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COMPUTATIONAL COMPLEXITY
AND THE TRAVELING SALESMAN PROBLEM

David S. Johnson and Christos H. Papadimitriou

In the last decade or so a theory of computational complexity has developed, based
on rigorous methods for evaluating algorithms and for classifying problems as “hard” or
“easy”. This theory is deeply indebted to the field of Combinatorial Optimization, which
has provided it with invaluable motivation, insight, and paradigms. The TSP is probably
the most important among the latter. It has served as a testbed for about every new algo-
rithmic idea, and was one of the first optimization problems conjectured to be *hard” in a
specific technical sense.”

In this chapter we shall be studying the complexity of the TSP, while providing an
introduction to the general area of computational complexity. Section 1 provides an in-
troduction to the notion of an algorithm and to different measures of its “complexity”.
Section 2 shows how we can restrict our attention to decision problems (problems with
a “yes” or "no” answer), and divide these into equivalence classes according to their
difficulty. Section 3 then proves that even very restricted versions of the TSP are likely
to be very hard (they are, in the technical jargon, NP-complete). Section 4 concludes
the chapter by examining the complexity of problems related to the TSP, as well as com-
plexity aspects of various proposed approaches to the TSP.

*The conjecture was made in 1965 by Jack Edmonds, whose work of this period contains many sceds of present-day complexity
theary
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1. Algorithms and Complexity

1.1 Algorithms

An algorithm is a step-by-step procedure for solving a problem. This concept can be
formalized in a number of ways, for instance in terms of Turing machines or of computer
programs in some programming language such as FORTRAN or ALGOL (assuming the
semantics of the language have been precisely specified). However, the above informal no-
tion of “algorithm™ will suffice for most of our discussions, as will the following informal
notion of “problem™ (the thing an algorithm “solves™).

A problem can be viewed as consisting of a domain containing the instances of the
problem, together with a question that can be asked about any one of the instances. For
example, an instance of the TSP is composed of a number n of cities and an n x n distance
matrix C, and the question asked by the TSP is “What is the shortest tour for the n cities?”
Our standard format for describibg problems will consist of a generic description of an
instance in the problem’s domain, followed by a statement of the problem’s question,
posed in terms of the generic instance. A description of the TSP in this format goes as
follows:

TSP

INSTANCE: Integer n > 3 and n X n matrix € = (c;;), where each ¢;; is a non-
negative integer.

QUESTION: Which permutation = = (x(1), #(2), .. .x(n)) of the integers from 1 to n
minimizes the sum E:l=_|] Cati)xlit1y + Cw{n},w{lj?

Note that in this definition we restrict the inter-city distances to be integers, a con-
vention we shall follow throughout this chapter. In practice, one might expect inter-city
distances to occasionally have fractional parts, or even be irrational numbers. However,
irrational numbers are approximated by rationals for computer representation, and one
can always convert the rational distances to integral values simply by multiplying by an
appropriate scale factor. We shall assume that all this has already been done.

An algorithm is said to solve a problem P if, given any instance 1 of P as input data, it
will generate the answer of P’s question for I. An algorithm for the TSP must thus, given
any n and C as above, generate the corresponding minimum length tour (permutation).

One classical result in the theory of algorithms is that there are well-defined math-
ematical problems for which no algorithms can exist (for a discussion see [Lewis and
Papadimitriou 1981]). Although, given a particular instance, one may be able to come
up with an answer for that instance, there is no general procedure that will apply to all
instances. By comparison, the situation with the TSP is much better (at least in theory).
There definitely is an algorithm for the TSP, namely, Algorithm A of Figure 1. It generates
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all tours, evaluates each, and picks the best. This algorithm embodies the sophisticated
technique known to practitioners as “brute force”, and even though we shall postpone a
detailed analysis of its efficiency, it should already be clear that this is not its strong point.

A better algorithm is Algorithm B in Figure 2. This algorithm, finds, for each i, the
shortest path from city 1 to city ¢ that visits all the other nodes in {2, 3,...,n}. Once these
paths are found it is a simple matter to compute the shortest tour (this is what the last
two assignments of Algorithm are doing). To find these paths, the algorithm solves a more
general problem. For any S C {2,...,n} and i € S, let an (S, ) path be a path which
starts at city l.visits each city in S exactly once, and no other city, and ends up in city
i. Let cost|S, i] stand for the length of the shortest (S, ) path. Then cost[S, i] satisfies the
following equation, where |S| > 2:

COSt[S, i] = mingeg_(;y (COStS — {1}, k] + cxi)

What Algorithm B does should now be clear. It "builds-up” the values cost]s, i] for
larger and larger sets S until cost[{2,3,...,n},i] is obtained for i = 2,3,...n. The array
bestpath is used to record for each 5 and i the path which achieves cost]s, 1).

Putting together the solutions of bigger and bigger sub-problems to obtain an overall
solution is an algorithmic technique of wide applicability, known as dynamic programming
(see [Bellman and Dreyfus 1962]). This particular algorithm is due to [Held and Karp
1962].

For another example of this use of dynamic programming, let us consider the follow-
ing problem that would seem to be closely related to the TSP,

SHORTEST PATH
INSTANCE: As in TSP

QUESTION: What is the shortest path from city 1 to city n?

Note that, unlike the TSP, the shortest path problem makes no insistence that cities
other than 1 and n be visited by the path. Here we define costls, j], for each city ¢ 54 1 and
integer j > 1, to be the length of the shortest path from 1 to i containing j or fewer edges.
We have, forj > 1

cost[i, j] = min { costfi, j — 1], miny.;; (costik, § — 1] + ¢;)}

This equation is the key to the dynamic programming embodied in Algorithm C,
shown in Figure 3.

Superficially, Algorithms B and C look very similar. As we shall see, from the
standpoint of computational complexity they are worlds apart. Algorithm B, and in fact
every known algorithm for the TSP, has much more in common with the brute force of
Algorithm A than it does with the dynamic programming of Algorithm C.
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1.2 Estimating Running Time

Let us estimate the running time of Algorithms A, B, and C. In order that our analysis
provide general information, we shall express running time as a function of the number
n of cities, rather than just determine it for a particular instance. In order to make our
analysis independent of the speed of the particular computer which might be used to
execute the algorithm, we shall count “steps” instead of machine cycles, and shall use
O-notation (“big 0" notation) 1o express the running time function. To say that an al-
gorithm’s running time is “O(f(n))” means that there is some constant ¢ such that the
algorithm's running time on all inputs of size n is bounded by ¢f(n). The precise value of ¢
would depend on the computer used.

Algorithm A takes time O(n!). The main loop is repeated (n — 1)! times, once for each
permutation of {2,...,n}. Each execution of the loop takes O(n) time in generating the
next permutation, evaluating cost, and updating bestrour (if necessary). Multiplying, we
obtain the O(r!) estimate.

Much of the effort of Algorithm B is concentrated in the triply nested loop. Let us
assume that j is fixed. Then the innermost loop takes time at most ¢;j for some ¢ > 0 (the
minimization is over j — 1 items, and the sequences bestpath are about j long). The loop
is repeated for each subset of {2,3,...,n} that contains ; elements, and for each of the j
elements in each subset. Summing over all j°s we have

n—1
Y (") < @rte-1 = o

=2 /

The rest of Algorithm B (the initial loop and the computation of besttour) are of linear
complexity, and their contribution is absorbed in the O-notation. Thus, Algorithm B takes
time O(n%2").

For Algorithm C, the body of the inner loop is executed (n — 1)* times, and takes O(n)
times per execution. This yields are overall bound of O(n?)

1.3 Worst-case and Average Case Analysis

Algorithms A, B and C are all very well-behaved, in the following sense: One can
predict quite accurately the number of steps required for an instance, and the prediction
does not vary from one instance to another with the same size n. On the other hand, there
are many algorithms that can take a number of steps which varies wildly among instances
of the same size (a famous example is the Simplex algorithm for linear programming [Klee
and Minty 1972]). If we are to have a complexity function which takes on a single value
for each size, there are essentially two approaches we can take. We can either count the
average or the maximum number of steps, over all inputs of size n.
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The second method of analysis, called worsi-case analysis, has an obvious disad-
vantage: “Pathological” cases are allowed to determine the complexity, even though they
may be exceedingly rare in practice. Average-case analysis on the other hand also has
its drawbacks. We must choose a probability distribution for the instances, and finding
a mathematically tractable one that also models the instances encountered in practice is
not always easy (or even possible). Most clever algorithms introduce a great deal of statis-
tical dependence among their individual stages, and average case analysis becomes a very
complicated task when independence cannot be assumed. Finally, whereas worst-case
analysis at least provides a “guarantee” to the user of an algorithm, average-case analysis
often provides a prediction that one can have confidence in only if one has to solve a
large number of instances. If you must solve a particular instance of a problem, and your
algorithm performs abysmally on it, there is little consolation in knowing that you have
just encountered a statiscally insignificant exception.

Thus we shall take the worst-case approach in the rest of this chapter, a choice that
rewards us with the elegant theory of NP-completeness. The average case approach wil be
pursued in Chapter 6.

1.4 Polynomial Time

We have chosen a measure of the performance of an algorithm: the number of steps
spent on an instance, maximized over all instances of size n, and expressed as a function of
n (up to a constant multiple). What we have yet to do is specify a relationship between this
measure and the question of whether the given algorithm is a “good” one or not.

Ideally, we would like to call an algorithm “good” when it is sufficiently efficient to
be useable in practice, but this is a rather vague and slippery notion. An idea that has
gained wide acceptance in recent years is to consider an algorithm “good™ if its worst-
case complexity is bounded by a polynomial function of n. For example, algorithm C is
a “polynomial-time algorithm™ and hence “good”, but algorithm A and B are not. They
are both “exponential” in the sense that their worst-case complexity grows at least as fast
as ¢" for some ¢ > 1. (Although there are “sub-exponential” functions such as »'#*", which
are neither polynomially bounded nor exponential, for simplicity in what follows we shall
often use the term “exponential” to refer to any algorithm whose worst-case complexity is
not bounded by a polynomial),

The difference between polynomials and exponentials becomes clear if one takes an
“asymptotic” point of view. Although a given exponential function may initially yield
smaller values than a given polynomial function, there always is an N such that for all n >
N, the polynomial is the winner. See Table 1. Furthurmore, polynomial time algorithms
are in a better position to take advantage of technological improvements in the speed of
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computers. Suppose that we have two algorithms, one running in time O(n?), the other in
time O(2"), both of which can solve a problem with n = 100 in one day. If we get a new
computer which is twice as fast, the polynomial-time algorithm can now in one day solve
instances with n = 126, a multiplicative factor of 1.26, whereas our exponential algorithm
can only obtain an additive improvement, to n = 101.

There are also a number of mathematical niceties that reward us for concentrating
on the distinction between polynomial and exponential. Polynomials have mathematical
properties that make them appealing as the basis for a theory. You can add two poly-
nomials, multiply them, and compose them, and the result will still be a polynomial,
Polynomial ime has a long standing place in the abstract theory of computation: There
are a wide variety of “reasonable” theoretical models for computers, from Turing Machines
to Random Access Machines, with many varieties of each, but each model can simulate
any other one with only a polynomial loss in efficiency. Thus a polynomial-time algorithm
for one model corresponds to a polynomial-time algorithm in each of the others. (For
details, see [Aho, Hopcroft, and Ullman 1974, Hopcroft and Ullman 1979]). Furthermore,
if one concentrates on polynomial time, one can ignore differences in the choice of input
size parameters, an issue that is worth further discussion.

