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Abstract

In an interactive multi-user data-processing system a user knows the probabilities of his messages and
must encode them into a fixed system-wide variable-length codeword set. He needs to receive the answer to
his last message before selecting the next, so his encoding is one-shot. To minimize average codeword length
he encodes his messages in order of decreasing probability into codewords in order of increasing length. 1 give
an algorithm which, for cach of several measures of performance, finds the codeword set best by that measure
for the worst user, and some of the minimax optimal codeword sets the algorithm has found. Some of the
results hold for all user distributions: others require e.g. that all users send exactly or at most m distinct
messages, and/or that there is an integer k such that no user has a message of probability greater than 1/k.

Introduction.

In an interactive multi-user data-processing system each user or user group may have a different mes-
sage set or probability distribution, but it may be convenient for the system to require that each user encode
his messages into a fixed system-wide set of codewords. Since a user may need to receive the answer to his
last message before sending the next, his encoding must be one-shot. | discuss in this paper the problem
of finding the best codeword set (in a minimax sense) to use in such a system. For convenience in summariz-
ing previous work [1—4] and to establish notation 1 first give.some known one-user variable-length coding
results and define the multi-user problem.

1. Some known one-user variable-length coding results.

Let p(5) denote the probability of the jth most probable message in a countable set M of m MSSSages
with p(j) = 0 for j << m 4 1 and (if m < oo) p(j) = 0 for j > m. Let U,, denote the class of all such
nonincreasing distributions on N+ which vanish on integers > m. Thenp € U, and ||p|| < m, where

Il = 7€ N* | p() > 0} forpe U. (1.1)

Let V,,, be the subset of U, with p(1) << I (ie. with llpll = 2) and let W,, be the subset of U, with
ol =m.LetU = U, V = V., W = W,...

Let C be a prefix-free set of m codewords in a finite alphabet B of size [B] = b,2 < b < o0, whose

Jth shortest codeword ¢; has length |¢;| = A(5). There is known to be such a set iff the length functdon A of
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C satisfies the Kraft inequality

m

Y M <1 (1.2)

1

Let A, denote the class of nondecreasing integer-valued functions on the positive integers < m -+ 1 which
satisfy (1.2),and A = A, .

Encoding the m messages in M with distribution p € U,,, in order of decreasing probability 1 — 1 into
the m codewords in C' with length function A € A,,, in order of increasing length gives an expected cost of

E(N) = Y p(i)G) w3

b-ary symbols per message, and no 1 — 1 mapping of M into C has smaller average cost. Doing 1 — 1
encoding only for those messages with positive probabilitics is possible iff llpll < m and then has an
cxpected cost also given by (1.3). (In (1.3) and throughout expectations are summed over all and only the
nonvanishing values of p(7).)

Forp e U let
hm(p) = inf E,(\) form > ||p|;
AEAL (1.4)
h(p) = hyp)(p)-

In the standard one-shot variable-length source encoding problem a distribution p € U is given and the
code designer has the task of constructing a length function N which approaches or attains the infimum h(p)
in (1.4). If [|p]| is finite so is A(p) and the infimum is attained by the length function N of a Huffman code for
p. If ||p|| is infinite and A(p) is finite Huffman coding may still be possible (Humblet [5]), but in any case for
every € > 0 there is a function N € A, which approaches that infimum, with E,(N) << h(p) + e. Therefore
h(p) is an appropriate measure of the expected transmission or storage cost of an optimal one-shot encoding
of messages from M with distribution p into codewords in B¥.

In the standard block-to-variable-length encoding problem the designer maps sequences of k messages
from M into a set of m* codewords in B*. If successive messages are selected independently from p an
optimal encoding takes an average number of symbols per message which approaches the entropy H(p) as k
increases, where :

H(p) = — > p(§)log p(j) = E,(— logp). (1.5)

Therefore I1(p) is an appropriate measure of the cost of an optimal block encoding of sequences of messages
from M into codewords in B* when only the first-order distribution pis given. (In (1.5) and throughout all
logarithms arc taken to the basc [B] = b > 2))

There is no explicit formula for A(p) but the values of h and the entropy function H are related, H is
~ bounded by :
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log 1/p(1) < H(p) < log||p|l on U (1.6)

and the inequalities are both strict unless p = g,,, , the uniform distribution on the first m integers, where

: 1/m, j<m<o;
mli) = =M< 0o; 37
m(7) {0’ et (L.7)
in which case there is equality in both inequalities. And h(p) is bounded on U,,, by
H(p) < h(p) < hm(p) < 14 H(p). (18)

There is equality in the leftmost inequality iff p = gm for m = b% an integral power of b, including the case
a=0,m=1H(q)=h{g) = 0. Ase — 0 the distribution p with p(1) = 1 — ¢, p(2) =¢H(p)— 0
and h{p) = 1 shows that the constant 1 on the right cannot be improved.

Proposition 1 summarizes some of these results for reference.,
Proposition 1.
() Foreveryp € Upp. 0 > m and N € Ay, E,(N) > h,,(p) > hum(p) = h(p) > H(p). -
(ii) For everyp € W, ande > 0 there existsa \ € A, with E,(N) <14H(p), E,\) < e+ h(p).
(i) For everye > 0 there existsap € U with h(p) > (1 — €) + H(p).

2. Multi-user variable-length coding: universality and cost measures.

Consider next a multi-user version of the one-shot variable-length coding problem in which there is a
set of actual or possible users characterized by a class S C U of nondecreasing distributions. Let

s = ||S]| = sup||p|| for S C U. (2.1)
peSs

The designer constructs as before a single set C of codewords with length function A € A,. A user
with distribution p € S assigns his messages in order of decreasing probability to codewords in € in order
of increasing length at an expected codeword length of E,(\) symbols per message. The designer’s task is
to find a N whose cost by some measure is reasonable for all users rather than optimal for one of them.
This task is closely related to the design of "a universal code” for a class S of nonincreasing distributions,
but in the usage which has become standard "a universal code” denotes a family of codes which encode
successively larger segments of source output at successively smaller costs per message while in this case
the encoding is constrained to be one-shot. (I7] and [8] give principal results and extensive references on
universal coding.)

