MIT/LCS/TM-210

SOFTWARE FOR THE "ROLES"

PEOPLE PLAY

Irene Greif
February 1983

MIT/LCS/TM-210

SOFTWARE FOR THE ‘ROLES’
PEOPLE PLAY

Irene Greif

February 1983

Software for the ‘Roles’ People Play

Irene Greif
January 14, 1983

Abstract

Office work consists largely of cooperative efforts by numbers of people. To support such work,
applications programs can be designed as "multi-person” systems organized around notions of
"roles" and "working relationships.” A group of co-workers can then describe to the system their
agreed upon roles in a project as well as the working relationships among those roles. Based on this
description, application software can provide support for communications protocols and access
control that is tailored to the working situation. As working relationships evolve, these descriptions

can be modified so that the software will continue to meet the needs of the users.

The paper presents an approach to office systems research emphasizing the development of
software modules that can be used to build end-user application programs. The requirements that
"multi-person” applications place on this software architecture are discussed in the context of a

series of examples of multi-person activities, including joint document writing and calendar

management.

KEYWORDS: office automation; desk-to-desk conferencing

This paper will appear in the Proceedings of INTERFACE ’83
Miami Beach, Florida, March 21 - 24, 1983

This research was supported by the Advanced Research Projecis Agency of the Department of

Defense and was monitored by the Office of Naval Research under Contract Number NC0014-75--
C-0661.

Table of Contents

1. Introduction
2. Software Architecture for Office Workstations
3. Multi-Person Activities
3.1. Communication and Coordination
3.2. Change Histories
3.3. Privacy and Sharing
3.4. Restrictions on Operations
3.5. Organizing the Data base
4. Roles and Working Relationships
5. Conclusion
6. Acknowledgements
7. References

00O ~NOOOO O ==

1. Introduction

Commercial products combining telephone and computer terminal, or providing broadband
networks for voice and data communication, pave the way for increased integration of
communication and computing. But the power of this communication medium will not be realized
simply by networking together computer terminals on every desk. There will have to be an
accompanying change in end-user software to support cooperaticn and communication. Currently,
"integrated office systems" products provide any number of support tools for individuals -- word
processing, data retrieval and personal file management, spread sheet calculations, graphics design
~ and calendar management, for example -- but only one facility, electronic mail, for commurication.
Future communication facilities will be integrated more uniformly throughout all applications software

to provide support for such multi-person activities as

- co-authorship of documents,

- group budget planning,

- design of complex artifacts,

- real-time monitoring of manufacturing facilities,
- traffic control

Such facilities cannot be built from existing software for individuals but require redesign of basic

system components to allow their use in both single and multi-person settings.

This paper sets forth an approach to office workstation software architecture and explains how that
architecture is influenced by the requirement that there be end-user facilities for cooperative
activities. As the title of the paper suggests, one of the major concerns is determining how to build
software that can support an individual in the different "roles” he plays: he may be a manager on one
project, a group member in another; he may be a co-author of a document; he can chair a meeting, or
simply participate as an observer. In each case his actions may be different, and his working
relationship with others may be changed. The support available to him on his workstation must

change accordingly.

2. Software Architecture for Office Workstations

The Office Automation Group at M.L.T.’s Laboratory for Computer Science has formulated and
been guided by a philoscphy of "functional office automation,” aimed at identifying business goals of

organizations that can be supported by computer-based office systems. This view has led to

development of new office analysis techniques [Sirbu et al, 1982; Kunin, 1982] as well as a system

approach to design of office workstations.

Our office studies have shown that each office and each individual will place unique demands on
an office workstation: there can be no single software package that will satisfy all of these demands.
New software will continue to be designed and built, and existing software will have to evelve as
working environments change. Thus our task in office workstation research is not to design and build
office software, but rather to understand the fundamental principles of office system design. In our
view, the office workstation architecture is not a set of integrated end-user applications, but rather a
collection of more basic software modules that support the programmer in building end-user facilities.
The importance of of this approach is twofold. First, it eases the task of programming each time a
new application is required. Perhaps more importantly, it encourages consistent styles of
programming across applications. If programmers use the same basic tools, their application
programs are more likely to constitute an integrated environment with consistent command language,
interface and data representation. This assures that end-users can carry over skills from one
application to another: they know how to ask for help, where error messages can be viewed on the

screen, how to terminate a session.