Qur definition of input size can have a significant effect on the function we derive for
the worst-case complexity of an algorithm. For instance, consider an instance of the TSP
with n cities. We have been using the number of cities as the variable in our complexity
measures. A reasonable alternative would be the number m = n? of entries in the dis-
tance matrix. If we use this as our measure of input size, algorithm A suddenly “speeds-
up” from O(n!) to O(y/m!), and algorithm C “speeds up” from O(n%) to O(m3/?). Notice,
however, that algorithm A remains exponential and algorithm C remains polynomial.
Thus, if we are only interested in the distinction between polynomial and exponential
algorithms, we are given a wide latitude in our choice of input measures and hence can
ignore fine details.

There is, however, one proviso: Our measure of input size must reflect (to within
a polynomial) the actual length of a concise encoding of the instance in question, as it
would be input to a computer (as a sequence of symbols). Assuming thal all the inter-
city distances are integers that fit into a single computer word, say of size 32, the number
of cities is a measure of input size which meets this requirement, since the actual encod-
ing length would be 32n2 If the inter-city distances are allowed to be arbitrarily large
integers, we would need to use a more sophisticated measure of input size, for example
m = n? - log(max{c,;}), that would take into account the number of bits required to rep-
resent those distances (the requirement that we consider only concise encodings means
that numbers must be represented in a positional notation such as binary, so that the size
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of a number is proportional to its logarithm, rather than its value). For a more detailed
discussion of input size and encodings, see [Garey and Johnson 1979].

Thus there are both practical and theoretical reasons for identifying the distinction be-
tween “good” and “bad” algorithms with the distinction between those algorithms which
run on polynomial time and those that do not. Proposals to this effect were first made,
in the mid-1960's, by Alan Cobham [Cobham 1964] and Jack Edmonds [Edmonds 1965},
and the significance of polynomial time was hinted at much earlier in the work of [John
von Neumann 1953]. It was Edmonds who proposed the precise terminology “good” =
“polynomial-time"”. Subsequent work and in particular the theory of NP-completeness,
which we shall be discussing shortly, have widened the acceptance of this equation as the
best available way of tying the empirical notion of a “practical algorithm™ to a precisely
formalized mathematical concept.

Of course, as with all mathematical modeling of real-world phenomena, there is room
for “experimental errors”. The Simplex algorithm for linear programming, although it has
exponential worst case complexity [Klee and Minty 1972], has been a constant success in
practice. The recently discovered Ellipsoid algorithm for linear programming [Khachian
1979] on the other hand, is provably polynomial, but for now it seems to have been
abandoned as a practical alternative, despite much initial enthusiasm.

There is also, of course, the possibility of such contrasts as an ©(1.001™) exponential
algorithm with a polynomial-time algorithm that is O(n*") or 0(10'"n). However, for the
most part such contrasts are more potential than real. Algorithms with such running times
do not appear that often in practice. Moreover, once a polynomial algorithm is discovered
for a problem, it is often the case that a sequence of improvements produces a version
that is also of practical use. The real breakthrough is in finding that first polynomial-time
algorithm. In a sense, finding a better exponential-time algorithm is just a matter of more
cleverly organizing a brute force approach, whereas to make the jump to polynomial time
requires a real insight into the nature of the problem at hand, ifthe jump can be made at
all.



2, Pand NP

2.1 Decision Problems

Just as we can classify an algorithm as good or bad, depending on whether or not it
has polynomial time complexity, we can classify a problem as “hard” or “easy” depending
on whether or not it can be solved by an algorithm with polynomial time complexity. It
is on the basis of this distinction that an elegant theory of the complexity of problems has
been developed.

For uniformity, this theory formally restricts itself to decision problems, that is,
problems whose question requires only a “yes” ot “no” answer. (As we shall see, this
does not restrict the applicability of the theory.) Many problems are naturally expressed
as decision problems. An example, about which we will have much to say later, is the
following well-known problem from graph theory.

HAMILTON CIRCUIT

INSTANCE: A graph G = (V,E)

QUESTION: Is there a circuit (closed sequence of edges) in G passing through each
vertex in V exactly once?

The TSP is not a decision problem, as its question asks for the shortest tour, not a
“yes” or “no” answer. However, the TSP (and any optimization problem) can be easily
reformulated as a decision problem, by adding a bound B to the input data. For example,
the decision version of the TSP would be as follows:

TSP(decision)

INSTANCE: Integer n = 3, an n X n matrix C = (¢;;), where each ¢;; is a non-negative
integer, and an integer B = 0.

QUESTION: Is there a permutation = = (x(1), 7(2), ..., z(n)) of the integers from 1 ton
such that

n—I1

D G + Gmay < B

It is clear that if there is a polynomial-time algorithm for the TSP, then there is a poly-
nomial time algorithm for its decision problem version. This is true for all optimization
problems, as long as the cost of a given feasible solution can be computed in polynomial
time (a quite reasonable assumption). What is a bit more remarkable is that, for the TSP,
the converse is also true.

Consider the algorithm TSPTOUR depicted in Figure 4. TSPTOUR generates
an optimal tour for any TSP instance, so long as it is provided with a subroutine
TSPDECISION that solves TSP(decision).



The first part of TSPTOUR computes the length of an optimal tour, using “binary
search”. We start out knowing that the optimal length lies between low = 0 and high =
N - Cmazs WHETE oz = maz;;{c;;}. This is because a tour contains n links, none of which
is longer than the maximum inter-city distance. We use TSPDECISION to determine in
which half of this range the optimum length actually resides, by applying it to the original
instance with the bound B = | ‘=25 | If the answer is “yes” we know that B is a new
upper bound on the optimal length; otherwise B 4+ 1 is a new lower bound. In either case,
the size of the range has been halved. The process is repeated until the upper and lower
bounds coincide, in which case they both equal the optimum length. The total number
of iterations is no more than [logy(n - ema-)], Since the size of the range is halved at each
iteration.

At this point we know the optimal tour length but do not yet have an optimal tour.
The second part of TSPTOUR constructs such a tour. It does this by checking which inter-
city links may be deleted, again using TSPDECISION. If a tour of the optimum length
still exists when ¢;; is increased t0 nema: + 1, we know that there is an optimum tour not
containing a link between cities ¢ and j. Otherwise, an optimal tour must contain a link
between i and j, so we return ¢;; to its original value. After we have tested all the ¢;;, the
only ones that will retain their original values will be a set corresponding to the links on an
optimal tour. (Since no optimal tour can contain one of the (n - ¢, + 1)-length links, there
must be an optimal tour using only links which had their original length restored, and any
unnecessary link would not have had its length restored).

The running time of TSPTOUR depends on that of TSPDECISION. This subroutine
is called [log(n - ¢yaz)] + n? times, which is a polynomial function of n - log(cma=) the
“accurate” input size measure for the TSP described in the previous section. Thus if
TSPDECISION runs in polynomial time, TSPTOUR will have a time complexity function
which is the product of two polynomials and hence polynomial itself. We thus have the
following result:

Theorem 1 There is a polynomial time algorithm for the TSP if and only if there is a
polynomial time algorithm for TSP(decision).

Analogous results can be proved for most optimization problems. Thus, if we are only
interested in the polynomial vs. non-polynomial distinction, we lose little in the way of
generality by restricting attention to decision problems.

2.2 Polynomial Reductions

We now introduce a method for relating the complexities of different decision problems.
It is every mathematician’s dream to reduce the problem he is working on to a problem
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that has already been solved. In computational complexity there is an analogous notion:
the polynomial reduction.

We say a problem A is polynomial-time reducible to a problem B if there is an algo-
rithm for A which uses a subroutine for B, and the algorithm for A runs in polynomial
time when the time for executing each call of the subroutine is counted as a single step
(note that this implies that the subroutine can only be called a polynomially bounded
number of times). For example, the algorithm TSPTOUR of Fig. 4 is a polynomial
reduction from the TSP to TSP(decision). Exercise 2 asks for a reduction of the TSP to the
problem of finding the longest path between two vertices in a graph.

The usefulness of this notion of reduction stems from the following lemma, which can
be proved easily using the fact that the composition of two polynomials is a polynomial.

Lemma 1 If there is a polynomial-time reduction from A to B, and there is a
polynomial-time algorithm for B, then there is a polynomial-time algorithm for A.

There are basically three kinds of reductions:

(1) Reductions that prove a problem is easy, by reducing it to a problem already
known to be solvable by a polynomial-time algorithm. This is the traditional
use of reduction; for example [Ford and Fulkerson 1959] describe many such
reductions.

(2) Reductions that prove a problem is hard, by showing that some known “hard”
problem reduces to it. Some early examples are in [Dantzig et al. 1967]

Section 3 will contain a series of such reductions.

(3) Reductions that prove nothing, because they reduce problem A of unknown
complexity to a problem B that is (or is suspected to be) hard.

A great many reductions of this third kind have appeared in the last three decades.
The problem that played the role of problem B most frequently is the following problem,
for which all known algorithms have exponential-time complexity (and work poorly in
practice t0o):

INTEGER PROGRAMMING

INPUT: An m x n integer matrix A = a;;, an m-vector b = (b;, b, .. ., b,,) of integers.
QUESTION: Is there an n-vector z of non-negative integers such that Az = b, i.e.
giir;j=b,l<i<m

=1
Versions of this problem with inequalities instead of equalities, or which ask for an x
which minimizes a linear function, ¥_7_, e, can all be shown to be equivalent to this
decision problem version [Papadimitriou and Steiglitz 1982]. However, quite different-
looking problems can also be reduced to it.
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As an example, let us show how to reduce HAMILTON CIRCUIT to INTEGER
PROGRAMMING. Given a graph G = (V,E) where V = {1,2,..., N}, we can write an
integer program I(G) such that I{G) has a solution if and only if G has a Hamilton circuit.
I{G) has N? variables z;. i,k = 1,...,N. The intended meaning of z; is the following;
z;; = 1 if vertex 1 is the kth vertex of the Hamilton circuit, and =, = 0 if otherwise. This
can be expressed by the following equations and inequalities:

D T ,zx=1 i=1..,N
(2) Z?r=15ik=l k=1l...N
) zxtzp1<l4e; i5k=1L..,N

where e;; = 1 if {i,j} € E and ¢; = 0 otherwise; and =; v.; stands for z;;, for all 1.
The inequalities of (3) can be turned into equalities by using slack variables s;;. = 0 and
replacing (3) by zi + zjk+1 + 8 = 1 + €5, 1,7,k = 1,...,N. The requirement that
the z;'s have only 0 or 1 as potential values is automatically ensured by equationa (1)
and (2). Writing all these equations in matrix form we get an instance 1(G) of INTEGER
PROGRAMMING in which m = N% 4 2N and n = N? 4+ N2, It is easy to verify that the
desired solution z exists for 7(G) if and only if G has a Hamilton circuit,

The polynomial reduction from HAMILTON CIRCUIT to INTEGER PROGRAMMING
is now straightforward. Given G we construct I(G), which clearly can be done in polyno-
mial time, and then call the hypothetical algorithm for INTEGER PROGRAMMING,
using the “yes"” or “no” outcome of that algorithm as our answer. There is a special name
for polynomial reductions of this simple type, which are between decision problems and
use the hypothetical subroutine exactly once, returning its answer as their own. They are
called polynomial transformations. We say that HAMILTON CIRCUIT is polynomially
transformable to INTEGER PROGRAMMING (notation: HAMILTON CIRCUIT a
INTEGER PROGRAMMING).