A number of plausible cost measures for the multi-user problem have been explored in part in [1], [2],
[3] and [4]. E,(N) iwsell is an absolute cost measure. The difference Ep(N) — h{p) and the ratio E,(\)/A(p)

compare (in different ways) the cost of one-shot encoding into C to the cost of a one-shot encoding optimal

~
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for p alone. The difference E,(\) — H(p) and the ratio E,(N)/H (p) compare the cost of using C to the cost
of an optimal block encoding for a sequence of independent selections from p.

More generally, define the codeword sct C with length function A € A to be universal on S iff there
are pairs (d, r), (D, R) of nonnegative real constants such that

E,(\) < d -+ rh{p) and (2.20)
E,(\) <D -+ RH(p) forallp € 8. _ (2.2b)

Then d and D bound the absolute cost measure E,(A\) on S when r = R = 0, and bound the two
difference measures when r = R = 1, while » and R bound the two ratio measures when d = ) = 0.
This definition requires that E,(A) be finite on S only when h(p) and H(p) arc. By the inequalitics (1. 8),
(2.2a) holds for some finite (d, ) iff (2.2b) holds for some finite (D, R), so the definition is unambiguous.
Proposition 2 shows that it is not vacuous: ie. that there are codeword sets universal on U itself, and
thercfore on any subset S of U.

Proposition 2.
(D If(22) holdsatS = U thenD > 1,d > 1,r > 1 andR > 1.
(it) For everyb 2> 2 there isa N € A such that (2.2) holds with S = U,D —=d = 1 andR = r = 2.

Comment. The fact that D > 1 and d > 1 follows since h{q1) = H(q) = 0 (as noted after (1.8)), while
by (12) Ep(A) = Ey(A) = M1) > 1 for A € A (or indeed for A € A,, and m > 1). Davisson and Leon-
Garcia prove that R > 1 in [4], and r > 1 follows from (1.8) for P = gnand n — ooc. (ii) is proved by
construction of an appropriate countably infinitc codeword set in [2]. The values R = r = 2 are not best
possible: see Proposition 5 below. 1]

Given the existence of codeword sets universal on any § C U and no a priori information about the
distribution of users over S, it is natural to Iook for minimax solutions. When (2.2) holds the cost pair (d, r)
is said to be k-attainable and (D, R) to be H -attainable on S, and A and C are said to attain those costs.

There is no single cheapest attainable cost pair in general, since there are trading relations betwaen the
additive and the multiplicative constants in (2.2). The designer may choose to minimize d or D given r or R,
or conversely. Let

d*(r,S) = inf sup (E,(A) — rh(p))

heEAL pES

r*(d,5) = inf sup (E,(\)— d)/h(p),

AEA; pES

D*R,S)= inf sup (E,(\)— RH(p)),

NEAS e

(2.3)

R¥*(D,S) = inl sup (E,(\)— D)/H(p).

ACAL pEs
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Then an h-attainable pair (d,7) and a N and C which attain it are said to be (minimax) h-optimal on S
ifd = d*(r,8) and r = r*(d, S). and similarly for H -optimality. The minimax value of the absolute
cost measure mentioned above is d*(0, S) = D*(0, S); the minimax difference measures are d*(1, S) and
D*(1, ) and the minimax ratio measures are r*(0, §) and R*(0, S). Proposition 2 (i) shows that (unlike
r*(1, 8) and R*(1, S) in proposition 2(ii)) these five cost measures all diverge at S = U, so it is necessary to
consider subsets of U to obtain useful results for them.

The absolute measure and the two difference measures converge on S iff H(p) is finite on S, which
holds by (1.6) if s is finite; the ratio measure ¥(0,S) converges iff h{(p) > 0 on S, which holds on
U — {@ }, and the ratio measure R*(0, S) converges iff H (p) is bounded below by a constant on S, which
by (1.6) holds if p(1) < 1/k for some integer & > 1 on S. The h-costs are significantly reduced if all users
have the same number of messages — ie. if ||p|| = son S. Following Rissanen in part 1 therefore seek
optimal cost-pairs and codeword sets on the following subsets of U.

Uem ={p€ Ull/E=>p(1),|p|l <m}, 1<k< oo,
Vim={p € U|l/k>p(1),|lpl <m}, 1<k< oo, (2.4)
Wem={p€U|l/k>p(1),|lpll =m}, 1<k< oo

To be consistent with earlier notation and simplify typography let S,,, denote S, m and let S denote S, =
S},c0 , Where S is U, V or W. The sets Vi,m and W ., are empty for k > m. For m < oo the set
Um,m = { gm }. Where g,,, is the uniform distribution on the first m integers in (1.7), and V} ,, = V,, =
Un—{@}s0V = U — {q }. Note that thesc definitions extend 10 k& = 0 but introduce no new sets:
%,m = UO,m = U_l,m = U:m, WG’J = ¥}, %,m = Wl,m form 2 2, AIlowing the value k = 0
simplifies the statement of Theorem 2 below.

3. History and literature.

In [1]1 constructed a codeword set and proved it to be universal on U in the present sense, with H-costs
(2.2) for any b > 2. T improved that result in [2] to H-costs (1,2), which by (1.9) imply h-costs (1,2), proving
Proposition 2(ii). The fact that h(p) > lonV = U — { @} was used to prove that the same set attained
h-costs (0,3) on V. The proof in [2] that several codeword sets constructed there (similar to sets constructed
earlicr by Levenstein |6]) arc asymptotically optimal showed that 0, Upoo) — 1 ask — oco. However the
techniques used in [2] were not sufficiently precise to determine minimax optimal N and (d,7) on V or on
Ur.o0 0r to find 7%(0, V) or r*(0, Uy, ) exactly, or to give smaller cost bounds for finite m.