Our ETUDE and ECOLE projects [Hammer, 1981] illustrate these design principles. The ECOLE
integrated office workstation consists of a number of software packages that determine the
appearance of the interface of new application programs. The design of these packages was
influenced by the requirements for ETUDE, the text processing subsystem. ETUDE is a document
editer designed to be easy-to-learn as well as easy-to-use. It is difficult to meet both of these criteria
in one interface: menu selection and extensive help messages for naive users can get in the way of
experienced user; succinct abbreviations preferred by experts are incomprehensibie to the new user.
A review of the "folklore" of user interface design [Good, 1981] led to a design which meets both
requirements. ETUDE has a command language of English-like phrases (in verb-modifier-object
format), reserved keys for "help,” "undo," and "cancel," and menus of commands. The menus and
help are optional -- when called up, menus appear in a standard location and help messages are
placed on the screen without obscuring the user's cursor. Command completion by the system

allows short forms of commands for the experienced users.

To support ETUDE, we instalied two interface packages on ECOLE: a table driven command
parser and a window management system. The command parsing routine operates on a table of
commands indexed by verb. For each verb, the table contains help and parsing information about the

rest of the command phrase, and pointers to executable code to be used once the command is

parsed. The command parsing routine communicates with the window manager when it recognizes
that help or menus must be displayed. The window manager determines the location of new windows

based on the kind of information it is sent and the current state of the screen.

Thus the command parser and window manager cooperate to provide screen organization and
command language support. By changing the table of commands one can get similar support for
other applications. Both programs were used for ETUDE and again in personal calendar system,
PCAL [Greif, 1981]. Commands in each case have similar phrase structure: in ETUDE one can MOVE

5LINES Or DELETE NEXT PARAGRAPH; in PCAL one can LIST NEW APPOINTMENTS or SCHEDULE [A] MEETING.

Human factors tests [Good, 1982] show that ETUDE is iﬁdeed easy-to-learn, without forcing tedious
menu selection on the experienced user. The ECOLE command parsing and window packages
embody the principles of this design including the command language orientation (no pointing device
was available), the phrase structure, and reserved keys for special functions. Using these packages,
the same kind of interface can be installed on other applications so that text processing, calendar and
spread sheet facilities all present the same kind of interface. The ETUDE/ECOLE work factors out the
user interface decisions so that changes to the interface, experiments with alternative interfaces and
addition of new equipment such as pointing devices can be accomplished easily and uniformly across

applications.

ETUDE also supports two views of a document, its logical structure of e.g. paragraphs, sections
and chapters, and its outward appearance of e.g. lines and pages. The outward appearance is
maintained on the screen to show the user how the document will appear on paper. Since the user
may need to refer to aspects of the logical structure as well, a summary of the logical structure is
presented along side the document as shown in Figure 1. ETUDE must maintain the accuracy of both

views after changes to either are made.

To maintain both views ETUDE requires data base support incorporated in ENCORE, the "object
management" package of ECOLE. ENCORE is a cross between a file system, in which objecis are
stored, and a data base in which information about objects is stored. ETUDE documents cannot
simply be stored as strings of characters in a file. A document is a structured object that has outward
appearance attributes associated with its components. In general, ENCORE facilitates the storage
and retrieval of small, non-uniform objects, providing services required for many office applications,
but not adequately supported in either conventional file systems or data base management systems.
Relationships between objects can be expressed, for example, the containment of paragraphs in
sections or the placement of lines of text on a page; operations for maintaining multiple editable views

of documents can be implemented.

To summarize, we study applications and build prototypes in order to understand the software
infrastructure of the office workstation. Our main results are design guidelines and principles of
scftware organization. More important than ETUDE's easy-to-use and easy-to-learn document editing
features, is the fact that its implementation isolated features of the design in separate software
modules. In the case of ETUDE these include object management and an interface that integrates

command language interaction with optional menus.