The integer program I(G), which was the result of the transformation above, belongs
to the important special class of 0~/ programs, that is, integer programs with the additional
constraint z; € {0,1} for all variables z;, 0-1 PROGRAMMING is a special case of
INTEGER PROGRAMMING, since the constraint —z; € {0,1}— can be expressed by
introducing a new variable ; and the equation z; + 2, = 1. Thus -1 PROGRAMMING
can be no “harder” than the general problem., We show below that it is no “easier”
either, by giving a polynomial transformation from INTEGER PROGRAMMING to it.
The proof requires a relatively recent result, which we state without proof (see [Borosh &
Treybig, 1973] or [Papadimitriou 1981]).

Lemma 2 Suppose A and 5 make up an instance of INTEGER PROGRAMMING,
and let s be the sum of the logarithms of the absolute values of the entries in A and b, plus
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m + n. Then the instance (A4, 5) has a solution if and only if it has a solution satisfying
z; < 2P, for all variables z;, where p is a fixed polynomial independent of A and b.

Note that s, as defined in the lemma, constitutes a valid measure of input size, as
discussed in Subsection 1.4. Thus, the lemma in effect says that, if there is a solution, then
there is one whose size is bounded by a polynomial in the instance size (each z; requires
only O(p(s)) symbols).

Theorem 2 INTEGER PROGRAMMING e -1 PROGRAMMING

Proof Given an integer program I (an instance I of INTEGER PROGRAMMING),
we transform I to an equivalent 0-1 program Z(I) as follows: for each variable z of T we
create p(s) 0-1 variables =z, 2y, ..., z,s)—; for Z(I), where s and p are as in Lemma 2, with
the interpretation that z = $7¢;~"z;2. We then rewrite the equations of J using this
substitution, and obtain Z{I). That Z(I) is equivalent to 7 (i.e., has a solution if and only if
I does) follows from Lemma 2 and the fact that a non-negative integer less than 27 can
be written (in a unique way) as the sum of powers of 2 from 2° = 1 to 27*)—!, That this is
a polynomial transformation follows from the fact that s, as defined in Lemma 2, is a valid

measure of input size for INTEGER PROGRAMMING.

In Section 3 we shall show that INTEGER PROGRAMMING is polynomial-time
transformable to even more restricted special cases of itself. In doing so we shall use
the following particularly desirable property of polynomial transformations, again proved
using the fact that the composition of two polynomials is a polynomial.

Lemma 3 If there are polynomial transformations T, from A to B and T, from B to C,
then there is a polynomial transformation 75 from A to C.

In other words, polynomial transformability is transitive. (A similar result holds for
polynomial reducibility.)

2.3 The classes P and NP

We now define the first of two important classes of decision problems. The class P
consists of all those decision problems for which a polynomial-time algorthm exists. In
view of Theorem 1 and the discussion in Section 14, the crucial question involved in
determining the complexity of the TSP can be formalized as follows: “Is TSP(decision) in
P

In this Chapter we present evidence that strongly suggests the answer to this question
is no, but we shall not be able to provide a rigorous proof. Proofs that problems are
not in P do exist. If a problem is undecidable and hence not solvable by any algorithm,
it is certainly not in P. In addition, many decidable problems can be shown to require
exponential time (see, for example [Lewis and Papadimitriou 1981]). Unfortunatly, there
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is a sense in which TSP(decision) is qualitatively “easier” than any of the problems so far
shown to be outside of P, and so new techniques would seem to be required if it is to be
proved inherently exponential.

The characteristics of TSP(decision) which make it “easier” than the provably hard
problems, are shared with a wide variety of other natural combinatorial optimization
problems. Over the past two decades three different but equivalent formulations have
been proposed for these characteristics. Together they define a class of decision problems
we call NP.

The first definition involves the succinct certificate property. HAMILTON CIRCUIT,
(-1 PROGRAMMING, and TSP(decision) all have this property. Any “ves” instance (i.e.,
a graph that has a Hamilton circuit; a system of linear equations that has a (-1 solution;
a distance matrix whose optimal tour length is less than a given bound B) has a succinct
“certificate”: a mathematical object of small size that establishes beyond doubt that the
instance indeed warrants a “yes” answer. (For the above problems the certificates are:
a Hamilton circuit; a 0-1 vector satisfving the equations; and a tour of length B or less,
respectively). The certificate must be succinct, i.e., of size bounded by a polynomial in the
instance size, and there must be a polynomial-time ceriificaie checking algorithm which,
given an instance and a supposed certificate, determines whether the certificate is indeed
valid. All “yes™ instances must possess at least one such certificate, and no “no” instance
can have any. It may be very difficult to discover a certificate for a “ves” instance, but,
once discovered, it can be exhibited and checked in an efficient manner.

This can be made a bit more formal as follows. A decision problem A has the succinct
certificate property if and only if there is another decision problem € € P (the certificate-
checking problem for A) whose instances are of the form (7, §), where I is an instance of A
and 5 1s an object whose size is bounded by a polynomial in the size of I, and such that the
following are equivalent:

(1) r1isa“yes” instance of A
(2) There is an S such that (7, 5) is a “yes” instance of C.

There are clearly many interesting and important decision problems, in addition
to the ones already mentioned, that have the succinct certificate property: By Lemma
2, INTEGER PROGRAMMING, though more general than (-1 PROGRAMMING,
has the succinct certificate property itself. Furthermore, it can be argued that the
decision problem versions of all “reasonable” combinatorial optimization problems have
the property. Such problems ask about the existence of certain combinatorial objects
(vectors, circuits, tours, etc.) whose costs, lengths, etc. obey a certain bound. Such objects
are “succinct” according to our definition, and their costs can be computed efficiently (if
the cost function is “reasonable”). Hence the objects themselves can play the role of the
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certificates for these problems. The class of problems that satisfies the succinct certificate
property was introduced by Edmonds [Edmonds 1965], who called them problems with
good characterizations.

A second way of defining a broad class of decision problems including TSP(decision)
involves the concept of a nondeterministic algorithm, an unrealistic but theoretically useful
tool, with a long history in complexity theory. A nondeterministic algorithm is like an
ordinary algorithm, except that it is equipped with one additional, extraodinarily powerful
instruction:

go to both labell, label2

Executing this instruction divides the computation into two parallel processes, one
continuing from each of the two instructions indicated by labell and label2. By encounter-
ing more and more such instructions, the computation will branch like a tree into a num-
ber of parallel computations that potentially can grow as an exponential function of the
time elasped. (See Fig. 5). If any of these branches reports “yes” then we say that the
overall nondeterministic algorithm has answered “yes”. The answer is “no” if none of
the branches ever reports “yes”. The asymmetry parallels that of the succinct certificate
property: “Yes™ instances have a succinct proof of their “yes-ness”, but “no” instances
may not have a succinct proof of their “no-ness"—how can one succinctly certify that a
graph has no Hamilton circuit?

We say a nondeterministic algorithm solves a decision problem in polynomial time
if (a) for each instance it gives the correct answer, as defined above, and (b) the number
of steps used by the first of the branches to report “yes” (counting steps from the start
of the overall computation) is bounded by a polynomial in the size of the instance. For
example, the non-deterministic algorithm N of Figure 6 solves (-1 PROGRAMMING in
polynomial time by examining, in parallel, all 0-1 vectors.

The class of decision problems that can be solved in polynomial time by non-
deterministic algorithms was introduced by S.A. Cook [Cook 1971] and by R.M. Karp
[Karp 1972]. The latter called the class NP, for Non-deterministic Polynomial time.

A third class of problems was studied by G.B. Dantzig in 1960 [Dantzig 1960]. He
wrote "It is worthwhile to systematically review and classify problems that can be reduced
to [INTEGER PROGRAMMING] and thereby solved.”

Of course, the last statement would now be considered overly optimistic, given the
poor performance of the best available algorithms for INTEGER PROGRAMMING. In
1960 the euphoria over the discovery of the Simplex algorithm for linear programming,
and the new but untested cutting plane approach for INTEGER PROGRAMMING,
were fueling such optimism. Still, decision problems that can be polynomially transformed
to INTEGER PROGRAMMING constitute a broad, important class of problems. As
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Dantzig and numerous researchers after him have showed, this class contains many graph
problems, some non-linear programming problems, and the decision problem versions of
the TSP and a host of other combinatorial problems.

The following remarkable theorem, a paraphrase of results due to Cook, states that the
three classes we have just defined are one and the same class.

Theorem 3 [Cook 1971] Let A be a decision problem. Then the following are equiv-
alent.
(1) A has the succinct certificate property.
(2) AeNP
(3) A is polynomial-time transformable to INTEGER PROGRAMMING.

Sketch of Proof We shall not give a complete proof of this theorem (for a rigorous
proof, see [Cook 1971] or any one of [Aho, Hopcroft, and Ullman, 1974], [Garey and
Johnson 1979], [Lewis and Papadimitriou 1981], [Papadimitriou and Steiglitz 1981]). Two
of the three implications are easy, however.

(1) = (2) If A has the succinct certificate property, then a non-deterministic algorithm
for A can be designed as follows. First, branch out the computation so that all potential
certificates can be examined in parallel. Since the certificate is succinct, this can be ac-
complished while the computation tree still has only polynomial depth. Then, for each
of the potential certificates (still in parallel) deterministically check its validity using the
polynomial-time certificate-checking algorithm for the problem. If a succinct certificate
exists, at least one of the branches of the computation will return a *“yes™ answer in poly-
nomial time. (This is exactly what the nondeterministic algorithm N of Fig. 6 is doing).

(3) = (1) If A is polynomially transformable to INTEGER PROGRAMMING, then
every “yes” instance of A has a succinct certificate: the solution, as specified in Lemma
2, to the integer program that is the result of the transformation. By Lemma 2 this solu-
tion will be succinct, and the certificate-checking algorithm merely needs to construct the
integer program corresponding to the given instance of A (using the polynomial transfor-
mation) and then check to see whether the proposed certificate is indeed a solution.

(2) = (3) This is the hard part. We need first to define more precisely our model of
non-deterministic algorithms. This can be done in a number of ways, for instance, in terms
of non-deterministic Turing machines (see [Aho, Hopcroft and Ullman 1974], [Garey and
Johnson 1979], [Lewis and Papadimitriou 1981]). Our model will essentially be a set of
rules whereby we can move from one “state” of the computation to the next (possibly in
more than one way because of non-determinism). What the proof would then show is
that INTEGER PROGRAMMING is expressive enough to enable us to represent these
rules by linear equations in appropriate 0-1 variables (not unlike the transformation from
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HAMILTON CIRCUIT to INTEGER PROGRAMMING, although considerably more
involved). The full details are omitted.