In [3] Rissanen considered the behavior of the minimax ratio F -cost measure R¥*(0, U ,,,). For
b = 2 finite m and k > 2 he showed that E,(N)/H(p) attained its maximum over Ur,m on the set
{9 Gt 1, -y G } OF uniform distributions. Using that result he found an algorithm which gives a lower
bound to R*(0, Uy ,,,) and a particular distribution in Ug,m whose Huffman encoding has an expected cost
which approximates R*(0, Uy ,,,). He obtained lower bounds to R*(0, Uy ,,,) considerably smaller than the
upper bound 3 to the value of 7*(0, V) found in [2]. for the parameter values b = 2, m = 32 and k = 2,3,
4 and 6. He conjectured that the difference was due o his finitc 7. Tn fact in the binary casc, as we shall see
below, while %0, V, ,,.) < R¥(0, Vam) = R¥(0, Uy, ,,,). the two are very nearly equal and grow very little
as m increases from 32 1o oo: the difference between my upper bound and Rissanen’s lowerbound atk = 2
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is primarily due to the fact that his bound is closer to the correct value.

In [4] Davisson and Leon-Garcia considered the minimax redundancy H-cost measure D*(0,S)ona
set S of not necessarily monotone distributions. They showed that if S is the convex hull of a set Q of
distributions then the difference £,(\) — H(p) attains its maximum over S on Q. They showed in particular
that the difference attains its maximum over the set Uy, on the set { g1, @, . . . , G }., explored the behavior
of D¥(0, Uy,,) for finite m, found an algorithm which gives a lower bound to its value and found a particular
distribution in that class whose Huffman encoding has an expected cost which approximates D*(0, Uy,,).
They showed that D*(0, Us,) increases without bound as m increases but grows only like log log m.

The principle results of the present paper are three. Section 4 shows (Theorems 1 and 2) that each of
the four suprema over S in (2.3) is the supremum over an appropriate subset of the set { i, ¢, ..., ¢s } of
uniform distributions when S is any one of the distributions in (2.4), and (Lemma 5) that for h-costs that
subset has only O(log s) members. Those results make it possible to prove the minimax optimality of a
number of length funtions. Section 5 derives an algorithm which is shown (Theorem 3) to find cost pairs and
length functions in A, which are (k- or H-) optimal, or within any ¢ > 0 of optimal, on the sets S, ,,, in (2.4).
For large m the algorithm converges to exact values much faster than the algorithms given in [3] and [4]
converge to approximate values. It finds optimal integer-valued length functions without a separate Huffman
coding step and covers h-costs as well as H-costs. Section 6 gives a number of optimal cost-pairs and length
functions found by the new algorithm, for finite and infinite m. The Appendix specializes the algorithm for
the four functions in (2.3).

4. Fxtremal properties of uniform distributions.

Theorem 1 gives results for H-costs and Theorem 2 gives similar results for h-costs. These results are
the key to the algorithm in Section 5. They also simplify the task of checking how good a proposed length
function is in the minimax sense.

Theorem 1.

Letk be an integerand1 < k< m < oo. Let\ € A, Let Sk,m be any one of Uy m Vi, m or Wi
Jork <m:ifk=mletS,,,,= {gn} = Un,m. LetD and R be real and >> 0. Then

E,(N) < D+ RH(p) forall p € Se.m if . -
E,(\) <D+ RH(g) fork < j <m + 1. )

Comment.  'The case D = 0,k > 2 is proved in [3], and the case R = 0,k = 1 follows from a
result in [4]. ‘The proof is new and parallels the proof below of the new resulls on h-costs. Note that
D = D*R, S;,) and R > R*(D, S, ,,,) iff (4.1) holds. Thus D* and R* can be evaluated by finding the
smallest value of D (or R) for which the second line in (4.1) holds when the value of B {or D) is given, This
1s the basis of the algorithms given below. []

Two obvious lemmas are useful in proving Theorem 1.

FLemma I {Shannon).



Each p € U, is an average of the uniform distributions g; in(1.7): ie

p(i) = D wigy(s), where (4.2)

=1

w; = 5(p(7) — p(j + 1)),
and w is a probability distribution with ||w|| = ||p||.

Proof.  Obvious (see Shannon, [9]). []

Lemma 2.

Forp € Ug,m,

Eq{(—log p) = max{logk,logj}. (4.3)

Proof.  Eg(—logp) > —logE, (p) since — log is convex U- E,(p) < 1/k since each p(j) is, and
Eq(p) = 32i—1 p(3)/5 < 1/7 since all the p(4) sum to 1. []

Proof of Theorem 1.

letk<j<m-41. Then 9 € Uk,m . so when Sy, ,,, = U, ,, the first linc in (4.1) implies the second.
If Si,m is Vie,m or W, i, then g; is not in that set for all those values of Jbutforany e with 0 << ¢ << 1 the
distribution q;- is, where

g5 =(1—¢€)gj+ep (4.4)

and p is any distribution in W, ,,, with finite entropy (and therefore finite E,(\) by the first line in (4.1)) —
for example p = g if m < 0o, p(j) = (b — 1)b™7 if m = oo . By the linearity of the expectation
operator £, in p, the continuity of H and the well-known inequalities

(1 —€)H(p) + eH(q)
< H((1—¢)p+¢q) (4.5)
= (1 —¢)H(p) + cH(g) 4 €elog(1/c) 4 (1 — ¢) log(1/(1 — ¢)),
Ey(N) — E,(\) and H(g ') — H(g;) ase — 0, so the first line in (4.1) implics the sccond again.

To complete the proof assume that the first line in (4.1} does not hold. Then for some p € 5, there is
ané§ > 0 with

D+ 6 <Ey(N) —RH(p) = E,(\) — RE,(— log p)
= 2 wilE,(\) — RE,(—logp))
7 (4.6)
< sup (E,(N\)—Rmax{logj, logk})

L<j<met 1
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using Lemmas 1 and 2 and the fact that an average of terms is no larger than the largest term.

But E,,(N) increases with 7 if X does, so the sup cannot occur for j < k. Therefore J = k and the max
islogj = H(g;) so

D+é6< sup (E (N —RH(g)), (47)
k<j<m+1

and the second line does not hold, proving the Theorem. []

There is a corresponding theorem for the two other cost measures. It is more complex because the
analog to Lemma 2 for h is more complex than Lemma 2. The tightest results hold only on the sets Vi m and
Wi m and only when k& = 0 or k has the special form k = 5% — (b— 1) for some @ € N, Fortunately this
includes the important special cases V,,, and W,,, ata = k = 1, and Um = Vi, (as noted following (2.4))
ata =k =0,

Theorem 2.
Leta =k=0o0rleta € NT andk =b*— (b— 1) < m < oo. Then

(D) If m < b° then the constant length function N3) = a is in Ay, and is h-optimal on Uy, Vi, and Wiy, and
their nonempty subsets in (2.4). with h-costs (0, 1): ie.