Qur current focus on cooperating office systems is similarly motivated. We have observed that
cooperative work is an aspect of office system development that is poorly understood and
inadequately supported. As we develop and test prototype multi-person application systems we are
also identifying the basic system components that will make it possible to build other similar systems
easily. The rest of this paper contains examples of end-user facilities for multi-person activities and

discussion of the workstation packages that will be needed to support these facilities.

3. Multi-Person Activities

People have been working together for a long time without computers. For example, they convene
at one location for a conventional meeting, they meet-at-a-distance via telephone conferences, they
hold video conferences, or they meet-over-time through correspondence. On the computer-based
office workstation, an electronic mail or message package is the current standard mechanism to
support such group work. An extension of electronic mail known as "computer conferasncing”
provides additional features for organizing messages when a large number of people conduct a

meeting over time.

As more office work and data is kept on-line, we see increasing opportunities and need for
additional kinds of communication support. As normal desk equipment comes to include both
telephone and computer-based workstation, desk-to-desk conferencing will become a powerful mode
of communication: co-workers will share on-line data as simply as they converse by telephone. For
many kinds of work at a distance the overhead of video connections and studio teleconferencing will
be unnecessary -- people will have the convenience of working with others without leaving their desks

or giving up access to their (on-line) files.

This kind of support is not now in place. For example, many people use word processing facilities
for composing and editing their own documents. However, co-authors writing a document together
on-line are left to their own devices to maintain the integrity of the document. If both edit it at once,
there is a high probability that the changes of one will be lost. If one makes changes to be read and

approved by the other it is difficult (if not impossible) for the reader to find out where the changes are

and what the old version looked like. The author who has made revisions typically will send a
message to his co-author saying, first, where the new version can be found (in what "file") and then
describing the changes. If two authors working together at a distance "link" their terminal screens in
order to make the document visible to both simultaneously, again, they must devise and enforce their

own protocols for taking turns writing.

In this section we suggest a number of ways in which co-workers can be supported in their
cooperative work by extended facilities for coordination, control of sharing, meeting support and
automatic message generation. The examples span two kinds of meetings: "meetings over time" in
which co-workers act asynchronously on shared data, and "simultaneous" meetings in which co-

workers use the computer terminal to provide a shared workspace for a meeting in real-time.

3.1. Communication and Coordination
In the joint document writing situation described above, the co-authors could be relieved of some
of the protocol enforcement if their text editing systems knew about their intended working

relationship.

For example, if the authors have agreed to notify each other of their changes, notification could be
sent by the system to co-authors after each editing session stating that revisions have been made.
Thus individuals can simply terminate editing sessions as they would when working on personal

documents: all follow-up messages are sent automatically.

if two authors are editing at once several kinds of system intervention might be appropriate: all but
one author may be prevented from editing; the authors may be able to work at once on different parts
of the document; the authors might be notified of each other’s presence on-line in case they want to
link their terminals and work together. In this last case they would probably initiate a voice

conference and use the computer as a shared workspace.

We mentioned above that linked terminals provide no coordination support. A proper meeting
interface could provide a shared workspace in which to display the document on each user's
terminal. Instead of one cursor for pointing at text, there could be two distinguishable cursors, one
for each author. The meeting interface would prevent both authors from moving their cursors to the

same location and writing in the same place.

If a large number of people were trying to work on the document at once multiple cursors might be
inappropriate. Instead, one person might chair the meeting and other meeting participants could

request the floor. Passing control to a meeting participant would allow him to move the cursor in the

shared space and make changss to the document.

Clearly these kinds of communication and coordination protocols could arise not only in joint
document writing, but in joint design (with graphic display), calendar management, project
management, on-line debugging, or teaching facilities. People working asynchronously would like to
establish at the outset certain conventions for notification. People working simultaneously might
choose one of a number of meeting support structures, such as the two described above -- the

informal structure with minimal conflict prctection or the more formal chaired meeting.

