then
~ M€POy = Di=M=g
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Proof. =. This follows from 1.9. Notice that 1.9 depends only on the applicative
stacture of <Dy, >, i.e. on <Dy, * > as a Comb. Alg., not on the A-expansions which may

turn it into a A-model.
=. Assume M¢PO,,

Case AB=M=xQ, for some Q1-.Qp. Then, since DiEM=0 = Va[[M]]g = 2,Df &
M = g, by taking o(x)= A,xl...xp.A.

Case AB=M = Ax.N, for some N. Then
vo  [MIS=ATdINIT6l = Ad NIt odUA £ o. o

Of course, 3.6. =. depends on the A-expansion (cf. 2.7)

37 Theorem Let M be a A-term. Then
i) Me0, = (Di=MDA & m<n)

(i) Mé€0y = Di=M=B

Proof. (). =. Assume ABEM=Ax1..x N, with N€0,. Then (1), in 3.5,

immediately gives .
yg D
As for =, assume m>n.
(1)

Case NeP0,. By 3.6 and (1), Vo {[M]];" = A (recall that Ax.@ =@), while A_,CA_, for

mon.

Case N_=_xi£_’2, for some {_j and i<n. Take b = (Bl;"'(?til"'(ﬁm;a)"')) for some F in Dy
and a€A. Clearly beA;\A; thus beAd,...d, . d([Q]™ o [T /X']). Then by the definition
of A, one has aE@([@]]a [F/TD = g.

— —3
ncp N=v = o ; 1
Case N=yQ, for some Q and y#x;, i<n. Take

o{y)=4, then by (1) HM}]:: A,CA,, form>n,
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So far for (i). =.

=. Assume M¢0,

Case M€033= with p#n. Then by part ,=, we are done.

Case M€0,, Then, since A)CACLAC..,
B) v, v,IMIJ2 A, by 1.3(ii) and (1). This contradicts o again.

(i) Clearly UA,CB. Conversely, if b€B=UB, (see def. 2.1), b=(By;
~(Bp;a)) for some B in Dy, a€A(by 2.4). By 3.3(if) and 2.1(iii), Agyyy) D AxpxpA =

Thus,

4) B = UA(y)
Now, assume M€0,, then
Vo [M]; = B, by (3) and (4).
Conversely, DI = M = B implies
vn M¢0,, by (i) and (4). O

In view of (4), let’s write Ay = B.

3.8 Corollary Let M be a A-term. Then
M is unsolvable = In€wU{oo} Dg'l= M = A

Proof, =. By 1.4 we have two cases.

Case M€Qs. Then D= M = A ¢, by 3.7(i).

Case ABEM=Ax,..x,,.N, for some n€w and N€PQ,
Then Yo[M]; = AX .BUA@ = A,y by (1) and 36.



)

=.  Assume AB=M=Axp.x;.yQ;..Qp, for some 11“w, y and Q (e
assume that M is solvable).
Then, by 3.7(i),
D =M = Ay = n<m.

Thus, let n<m.

Case y#x;, vi<m. Take o(y)= Axl...xp.A.
Then M = AT xp.x A
e A(Il)’ by 3.2-3.3.

Case y=x; forsomei<m. Take %= {(@;..(2:a)..)} of length p, for some a€A, and
1
b® = (B1:..(BB...(B;0)...), for some B,

Then b ¢ Ay, by 3.3(ii) and n<m. Nonetheless

Vo b'e{(B1;.(Bin:b)-)/beBIQT T olB AT C M1
since Bt;...d,={a} and we are done. O

By 3.7, the witness n of the RHS of 3.8 is unique and it is the order of the unsolvable

term M.

Note that DX provides a semantical characterization of unsolvable terms, with their
functionality. Moreover the functionality of solvable terms is also characterized, by 3.7(i),
though it never occurs that a solvable and an unsolvable term are equated. Finally, by the
monotonicity of AT, 1.12 applies; thus TM) C T(N) = DX = M C N. The author believes
that this model is "very sensible” although Henk Barendregt wouldn’t call it so (cf.
Bar[1981], p.100).

With some patience, one should also be able to work out the following fact:
T(M)=T(N) = Df=M=N
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Tatermezzo (on extensionality). Part 1 None of the models studied so far is extensional;
nanely, in general, EC, contains more than one element. Throwing away some elements,
can we turn <D, * > into an extensional A-model? There doesn’t seem to be an elementary
direct way for such a construction, starting from a A-expansion of <D, . (see 4.4 for an

indirect argument).