E,(\) = a = h(p) on Uy,

(ii) Ifb* << m let \ € A,,,. Then

Ey(N) < d + rh(p) forallp € Wy, iff

Eg,(N) < d + rhm(g;) for max{1,b* — 1} < j < m+1;
Ex(N\) < d +rh(p) forallp € Vim iff

Ei;(N) < d +rh(g;) forb* < j <m+ L

Comment.  Since h(q;) > H(q;), a comparison of the last line of (4.1) with k = b* to the last line of (4.8)
shows that E5(N) << d + rh(p) on Viep—1y.m if E,(A) < d + rH(p) on Use, 1. so that in particular at
a=k=1andb =2 d¥r, Vi) < D*(r, Uh,m) and r*(d, V,,) < R*(d, Us,,). Note also that taking
k = a = 0 in the third and fourth Tine gives (.ondiuonsthat N has h-costs < (d r)yon Vg m = U..[I

(48)

The proof of Theorem 2(ii) requires a lemma analagous to Lemma 2, with the expectation of — log p
replaced by the expectation of the length function  of an optimal code for p.

Lemma 3.

Letp be in Vi, m >k > 0 and leta = |log(k -+ b — 1), a nonnegative integer. The np(l) << 1/k:
choosee > 0, < 1 such that € << 1/k — p(1). Let p € Ay, be optimal or nearly optimal ﬁ)rp salisfying
: E:{.u) < hn,-.(;i’)) + € T]I(.’H



EQJ'(“L) 2 ma:c{ a, hm(‘?y) }: (4 9)

Ep(u) > a.
Proofof Lemma 3. Ifk = 0 then @ = 0 and (4.9) holds trivially, by the nonricgarjvity of u and Ay, and
the fact that x4 is no better than optimal for ;. Thus assume k > 0,e > 0. The existence of i given €
follows from Proposition 1(ii) above.

In the b-ary tree of a prefix-free codeword sct for p with increasing length function u define the set S
of all leaves at level u(1) and all (leaf or interior) vertices at level #(1) 4+ 1 with no ancestor in S. Label
cach vertex in S with the sum of the probabilities of the codewords for which that vertex is a prefix. The
labels sum to 1 since S is a cutset. I.et V1 denote the leaf for the codeword ¢y at level u(1) with the largest
probability p(1), and let Ny denote the total number of leaves at level p(1).

No vertex V3 in S at level y(1) 4 1 has probability > p(1) < € since if it did. using V; for ¢; and
moving the subtree rooted at V; to a root at V; would leave a code with length function i’ and E,(y') <<
Ep(4) — € < hun(p). which violates Proposition 1(i). There are N; leaves at fevel #(1), with probabilities at
most p(1), so there are at most (64() — N;)b vertices at level u(1) + 1 in S with total probability at least
1 — Nip(1). Therefore :

(P(1) + Y0 — Ni)p > 1 — Nip(1) > 1 — Ny(p(1) +¢), so
(p(1) + ¢) > 1/(p#(+! — Ny(b — 1)), but (4.10)
1/(6*—(b—1)) > 1/k > p(1) + ¢

and N; 2> 1 sou(l) = a. Since u is nondecreasing, Ep(p) = a and E; (u) > a. Since u is no better than
optimal In Am for g5, qu'(u) Z h"m(q:r) l]

One additional Lemma is required in proving Theorem 2. A simple tree construction gives the values
of the sum of the codeword lengths in a codeword set in A or in A; which is optimal for the uniform
distribution g; in (1.7).

Lemmad.

LetL(7) = |log 7|. Then

h(g) = jhi{g) = [(G — V" DYL(F) 4+ b/(b — )]+ LGN, b0 < j « plIHL,

i Jh{g)) + 1 =1 (mod b—1), ) 4.11
Jh?n(qj) e . " 3 3 1 S_ 7 < m. ( )
Jh{q;) otherwise
Proofof Theorem 2
(i) The given A clearly attains E,(A) = a on V., = U,,,, and by T.emma 3 that result cannot be improved

on any subset of U,,,.



(i) By hypothesis m > 1. Assume first that pisin W ,, and let 4 be a length function in A, which is
approximately optimal for p so that () — € < h(p) = R,,(p). By Lemma 1 express () and E,,(u) as
averages of the expectations of A and u with respect to the g;. Then a derivation which parallels (4.6) using
Lemma 3 rather than I.emma 2 shows that if the first line in (1) does not hold then for some § > 0

d + ] < Ep(?\) . Th(p) g E},(}\) X ?‘(E;,(u) N 6)
= D wi{Ey () — r(Eqy(u) — €))
j (4.12)

< sup  (Eg(N) — r(max{a, hm(g;) } —¢)).
1<{j<<m--1

Fork = 0,a = 0 and the max in (4.12) is hm(g;). Fork > 0,a > 0 and h.(g;) is nondecreasing in 7
and by (4.10) is < a for 7 < b* — 1, which is < m. Thercfore in (4.12) the max is a for 7 << b% — 1, while
the expectation of X increases with j so that the sup of the difference occurs at J = max{l,b* — 1} and

d+68§—re<< sup (Eg;(N) — rhim(g;)). (4.13)
max{1,b0—1}<Tj<<m-1

Taking re << 6 shows that the second line in (ii) does not hold, so it implies the first line, proving half of (ii)
for Wk, . The converse implication follows from the fact that gy, is in W ,,, while for j << m the q' in (4.4)
isin Wi, m , as before, which completes the proof of the equivalence of the first two lines in (4.8).