3.2. Change Histories

An editing author can also be relieved of the chore of describing his changes: the system could
translate his editing commands into operations that store old and new versions of changed text.
When his co-author reads the document the text processing system could let him move from one
change to another and examine old and new versions of each part of the text. This is accomplished
by having the text editer keep a change history recorded through multiple versions of document
components, while the first author is editing the document. Many office applications require
communication about changes to information; the change operation itself can be made to facilitate
the communication through automatic notifications and recording of change histories. Some people
might wish to be notified every time a new version of an object is added to the data base. Others
would like to be informed of the option of seeing multiple versions when examining the object but
don’t need special notification. Most people would only wish to see the most recent version. These

are all options that should be describable and implementable in multi-person systems.

The recording of change histories requir_es storing multiple versions of some objects in the data
base. In a situation where changes are being reviewed, one might view any number of older versions
as well as the most recent one. The presentation of the multiple versions is up to the particular
application program: a joint document writing interface might display old and new versions side by

side or alternatively old text could be crossed out with new text written in between the lines.

3.3. Privacy and Sharing

Some data should ot be shared. In joint document writing, each author may want to write some
private comments on a document not visible to his co-authors. Although the document and all
associated comments may be stored together in a single data base, each author should be presented
with his own view including only what he is entitled to see. During a simultaneous meeting, only text
that is viewable by all participants should be shown in the shared space. The need for multiple views

was identified in our earlier work with ETUDE documents [Cf. Section 2]. However, now the views

may also be determined according to additional information about ownership of data and
authorization. This puts additional constraints on how the data base must be organized and on the

kind of information that the data base must be capable of storing.

Cccasionally in a simultaneous meeting with the co-authcrs, an author may want to see his private
comments, without making them visible in the shared workspace. Meeting support interfaces shouid
provide at least two workspaces, shared and private. The data presented in each space is processed
to provide the appropriate "views." An example of this kind of meeting interface appears in our
RTCAL [Greif, 1982] facility for sharing calendar information during a meeting-to-schedule-a-meeting.
* Participants provide filtered views of their calendars to a meeting support program so that a shared
space can be displayed showing when the group as a whole is free, without revealing details of
individuals’ appointments. During discussion of possible meeting times, individuals can view full
details of their calendars in the private workspace as needed for decision making. Figure 2 shows the

screen during an RTCAL session.

3.4. Restrictions on Operations

Suppose John Doe is writing Section 1 and only commenting on Section 2 of a document. In
Section 1, John’s role is author, and he has full access to all editing commands. In Section 2, his role
is commentator, and he can only add comments and suggest changes. The operations available to

him reflect the working relationship that he has agreed to with his co-workers.

Restrictions on operations often arise in cooperative office work. In our calendar facilities there are
a number of different restricted roles: any laboratory member can reserve a conference room time
slot, but cancellation of other people’s reservations is prohibited; professors may allow students to
make appointments on their calendars during office hours, but not at other times. To enforce
restrictions the system can refuse to complete a request, or alternatively, it can translate restricted
operations into allowable transactions. An attempt to schedule an appointment might be translated
into a request for an appointment; an attempt to rewrite a phrase in a document might be translated
into a comment on the document suggesting a change. The data base capability for storing multiple
versions of objects can be used to support this translation process by storing alternative versions
instead of actually changing objects.

3.5. Organizing the Data base

Information in a data base is stored and retrieved according to constraints specified in a "data base
schema." In ENCORE, each schema includes definition of the structure of an object and the
allowable cperations on the object. For a document, the structure part of the definition might specify
that the document contains paragraphs and comments. The operations might include reordering

paragraphs within a section, reading or deleting a chapter, and so on.

Multi-person activities require inclusion of additional information in the schema:

- ownership information may be associated with components of the object

- multiple versions may be kept for components of objects

- notification may be triggered by certain operations

- views can be composed by selecting and processing components of objects.

As working relationships in a group evolve, there may be changes in the amount and kind of
information sharing that group members wish to establish. Implementing these changes will require
modifying the data base schema. For example, an author of a document may decide after writing a
first draft that he should be co-authoring the document with a colleague: he will have to incorporate
information about their working relationship into the document data base. This ability to change the
schema applies to all aspects of the data definition, including specification of which objects are
stored with multiple versions, which operations trigger notification to co-workers, etc. Clearly, the
extensible data base facility required for multi-person applications is beyond the state of the art in

data base management systems and constitutes a research project in itself.