The equivalences shown in Theorem 3 establish the class NP as an important, stable
concept. A crucial question thus arises, concerning the relationship between NP and the
previously introduced class P of problems solvable in polynomial time. Since ordinary
“deterministic” algorithms are a special case of non-deterministic algorithms (those non-
deterministic algorithms which do not use the go to both instruction), it follows im-
mediately that P C NP. Is P = NP? In other words, can we simulate deterministically any
non-deterministic algorithm without sacrificing more than a polynomial amount of time?
This seems extremely unlikely. Any direct way of performing such a simulation takes
exponential time (due to the potential a non-deterministic algorithm has for generating
an exponential number of parallel computations after only a polynomial number of non-
deterministic “steps”). Furthermore, researchers havefor years been attempting without
success to find polynomial-time algorithms for certain problems in NP, such as the TSP.If
it were discovered that P = NP, and, as if by some master stroke, all those frustrating
problems suddenly became polynomially solvable, these researchers (and many others)
would be greatly surprised. Thus it is widely conjectured that P 2 NP. However, no
proof of this conjecture has yet been found. This question is the central open problem in
computer science today, and one of the most important open problems in mathematics.

Since NP contains TSP(decision), we cannot hope to show that the TSP cannot be
solved in polynomial time without first proving P £ NP, an apparently awesome task. We
can, however, do something almost as good. In the next section we show that the two
conjectures, P £ NP, and TSP(decision) & P, are equivalent. The key concept is that of
NP-completeness.

17



3. NP-Completeness

3.1 Definition

We say that a decision problem is NP-complete if (a) A € NP and (b) every problem
in NP is polvnomially transformable to A. The conplexity of an NP-complete problem
is intimately related to our conjecture that P £ NP. By (a), if P = NP and A is NP-
complete, then A € P. On the other hand, by (b) and Lemma 1, if A € P then NP = P.
Thus if A is NP-complete, it is solvable in polynomial time if and only if P = NP. If, as is
widely believed, P £ NP, then none of the NP-complete problems can be in P.

During the past decade, many problems have been proved NP-complete. [Garey and
Johnson 1979] contains a list of over 300 examples. We have already discovered one in this
chapter: it follows directly from Theorem 3 that INTEGER PROGRAMMING is NP-
complete! In this section we shall show that TSP(decision) is also NP-complete. This is
our main negative result concerning the TSP; it is the strongest negative result one can
hope to prove, short of establishing that P # NP,

One need not prove a new version of Theorem 3 every time one wants to show a new
problem A € NP to be NP-complete. By the transitivity of polynomial transformability,
all we need show 1s that some already known NP-complete problem B transforms to A.

At this point we have only one “known” N P-complete problem: INTEGER PROGRAM-
MING. However, by Theorem 2 a second one can be quickly added to our list, since that
theorem provides a polynomial transformation from INTEGER PROGRAMMING to 0~
1 PROGRAMMING. From this start a whole family tree of N P-complete problems can
be generated, although we will concentrate on that part of the tree that leads to the TSP.
(Historically, the “grandaddy™ problem for NP-completeness was not exactly INTEGER
PROGRAMMING, but a problem in mathematical logic called SATISFIABILITY -see
exercise 5 —, and [Cook 1971], [Aho, Hopcroft and Ullman 1974], [Garey and Johnson
1979], [Papadimitriou and Steiglitz 1981]).

We note in passing that there are many problems which can be solved in polynomial
time if and only if P = NP, but which do not make it into the family tree for technical
reasons. For example, the TSP itself (optimization version) cannot be NP-complete
because it is not a decision problem, even though it is equivalent in complexity to
TSP(decision) which is NP-complete. A problem in NP to which an NP-complete
problem is polynomially reducible (but not known to be transformable) also may not
be called NP-complete, even though it has the same claim to intractability as any NP-
complete problem. Finally, there are decision problems which satisfy part (b) of the
definition but not (a) (they are not known to be in NP). For all these kinds of problems
we have reserved the term NP-hard. A problem (decision or otherwise) is NP-hard if all
problems in NP are polynomially reducible (not necessarily transformable) to it.
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3.2 Special Cases

We shall actually be proving complexity results for a number of different special cases
of the TSP. We say problem A is a special case of problem B if both problems ask the
same question and the domain of A (the set of possible instances) is a subset of the
domain of B. A special case may be easier than the general problem (Chapter 4 presents
polynomial-time algorithm for a number of special cases of the TSP), or it may be just
as hard (most interesting special cases of TSP(decision) are just as NP-complete as the
general problem, as we shall see shortly). A special case cannot be harder (as long as there
is an efficient way to tell instances that belong to the special case domain from those that
don’t).

Fig. 7 depicts the position of the TSP within a hierarchy of special cases, with
specilization increasing as we go down the figure. The general, asymmetric TSP is near
the top. Above it we have generalizations of the TSP, some of which will be discussed in
Chapter 5. A standard special case is the symmetric TSP (restricted to only those instances
where ¢;; = ¢;; for all cities ¢ and j)—this special case is often what people mean when
they refer to the “TSP”.

Another way to restrict the general TSP is to require that the distance matrix satisfy
the triangle inequality: c;; + c; < cqi. for all 4, 7, k. Of course, we may ask that both condi-
tions be satisfied, in which case we obtain an important special case, examined in Chapter
5. The mixed Chinese postman problem (defined in exercise— and discussed more fully
in Chapter 5) can be considered as a (further) special case of the TSP with asymmetric
distance matrices that obey the triangle inequality.

HAMILTON CIRCUIT, a purely graph-theoretic problem, can be viewed as a special
case of the symmetric TSP with triangle inequality. Given a graph G = (V, E) we can think
of it as a |V| x |V| distance matrix with distance 1 between vertices that are connected by
an edge, and 2 otherwise (any path involving two or more edges has length 2 or more,
so the triangle inequality is obeyed). A Hamilton circuit exists if and only if there is a
tour of length |v|. Similarly the HAMILTON CIRCUIT problem for directed graphs is a
special case of the (asymmetric) TSP with triangle inequality, and a generalization of the
undirected HAMILTON CIRCUIT problem.

Another important special case of the symmetric TSP with triangle inequality is
the Euclidean TSP. The cities are given as points with integer coordinates in the two-
dimensional plane, and their distances are computed according to the Euclidean metric:
\/[zu — 25)" + (1 — w)* for two cities (z;, 1) and (22, ).

There are technical problems with the Euclidean TSP as stated. The inter-city dis-
tances can be irrational numbers, and so the distance matrix might require infinite preci-
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sion if input directly. Hence it must be given implicitly (either by the values of ¢2, or by
merely giving the coordinates of the cities). Secondly, even if such alternative formats are
used, there is still the problem of evaluating tour lengths which are the sums of square
roots. See Fig. 8. In comparing two tour lengths to see which is better, (or in comparing
a tour length to a given bound in TSP(decision)), how much work is involved? Each
additional decimal place computed costs only a polynomial amount of time, but will a
polynomial number of decimal places suffice? All that is currently known is that an ex-
ponential number of places will do the trick. Thus there is some question as to whether
TSP(Decision), for the Euclidean version, is even in NP,

We bypass this difficulty by re-defining the distance between (z,,v) and (z2, ) t0
be [\/ (21 — 22)° + (1 — )], the value of the standard Fuclidean distance rounded up to
the next integer. This (discrete) Euclidean distance still obeys the triangle inequality (see
Exercise 19). There is some loss of precision, but this can be moderated if in the beginning
we multiply all city coordinates by an appropriately large number, so as to guarantee the
degree of accuracy desired.

A related variant is the recrilinear (or Manhatian) TSP: the distance between (z;, 1)
and (22, 1) IS |21 — 22| + |1 — w2/ (nO problems of precision here).

At the bottom of our chart is a final special case. Suppose that in Euclidean
TSP(decision), the, bound B equals the number » of cities. Since each city has integer
coordinates, each pair of cities is at least distance 1 apart. Thus a tour of the desired length
exists if and only if there is a Hamilton circuit in the graph G whose vertices are the cities,
with edges only between those cities that are distance one apart in the plane. Such a graph
is called a grid graph (because it is a vertex-induced subgraph of the infinite grid).

We shall show that HAMILTON CIRCUIT for grid graphs, the ultimate special
case of the TSP, is NP-complete. Since complexity propagates upwards, this will imply
that all the decision problems in the tower of Figure 7 are NP-complete. (A separate
proof is needed for the mixed Chinese Postman problem, which is also N P-complete—see
[Papadimitriou 1976]). Our proof will follow from a series of transformations, starting with
(-1 PROGRAMMING and proceeding through 2 main intermediate problems; EXACT
COVER and HAMILTON CIRCUIT (the unrestricted version).

3.3 From (-1 PROGRAMMING 10 EXACT COVER

Theorem 2 showed how to polynomially transform INTEGER PROGRAMMING to
0~-1 PROGRAMMING. We now show how to transform the latter problem to a further
special case: the one in which the matrix 4 is a 0~1 matrix and the vector b is all ones.
This special case has a name: the EXACT COVER problem. It can have the following
interpretation. We are given a family F = {5,...,5,} of subsets of a set U = {uy, ..., um}.
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U corresponds to the set of rows A, and the columns of A are the characteristic vectors of
the S;'s. We are asked to find an exact cover of U, i.e., a subfamily ¢ C F such thata C
corresponds to a (-1 solution z for Az =b.

We shall show how to transform any (-1 program Az = b to an equivalent one that
conforms to the restriction of EXACT COVER. First, we must get rid of the negative
entries in A. For each variable = we introduce a new variable ' and a new equation
z + 2’ = 1. Then we replace z by (1 — 2) in each equation from A where z had a negative
coefficient, yielding a new equation with 2’ instead of z and a positive coefficient instead
of a negative one. The equations resulting after all such substitutions have been made
may have new values for the constant on their right-hand side. If any right hand side is
negative, we know that the 0-1 program has no solution (all coefficients and variables must
be non-negative, so the result cannot be negative). We can then construct a trivial instance
of EXACT COVER having no solution, such as 0 = 1, and be guaranteed that the answer
for a constructed instance is the same as that for Az = b.

Assuming that all right hand sides are non-negative, let A’z = ¥ be the new (-1
program. This is not yet an instance of EXACT COVER, since A’ could have fairly large
integers as entries, as could ¥. In order to replace these with 0-1 entries, we consider
the binary representations of the coefficients in each equation, and write appropriate equa-
tions to capture binary additions.