If p is in V. ,, its first ¢ terms are a distribution in Wit for some ¢ << m - 1 so if the third line
in (ii) does not hold then (4.12) holds with m replaced by ¢ and h,,,(q,) replaced by hy(q) = h(g) for all
k<<t <<m+ 1. Sinceh(q) < hum(ge) changing by, to b for all § > 1 strengthens the incqualities, so if the
third line fails then for small e (4.12) gives

d<< sup (E, () —rmax{a,h(g)}) (< 4.14)
1< j<m41

But from (4.11), h(g;) < a for J < b°, so the max is constant while the expectation increases with 7 and the
sup cannot occur before 3 = b%, which gives

d< sup (E,(N\) — rh{g)), (4.15)
belg<<m--1

and shows that the fourth line in (ii) implies the third. The converse implication holds since g; is in Vie.m for
6 < j < m+ 1, which proves the equivalence of the last two lines in (4.8). []

A final Lemma produces a dramatic reduction in the number of uniform distributions which nust be
considered in evaluating #* and d* on Vi, and W, ,,, for large m.

Lemma 3.
Leta € N andm > b". Let L{j) = |log j|. Then

10



(i) The inequality E; (N) < d 4 rh{g;) holds for all § withb® << j << m —+ 1 iff it holds for all § < m with
J =8 forintegers > a and, if m < oo, at j = my and al j = m, wheremg = m — p and p is the
remainder of m — 1 (mod b — 1) (and thus is 0 ifb = 2 or if m is an integral power ofb).

(i) Letb = 2. Then the imequality E, (N) < d 4+ rhoy,(g;) holds for all j with2* — 1 < j < m + 1 iffit
holds for j = 2* — 1, forall j << m withj = 2° for some integer s = aand, ifm < o, al ] = myg and at
J = m, wheremg = b-(m—1),

(ii)) Letb > 2. Then the inequality E,,(\) < d + rhin(q;) holds for all 7 withd® — 1 < j < m + 1 iff
it holds for all j << mp withj = b — 1 orj = b* 4 b — 2 for some integer s = a and, if m < oo, at
J = myand at j = m, where now p is the remainder of m (mod b — 1) and

o {bL(m—” +b—2ifp < 1,}.

m — p otherwise

Proof. (i) Multiply both sides of the inequality by 7 and observe that in Lemma 4 dropping the ceiling
corners in (4.11) gives a piecewise linear lower bound to F(5) = Jh(g;). of slope f(j) = F(j)—F(j—1) =
L(5 — 1) 4+ /(b — 1). F(5) is cqual to this lower bound when j = 1 (mod b — 1) (and therefore for all
J whenb = 2, and for all j = b° for any b). If m << oo and p > 0 then another bounding linear segment
goes from m — p to m. The term jd is also linear in 7. But JE¢,(N) is just the sum of the first § values of the
nondecreasing function \, so it is convex . It follows that that sum les below Jd + rjh{g;) at intermediate
J if it does so at two points which lic on the same linear picce of the lower bound and attain cquality in that
bound, as do b and 7, and (when m << 00) “0"—1) and m — p, and (when p > 0) m — p and m.

The same argument holds for (ii) and (iii), but the piecewise linear lower bound to the right side of the
inequality changes.

(1) For b = 2, jh(g;) = jh{g;) + 1 for all § < m. The argument 2* — 1 is added to the set in (i) on
which the inequality must hold: the bound to Jhm(g;) has the same slope as in (i) and its value is increased
by 1. For m << oc, in the interval from mg to m the slope of the linear lower bound is reduced because
jhm(‘]j) = jh(‘?j) aty = m.

(iii) For b > 2, jh...(q;) = jh(g;) + 1 for j << m only when J =1 (mod b — 1). A careful inspection
of (4.11) shows that F(5) = jh,,,(g;) has two segments of linear lower bound per octave, of slopes f(7) =
F(G)—F(i—1)=s+1fromj =b1t0j = b+ b—2 and f(5) = s+b/(b— 1) fromj = b*+b—1
to 51 — 1. Those bounds are attained when 7 = 0 (mod b— 1) (and thus at all the arguments specified in
(iii) above except perhaps m). When p = 1 there.is a linear lower bound of smaller slope in the last octave
as in (ii): if p is neither I nor 0 then there is a lincar bound of larger slope from m — pto m as in (i). []

Unfortunately there is no similar result for D* and R*, because the function JH (g;) is strictly convex
U and cannot be lower-bounded by a set of one or two of its secants per octave. As a resuit some nicely
structured A-optimal length functions are given in closed form in Section 6 but there are few such results
for H-optimal length functions. However 7H(g;) can be bounded below by a set of its tangents, and the
algorithm given next is cqually fast in both cases although it suggests fewer closed-form results in the H-
optimal case. :
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5. A fast algorithm for minimax solutions.

Theorems 1 and 2 allow the reduction of the problems of finding minimax values of the various cost
measures on the various sets of distributions mentioned there to a common form. As a first step consider

Problem 1.

Find the smallest z (ory) > 0 for a given y (orz) > 0 such that there is an integer-valued nondecreasing
Junction N on integers < m -+ 1 which satisfies the set of inequalities

j
FE,(N =Y MNi) <zi+uF(f), k<j<m+l, (5.1)
1
and the inequality
m
D M) =6(\) < 1, (5.2)
1

and find a \ which attains that minimum.

Taking F(7) to be jH(g;) = jlog j or jh(g;) or jhm(g;). z to be d or D and y to be r or R, Theorems
1 and 2 show that the minimizing z’s and y’s include the values of D*, R*. d* and r* on the sets Si.m
mentioned in those theorems.

The sum on the left in (5.1) is convex | since A is nondccreasing. It follows that (5.1) holds iff

J J
D NG <24 yF(i) =2+ y Y i) for 1 < j < m+ 1, where
1 1
5.3
F) jFk)/E,  0<j<k, oo
M= : .
F(5), k<j<m+41,
)} =F{) —F§G—1), I<j<m+1L
Assume for the present that F' is convex | J as is 7 log 7 (and in the binary case 7h(g;)). Then f is nondecreas-
ing. Let A’ be permitted to take real values but satisty the other requirements on the integer-valued A in
Problem 1. Since the Kraft sum ()} is decreasing and convex U in the values of N, if N’ satisfies both (5.3)
and (5.1) for a given z and y it will be possible (o decrease z or y or N'(7) for some 7 unless there is equality
in all inequalities. Thus a pair (z, y) is minimal and that minimum is attained by a nondecreasing real-valued
function N iff

N = =+ y/(5), (5.4)

where the values of z and y arc related by



b = 2 i) (5.5)
1

Since N is less constrained than \, fixing z or y in (5.5) and finding y or z gives a lower bound to one
of the cost measures. The lower bounds in [3] and [4] on R*(0, Uy ,,) and D*(0, U,,,) arc proved there by
specializations of this analysis to F'(j) = jlogjandz = 0 ory = 1.

