MIT/LCS/TM-211

A NOTE ON EQUIVALENCES

AMONG LOGICS OF PROGRAMS

Albert R. Mever

Jerzey Tiuryn

December 1981



A Note On Equivalences Among Logics Of Programs

1 December 1981

Albert R. Meyer
Massachusetts Institute of Technologyl

Jerzy Tiuryn

Massachusetts Institute of Technology and Warsaw University

Copyright (C) 1981 Albert R. Meyer and Jerzy Tiuryn

This work was supported in part by The National Science Foundation, Grant Nos. MCS
7719754 and MCS 8010707, and by a grant to the M.L.T. Laboratory for Computer Science
by the IBM Corporation.

1Laboratory for Computer Science, Cambridge, Massachusetts 02139, USA



Abstract. Several differeat first order formal logics of programs--
Algorithmic Logic, Dynamic Logic, and Logic of Effective Definitions - are
compared and shown to be equivalent to a fragment of constructive L Lo
When programs are modelled as effective flowcharts, the logics of deterministic
and nondeterministic programs are equivalent.

1 Introduction

A number of systems of formal logics which extend predicate calculus have been
proposed for reasoning about sequential and nondeterministic programs. These include in

rough chronological order

1. The infinitary logic L, e suggested by ENGELER 67 as a logic for
programming,

2. Algorithmic Logié (AL) -- defined and developed by SALWICKI, er.al. 70,

3. p-calculus -- defined by HITCHCOCK and PARK 73; extended by DE
BAKXKER 80,

4, Dynamic Logic (DL) -- PRATT 76,
5. Programming Logic (PL) -- CONSTABLE and O’DONNELL 78,

6. Logic of Effective Definitions (LED) -- TITURYN 80.

Each of these logical systems actually represents a family of formal logics, instances of
the family being determined by the choice of a few parameters. The principal parameter is
the class of programs allowed in formulas. For example, in the case of DL some variants
which have been considered are

- regular DL, in which programs are taken essentially to be finite, possibly

nondeterministic, flowchart schemes with atomic formulas as tests and with
simple assignment statements of the form x: = r where 7 is a term,

- regular-array DL in which array assignments of the form 7, =, may also occur
(cf. MEYER and WINKLMANN 80),



- regular DL™ in which for every finite flowchart a, the predicate LOOPS,,
which asserts that a has an infinite computation, is included as an extra atomic
formula (cf. MEYER and WINKLMANN 80).2

- recursive-call DL in which programs are taken to be flowchart schemes
containing recursive calls with arguments (cf. GREIBACH 75, DE BAKKER -
80). | :

In general, such different choices of the parameters lead to logics which differ in
expressive power. For example, TTURYN 81 has recently shown that there is a formula of
recursive-call DL, as well as one of regular-array DL, which is not equivalent to any
forlﬁula of regular DL. On the other hand, MEYER and WINKLMANN 80 have shown
that regular DL and regular DL™ are equivalent in expressive power. MEYER and
PARIKH 81 have also demonstrated distinctions among the expressive powers of several

other versions of DL and Lwlw.

Thus there are genuine distinctions in the expressive, and also model thecretic and
undecidability properties among the various instances of DL. These distinctions
complicate the problem of comparing the six systems of programming logics listed above.
For example, the bulk of the literature on AL defined that system in the particular version
where programs are deterministic while schemes.>  Since the original DL é]Iowed
nondeterministic schemes, it appeared that DL and AL represented genuinely distinct

conceptions of programming logic.

Nevertheless, we claim that with appropriately matched parameters, DL, AL, and LED,
are actually equivalent systems. We believe that PL can be incorporated into this common
framework as well, although its numerous "practical” features make it harder to grasp

theoretically.

2 .
However, LOOPS o May not occur as a test in a program.,

3Oniy recently has an AL with nondeterministic schemes been considered by MIRKOWSK A 80.