4. Roles and Working Relationships

The previous section examined needs for communication protocols, access rights control, multiple
versions and change histories, and automatic notification. We suggested that the data base schema
include information about the way data is stored, the amount of owhership and authorization
information to collect with each item and the kinds of data base changes that might trigger

communication.

A role is a selection from a set of options in each of these areas. The details of a role may be
extremely complex, and require intimate knowledge of all of the capabilities of the data base definition

language.

We believe that the end-user should be able to add and modify new roles, and assign new people to

roles. This aspect of workstation development is one of the primary targets of our research. It is an
.area of software development and end-user support that has not been given sufficient attention in
other related work, including research on office systems and intelligent, so called "user-friendly,"
computing environments. In a well-designed multi-person application, there will be certain built-in
roles and intuitively understandable working relationships about which the user can learn details
incrementally as he goes. But the ability to modify these definitions is most important. In addition to
building support for the system programmer, we must develop an end-user interface to the roles and

working relationship package that will allow an office worker to control his own working relationships.

There is some precedent for this kind of end-user facility in the SCRIBE document formatting
system [Reid, 1980]. Document designers write long complex definitions of document types such as
article, report or letter specifying choices of font, spacing, allowable document components (e.q.
chapters exist in reports but not in articles) and so on. End-users typically simply choose a fixed
document type and work within it, never learning all the details of the definition. The document type
names suggest correspondence to familiar document types so that users can anticipate the general
appearance of a document formatted with SCRIBE. If a writer of a report decides he would prefer
underlined chapter headings to the built-in bold face headings, he can modify the report definition

with respect to chapter heading font choice without redefining a whole new document type.

If a role definition and, presumably, the name chosen for the role, make sense as a reflection of an
actual role in the office, the role should be comfortably usable without technical knowledge of its
definition. Most end-users would simply use these fixed roles and assign people to them when
defining their working relationships with particular individuals. Thus, a manager could indicate that
Harry Smith is acting in the "secretary" role for all of his business data without delving into the details
of the definition. Harry would then be granted certain default access to the manager's data and
application programs. For example, in the manager’s calendar Harry may be able to read all of the
business appointments and to add appointments during business hours. In the budget data base,
Harry may be able to read the accounts of all of the manager’s groups without seeing salary

information for the senior personnel.

Any details which do not suit a given office and the way one manager chooses to work with his
secretary can be changed by modifying the standard role definition. For example, in the calendar one
could suppress notification of new appointments added by the secretary if they occur during certain
office hours. For the office worker who establishes a totally unprecedented mode of working with
others, the primitives of the system can be made available so that he can build a full role definition,

although likely as not designing a complete new role definition might be left to an expert advisor (as is

10

the intention in the SCRIBE formatting system).

5. Conclusion

Computer support of cooperative activities requires that information about the "players" be an
integrated part of the system. This includes information about dynamically changing roles in real-time

meetings, as well as long-term working relationships.

Roles and working relationship information bears some relationship to access rights and locking
- protocols seen already in data bases and operating systems. The notions are different in that roles
are expressed in terms that are meaningful to the organization. We expect the office workstation to
provide certain generic role definitions such as secretary, manager, author, editor. Also, aliernative
meeting support packages will provide roles for different meeting structures. These include the
notions of chairman, controller (person with the floor), and participant, and appropriate operations for
each, such as requesting the floor and passing control, as well as certain voting procedures. A major
component of our research is the continuing study of offices, office work and meetings, in order to

identify those roles and working relationships which should be provided.

The ideas expressed in this paper are the basis for an ongoing research project. The goal of our
research on cooperative office work is a coherent design for cooperative office systems embodied in
a set of software modules for an office workstation. The interfaces to all end-user packages should
be consistent, all packages would allow for user tailoring of the work environment and in particular all
cooperative work should be supported through a uniform interface for defining roles and working

relationships.

6. Acknowledgements

The research described in this paper is being funded by the Advanced Research Projects Agency
of the Department of Defense. | am grateful to Dr. Marvin Sirbu, Sunil Sarin, John Cimral, Stan Zdonik

and Albert R. Meyer for their comments and suggestions about the work described here.