Solving (5.5) for z given y when F(5) = jlog j requires evaluating and summing m —k distinct terms.
Solving for y given z requires such an evaluation and summing for cach trial y: using a Newton-Raphson
approach, logn such evaluations are required to obtain an n-bit approximation to the lower bound, or
O((m — k) log n) steps in all. This is not an excessive amount of computation for small m, but becomes
noticeable in e.g. designing a codeword set to be used in representing all the integers whose standard binary
representation takes 36 bits. And the resulting A is not directly attainable, while the Huffman encoding of
the distribution p(5) = b9 is not easy to carry out for large m.

The solution of (5.5) is faster in the binary case if F(j) = jh(g;), since then by Lemma 4 the difference
function f takes only one value, ¢ 4- 2, for each octave of arguments, b << j << b* -+ 1, 50 only log m terms
need be summed. However the result still gives only a lower bound to #* or D* and does not give a length
function directly since the solution is not integer-valued.

An algorithm which solves Problem 1 as stated, to any desired accuracy, is almost as fast as the ap-
proximate solution in this special case. That algorithm requires solving a subproblem n times in order to
obtain an n-bit value of one of the cost measures d*, r*, D* | R* on one of the sets Sk m in theorems 1 and
2. Problem 2 is the subproblem.

Problem 2.

Let g be positive and nondecreasing on the positive integers < m—-1. Find an integer-valued nondecreas-
ing function \ on that domain which minimizes the Krafi sum o(N) in (5.2) subject 1o the constraints

2N <300 =Gl frl <j<m 1, (5.6)

and find the value of that minimal sum.

To solve Problem 1 for an F which is convex U and a given y (or ) one first solves Problem 2 for the
function ¢ = z + yf and the sum o(N), using the f given by (5.3), the given y (or z) and a trial value
of z {or y). A geometric search then replaces the trial z by an n-bit approximation to the smallest z with
o(h) < 1in n solutions to Problem 2. (The variation of o(N) with the trial values may not be smooth
enough Lo give the more rapid Newlon-Raphson convergence.,)

To solve Problem 2 given g. note that the first sum in (5.6) is integer-valued and convex lJ and is
thercefore the supremum of a set of integer-valued Tinear functions
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SN0 = sup{ali) [EEN),  0<j<mel, 5.1
1

where a;; has integral slope & and ax(5) < G(5). Since o(\) in (5.2) is convex | J and decreasing in the values
of N, o(\) is minimized by choosing each ay, to be as large as possible subject to those constraints.

An integer-valued line of slope & lying below the convex | function G for arguments << m —+ 1 comes
no closer to G than it does at its "tangent” argument j = ¢(k), where

t(k) = min{m,inf{j E N[k < g( + 1)} }, 0<k< oo, (5.8)

and the largest such line takes the value |G(¢(k))] at that point, so

ax(s) = (7 — t(k))k + | G(¢(k))]
= jk — s(k), where (5.9)
s(k) = ki(k)} — | G(t(K)))-
The line a; lies above ax; until they cross at an argument ; = j.. Setting ar(fx) = ar4-1(7k)
determines j and the value of the distribution function ¢, of \:

g = s(k + 1) — s(k),
on(k) = {7 EN | NJ) =k} = jx — Gk (5.10)
= s(k + 1) — 2s(k) + s(k — 1).

Theorem 3 summarizes the results.

Theorem 3.

Let g satisfy the requirements of problem 2. Then ¢y, in (5.10) is the distribution Junction of the unique
integer-valued nondecreasing function N which solves the problem. The minimum sum in (5.2} is

o(\) = i b—M) = i (k) E. (i)
k=0

Jj=1

Given any g satisfyving the requirements of Problem 2, Theorem 3 solves that problem in O((g(m) —
9(1)) log m) steps. For by (5.8) and (5.9) (k) = s{k) = 0ifk < g(1). and if k > g(m) then t(k) = m so
s(k) is linear in m and the second difference ¢(k + 1) = 0. Therefore it is only necessary to find the value
of ¢(k) when g(1) << k < g(m), a total of << g(m) — g(1) values each < m. Since ¢ is nondecreasing, at
worst a binary search finds each value of ¢(k) in O(log m) steps. The total number of steps required to find
an n-bit solution to Problem 1 by binary search is therefore at most O({g(m) — g(1))nlog m).

The computation is even faster for the g functions needed (o evaluate the minimax values of the relative
performance measures d*, r*, D* and R* on the sets Sk, in Theorems 1 and 2. For the function ()
in those cases can be inverted (o give the range of 7 values for which g(t) << 1. and (%) can therefore
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be evaluated in O(1) rather than O(log m) steps. And in all these cases g(m) — g(1) = O(log m/k), so
Problem 2 can be solved in O(log m/k) steps and an n-bit solution to Problem 1 found in O(nlog m/k)
steps. For the h-solutions, if the given z or y is rational the solution is also rational. always when m is finite
and ofien when m = oo, in which case an exact solution can be found with finite computation. The details
are given in the appendix. A minor extension is required when the relevant F is not convex {J. In this more
general case the function F” must be defined not by (5.3) but as the largest convex |J function which lies
on or below the point (0, 0) and the set of points (5, F(j)) fork < j < m -+ 1. Then f is defined as
the difference of that F” as in (5.3) and g(5) = z + yf(5) as before. When F(3) is 7h(g;) or jhm(g;) the
function F is also the convex hull of the smaller set of points which are the intersections of the segments of
the piecewise linear lower bounds in Lemma 5, at which those lower bounds are attained, and its values at
intermediate arguments can be computed by interpolation between its values at those intersections.