These systems can be described in more classical terminology as fragments of the
constructive portion of Lwlw with the different instances of the systems characterized by
various simple syntactic conditions on infinitary formulas. Thus, we argue that there is a
common intuition which leads to the DL-AL-LED-PL framework for programming logic.

In what follows we focus on this framework.4

In order to compare the DL-AL-LED-PL frameworks, we restrict ourselves to instances
of these systems using what we regard as the mathematically most natural and robust
notion of computability over arbitrary structures, namely computability by effective
Sflowcharts.  Effective flowcharts may be described informally as generally infinite,
nondeterministic, uninterpreted flowchart schemes whose basic instructions are assignmeht
statements and whose basic tests consist of atomic formulas (including equations).
Moreover, given a box of the flowchart, one can effectively find the instruction in that box,
the number of edges leaving the box, and the endpoints of those edges. For technical
convenience we require that the signature (i.e., set of symbols occurring, including

variables) of any flowchart is finite.

A state provides an interpretation for all function, predicate, and variable symbols.
Given a. state, a nondeterministic flowchart defines a set of executable instruction
sequences. The set of states in which execution of these instruction sequences can finally
terminate is the set of output states for the given input state. Thus, any flowchart « defines

a binary inpui-output relation R , on states where

R, = {(s.t)] starting in state s, there is an executable sequence of instructions
in a which finishes in output state t}.

4'l’c:chnical results of PARK 76 for p-caiculus, and MEYER and PARIKH 81 for the constructive fragment
of L w0y show that these latter logics arc incomparable in expressive power, and both are strictly greater in
expressive power than logics in the DL-AL-LED-PL framework unless the notion of program scheme is
stretched unreasonably.



1f there is an infinite executab}e sequence starting in state s, then « is said to loop from
state s, Formal definitions are available in MEYER and WINKLMANN 80, MEYER and
HALPERN 80, MEYER and PARIKH 80, TTURYN 80.

Friedman, cf. SHEPHERDSON 73, proposed a notion of effective definitional scheme as
the most general model of effective computability in arbitrary structures. These may be

described as the special case of effective flowcharts which are of the form

if P then ASSIGN; else
if P, then ASSIGN, else
if Py ...

where P; is a finite conjunction of atomic formulas or their negations, and ASSIGN; is a
sequence of assignment statements of the form x:=r with distinct variables x on the

lefthand side of each statement in the sequence.

We can generalize effective definitional schemes to be nondeterministic.  These
nondeterministic effective definitional schemes can be informally described as the infinite
parallel OR of statements of the form

if P; then ASSIGN, else ABORT fi,
where ABORT is a program with empty input-output relation, e.g., while rrue do anything
od. Equivalent notions of universal classes of effective procedures on arbitrary structures
have been propdsed by many other researchers. In particular, it is easy to show

Lemma 1: The following classes of program schemes define the same class of

input-output relations:

1. (Non)Deterministic effective flowcharts without array assignments (i.e.,
simple assignments only),

2. (Nondeterministic) Effective definitional schemes,

3. (Non)Deterministic finite flowcharts without array assignments but with
stacks.



Similar definitions and lemma can be given for the case that arqay assignments are
allowed. These results indicate the invariance of the class of computable input-output

relations between states defined by effective flowcharts.

Our main observation is that when effective flowcharts are taken as the notion of
program in the programming logics listed above, then all can be reduced 0 a simple

fragment of constructive L L@ which we define next.

Definition 2: Let L, be the class of infinitary first order formulas defined
inductively as follows:

(@).if Py, P,... is a recursively enumerable sequence of quantifier-free

formulas of predicate calculus among which there are only finitely many
free variables, then V{P;| i<1} is a basic formula of L,

(b).if p,q are formulas of L., then so are =ip, pAq, pVvq, 3x[p], Vx[p].