We illustrate this by an example. Suppose we had the equation

6z 4 S5 4+ Toa + 1lzy = 12

The binary expansions of 6,5,7, 11, and 12 are 0110, 0101,0111, 1011, and 1100, respectively.
We write the following four equations, one for each bir of the coefficients, the least
significant first
tzs=0+424
n+z+n+2=0+2zn4xn)
zit+ntntatzan=14+2xn+2)
Ty tzu+a=1

The z's represent carry bits, and we may need up to n of these for each row. When
we re-write equations so that all variables are on the left-hand side, we once again get
negative coefficients (—2's) which we remove by replacing —2z by #+2”—2 in its equation
and adding the new equations z + 2 = 1 and z + 2’ = 1. After having performed these
substitutions we at last obtain a collection of equations, all of whose coefficients are 0 or
1. The right hand sides, however, can be anywhere from 0 to 2n + 1, and our definition of
EXACT COVER requires that they all equal 1.
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We get around this final obstacle as follows. If the right-hand side is 0, the equation
can simply be dropped, and all its variables set to 0 in (and hence dropped from) the other
equations. Suppose we have an equation whose right-hand side is equal to £ > 1 and
whose left-hand side has { non-zero coefficients. We replace the equation by k + 2l new
equations with right-hand side equal to 1. For example, the equation

zt+y+z+w = 3

would be replaced by the following 11 equations

s+ =1
ntntntd=1
vty =1
n+wtwty=1
z4+2Z=1
a+ant+atd=1
w4uw=1

w+wtwg+ow' =1
n+tuntatwu=1
nt+wtatw=1
twt+atu=1

Consider the first two equations. If z = 0 then all three of z,, 2, and z; must be 0.
If z = 1 then exactly two of z;, z and z; must be 0 and the third must be 1. Analogous
statements hold for the s, z's and w;’s, due to the next six equations. Thus the three final
equations can be satisfied if and only if exactly 3 of z,y,z and w are equal to 1, precisely
the requirement of our original equation.

To summarize our transformation: we first remove the negative coefficients from A,
halting prematurely if this leaves a negative entry in b. We then reduce the coefficients of
A 100, 1 and -2 by replacing each equation by a set of equations that simulate it using
bit-wise addition. Then the -2 coefficients are removed, leaving only certain entries in b
as potential trouble-makers. If an entry in b is 0 the corresponding equation is dropped
along with its variables. If an entry exceeds 1 the corresponding equation is again replaced
by a set of equations that simulates it, and we at last have an instance in which all entries
in A are 0 or 1 and all entries in b are 1, as required by EXACT COVER. Each step only
adds a number of equations and/or variables that is bounded by a polynomial in m and
n (the dimensions of A) and in the number of bits required to represent the largest entry
in A or b, Thus the transformation is a polynomial transformation and we have proved the
following result.
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Theorem 4 -1 PROGRAMMING a EXACT COVER

Since EXACT COVER is clearly in NP, this means that EXACT COVER is NP-
complete. Something even stronger can be said:

Corollary 4.1 EXACT COVER is NP-complete even when restricted to instances
where each row of A contains exactly 2 or 3 entries equal to 1 (set terminology: each
element is contained in either 2 or 3 sets).

Proof We show how to transform EXACT COVER to this restricted version of itself.
Equations with no non-zero coefficients are either tautologically true (0 = 0), in which
case they can be dropped, or tautalogically false (0 = 1), in which case the instance has no
solution and we transform it into a trivial one in the required format which has no solution
(eg,.z+y=0y42z=02z-+y-+z=1). Equations with one non-zero coefficient (e.g.,
z = 1) give the value of the corresponding variable, which then can be substituted in all
other equations. The resulting A will still have all 0-1 entries, and all entries of b are one
or less. If any such entry is negative, there is again no solution, and we proceed as above.
If an entry is 0, then we drop the equation, and also drop all variables that appear to this
equation from all other equations.

Finally, consider an equation in which four or more variables have coefficient 1:

ntntnt.. . tan=1Lk=4

We replace this equation by the following system of 2k — 5 equations, having y;'s as
new variables.

n+nt+uy=I1
Vitat+m=1

Vi 3+ matom=1
yl+9'11='1
yk-3+yi_.3=1

It is left as an exercise to verify that this system is equivalent to the above equation,

3.4 From EXACT COVER 10 HAMILTON CIRCUIT

We shall present a transformation from the restricted form of EXACT COVER given
in Corollary 4.1 to HAMILTON CIRCUIT. Our construction employs several “special-
purpose subgraphs™ (gadgets in the jargon of NP-completeness). Take, for example, the
graph H shown in Fig. 9(a). It has a very useful property, discribed by the following
Lemma;
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Lemma 4 Suppose that a graph G = (V, E) contains the graph H = (W, F) of Fig. %(a)
in such a way that no vertex in V — W is adjacent to any of the vertices 3 through 14. Then
if C 1s a Hamilton circuit of G, € must traverse H in one in the two ways shown in Figures
9(b) and %(c).

Proof Since € is a Hamilton circuit, it must traverse all five paths [3, 4, 5], [6,7, 8], 9, 10, 11],
and [12, 13, 14] (in one direction or the other) as this is the only way to pick up the vertices
4,7,10, and 13. Also, exactly one of the edges {6,9} and {8, 11} must be traversed. If both
are traversed then the cycle [6,7,8, 11,10, 9,6] is formed. If neither, then both {3,6} and
{5,8} must be traversed, and the cycle [3,4,5,8,7,6, 3] is formed. If edge {6, 9} is traversed,
then the traversal shown in 9(b) results, all choices being forced; if {8, 11}, then the one in
%c).

What Lemma 4 really says, is that subgraph H behaves as a pair of edges {1, 15}, {2, 16},
with the additional constraint that a Hamilton circuit of G must traverse exactly one of
these edges. For this reason we call H an exclusive or subgraph, using the symbolic
representation of Fig. 9(d).

For our construction we shall use two more special-purpose subgraphs, graphs J and
K shown in Figures 10(a) and (b). Their “crucial properties” are stated in Lemma 5.

Lemma 35 (a) In graph J (Fig. 10(a)), any Hamilton path from vertex 1 to vertex 2
traverses exactly two of the edges in {e), es, e3}; furthermore, for any subset of two of these
edges there is such a Hamilton path traversing them. (b) In graph K (Fif. 10(b)), any
Hamilton path from vertex 1 to vertex 2 traverses exactly one of the edges in {e,, &,}, and
for each of these edges there is a Hamilton path traversing it.

The proof is a straightforward exhaustion of all possibilities, similar to the proof of
Lemma4.

We can now describe our transformation from the restricted form of EXACT COVER
to HAMILTON CIRCUIT. Suppose we are given an instance Az = b of EXACT COVER,
where not only are all entries of b 1 and of A 0-1, but also there are either two or three
entries equal to 1 in each row of A4 (i.e., each equation involves two or three variables).
We need to construct a graph G = (V, E) such that G has a Hamilton circuit if and only if
Az = b has a -1 solution,

Graph G contains, for each of the m equations in Az = b, a copy of the graph J or
the graph K, depending on whether the equation has three or two variables, respectively.
These copies are linked together in a series (see Fig. 11). For each variable z, the graph
contains a pair of parallel edges. These pairs are also linked into a series, and two more
edges are added to join the equation series and the variable series into a loop.
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Note that, thus far, G certainly has a Hamilton circuit. It traverses the J and K graphs
one after another (leaving out one e; edge in each, according to Lemma 3), and then the
pairs of parallel edges, one after the other, leaving out either the left or the right copy in
each pair. As Fig. 11 indicates, however, we are not finished constructing G. Using copies
of the exclusive or subgraph of Fig. 9(a), we are going to connect edges of G in such a way
that G no longer automatically has a Hamilton circuit, but has one if and only if Az = b has
the desired solution.

There are 2" ways in which the Hamilton circuit can traverse the series of parallel
edges on the right of Fig. 11. Each of these will correspond to the 2" possible solution
vectors z. If the left edge from the pair corresponding to variable z; is in the circuit, we
take this to mean that z; = 1 (as with z; and z, in the figure); if the right, then z; = 0 (as
with z; and z,).

We use the exclusive ors and the copies of J and K to assure that the resulting solution
vector actually satisfies the equations: If the kth variable of an equation is z;, we use an
exclusive or to connect the e, edge of the J or K graph corresponding to the equation to
the left copy of the pair corresponding to z; (see again Fig. 11). A Hamilton circuit now
will exist if and only if there is a way of traversing the pairs of parallel edges (i.e.,a0—1
n-vector z) such that in each copy of a J or a K on the left (i.e., in each equation) exactly
one of the ¢;'s is not traversed (i.e., exactly one of the corresponding variables has value 1).
Thus G has a Hamilton circuit if and only if Az = b has a 0-1 solution, and we have proved
the following Theorem.

Theorem 5 (Restricted) EXACT COVER «a HAMILTON CIRCUIT.

Hence HAMILTON CIRCUIT is NP-complete. As with EXACT COVER, we can
actually show a restricted version of HAMILTON CIRCUIT remains N P-complete, using
a slight modification of our proof. The graphs that we constructed are already quite con-
strained. All vertex degrees are either 2 or 3. Also the graph is “almost planar™: it can be
arrange on the plane so that only exclusive-or subgraphs cross each other (there are four
such crossings in Fig. 11). Each crossing can be replaced by the “crossover” configuration
of Fig. 12 (right), thus obtaining a planar graph with the same degree bounds. Finally, we
can render our graph bipartite (a graph is bipartite if the vertices can be assigned colors
black and white, in such a way that no edge joins two vertices with the same color). Each
copy of H, J, and K is already bipartite, as is the series of parallel edges. The only trouble
spot could be the exclusive or’s of Fig. 11. But these can be made bipartite by using the
model of exclusive or shown in Fig. 13 instead of that in Fig. 9(a) (the crossovers of Fig. 12
can be dealt with similarly). We thus have proved the following:

Corollary 5.1 HAMILTON CIRCUIT is NP-complete even when restricted to planar,
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bipartite graphs with vertex degrees either 2 or 3.

3.5 From HAMILTON CIRCUIT to HAMILTON CIRCUIT FOR GRID GRAPHS

Recall that a grid graph is a finite, vertex-induced subgraph of the infinite grid, i.e., the
infinite graph with set of vertices Z x Z and set of edges {{(z, v), (z, ¥)}:lz —=Z |+ |ly—¥/| =
1}. (See Figure 14). In this Subsection we show that HAMILTON CIRCUIT is NP-
complete even in the extremely special case of grid graphs. We have already argued that
this problem is an extremely restricted special case of the TSP.

We first need a result concerning graph embeddings. An embedding of a planar graph
G (with all degrees 2 or 3) into the grid is a function which maps the vertices of G to dis-
tinct vertices of the grid, and edges of G to vertex-disjoint (except for common endpoints)
paths in the grid. Figure 15 shows an example. The exrent of the embedding is the side of
the smallest square that contains the images of all vertices and all edges of the graph —the
extent of the embedding shown in Fig. 15is 4.

Lemma 6 Any planar graph with n vertices and f faces (and all vertices of degree 2 or
3) has an embedding of extent n + 7 or less.

Proof Recall that, if a graph is planar, then for each of its faces there is a planar
representation in which that face is the external face (i.e., the one whose boundary is the
boundary of the representation of G). We prove, by induction on the number of faces f,
that, for any graph G as above, there is an embedding of extent n + f or less, such that (a)
a designated face is the external face of the embedding, and (b) each degree-2 vertex in
the external face i1s embedded so that it is the rightmost point of the embedding along the
horizontal line drawn through it.