6. Some minimax optimal cost pairs and distribution functions.

It is not feasible to give values of all four of the minimax cost measures d*, D* r* R*in'(23)onall
three of the sets Ug,m, Vi,m,» Wim in (2.4) as functions of the real parameters d, D, r, R and the integer
parameters b, k, m. I present here some closed form and some numerical results for the four cases in which
the argument d, D, r or R is equal either to 1 or 0, mostly for b = 2.

6.1 Results for the absolute measure d*(0, S) = D*(0, S).

Codeword sets which are minimax optimal for the absolute measure are well-known. Since N € A, is
nondecreasing, if p € U, then E,(A) < E,,.(N). 80 gy, i8 the worst distribution in any subset S C Unto
which it belongs. Thus

Proposition 3.

IfSn C U, and gy, € S, p € S, then E(\) <E, (N, so

d*(0,S,,) = D*(0, Sp,) = h{g,). (6.1)

1t follows that d*(0,5) = oo on U, V and W,

The exact value of h(g,,,) can be found from Lemma 4. Since H (gn) =logmand H < h < H + 1,
0 < h{gm) — log,m << 1. The difference is always quite small at & = 2, but can approach 1 for some
values of m when b is large. Let

Yb) = sup (k(gy)— log,m). (6.2)

meN+

For b = 2 a calculus maximization shows that 7(2) = 1 —log,e + log,log, e = 0.086. However
1) = h(g) — H(g) = 1 — log, 2, which approaches 1 asb — oco.

6.2 Results for the difference measures d *1,8),D%1,9)
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The problem of finding the minimax optimal length distributions which attain integral values of the
difference measure d*(1, S) for various S — i.e. of finding N such that E,(\) — h{p) < d on S for integral
d — has optimal solutions-with simple structure for a number of parameter values. I first give optimal costs
in the binary case, and then describe the Iength functions that attain those costs and some length functions
for larger alphabets.

Proposition 4.

Letb = 2. Forintegerd > 0 letm = m(d) = 22°7°—4, Then

d*(1, Up,) = d*(1, Va,) = d*(1, Wyp—)) = d. (6.3)

It follows that d*(1,8) = co on U, V and W. [

Proposition 4 implies that for b = 2 there are optimal codeword sets with d = 0 on Uy, V, and W,
The first contains a single codeword, the empty string, of length 0. The second contains the two one-bit
codewords. The third has three codewords, one of length 1 and two of length 2.

For integral d > 0 the structure of the length functions which attain the costs in (6.3) is most easily
shown by giving not N itself but rather its distribution function ¢\ defined in (5.9), which gives the number
of codewords of cach length.

Ford > 0.b = 2 and integer a > 0 the distribution function o which is zero at arguments << d + a
and which at argumentsd + a,d +a + 1, . . . takes values

20 g @ ontLgatz - oX e s (6.4)

is minimax optimal on Vi ,, for m = m(d) = 2™ +e—4andk = 22 _ | for integer a. By Theorem 2
and Lemma 5 that result follows from the easy computation that E,N=d+4sforj=banda <s<<
m(d). Note that Vi,m reducesto U, whena = k = 0 and to Vmwhena =k = 1, so (6.4) covers the first
two cases in (6.3).

On the smaller sets Wj. ,,, of distributions which assign strictly positive probabilities to all m messages,
forb = 2, a > 1 and posilive integer d = d*(1, Wi ). the optimal distribution function is zero at
arguments < d + a and at argumentsd +a,d +a -+ 1, ... takes values

20— 1,1,25 20 ook || 930 Rdes o2l 5 yaj b3 L o (6.5)

and m = m(d) = (142~ (0=)22"P*+e—4_ | Iy particularatk — a = 1, mid) = 222 |,
which covers the last case in (6.3). Again the result may be checked by using emma S.

For an arbitrary alphabet size b I give only the distribution function which generalizes (6.4); its values at
argumentsd + a,d +a -1, ... are

b, (b— 2)b%, (b — 1)%%, (b — 1)%°+1, ... (b — 1)2t+He—2 pt-ra—l (6.6)
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and can be shown by Lemma 5 to be optimal on V; ,,, with costs (1, d) ford € N ifk = maz{0,b* — (b—
1)} forsomea € N,a+d > 0, = (b/(b— 1)%(b% — 1) is an integer (as it is whenever d = 0
(mod b — 1), and thus for all d when b = 2) and m = m(d) = bt+¢ = pa--t"+—62)/(b—1,

The algorithm in Section 7 finds minimax optimal length functions which attain positive integral (and
other) values of D = D*(1, S, ,,,) forallk € N, and D* takes the same value whether Sk.m 18 Ug my Viem
or Wi m. by Theorem 1. The length functions optimal for D* have less regular structure than those just
given for d*: I give only the distribution function

1,0,2,1,4,4 (6.7)
for a set of 12 binary codewords which attains D*(1,Up) =1.

For some values of k the performance of the length function optimal for D* on Uy ,, can be bounded
without finding it explicitly. It follows from (6.2) above and the comment after Theorem 2 that for a ENT,
k = b%and k' = b*— (b— 1) and for the length function A defined by (6.6), which is d *-optimal for Vi pm,

a*(r, Vir,m) S D¥r, Upm) < sup (Ey(N) — rH(p)) < ry(b) + d¥(r, Vier m). (6.8)
pEUk,m

(6.8) not only bounds the performance of the length function optimal for D¥ but shows that the \ of
(6.5), which is not optimal for D*¥, satisfies those bounds. By (6.2) the bounding is quite tight at b =
2, v(2) ~~ 0.086. Computation using the new algorithm shows that the upper bound 7(2) to the difference
D*¥(1, Up,m) — d*(1, Vi) from (6.8) is in fact approached, e.g. at m = 25, d*(1, Vim) = landatm =
213 d*(1, V,,,) = 2. while the lower bound 0 to that difference is attained, e.g. atm = 24, d*(1,V,,,) = 1,
atm = 2'%,d¥(1,V,,) = 2 and atm = 218 d*(1, V,,,) = 5/2.

6.3 Results for r*(1, S), R*(1, S)

The following revised version of Proposition 2(ii) gives optimal values of r*(d, S) and R*(D, S) for
b=2whenSisU,VorWandd =D = 1.