Scott[1976] (see also Scott[1980]) presents an elegant technique to construct an
extensional substructure of the A-model Pw. This technique applies to "almost" (see later)

any A-model satisfying (") Ax.x < Axy.xy, which is a c.p.o..
Scott’s argument is the following:
LetIy: = I'= Axx L1 = Ay ()

Set d(n) = [I,]€Pw and de, :Ud(n). Then Ew = {de/e€Pw} C Pw is an extensional
A-model (see Scott[1980]).

Remark (1) Scott ([1980], p.251) points out that d, is the least solution of
d = dgyU(Axy - d(x(dy))),
and remarks that dy, doesn’t seem to be the interpretation of any closed A-term. And in

fact it is not. By induction, one has
(1) vn AB = Iﬂ = AXO"‘XH'XO(ID'IX1)(Iﬂ'2X2)°"Xn'

now deo#@; thus, if [M]=d, M is solvable, say A\B — M = ,\xl...xp.xj(_j. Then one
can derive a contradiction from vn d,C[M] and (1), by applying them to the right C in

Pw, depending on j.

(i) Let (B,<,) be the set of Béhm-like trees partially ordered by (possibly infinite)
n-expansions, see Bar[1981], p.230. It is then easy to show (use cofinality of chains) that
WUBT(l) is the "Nakajima-tree” of Ax.x (see Bar[1981], p.511). Conjecture: Eew is

equationally equivalent to Scott’s inverse limit D,
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Part 2. Scott’s (n°) property seeri to be a fairly natural property for a A-model <D,
",A> which is a poset. It says that A’ chooses the largest element in EC,, for each fe(D—
D). That is exactly what A™ does in the case of D;{. Nonetheless the technique of Part 1
doesn’t apply to DI (thus to no other A-expansion of <D, - ). In fact, by 3.7(i) and (4) in
3.7, one has dog =B. Therefore

{doe/e€Dy} = {B},

since Ve€D, Be=B, i.e. the extensional substructure collapses to a singleton.
How to force (n7) into Engeler’s construction and still obtain an interesting deg?

Given N’=\7, vd dCA’x.dx is false because of those d's containing elements of A,
which do not act as "instructions” (see 3.5). Thus, what one can do, with a€A, is to force
a=({a};a) (or, also, a=(@:a), see A.6), i.e. force a to act. That is, set

a~({a};a) and consider B=B/~, f)A :<2B, 5

}NDA is no longer well founded and there is no way of turning <f)A, > into a Comb.
Algebra with approx. appl. : this is an immediate consequence of 1.9 and Cor. A5
(appendix A), which gives a semantical characterization of closed A-terms of order 0,
different from 3.6; namely,

Mely = f)A =M=A, for M closed.

Notice that, in Dy, vbeB (#:b)¢deo = Ud(y), by (1) in the remark. Thus deo® = o;
since one also has deB=B, then Scott’s technique applies and the extensional substructure

is not trivial.

In this model, Tarski’s fixed point operator is not A-definable (see A.5).

1 . 5 . , ,
By a different argument, Scott derives the same observation (see remark on p.251, Scott[1980]
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4. D, and Pw

The local analysis of <Dy, ".,A> and of {Dq, ',?\+> has the following immediate

consequence.

41  Theorem  Let A#@. Then the Comb. alg. <D,, - > has A-expansions which

yield non equationally equivalent A-models.

Another application of the previous results (namely 1.9 and 2.7) relates D and Pw. In

particular the isomorphisms between <D,, - > and <Pw, * > as applicative structures.

" - " over Pw is defined as for Enumeration Reducibility (see Ro[1967], p.146; Bar[1981],
p-469). That is, for codings of the finite sets {E_},¢,, and of pairs (,), CG={m/3E,CG
(n,m)€C}. By <D,x> =<D’, - > we mean that D can be isomorphically embedded into D,

mn_n " "

Warto X and "

42 Preposition Let A#@. Then one has

(i) If Aiscountable, then<D,, > = <Pw,>.

Proof. (Notation: (,) and {E_},¢,,, finite sets, are as in Re[1967]; in particular
Ey=2, E;={0}. Sctalso #E, =n).

Notice first that
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(0) VnEw\{O} 3!1(3!111....3!:1( n=(n1,...(nk,0)...) A nk#:O.
(i) Define (simultaneously), for some a€A,

[ i ]:w — DA

hi{E },e, — {B/BCB finite}

first: [w] — B

by

[0] = {a, (2;a), (7;(2;2))......},

first ([0]) = a ;

Let n=(ny,(n,,...(ny,0)...),n; #0: then set

(1] = {(B3,(By - (B )..)/bE[0]}

where, for E; = {my,...mg},
Bn:=h(E)={first([m]).,...first (m D} (with h(@)=2)

and, for p = (py.(py....(p,,0) = 0,
first ([p]) = (,8;)1;()5’;)2;...(Bijf;a)...).