Theorem 3: There is an effective procedure to translate a formula of any one
of the following formal logics into an equivalent formula of any of the others:

i

2. DL of deterministic effective flowcharts without array assignments (i.e.,
only simple assignments occur), henceforth called DDL-w/0-array

3. DL of deterministic effective flowcharts (i.e., array assignments may
occur) henceforth called DDL,

4.DLY of nondeterministic effective flowcharts without array assignments,
henceforth called DL+-uV'o-array,

5. LED,

6. Logic of nondeterministic effective definitional schemes (without array
assignments),

1. AL of deterministic effective flowcharts without array assignments,



8. AL of nondeterministic effective flowcharts without array assignments
and without the iteration quantifier N.

We would like to emphasize that according to Theorem 3, DDL-v/0-array and DL -
w/o-array are equivalent, viz., adding nondeterminism 10 effective flowcharts does not

increase the expressive power of the dynamic logic.

Although in many programming situations nondeterminism is a significant addition, we
can explain informally why it adds nothing to the logic of deterministic effective schemes:
the rich control structure provided by arbitrary effective flowcharts enables a deterministic
scheme a4 to "check the results” of any nondeterministic scheme a by carrying out a
backtracking search. In particular, suppose « is a nondeterministic effective flowchart
without array assignments whose registers, i.e., free variables, are x = Xg,....x,.;. Then
there is a deterministic effective flowchart a4 such that a4(x,y) halts iff a(x) can halt with
the final contents of registers x set to y. Thus the assertion that after a(x) halts, it is
possible that some property p(x) holds, is equivalent to the assertion that there exist y such
that a4(x,y) halts and p(y) holds. In this way, an existentially quantified assertion about a
deterministic flowchart has the same expressive power as an assertion about a

nondeterministic flowchart.

For more restricted control structures which cannot carry out the backtrack search,
nondeterminism indeed makes a difference: P. Berman, J. Halpern, and J. Tiuryn have

recently shown that for regular programs, DDL is strictly less expressive than DL.

In the case that array assignments do occur in nondeterministic programs, our proof of
Theorem 3 breaks down. The nondeterministic flowchart & may have registers x and also
assignable arrays, i,e., function symbols f. Again, there is a deterministic "checking"
flowchart a4 such that e y(x.f.y,g) halts iff a(x,f) can halt with the final values of registers x
and arrays f equal to y,g2. Now, however, in order to reduce an assertion about a to one

about ay as above, it is necessary to existentially bind not only the y variables by also the



fuiiction symbols g. This second order quantification exceeds the power of DL. But
because the values of the arrays g differ only finitely from the values of the f, the full power
of second order quantification is not necessary. If there are elements in the domain of
interpretation which can serve to represent finite sets, it is possible to simulate this weak
second order quantification by first order quantifiers. Any infinite set of finitely generated
elements will serve to represent finite sets, so, aside from the pathological case of
(essentially) finite domains, we can extend the theorem to nondeterministic effective

flowcharts even with array assignments.

Namely, let = be some finite set of function symbols. A state is n,X-infinite iff there are
n elements of the domain of the stéte such that the set of elements generated by applying
the functions (which are the interpretations in the state of the symbols) in = to these n
elements is infinite,

Theorem 4: For any n>0 and finite set = of function symbols, there is an
effective procedure to translate any formula p of the logics 9.-11. below, into a
formula p’ of L, such that for every n,Z-infinite state s,

sk=p iff sk=p’.

9. DL of nondeterministic effective flowcharts,

10. Logic of nondeterministic effective definitional schemes (with
array assignments),

11. AL of nondeterministic effective flowcharts without the iteration
quantifier N.

It remains an interesting open question whether the hypothesis of n, =-infinity can be
climinated from Theorem 4. Whether the iteration quantifier N makes a difference in the

~ presence of nondeterministic programs is also open, but appears to be of technical interest

only.

In the next section we present the main definitions among the logics 1.-11., and prove

Theorems 3 and 4.



2 Definitions and Proofs

All of the logics 1.-11. are subsets of the following class L . of formulas which is

univ

obtained by combining the features of all the languages.