This is certainly true when f = 2 (i.e.,, G is a polygon as in Fig. 16(a)). If f > 2,
consider the graph G’ obtained from G by choosing a face adjacent to the designated one,
and deleting all edges and degree-2 vertices common to the two faces. G' hasn' < n
vertices and /' = f—1 faces. By induction, we can embed G’ on an (n'+ /) x (n'4- f') square
so that the combined face is external and (b) holds. We then add new vertices and edges
to obtain an embedding of G, possibly replacing certain edges of G” by vertical paths, as
shown in Fig. 16(b). The addition increases the extent by at most 1 plus the number of
new vertices. The Lemma follows.

We shall show that HAMILTON CIRCUIT for planar, bipartite graphs with degrees
2 or 3 is polynomially transformable to HAMILTON CIRCUIT for grid graphs. Given
a graph G in the former class, we shall construct in polynomial time a grid graph G’ such
that G" has a Hamilton circuit if and only if G has one.

We assume that G is given to us along with a planar representation of itself (such a
representation is available as a result of our construction in the proof of Theorem 3, and,
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if missing, can be generated in linear time from a standard description of the graph using
the techniques of [Hopcroft and Tarjan 1974]). Our first step is to embed G onto the grid
as per Lemma 6 it is easy to see that the construction in the proof of Lemma 6 can be
implemented in polynomial time.

We wish to do this so that the embedding preserves the bipartiteness of G, in the
following sense: Recall that in a bipartite graph the nodes can be divided into “black”
and “white” classes, with the edges going from one class to the other. Assume that such
a coloration has been assigned to G (this can be easily done in linear time). The grid is
itself bipartite -we can color all vertices black whose coordinates have an even sum, and
color all other vertices white. We wish our embedding to be “color-preserving”, 1.e., white
vertices of G go to white vertices of the grid, and black to black. To do this, we first embed
G as per Lemma 6, then multiply the scale by two so that all the vertices of G have black
images, and then move all the images of vertices one position to the right, as in Fig 17.

This embedding will be our basic “plan™ for the construction of the grid graph G.
For our final construction we shall blow up the scale again (by a factor of 9), and replace
the vertex and edge images by boxes and reniacles, respectively, which will simulate the
vertices and edges of G.

A box is the 3x 3 grid graph shown in Fig. 18. As is easily checked, the box has the
following agreeable property.

Lemma 7 For all i,5, 1 < i < j < 4, there is a Hamilton path from p; to p; (as
identified in Fig. 18) containing all four edges e;, 5, 3 and ey,

Tentacles are built from strips. A strip is a grid graph like the one shown in Fig. 19a.
Its endpoints are a, b, c, and d. Two otherwise disjoint strips can be combined by identifying
two adjacent endpoints of one with an endpoint and an adjacent vertex of the other, as in
Fig. 19b. The endpoints of the combination are the two pairs of adjacent degree-2 vertices.
We can continue adjoining new strips as long as we like, as in Fig. 19¢. The result is called
a tentacle if the only induced edges are those of the original strips. The grid graph in Fig.
19¢ is a tentacle. A key property of tentacles is the following, proved by a parity argument.

Lemma 8 In a tentacle there is a Hamilton path between two endpoints if and only 1f
one is black and the other is white.

A Hamilton path between two adjacent endpoints in a tentacle is called a return path;
between twp non-adjacent ones, a cross path.

We are now ready to describe the grid graph G'. As mentioned above, we first multiply
the scale of our previous imbedding by 9, a factor big enough to open up space for the
construction, and odd enough to preserve parity. We then expand each vertex which is
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the image of a node in G to a box, centered at that vertex (see Fig. 20). Note that the
corners of a box correspond to a white vertex of G are all white, and similarly for the black
vertices. The paths corresponding to edges of G are then expanded into tentacles. If the
edge was (u,v), where u is a white vertex of Gand v is a black vertex, the tentacle has
two endpoints adjacent to vertices of the box corresponding 10 u, and only one endpoint
adjacent to the vertex of the box corresponding to v. (For example, takeu = andv=wu
in Fig. 20). It is easy to see that this can always be done, because of the parity-preserving
property of our embedding.

We now claim that ¢’ has a Hamilton circuit if and only if G has one. First suppose
that G has a Hamilton circuit €. The corresponding tour of G’ follows the image of C in
@'. A tentacle corresponding to an edge of C is traversed by a cross path, thus linking
the two boxes corresponding to its endpoints. Boxes corresponding to black vertices of G
are traversed by a Hamiltonian path from an endpoint of the tentacle corresponding to
the “incoming edge” of C to an endpoint of the tentacle corresponding to the “outgoing
edge”.

A box corresponding to a white vertex is traversed analogously, except that a detour is
made (around ej, e;, €3 OT e4) to traverse by a return path any tentacle corresponding to an
edge of G with the given white vertex as endpoint that is not in C (there can be at most one
such detour per box since the maximum vertex degree in G is three). The existence of the
required paths through boxes and tentacles is guaranteed by Lemmas 7 and 8. See Figure
20.

Conversely, suppose G’ has a Hamilton circuit €". Each black box of G’ has at most
three edges to the outside world in G’ (external edges). Hence exactly two of these must be
used by ¢, with the corresponding tentacles traversed by cross paths. In the case where
a black box has three external edges in &, the tentacle corresponding to its untraversed
external edge must be picked up by a return path from its other endpoint.

Now consider the white boxes of '. Each is adjacent to two or three tentacles, at least
one of which must be traversed by a cross path if the box is to be connected to the outside
world by ¢". Since €’ must contain an even number of the external edges for any box, and
since a cross path used only one of a pair of external edges, this means that exactly two of
the tentacles associated with a white box must be traversed by cross paths.

Finally, consider the subgraph € of G consisting of those edges of G that correspond
to tentacles of G traversed by cross paths of C’. All vertices in this subgraph have degree
two. Moreover, the subgraph is connected since tentacles traversed by return paths in C'
do not connect boxes in ¢’. Thus € is the desired Hamilton circuit for G.

This completes the proof of the theorem which has been our ultimate goal in this
section (a goal that has taken us so long to reach that the reader may wish to go back to
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Subsections 3.1 and 3.2 for a reminder of its significance.)

Theorem 6 [Itai et al. 1982] HAMILTON CIRCUIT is NP-complete even when
restricted to grid graphs.
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4. More Bad News

In the previous section we saw even very special cases of the TSP were NP-complete
and hence likely to be intractable. In this section we examine the complexity of a number
of problems related to the TSP, and of some approaches to solving the TSP. As we shall
see, the outlook continues to be bleak.

4.1 Suboptimality

In Chapter 5, we shall prove some negative results concerning the possibility of even
approximating the optimal solution of the general TSP. A similar issue is that of subop-
timality. As we have seen, finding an optimal tour is likely to be a hopeless task. What
about recognizing an optimal tour when we see one? This can be formulated as the
following decision problem.

TSP SUBOPTIMALITY
INSTANCE: An instance (n, C) of the TSP and a tour = of the » cities.
QUESTION: Is = suboptimal, i.e., is there a second tour #’ of shorter length?

TSP SUBOPTIMALITY is clearly in NP—an optimal tour can, as in TSP(decision),
serve as a certificate for any “yes” instance. Unfortunately, this is about the best we can
say, as the problem is itself NP-complete. This is a consequence of the following result
derived from [Papadimitriou & Steiglitz 1977].

Theorem 7 Given an undirected graph G = (V, E) with a Hamilton circuit C, it is NP-
complete to determine whether G has a second Hamilton circuit.

Proof We use a transformation from the HAMILTON CIRCUIT problem. Suppose
G = (V,E) is a graph. We show how to add an artificial Hamilton Circuit to G, such
that the edges of this circuit cannot “mix” with other edges of G to form a new Hamilton
circuit. This is done by replacing each vertex v of G by the subgraph § pictured in Fig. 21a,
which uses the exclusive-or of the previous section. We then add edges {A(x), B(v)} and
{A(v), B(u)} for each edge {u,v} in the original graph. We obtain our artificial Hamilton
circuit by ordering the vertices of G (arbitrarily) as v, v, ..., v, and adding the edges
{C(v:), D(vi41)}, 1 < 1 < n, and {C(v,), D(w)}.

Subgraph S can be traversed by a Hamilton circuit in just two ways, shown in Fig. 21b
and 21c. By our construction, all copies of § must be traversed in the same way. If they are
traversed as in Fig. 21c, then we get our artificial circuit. If as in Fig. 21b, then we get a
circuit if and only if G had one.

Corollary 7.1 TSP SUBOPTIMALITY is NP-complete even in the case of symmetric
distance matrices that obey the triangle inequality.
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Proof Let G’ = (V', E') be the graph produced by the above construction. The vertices
in v will be the cities, and the inter-city distances d(u, v) will be defined as follows:

4, if {u,v} & E";
d(u,v) =43,  if {u,0} = {C(v.), D(uv1)};
2, if{u,v} € E'— {C(v.), D(m)}.

Note that the corresponding distance matrix will obey the triangle inequality.

The shortest possible tour length is 2|V’|, and furthermore a tour cannot use any non-
edges of G’ or any “artificial” edges (if it used one artificial edge, it would have to use
{C(v,),D(v;)}. Hence a tour of this length exists (and our artificial tour, having length
2|V’| + 1 is suboptimal) if and only if the original graph had a Hamilton circuit.

The NP-completeness of TSP SUBOPTIMALITY has some interesting consequences
concerning the effectiveness of local search heuristics for the TSP. These issues will be
examined in Chapter 5,

4.2 Restricted Spanning Tree Problems

The traveling salesman problem can be viewed as a special case of the following span-
ning tree optimization problem. Let us fix a family F of prototype trees, such as the family
of paths (Fig. 22a), that of stars (Fig. 22b), or the remaining families shown in Fig. 22.
(The notion of a family of trees can be made formal; see [Papadimitriou & Yannakakis
1981]). The eptimization problem for F is defined as follows: Given a symmetric distance
matrix C, find the shortest spanning tree which is isomorphic to a tree in the family F of
prototypes.

If F is the family of paths, then we have the TSP (actually, the “path TSP”, or
“wandering salesman” problem, which is equivalent to the TSP, see Exercise 4). For the
family of stars (Fig. 22b) the problem is trivial—just try each possible center. For the
family of Fig. 22¢, the problem turns out to be equivalent to the polynomial-time solvable
weighted maiching problem (see Exercise 20 and the Appendix). On the other hand, the
problem corresponding to the family of trees in Fig, 22d is NP-hard, as it is intimately
related to 3-DIMENSION MATCHING (see [Garey & Johnson 1979]). The question that
arises is, “How can we tell the hard families of prototypes from the easy ones?” What
distinguishes the families of 22a and 22d from those of 22b and 22¢?

The answer involves what is called the dissociation number d(T) of a tree T. Given a
tree T, d(T) is the smallest number of vertices whose deletion reduces the tree into a collec-
tion of isolated edges and vertices. For example, a path with n vertices has dissociation
number [n/3]. The following theorem becomes a generalization of the result that the TSP
is NP-hard.
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Theorem 8 [Papadimitriou and Yannakakis 1981] If F is a family of trees and there is
an ¢ > 0 such that for each T = (V,E) in F, d(T) > |V|*, then the optimization problem for
F is NP-hard.