Finally define f:Pw — D, by

filC) = u{[n]/neC}.
Chim (1) (Byb) € [(mp)] = m=n A be[p].
)  E,cCePw o B,CAC).

Part (1) easily follows by the definitions (note that it holds also for (n,p)=0, i.e. n=0 A
p=0)
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As for (2), notice that B, Cf(E,). Cl-arly fis injective.

Compute now

(ii)

Claim

RONG) = {b/3BCAG) (BD)ERC)}

={b/In(B,CAG) A 3p (Bl A (Lp)EC)} , by ()
={b/3E,CG Ip b€[p] A (n,p)eC} ,by (), (D)

= U{[p]/3E,CG (n,p)eC} |

=fCG).

Define, for A . {ag.apay....}

b—-bB—-w
g:{B/BCB(finite)} — w

by

a, = (Ln)

B—b = (g(B).b)

Where, for B = {b]. ..... bq}!

8(B) = #{by...hg}

Define

£:D,—Pw by f(d)={b/bed}

(1) b — b is injective; g is injective
) vdeD, 0¢£(d)

(3) f is injective
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As for (1)+(2), define| |:B — wasin 2.5.
The proof easily follows by (combined) induction on [b] (and |B]).
As for (3), it is an obvious consequence of (1).

Then compute
F(d)f(e) = {a/3E,Cf(e) (n.qef(d)}

={b/3p EupCf®  (B)DENA}
by (2), since E; ={0} (so it is not the case that (n,q)=a for a€A),

= {b/3pce  (B;b)ed}, by (1)

= fi(de) O

In Eng.[1979] it is shown that for any applicative structure <A,x>, one has

AX>=<Dy, >
43 Corollary. Let A#@. Then for any countable <E,x>, one has
(E,X) = <DA’ "D
Proof. Just use <E,x> = <D, "> = <Pw, > = <Dy, > a

In particular <E,x> may be a countable extensional Combinatory Algebra.

44 Discussion. Pow is not (as) well founded (as D,; see 2.5). Namely, there is
no way to mimic the definition of | | given for D, (see 2.4-5) on Pw. If, in view of (0) in
4.2, one sets |n|=k for n=0, then | | cannot be extended to 0 in a way to have always
[nL.Jm[<|(n,m)|. In fact 0=(0,0)=(0,(0,0))....(and this is the only "bad guy", but any coding

must have at least one...). Thus under the standard coding (but this can be generalized).
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vCePw {0}C={0}

This is what we have been taking care of in 4.2(i). Clearly non well founded codings in
even a stronger sense would make the result false (see BB[1979] for strongly non well
founded codings). Note that the proof of 4.2 does not depend on properties of the

"standard" codings, other than their almost well foundedness (this discussion continues in

A.6, where a change in the definition of the set D A Say D%gives {Pw," >:<Dgz -2

Theor. 2.7 and Hyland’s result (Bar[1981], 19.1.19) show that <Pw, - > and <D,, > can
be turned into equationally equivalent A-models. 4.2 tells us about isomorphic

embeddings. Nonetheless in no case <Pw, - > and <Dy, - > can be made isomorphic.
45 Theorem VA <Pw, > & <Dy, >

Proof. We first need a few remarks.

Py Claims (1)  VCEPw @C=@ and {0}C={0}
2 vEzs 3C  EC={0}
(3)  VCePw (Cinfinite = vh3k>h 3G,,..G, CG=#2)

(1) is obvious. As for (2), take the largest k such that my=0 A (my,(m,,...(my,0)..)€E,.
Then EnEml...Emk = {0}. (3) is trivial.

D, Claims,
4) vdeD, (3ede=d = d=@ V d infinite)

(5) vdeD, (3e de infinite = d infinite)
(6)  VBED,, finite, 3hvkd>h vdy,...d, Bd =2

To prove (4), assume that d=¢ is finite and take the largest n such that (B (B

a)...)=bed for some F,a. Then ve béde. (5) and (6) are proved similarly.
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Assume now that f:Pw—D, is a1 isomorphism, for some A#@. Let K.S.I interpret
K.,S5,l'in Pw. Clearly <Dy, *,f(K),f(5)> is a Comb. Alg., namely it is a particular expansion
of <D,, ">, with interpretation, say, [ ]]E:CL — D,. <D,, *> has approximable
application (see 2.6, part 1), and this depends only on the properties of <Dy, > as
applicative structure. Thus 1.9 applies and

g = [susmpff byl

RSI(SI))  bydef.of[ [fandf

fISIESIND

(@) ,by Pwi=SII(SII) =@ (Bar{1981] ch.19.1)
By assumption fis injective, thus, by (1) and (4), §{0}) is infinite.