Definition 5: L . is defined inductively as follows:

univ

(a).Any atomic formula of predicate calculus with equality is a formula of

Luniv’

(b).if « is an effective flowchart, then LOOPS o 15 a formula of L

univ:

(c).if p,q are _fomlulas of L, then so are —p, pAq, pVq, 3x[p], ¥x[p],

(d).if P1,P,...., is an r.e. sequence of formulas of L
and A{P;| i>1},

then so are V{P;| i>1}

unive

(e).if « is an effective flowchart and p is a formula of L

uniy» then so are <a>p
and [a]p,

{0.if « is an effective flowchart and p is a formula of I

Luniv> then so are (Na)p
and (Ua)p.

Whether a state s sazisﬁes.a formulapof L denoted sk=p, is defined in the usual way

univ?

for p of the form (a), (c), or (d) above.
For case (b), s=LOOPS , iff o loops from state s.

For case (e), se=<a>p iff ti=p for some state t such that (s,t) € R,; s=[alp iff t=p for all
states t such that (s,;t) € R .

Case (f) covers the iteration quantifiers of AL. se=(Ua)p iff si=<a*>p, where a* is an
effective flowchart such that R « is the reflexive transitive closure of R . s=(Na)p iff
s=<a">p for all n>0, where a” is an effective flowchart such that R o = -the relational

composition of R , with itself n times.

This defines the semantics of B



L, is easily embeddable in al! of the logics of Theorem 3, and all are obviously
embeddable into one of DDL or DL ¥ -w/o-array, so we give precise definitions and proofs
only for these latter two logics.

Definition 6: DDL is the class of formulas defined by rules (a,c.e) of
Definition 5 such that the flowcharts a of rule (¢) are deterministic. DL -w/o-
array 1s the class of formulas defined by rules (a,b,c,e) such that the flowcharts a
of rule (e) do not contain array assignments.

To prove Theorem 3, we describe translations between L, and DDL, and between | 55

and DL+-W/o-array.

The translation from L, actually takes formulas of L, into the intersection of DDL and
DL+-w/o-array. It is obtained trivially from the observation that the atomic formula V{P;|
i>1} of L, is equivalent to <e>true where a is the effective flowchart

if P} then x: =x else
if P, then x: =x else
if P; then x: =x else....

The translation from DDL to L, is based on
Lemma 7: The following formulas are valid for any flowchart « and formula
D of Lypiy:
' 1.<a>(pVq) = Kedp V <adqg),
2. <a>3x{p] = 37[<a>(p[z/x])], where z does not occur in « or p, and
plz/x] is the result of substituting z for x in p.

In addition, the following formula is valid for any dererministic flowchart « and

formula p of L ;.

3. <a>—p = Kedtrue A =<adp).

The equivalences of Lemma 7 allow one to "move the <>’s in" thereby conveiting an
arbitrary formula of DDL into an equivalent formula built solely by first order constructs,
1.e., the rules of Definition 5.(c), starting from formulas of the form <B>..L{B P where Pis

an atomic formula of predicate calculus. But a formula of the form <8 .8 >P is



10

equivalent to an r.e. disjunction Qf formulas <a;>P where «; ranges over the terminating
instruction sequences of the program By;...;8,. Each formula <a>P, where «; is a finite
sequence of assignments and atomic tests and P is quantifier free, is equivalent to a
quantifier free formula of predicate calculus, cf. PRATT 76, MEYER and PARIKH 80. In
this way DDL translates into L.

The translation from DL+-W/0-array into L, proceeds by induction on the definition
of DL*. The only interesting case in the basis of the induction is for formulas of the form
LOOPS . These are obviously equivalent to the r.e. conjunction of the quantifier-free first

order formulas which assert that a terminating instruction sequence in « is not executable.

The essential step in the inductive definition of the translation is < >- elimination. Let a
be a nondeterministic effective flowchart without array assignments and let p be a formula
of DL+-w/o-array. By induction, we may assume there is a formula q of L, equivalent to
p. Let xg,....x,,.; be all the variables occurring in flowchart a. It is easy to define an r.e. set
of quantifier-free first order formulas {P;| i>0} and an r.e. set of terms {r; ,jl i>0, j<n} such
that for all j(n and states s, s = P; iff it is possible for a, started in state s, to terminate with

the terminal value of x; equal to the value of 7;; in states.