The (unconstrained) minimum spanning tree (MST) problem can, of course, be solved
in polynomial time (see the Appendix). The discussion above reveals that this tractability
is not particularly robust. Add a few side conditions on the desired trees and you may
well find yourself facing the TSP. Another example of this non-robustness comes from the
following variants, one for each k > 2.

DEGREE-k MST

INSTANCE Integer n > 3, n ¥ n distance matrix C.

QUESTION What is the shortest spanning tree for T in which no vertex has degree
exceeding k?

The DEGREE-2 MST is the TSP (again the wandering salesman version) and hence it
is NP-hard. It is not difficult to show that the DEGREE-k MST is NP-hard for any k = 2.
(Exercise 11(a)) An interesting question remains however: What is the complexity of the
Euclidean special cases of these problems?

It can be shown (see Exercise 11(b)) that the minimum spanning tree of a set of in-
teger coordinate points on the plane never contains a vertex of degree 6 or greater. Hence
there is a polynomial-time algorithm for the EUCLIDEAN DEGREE-& MST for all £ >
5: namely, the algorithm which simply finds the shortest unconstrained MST. On the other
hand from Section 3 and Exercise 4 we have that the EUCLIDEAN DEGREE-2 MST
(the Euclidean TSP, that is) is NP-hard. This leaves us with two cases: k = 3andk = 4. In
[Papadimitriou and Vazirani 1981] it is shown that the EUCLIDEAN DEGREE-3 MST is
NP-hard; the EUCLIDEAN DEGREE-4 MST is still open.

4.3 More on Complexity Classes

In this section we discuss some distinctions that will be meaninglesss if it turns out that
P = NP, but in the more likely event that P s£ NP give us ways of showing that certain
variants of the TSP are even “harder” than the basic decision problem version. To do
this we must first revisit the classes P and NP and their vicinity. The general hypothesis
is that P and NP are related as in Fig. 23, that is, P & NP and all the NP-complete
problems belong to NP — P. There are other classes of interest. The class coN P contains
the complements of all problems in NP. For instance, the complement of TSP(decision) is
given as follows:

TSP(complement)

INSTANCE Integer n > 3, n % n distance matrix C, integer B.

QUESTION Is it true that all tours have costs exceeding B?
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This is the same as TSP(decision) except that the “yes” and “no” answers have been
reversed. Similarly, HAMILTON CIRCUIT(complement) asks whether a given graph has
no Hamilton circuit, INTEGER PROGRAMMING(complement) asks whether a given
integer program has no solution, etc.

Due to the basic asymmetry in the definition of NP, it seems quite likely that NP
coNP. (What could be a succinct certificate of the fact that every tour has cost exceeding
B? A listing of all tours together with their lengths would be a certificate, but it certainly
would not be succinet). However, no proof that NP = coNP is yet known, and for good
reason: it would imply P ¢ NP. (Exercise 13(c)). What is certain, however, is that the
complements of the N P-complete problems are the least likely members of coNP to be in
NP, exactly as the NP-complete problems are the least likely members of NP to be in P
(see Exercise 13(a)).

We can use NP and coNP to define a class that apparently includes even harder
problems, namely the class D?. This class contains just those problems which are the
intersection of a problem in N P with one in coNP. That is, each problem X in D7 is defined
by two problems X, and X, over the same set of instances, with X; € NP and X; € coNP,
such that the answer for X is “yes” if and only if the answers for borh X, and X, are “yes”.
Here are two typical problems from this class.

EXACT TSP
INSTANCE: Integer n = 3, n % n distance matrix C, integer B.
QUESTION: Is the cost of an optimal tour exactly equal to B?

MAXIMUM NON-HAMILTON GRAPH

INSTANCE: Graph G = (V,E)

QUESTION Is it true that (a) G has no Hamilton circuit, and (b) if we add any edge to
E then a Hamilton circuit results?

EXACT TSP is the intersection of TSP(decision), which is in NP, with the variant
of TSP(complement) which asks if all tours have length B or greater and is in coNP.
MAXIMUM NON-HAMILTON GRAPH is the intersection of the two problems sug-
gested by two parts, (a) and (b) of its question. Problem (a) is in coNP and (b) is in NP.
Note that NP and coNP are both contained in D?, since any problem is equal to itself
intersected with the trivial problem that always answers “yes” and hence is in both NP
and coN P (since it is in P).

In analogy with NP, a problem in D is said to be DP-complete if all problems in
Dr are transformable to it. Since D” contains all the problems in both NP and coNP,
DP-complete problems are even worse than the NP-complete ones. [Papadimitriou &
Yannakakis 1982] show the following:
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Theorem 9 EXACT TSP is D*-complete.

We do not know whether MAXIMUM NON-HAMILTON GRAPH is also D?- com-
plete. However, it does have a property (shared by the DP-complete problems) that shows
that it is even “harder” than the NP-complete problems:

Theorem 11 If MAXIMUM NON-HAMILTON GRAPH is in NP, then NP = coNP,

Proof Suppose that it in NP. We show that this would imply HAMILTON CIRCUIT
(complement) is also in NP, which, by Exercise 13(a), implies that NP = coNP. HAMILTON
CIRCUIT (complement) would be in NP because any graph with no Hamilton circuit
would have the following succinct certificate; a set of additional edges that makes it max-
imal non-Hamiltonian, together with a succinct certificate that the augmented graph is
indeed maximal non-Hamiltonian. The latter exists by our hypothesis.

It can be shown that the DP-complete problems have an even stonger property: if
they are in either NP or coNP, then NP = coNP (see Exercise 13(b)). Thus the sense in
which EXACT TSP and MAXIMAL NON-HAMILTONIAN GRAPH are “harder” than
TSP(decision) and the other NP-complete problems is as follows: Assuming NP £ coNP,
these problems do not have the succinct cértificate property (nor does the complement
of EXACT TSP), whereas all the NP-complete problems do. Note, however, that this is
about the only sense in which these problems are “harder”. All of the above problems
(including the TSP) are polynomially reducible to each other (if not transformable) and
hence they can all be solved within the same running time bounds (to within a polyno-
mial). If P = NP they will all be in P.

Nevertheless, the distinctions made above are of importance from a theoretical point
of view, and we shall make further use of them in the next subsection.

4.4 The Complexity of the TSP Polytope

The TSP is one of many combinatorial optimization problems, easy and hard, which
can be reformulated as follows

minimize ¢’z

subjecttoz € V,
where ¢ 15 a cost vertor (in the case of the TSP, a representation of the distance matrix C
in vector form), z is the vector to be optimized (an (})-dimensional vector of unknowns
for the n-city symmetric TSP), and V is a finite set of “feasible™ vectors (for the TSP, v
consists of the characteristic vectors of all tours, considered as sets of edges).

The advantage of this formulation is that, because the objective function is linear, the
optimization problem above is equivalent to the following problem:

minimize ¢’z

subject to z € CH(V)



where CH(V) is the convex hull of the set V, i.e., the smallest convex polytope that contains
all the vectors in V. (See [Grunbaum 1967] and chapters 8 and 9). Minimizing linear
functionals over convex polytopes is supposed to be well-understood —this is what linear
programming and the simplex algorithm are all about [Dantzig 1959], not to mention the
Ellipsoid algorithm [Khachian 1979].

One catch is that it takes exponentially many inequalities to describe CH(V) in the
case of the TSP. The polyhedron CH(V) has, literally, just too many faces. This does not
immediatley disqualify us, however. The polyhedral approach has worked before in the
presence of this impediment, most notably in the case of the weighted matching problem
[Edmonds 1965a]. What seems more serious is that the convex polytope for the TSP
is tarnished by a number of negative complexity results, that strike at the very core of
the known polyhedral techniques. These results suggest that, despite early promise, the
polyhedral approach may prove to be no more of an “answer” for the TSP than any of the
other methods that have been tried so far (with so little success).

Let us first consider the complexity of facers. A facet of an n-dimensional polytope is
a face of dimension n — 1. Alternatively, it is an inequality, satisifed by all vertices of the
polytope, and is satisfied with equality by n affinely independent vertices (see [Grunbaum
] and chapter 8). If the TSP were to be solved, like weighted matching, by applying a
variant of the simplex algorithm to the optimization problem over CH(V), we would need
at the very least a complete “characterization™ of all the facets of the TSP polytope. Such
a characterization has been for a long time the “Holy Grail” for researchers in the field.
Increasingly more complex classes of facets were discovered (e.g. [Dantzig et al. 1954],
[Chvatal 1973] [Maurras 1975] [Groetschel 1980] [Groetschel and Padberg 1979]), but no
satisfactory conclusion of the search is in sight. Complexity theory yields an explanation
for this failure. A satisfactory characterization of the facets of the TSP polytope would
mean, at the very least, that the following problem is in NP:

TSP FACETS

INSTANCE An instance (n, C) of the symmetric TSP, plus an inequality Zﬁﬂ L a5T <
b with b and the coefficients a; all integers.

QUESTION Is the given inequality a facet of the TSP polytope?.

The following result was recently shown by [Papadimitriou & Yannakakis 1981]

Theorem 12 MAXIMUM NON-HAMILTONIAN GRAPH a TSP FACETS

Thus, by Theorem 11, we have that TSP FACETS is “harder” than the NP-complete
problems.

Corollary 12.1 If TSP FACETS € NP then NP = coNP
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The same corollary can be proved using linear programming duality [Karp & Papadimitriou

1980]. The proof of Theorem 12 has as a by-product the construction of a new natural and
“dense” class of facets of the TSP polytope.

A variant on the TSP FACETS problem is TSP SUPPORTING HYPERPLANES,
the problem of recognizing valid inequalities for the TSP polytope that are tight for at
least one vertex (not necessarily (}) affinely independent ones). Facets are always support-
ing hyperplanes, but not vice-versa. For this problem there is a stronger result, proved by
a transformation from EXACT TSP.

Theorem 13 [Papadimitriou & Yannakakis 1981] TSP SUPPORTING HYPERPLANES
is DP-complete.

Let us now turn to the question of adjacency on the TSP polytope. An edge of a
convex polytope is a one-dimensional face of the polytope. Two vertices are adjacent if
they are the endpoints of an edge. Since the Simplex algorithm moves toward optimality
by crawling along the edges of polytope (see [Papadimitriou & Steiglitz 1981] Section 2.9),
an understanding of the edges of the TSP polyotpe should be a prerequisite for attacking
the TSP polyhedrally. One way of formulating this problem is the following:

TSP NON-ADJACENCY
INSTANCE: An integer n, plus two tours = and =’ of n cities.
QUESTION Are = and #' non-adjacent vertices of the TSP polytope for n cities?

Unfortunately, the prospects are not good here either:

Theorem 14 [Papadimitriou 1978] TSP non-adjacency is N P-complete.

A final problem is that of deciding whether a given rational point lies within the TSP
polytope or not. Answering such a question would be essential if we wished to attack the
TSP using the Ellipsoid algorithm, as suggested in [Browne 1979] for example. As might
be expected, this problem too is N P-complete [Papadimitriou & Yannakakis 1981].