7. References

Good, M. 1981 "ETUDE and the Folkiore of User Interface Design" MIT Office Automation Group
Memo OAM-030. Massachusetts Institute of Technology. Cambridge, Mass. March, 1981.

Good, M.D. 1982. An Ease of Use Evaluation of an Integrated Document Processing System.

11

Proceedings of Human Faciors in Computer Systems. Gaithersburg, Maryland. March 15-17, 1982.

Greif, |. 1981. PCAL: A Personal Calendar, MIT Laboratory for Computer Science Technical Memo,
TM-213. Massachusetts Institute of Technology. Cambridge, Massachusetts. December, 1981

Greif, 1. 1982. "Teleconferencing and the Computer-Based Office Workstation.” Proceedings of

Teleconferencing and Interactive Media. Madison, Wisconsin. May, 1982.

Hammer, M., R.lison, et al. 1981. "Etude: An Integrated Document Processing System."

Proceedings of the 1981 Office Automation Conference. AFIPS. March, 1981.

Kunin, J. S. 1982. Analysis and Specification of Office Procedures. PhD Thesis, MIT, Department
of Electrical Engineering and Computer Science. Massachusetts Institutes of Technology.

Cambridge, Massachusetts. January, 1982.

Reid, B. K. 1980. "A High Level Approach to Document Formatting," Proceedings of the Seventh

Annual Symposium on Principles of Programming Languages, January, 1980.

Sirbu, M. and S. Schoichet, J.S. Kunin, M. Hammer, J. Sutherland. 1982. "OAM: An Office
Analysis Methodology." Proceedings of the Office Automation Conference, San Francisco,
California. April, 1982.

-12-

4/ KX RT= M=2M377 (GC=2 L.=0 $4 Document: letierBodyTeq
Hltos: RERER/Ictter .

returnaddress MIT Laboratory for
Computer Science
545 Technology Square
Room 217
Cambridge, MA 02139

March 10, 1980

address John Jones
World Wide Word Processing Inc.
1378 Royal Avenue
Cupertino, CA 95014

salutation Dear John:

body, paragrap We are pleased to hear of your interest in our ETUDE
text formatting system, which is pow available for
demonstration. Enclosed you will find a copy of our
working paper entitled Anlnateractive Editor and Formatter,
which will give you an overview of some of the goak of
our research. This research is funded by a contract wnh
Exxon Enterprises Inc.

paragraph Our cfforts have been guided by 1 number of general
principles:
number, item L ETUDE should be casy to use. The swiem

should respond 1n a reasonable manner,
regardless of the user's input. In parucular,
the user should not be reluctant 1o try a
command, for fear of losing the curremt
document.

Item 2. A user of ETUDE should not be cnbocrned
with the detals of a document’s formatting

Figure 1: The ETUDE screen contains a letter in the main display, formatted as it will appear
when printed. Along the left side of the screen is a summary of the logical structure of the letter. The
status window at the top of the screen indicates that the document is a letter (top right) and that the

user's cursor is in the address component of the letter (highlighted in upper Ieft hand corner).

e

RTCAL 2.7; Type ctri-+ for control commands: User: SKS

Scheduling "ARPA" meeting for 45 mins between 10-18 and 10-23

SKS GREIF HAMMER CIMRAL
IN-Session IN-Session IN-Session Absent
session Running chairperson: SKS controller: SKS
Merge of SKS, HAMMER, GREIF Your private calendar
18 October 1981 18 October 1981
9:00 9:00
9:30 9:30
10:00 XXX 10: 00
10:30 XXX 10:30
11:00 11:00
11:30 XXX 11:30 short meeting
12:00 12:00
12:30 12:30
1:00 XXX 1:00
1:30 XXX 1:30

Type command:

Figure 2: The display of RTCAL presents both shared and private workspaces. In this case the
session has been called to schedule an "ARPA" meeting. The session is "Running” after three of
the four invited people agree to participate. Their schedule cards are merged and displayed in the
shared space to the left. The screen is shown from the point of view of "SKS" (Sunil Sarin) so that
his private calendar is displayed to the right.