Let yg,....y,-; be new variables which occur neither in a nor in q. The reader can easily

check that

3YO...3}’n_l[ Vi{Pi A (Aj<n YJ = 'ri’j) } A quO"'"yn-IIXO""’Xn‘I] ] (1)

is equivalent in all states to <a>p.

We remark that introducing quantifiers in formula (1), or indeed any such formula
- which accomplishes <>-elimination, is unavoidable. This follows from the fact that the
quantifier-free fragment of Deterministic DL+-w/0-array, which is equivalent to
quantifier-free L, is strictly weaker than the quantifier-free fragment of DL*-w/o-array,

(cf. MEYER and WINKLLMANN 80).



11
This completes the proof of Theorem 3.

In proving Theorem 4, we note that all of the logics 9.-11. are no more expressive that

DL*. We therefore only describe the translation of DL into |58

As in the proof of Theorem 3, the translation is given inductively. The only interesting

case is <>-elimination.

Let p be a formula of DL and let « be a nondeterministic effective flowchart. By
induction, let q be an L, formula equivalent over all n,=-infinite states to p. According to
Lemma 1 we can find a nondeterministic effective definitional scheme which defines the
same input-output relation as «. This effective definitional scheme is an infinite parallel
OR of finite deterministic programs «; of the form

if P, then ASSIGN; else ABORT fi

where ASSIGN,; is a finite sequence of assignments,

| Obviously <a>p is equivalent to the L __. formula

univ

Vi<0(i>q. (2)

but this

still leaves the difficulty that (2) is an infinite disjunction of L,.. not first order, formulas,

It is not hard to show that any formula <a;>q is equivalent to a formula of L,

and L. is not closed under infinite disjunctions. We could eliminate this difficulty if the

integer variable i in <a;>q could somehow be taken as a variable of DL, for then the infinite
disjunction over i in (2) could simply be replaced by an existential quantification of i. With

the aid of the hypothesis of n, 2-infinity, we will accomplish this as follows.

Each formula <«;>q can be transformed using the equivalences of Lemma 7 so that all

the occurrences of <a;> appear in the context
(ai>Vme . (3)

where the G, are quantifier-free formulas of predicate calculus. Let the formula obtained



12

-m this way be denoted g, so that fcrmula (2) is equivalent to V;q;. (The transformation is
uniform in i, so the same set of disjunctions V,G ,, occur in each g;.) in order to eliminate

the outermost disjunction in (2) we use the assumption of n, Z-infinity of states.

Let y=yy.....¥p-1> and z-be n+1 individual variables which occur neither in a nor in g,
and choose some effective enumeration 7(y), 7(y).... of all the terms over y U
(signature(a) - variables(a)), i.e., the terms with function symbols from a whose only

variables are from y.

For ki>1, let Dy;(y,z) be a quantifier-free formula of predicate calculus which
expresses the following property: "z is the value of the k™ term (in the above enumeration),
there are exactly 1 distinct values among those first k terms, and k is the least integer with

the above two properties”.

Let ¢ be a formula obtained from g; by replacing every subformula of the form (3) by
the r.e. disjunction
V{ij(ysl) A ijl jkm>1}
where ij is a quantifier free first order formula equivalent to <aj>Gm- Note that by the

uniformity in i of the definition of g, it follows that the same q’ is obtained for all i.

In g we héve apparently eliminated the index i, but it will be coded in the values of
variables y and z. This coding is possible because, by definition of Dy o for every state s
there is ar most one pair of integers k,j>1 such that sk= Dy - Moreover, for every n,2-
infinite state s and for arbitrary k,j>1, si= 3y3z[Dy J()',z)]. Thus in n,Z-infinite states we

can code any pair of integers by using the formulas Dy e

We use the above obscrva_tion to code the value of index i. Let q” be the formula
3y3z[V{P; A Dy j(v.0)l k,ix1} A qT

where P; is the test portion of a;.