For a different perspective on the polyhedral approach, see Chapters 8 and 9. We
suspect readers have had enough of bad news by now, and so we shall stop here.
Subsequent chapters will show that, despite an overall bleak picture, there are many
corners of the world where a traveling salesman can find an occasional ray of light.
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Exercises

1. (a) How much space is required by algorithm B? Describe a version of algorithm B
that requires only polynomial space.

(b) Show that the space requirements of Algorithm DP are O(n - 27).

(c) Give an O(n?) algorithm for SHORTEST PATH.

2. Consider the version of SHORTEST PATH in which we are asked to find the
longest simple path (path with no repetitions of nodes) between s and ¢. Show that there is
a polynomial-time algorithm for this problem if and only if there is one for the TSP.

3. We are asked to determine an unknown number z between 0 and M by asking
questions of the form “is z > 7" for different a's of our choice. Show that this cannot be
done with fewer than [ log (M -+ 1)] questions in the worst case. (Therefore the “binary
search” technique employed in the algorithm of Fig. 4 is optimal.)

4, The wandering salesman problem (WSP) is the TSP, only that the salesman can start
his tour in any city, and does not have to return to the first city in the end.

(a) Give a polynomial-time transformation from TSP(decision) to WSP(decision).

(b) The other way around.

5. A Boolean variable is a variable assuming only the values true and false. Boolean
variables can be combined by the operations or, and and not very much the same way that
real variables can be combined by +, x and , /. A literal is either a boolean variable or the
negation of one (an expression of the form not =, where z is a Boolean variable). A clause
is the or of several literals. A Boolean expression in conjunctive normal form (CNF) is the
and of a set of clauses. A CNF expression is satisfiable if there is an assignment of values to
the Boolean variables in it that make the expression true. The SATISFIABILITY problem
is the following: Given a CNF expression, is it satisfiable?

(a) Show that SATISFIABILITY can be considered a special case of -1 PROGRAMMING.

(b) Show that SATISFIABILITY is NP-complete.

(c) Show that SATISFIABILITY remains NP-complete even if there are three literals
in each clause. (This problem is called 3-SATISFIABILITY.)

(d) Give a polynomial-time transformation from 3-SATISFIABILITY to the CLIQUE
problem (given a graph G and an integer k, is there a completely connected set of k
nodes in G7). Hint: Construct a graph with seven nodes for each clause of the Boolean
expression.

6. LINEAR PROGRAMMING is the same as INTEGER PROGRAMMING, only
the solution is only constrained to be rational instead of integer.
(a) Show that LINEAR PROGRAMMING € NP.



(b) Use the duality theory of linear programming to show that LINEAR PROGRAMMING
€ coNP. (Note that both (a) and (b) follow trivially from the Ellipsoid algorithm for linear
programming [Khachian 1979], so do not use that result.)

7. (a) The DIAL-A-RIDE problem is the WSP of Exercise 4, only now the cities are
divided into origins and the corresponding destinations, and the tour is required to visit
each origin before the corresponding destination. Show that this problem is NP-complete,
and that the Dynamic Programming algorithm DP can be modified to solve this problem.
What is the time complexity of this algorithm?

(b) Repeat part (a) for the version of the TSP in which we are also given n integers
ki, ... kn, and we are asked for the shortest tour that visits city 1 &, times, city 2 k; times,
and so on. (It may cost to go from a city to itself.)

8. There are four versions of the HAMILTON CIRCUIT problem: HAMILTON
CIRCUIT, HAMILTON PATH, DIRECTED HAMILTON CIRCUIT, DIRECTED HAMILTON
PATH (the obvious definitions). Give polynomial-time transformations between all these
problems.

9. The Chinese Postman Problem is the following: Given a mixed graph (i.e., a graph
with both directed and undirected edges), with a cost for each directed and undirected
edge, find the shortest closed walk of the graph (path with possible repetitions of nodes
and edges) that visits each directed and undirected edge at least once. Show that this
problem is a special case of the asymmetric TSP with triangle inequality. (Hint: The cities
are the midpoints of the edges.)

10. (a) Show that the Euclidean WSP (Exercise 3) is NP-complete.

(b) Show that determining whether a set of points on the plane has a minimum span-
ning tree (see the Appendix) which is a path, is N P-complete.

(Hint: The construction in the proof of Theorem 6 is useful in both.)

11. (a) Show that the DEGREE-k MST problem is NP-complete, for all £ > 1.

(b) Show that the Euclidean DEGREE-5 MST is polynomial (Hint: Can the MST of a
planar set of points with integer coordinates have a node of degree 6 or more?).

(c) Show that the Euclidean DEGREE-3 MST problem is N P-complete.

12. Show that the HAMILTON CIRCUIT problem remains N P-complete even when
restricted to planar graphs with all nodes of degree exactly three.

13. (a) Show that, if the complement of an NP-complete problem is in NP, then
NP =coNP,

(b) Show that, if a D*-complete problem isin NP orin coNP, then NP = coNP.

(c) Show that, if P = NP, then NP = coNP.



14. The bottleneck TSP is the version in which one tries to minimize the maximum
among the distances traversed, not their sum. Show that the bottleneck TSP is NP-
complete even in the Euclidean case.

15. (a) Show that any problem in NP can be solved in time O(27™) for some polyno-
mial p.

(b) Show that any problem in NP can be solved in polynomial space.

(c) Repeat (a) and (b) for the class D,

16. (a) Show that NP, coNP C DP,
(b) Show that if NP £ DP then all areas shown in Fig. 23 are nonempty.

17. Show, by using the duality theory of linear programming that, if TSP FACETS
€ NP, then NP = coNP,

18. (a) Show that TSP FACETS e D,

(b) Show that the problem of telling whether a given rational point is an interior point
of the TSP polytope is in NP.

(c) Show that the problem of telling whether two given TSP tours on n cities are non-
adjacent vertices of the TSP polytope is in NP.

19. Show that the Euclidean distances among integer points on the plane, rounded up
to the next integer, satisfy the triangle inequality.

20. For definitions concerning the weighted matching problem [Edmonds 1965a] see
the Appendix. Show that the problem of finding, given a distance matrix over an odd
number of cities, the shortest spanning tree isomorphic to the "double star” of Fig.22c,
can be reduced to the weighted matching problem.

21. Show that the problem UNIQUE TOUR, asking whether there is exactly one tour
in a given instance of the TSP that has a specified length B, is in D*. How about the
problem UNIQUE OPTIMAL TOUR (does the instance have a unique optimum?).



ALGORITHM A
Input: Aninteger n < 1 and an n x n distance matrix C of nonnegative integers.

QOutput: The shortest tour of n cities.

begin
min : = oo}
for all permutations = of {2, 3,...,n} do
begin
COSL I = cyx(2) + Catnyt + Z?mz Cix(i)s
if cost < min then min : = cost, besttour ;=(1)//=
end;
output besttour
end

Note: // Stands for concatenation of sequences of cities. For example, (1,3)//(2,5,4)
= (1,3,2,5.4). Permutations are represented as sequences: = = (x(1), #(2), .. ., #(n)).

Figure 1



ALGORITHM B
Input and Output: As in Algorithm A
begin
fori=2,3,...,ndo
cost[{i}, ] : = e, bestpath[{i}, ] : = (1,4);
forj;=23,...n—1do
foreach S C {2,3,...,n} with [S| = j do
for eachi € Sdo
begin
cost[S, 1] : = Minges_(y) (COSL [S — {i}, k] + cxs);
let k& be the city that achieves this minimum;
bestpathls, i] : = bestpath [S — {i}, k]//(k)
end
mincost : = ming., (cost [{2,3,...,n}, k] 4+ ci);
let k be the city that achieves this minimum;
besttour : = _gstpath [{2, 3, ..., n}, &l//(k):
output besttour
end

Figure 2



ALGORITHMC

Input: As in Algorithm A
Output: The shortest path from city 1 to city n
begin
fori =2,...,ndocostli, 1] := ¢, bestpath [, 1] 1= (1, 1),
forj =2,3,...,ndo
fori=2,3,...,ndo
begin
cost [¢, 7] 1= ming; ; (costlk, 5 — 1] + cx;)
let k be the city that achieves this minimum,;
bestpathli, ] : = bestpathlk, j — 1]//(¢);
if cost [i, j — 1] < cost [{, j] then
cost[i, 5] 1= cost[i, j — 1], bestpath(i, 5] : = bestpath[z, j — 1]
end;
output bestpath|r, n — 1]
end

Figure 3



ALGORITHM TSPTOUR

Input: An integer n, and an n x n distance matrix € with nonnegative integer entries.
Output: A matrix C with entries either nonnegative integers or co. The non-co entries
are exactly the edges used in the optimum tour.

begin
comment: The algorithm TSPTOUR calls as a subroutine an assumed algorithm
TSPMEMBERSHIP(n, C, L) which solves the membership version of the TSP.

low := 0;
while low =£ high do

if TSPMEMBERSHIP (n, C, | 258" |) = “yes”
then high ;= | lewihioh |
else low ;= |fwfhisk| 4 g,
comment: At this point high = low contains the cost of the optimal tour, found by
binary search;
optimum : = high;
fori =1,2,...,ndo
forj=1,2,..,ndo
begin
remember := ¢;;
Cij « = ©0,
if TSPMEMBERSHIP(n, C,optimum) = “no”
then ¢;; : = remember
end
end

Figure 4



Function

A pprosimate  Values

n 10 100 100 ©

nlogn 33 664 | 9966

m? 1000 (1,000,000 102

108 m?® 1014 1022 4030
" 1024 12¥x10%° |4 05 x 103"
™ N 2099 193 x40% |3 89 x 10%?
o 3,623,800 410%s? 4 % 402567

Table 1

A comparison of the growth of some polynomial functions

(above) to that of certain exponential functions.
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ALGORITHMN

Input: An m x n integer matrix A, integer m-vector b.
Output: “Yes” if there is an z € {0, 1}" such that Az = b, and “no” otherwise.

begin
forj:=1,...,ndo
begin
goto both zero, one;
zero: z; : = (; goto again;
one: z; 1= 1;
again: continue
end;
ifz=(z,...,7,) satisfies Az = b
then output “yes”
else output “no”
end

Figure 6
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Figure 8

What is the length of the perimeter of this triangle?
If calculated with the results truncated to the fifth
significant digit, the answer is 36.999; to the eighth
significant digit it is 37.000145. There is no known
method to predict the number of significant digits that
are necessary in order to compare the sum of sguare
rcots to an integer.
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The exclusive-or subgraph H
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The graphs J and K
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Figure 11

An example of the transformation from EXACT COVER to
HAMILTON CIRCUIT.
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Figure 12

The "gcrossover".
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Figure 14

2 grid graph
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Figure 15

A color-preserving embedding of a Planar bipartite graph.
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The basis (a) and the induction step (b) in the proof
of Lemma 6.
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How to make an embedding color-preserving.
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Figure 18

The box

(a),

Figure 19

a combination of two strips (b), and a tentacle (c).
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The grid graph G' corresponding to the embedding of Fig. 15,
and a Hamilton circuit, correponding to[xl,yl,xa,yz,xz,yBI.
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Vertex substitute for the proof of Theorem 7, with the

two possible ways it can be traversed.
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Figure 22

Families of trees.
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A conjectured topography of P, NP, and their vicinity.