Finally, observe that
vC=@ f{C) is infinite

In fact: if C is finite, then use (2), the fact that f{{0}) is infinite and (5). If C is infinite,
then use (3) and (6). This concludes the proof. |
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I. Appendix A. Non Well Foundedness, Terms of Order 0, Isomcrphisms with
{Pw, >

The notation is as at the end of the Intermezzo, where 13A2<f)A, *> was defined. In
particular recall that, in f)A, a=({a};a). Aisasin 2.1(iii), i.e. Ax.fx) = {(B:b)/bef(B)}.

Al Lemma In f)A one has:

() Ad=And.

(i) a€d A a€e = a€de.

(i)  dcAx.dx

(v) <D, . A>isaA-model.

Proof. By the definitions. O

Given a€A, let ¢, be the constant symbol for {a} and A(c,) the set of A-terms built up

using also c,, where [c,] ={a}.

A2 Lemma Let o:var — f)A be constantly equal to AEﬁA. Then vacA
vMeA(c,) a€[M]o.

Proof (By induction). If M=c, or M=x, we are done. If M=PQ, use A.1(ii) and the
induction. If M=Ax.N, then [M]o ={(8;b)/be[N] o, F}.
Notice now that Nfc,/x]€A(c,); then
a€[N] ax{a} = [NIc,/x]]a, by induction, i.e.,
a = ({a}.a) € [M]o. O

A3 Lemma Let 0 be asin A.2. Then one has for any M€A.

() AcMle
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@) If M€A, then Ya M€A(c,).

(ii) If ABM=Ax.N, for some N, then-(y;b)eﬁM]]o‘ A (y:D)C(B;b) = (B:b)E[M]e. O

A4 Theorem.  Letobeasin A.2. Then
vMe0,  [Mje=A

Proof. Define first a labelled A-calculus Al leaving out label 0: MEAI = M™€AL,
for n>1.

Add the following rules:

L1 (MP)d, mminledl
12 (xM)M2o uNtHgpntl

If beB=B/~, then b, as equivalence class in B, contains a shortest element (in B), say
sh(b): this element is obtained by collapsing all ({a},a) to a. Let | |:B — w be as in 2.5.
Define, for beBand deD,, |blt =[sh(b)] and d,, = {bed/[bjt<n}.

Then 1,2,3,,5 of def. 1.3 hold. 4 holds for n>1 (notice that dye C (de;); C (de); and that
d;CA).

Interpret M€ Al by {U\/[“]]Gr = ([M],),- Let Ibe a complete labeling of M iff M!is M

with a label on any subterm. Then, by usual arguments, one has:
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M MzN = vo[MI,CIN,
@ M1, = u{M],/! compl. lab. of M}

Assume now that M€{)0.

Case M¢PQy. Then AB—M = xN and AC[M],, by A.3
CA, by A.1(i).

Case M€P0y. Let M be as above,

Then one has:  (3) M!S Nl(_j , for some N,G .

Thus A C [M], by A3(D)
CA ,by (2),(3) and (1)

A5 Corollary Let MEAO. Then

@ Dy=AcM
(i) Dy=A=M=Meo,

Note that Y--(Ax.x) = @, thus Tarski’s fixed point operator Y- is not A-definable.

A6 Discussion Pw partially satisfyies 1-5 of 1.3, in the same way as f)A does
(see Bar.[1981], p.473 setting 1 for 0 and n+1 for n). Moreover 0=(0,0).... Why is it that,
for MGOOO, Pw =M = {0}, but Pw = M = @? The point is that (0,0) corresponds to "(2;
0)", not to "({0},0).

As a matter of fact, take A={a} and set a ~ (&;a). Then, for B'=B/~ and DAoz?.B’,
{Pw, >=<D AO, » 2. The isomorphism follows by the proof of <Pw, *> = <D, * > given in
4.3. Moreover set ¢ = [Axy.Xy]€Pw and ¢4, = Axyxy = {(B8:(y:b))/b€eBy} € Dg\ then
that isomorphism takes e to £,. Using Meyer’s algebraic approach, Mey[1981], this shows
that Pw and D?\, with the ordinary application and abstraction, are also isomorphic as A-

models.
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{I. Appendix B. D, = MCN = BT(M}CBT(N)

This appendix completes the proof of 2.7, thus the notation is as in Chapter. 2.