13

We claim that for every n,2-infirite state s,

Sk= Vl(al>q = q,’. (4)

In order to prove the claim (4), let us assume that sk= <a;>q for a certain i>1. Leta =
a0--8p-1 b€ the generators of an infinite substructure in s, let b be the i-th distinct value in
the sequence 7,(a), 75(a),... and let k>1 be the least integer such that b = mi(a). Lets; be
the state in which y has the value a, z has the value b, and all other symbols have the same

interpretation as in s. We have sj= P; A Dy ;(y,z) because s= P; and y,z do not occur in P,

In order to see that s;= q’, it is enough to observe that for any r.e. set of formulas 16

m>1},
si= VD (v.2) A Gilikm>1} iff s= <adV Gy

In this way we have proved sk= q”. The other half of the equivalence (4) is proved

similarly.

3 Conclusion

Having reduced essentially all the various programming logics to the | R fragmen't of
infinitary logic, it is easy to deduce a body of model theoretic and undecidability results
about programming logic from known results for infinitary logic. Moreover, the reduction
to L, 1s sufficiently straightforward that various infinitary proof theoretic results can also

be carried over directly to programming logic.

We interpret these results as evidence that no very new model theoretic or recursion

theoretic issues arise from logics of programs on first order structures.

Nevertheless, we believe that the problem of developing formal systems for reasoning
about programs offers significant challenges in at least two directions. First, to be true to
the purpose for which high level programming languages were originally developed and

continue to be developed -- namely for economy and ease in the expression of algorithms --



14

.t is important to develop proof meinods for dealing with high level programs as textual
objects. This has in fact been the focus of the bulk of the literature on program correctness,
although many of the complex fearures of modern programming languages have yet to be
adequately addressed. (In our treatment we assumed in effect that the high level programs
had already been transformed into effective flowcharts, and thereby we avoided the
challenge of developing a proof theory.) A second challenge involves programs operating
on higher-type domains which are often assumed to satisfy "domain equations" which
appear inconsistent with standard set theory. Development of appropriate logics for
reasoning about such domains has just begun, cf. SCOTT 80, and seems an intriguing

subject for further research.

Acknowledgement. We are grateful to Piotr Berman for his comments.

4 References

1. BANACHOWSKI, L.et al. An Introduction to Algorithmic Logic;
Metamathematical Investigations in the Theory of Programs, Mathematical
Foundations of Computer Science, Banach Center Publications, vol. 2, (ed
A. Mazurkiewicz and Z. Pawlak), Polish Scientific Publishers, Warsaw, 1977, 7-
100.

2. BERGSTRA, ], TIURYN, J. and TUCKER, J. Floyd’s Principle, Correctness
Theories and Program Equivalence, Mathematisch Centrum, IW145/80. To
appear in Theoretical Computer Science, 1981.

3. CONSTABLE, R.L, and O'DONNELL, M.J. 4 Programming Logic,
Winthrop Publishers, 1978.

4. DE BAKKER, 1. Mathematical Theory of Program Correctness, Prentice-Hall,
1980.

5. ENGELER, E. Algorithmic Properties of Structures, Mathematical Systems
Theory, 1, 1967, 183-195.

6. ENGELER, E. Algorithmic Logic. In de Bakker (ed.) Mathematical Centre



15

Tracts (63) Amsterdam 1975, 57-85.

7.GALLIER, J.H. Nondeterministic flowchart programs -vith recursive
procedures: semantics and correctness, 7heoretical Computsr Science, 13,
2(1981), 193-224.

8. GREIBACH, S.Theory of Program Structures. Schemes, Semantics,
Verification, Lecture Notes in Computer Science, 36, Springer Verlag, 1975.