B.1 Lemma (i) Letfe(Dy—D,). Then
(B;:b)eAxA(x) A (B:D)C(y:b) = (y:b)EAX.f(x) (let’s say that Ax.f(x) is saturated).

(i) Let A=B\A. Then(dnA)e=de
(iii) dCA = dCAx.dx.
Proof (i) By monotonicity of f. (i) By definition. (iii) =. (8;b)ed = bedp
= Ax.dx does not contain elements of A. ]

Note that (ii) and (iii) hold just because one can distinguish between elements of A and

elements of A. Fix now ay€A=g2.

A% A(x) = Ax.fx)U{ag}h.

(Notation. For feC(Dj, D), set
Koxl...xn.f(xl,...,xn) = )\Oxl()\oxz...xn.f(x1,...xn));

by the continuity of U and A, this is a good definition).

B3 Remark By definition

AXI...Xn.f‘(Xl,...,Xn) = {(Bl,(ﬁn,b))/bEf(Bl,,Bn)},
while )\Oxl...xn.f(xl,...,xn) contains also a; and all elements of the type (By;ay),..(B1:.-(Bp-1;
ag) for arbitrary B’s.

B4  Lemma  Let feC(D}, D,). Then

1) OLi<n= (P\Ox1...xn'.f(x1,...,xn))d1...di:)\Dxi_l_ 1-Xp-Fd o di X 4 1oreX )
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™) 0<p<n= aoe(?\ﬂx 1...xn.f(::l,...,xn))dl...dp.

Proof. Easy.

Notation ~ Given PCD}, B1.....8,, are minimal such (mims) P(By,...,8,) iff
i) P(B;.....8,) holds, and

ii) if y1CB 1 YnCByandy = 8,
then = P(yy,....¥p)-

B.5 Def. Let feC(D}, D,). Define

?\'xl...xn.f(xl,'...,xn) = {b€A0x1...xn.f(x1,...,xn)/
/3¢ 3B b=(B1;..(B,:0)...) = B mins cefB)}

B6  Lemma  Let feC(Dj,D,). Then

1) (?\'xl...xn.f(xl,...,xn))dl...dn = f{d;,....d,)

2) Ifvd,....d,.; 3d, f(d;....d,.1.d,) # 2, then

(0<p<n = (A xp..x, flx l,...,xn))dl...dp contains ay and it is not saturated (cf. B.1)).

Proof, 1) By definition and B.4(1).

2)  Letswrite F ;= A %q..X,.0%;,...%,). Then
ag€Fydy...dy = {c/3F Cd’ (By:-(Bp0)..)EF;h

since p<n and by B.4(2) and the definition of F.

As for "non saturation”, notice first that

ﬁe},...,en) = F;ei...en, by (1)

= {b/3B'ce (BB b)..)€F}: and

hence, by the assumption on f,
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vpinve,,...e, 3B Cer...33, Cep 3By 3B, Ib (B1:..(B:b)...)EF,

Recall now that by definition of F, these B...8, are "minimal such"; thus, in

particular, Vy D Bo+1 (y;(ﬁp+2;...(ﬁn;b)...) ¢ F;ldl...dp. O

B7  Del.  LetC,=AXg.Xp 1%, 1X0-Xp

Let A(Dy) the set of A-terms built up using also constants (symbols) from D e
B.8 Proposition @ D, k= C;xﬂ...xp +1 = Xp+1X0-%p

(ii) Let gy....,0,, and Tl Tq be terms in A(Dy). If n=t
and m,q<p, then

DA PEAXI...XH.CI;Ul...O‘m - AXl...Xt.CpTl...‘Tq.

Proof. (i) by B.6(1).

(ii) Clearly f(do,...,dp 1) = dpt1 do...dp satisfies the conditions on f in
B.6(2)

Let n<t.

Case 1 Assume .D. and apply both LHS and RHS to Ry« X ‘1hen

Dy E Cp“l---"m i) )\Xn+1...xt.Cp'rl...'rq.

This is impossible since the LHS is not saturated by B.6(2), while the RHS is saturated

by B.1(i).

Case 2 Assume .C. As above one obtains
DA = CpO'l...O'm C }\Xn+ 1...Xt.cp7'1...‘]'q,

which is impossible since the LHS contains ag by B.6(2), while the RHS doesn’t. O



B.8 is the C-lemma, 3.3, of BL[1980].
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