9. HAREL, D. First-Order Dynamic Logic, Lecture Notes in Computer Science
68, Springer-Verlag, 1979.

10. HAREL, D., AR. MEYER and V. PRATT, Computability and Completeness
in Logics of Programs: Preliminary Report, 9th ACM Symp. on Theory of
Compuring,' Boulder, Colorado, (May, 1977), 261-268. Revised version, M.L.T.
Lab. for Computer Science TM-97, (Feb. 1978), 16 pp.

11. HAREL, D.and V.PRATT, Nondeterminism in logics of programs, Stk
Annual Symposium on Principles of Programming Languages, January 1978,
203-213.

12. HITCHCOCK, P. and D.PARK. Induction Rules and Termination Proofs,
Automata, Languages and Programming, (ed M. Nivat), American Flsevier,
New York, 1973, 225-251.

13 KEISLER, H.I. Model Theory for Infinitary Logic. North-Holland Publ. Co.,
Amsterdam 1972.

14. KFOURY, D.J. Comparing Algebraic Structures up to Algorithmic
Equivalence. In Nivat (ed.) Automata, Languages and Programming. North-
Holland Publ. Co., Amsterdam 1972, 253-264.

15. KFOURY, D.. Translatability of schemes over restricted interpretations.
Journal of Comp. and Syst. Sc. 8 (1974), 387-408.

16. MEYER, A.R. Ten tl two.uqand and one logics of programming. EATCS Bulletin,
11-29; M.LT. LCS TM 150, MIT Laboratory for Computer Science,
Cambridge, Ma., February 1980.



17.

18.

19.

20.

22.

16

MEYER, AR. and J. Y. HALPERN, Axiomatic Definitions of Programming
Languages: A Theoretical Assessment, (Preliminary Report) Proc. of Seventh
Annual POPL Conf,, January 1980, 203-212; M.I.T. LCS TM 163, April, 1980,
34 pp.; to appear JACM (1981).

MEYER, AR. and R. PARIKH, Definability in Dynamic Logic, Proc. of ACM
Symp. on Theory of Computing, Los Angeles, Cal., April, 1980, 1-7; to appear
Jour. Computer and System Science (1981).

MEYER, A.R. and K. WINKLMANN, On the Expressive Power of Dynamic
Logic, Preliminary Report, Proc. of the 11th Annual ACM Conf. on Theory of
Computing, Atlanta, Ga., May 1979, 167-175; M.LT. LCS T™M 157,
February,1980, 36pp; to appear Theoretical Computer Science (1981).

MIRKOWSKA, G. Complete Axiomatization of Algorithmic Properties of
Program Schemes with Bounded Nondeterministic Interpretations, 72th
Annual ACM Symp. on Theory of Computing (1980), 14-21.

. PARK, D. Finiteness is mu-ineffable, Theoretical Computer Science 3, 1976,

173-181.

PRATT, V., Semantical considerations on Floyd-Hoare logic, Proceedings 17th
Symposium on Foundations of Computer Science, Houston, Texas, October.

1976, 109-121.

23.

24,

25.

26.

SALWICKI, A. Formalized Algorithmic Languages, Bull. Acad. Pol. Sci,Ser.
Math. Asir. Phys. 18, 1970, 227-232.

SCOTT, D.S. Relating Theories of the A-Calculus, in To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism, eds. Seldin and
Hindley, Academic Press, New York, 1980, 403-450.

SHEPHERDSON, J.C. Computing over abstract structures: serial and parallel
procedures and Friedman’s effective definitional schemes, In Shepherdson and
Rose (eds.) Logic Colloquium 73. North-Holland, Amsterdam, 1973, pp.445-
513.

TIURYN, J. A Survey of the Logic of Effective Definitions, MIT/LCS/TR-
246, MIT, Laboratory For Computer Science, Cambridge, Mass., September



17
1980.

| 27. TIURYN, J. Unbounded program memory adds to expressive power of first-
order Dynamic Logic, Procesdings 22nd IEEE Symposium on Foundations of
Computer Science, Nashville, Tennessee, October 1981, to appear.