Proposition 5.
Letb = 2. Then there are length functions \, N\, N, u, u' such that

E,(N) < 14 (207/160)h(p) = 1.29375h(p) on U,
Ep(p) < 1+ 1.3H(p) on U; '
E,(N) < 14+ (5/4)h(p) = 1.25h(p) on V,

Ey(w) < 1+ 1.26H(p) on Us o;

E,(N) < 14 (967/800)h(p) = 1.20875h(p) on W.

Comment. The result that I£,{u) < 1+ 1.3H(p) on U for the best w for U is remarkably good compared
both to the hest possible result () << 1+ (1 + ) {p) allowed for that u by Proposition 2(i) and to the
result in Proposition 1 (iii) that I5,(u) > (1 — ) ~+ H(p) for some p in U when g is the best length function
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for p alone. At b = 2 the coefficients 207/160, 5/4 and 967 /800 are best possible and 1.3 and 1.26 almost
best possible, but the best possible coefficients are smaller for larger b. 1]

The length functions w, &/, N, and N are neither simple to describe nor illuminating. However the
length funtion for the N which is h-optimal on V has some structure. The sequence of values of its
distribution function ¢y at arguments in N is given in (6.9). After the first five values each of the
bracketed sequences of five terms is multiplied by 16 to get the next such sequence, so the value sequence is
quasigeometric.

0,2,0,0,2,{4,6,10, 16,24},

{64, 96, 160, 256, 384}, (6.9)

{1024, 1536, 2560, 4096, 6144}, . ..
Using the illustrated structure it is casy to calculate that the Kraft sum is 31 /32. The distribution function
with intitial values 0, 2,0, 1, I rather than 0,2, 0,0, 2 as in (6.9) has a Kraft sum of 1 and has better perfor-
mance for almost all users, but is no better in the limit of large k for a user with distribution gr.. [t is also easy
to check that the given ¢y satisfies the equation E, (N) = 1 + 1.25h(g;) for j = 2* and all k > 1, which
proves the minimax optimality of N using Theorem 2 and Lemma 5.

6.4 Results for the ratio measures r*(0, S), R*(0, S).

In the case of the ratio measures it is easy to sec that the cost pair (d, r) hasd > 1 for any codeword
set universal on U, and indeed on any set which includes both the degencrate distribution g; and some
nondegenerate distribution, e.g. g2, so r¥(d, Un) = oo on Uy, ifd << 1 and m > 2. There are codeword
sets h-optimal on V,,, and W,,, withd =0 for2 < m < o, however. T give the results for m = oo first
and then describe some of the behavior for smaller m.

Proposition 6.
Letb = 2. Then

r*(0,U) =
r*(0,V) = 253/160 = 1.58125, (6.10)
r*(0, W) = 559/385 = 1.451948...
Atm = 2 the initial value #*(0, Vo) = 1. There is then a plateau, with r¥(0, V) =-3/2 for 365
m << 53. A codeword set C optimal for V55 has a length-distribution function ¢,(7) with value sequence

1,1,0,1,1,4,4,4,16,11, 10, (6.11)

Minimax optimal length functions for 3 < m << 53 are obtained by dropping all but the m shortest
codewords from C. C itself allains equality in the Kraft nequalily (1.1), and when some words are dropped
others can be shortened to maintain that equality: however the resultant codeword set. which will be better
for some users, will be no belter for the worst user than the shortest m words in C: the minimax value of
E,(A) remains at 1.5 on U,,,. The ultimate value r*(0, Vin) = 253/160, not much larger than 3/2, is first
attained form =5 2'7, Form > 2'7 and r*(0, V,,,) = 253/160 the initial values of ¢, are

18



1,1,0,1,1,3,1,8,8, 8,30, 25, 41,98, 78, . .. (6.12)

The values r*(0, Wy) = r*(0, W;) = 1 and there is a plateau with r*(0, Wp) =4/3forll < m <<
29. The ultimate value r*(0, W,,,) = 559/385 is attained for the first time at m ~~ 2°°. An optimal C for
Wag has a distribution function whose value sequence is

1,0,1,2,3,4,6,12. (6.13)

- Again dropping all but the shortest m words from C gives a minimax optimal set on W,,, for 11 < m <<
29,

The measure R*(0, S) diverges for § = U,,, V,,, or W,,, since H (p) is not bounded away from 0 on
those sets. However there is a bounding relation between r¥(0, V,,,) and R*(0, Up ). An argument like that
used in (6.8) shows that if A is r*-optimal on Viimandk = b* k' = b* — (b — 1) for integer a then

™(d, Vir,m) < R¥d, Up,m) < il ((Bx(\) — d)/H(p))

< sup (1+4~(0)/H(p))r*(d, Ve, m) (6.14)

PEUkm
= (1 4+~(8)/a)r*(d, Ver,m)

since logk = a is the minimum of H(p) on Uk,m- In particularat b = 2 and k = a = 1, (6.13) gives
R*(0, Up,m)/r*(0, Vi) << 1.086 for all m, and numerical results for m = 29, 1 <C 7 < 100 give a tighter
bound of 1.016 to that ratio for those values of m.

It is not feasible to give results equivalent to Proposition 6 for all values of the alphabet size b. In
general the value of r* decreases as b increases. Table 1 shows that decrease for r¥(0, V): there is a firm
lower bound r*(0, V) > 4/3 which is approached as & — oo: the proof of the bound is left as an excercise
for the reader.

TABLE 1
base b r*(0, V)
) 1.58125
4 15
8 1375
16 1.36914..
£Y) 1.34619..
| 256 | 13359375
1024 | 133398. |

Itis also not possible to explore fully the behavior of the ratio measures on S ,,, as a function of k. For
m = 32 and b = 2 Table 2 compares the valuc of R¥(0, Uy 35) to Rissanen’s lower bound to that quantity,
for those k values considered in [3].
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TABLE 2
k R*(0,Up32) | Rissanen
2 1.50 1.45
4 1.33 127
5 1.29 1.23
6 1.23 1.20
12 - 116 111

Clearly R*(0, U, ) = h(gn)/logm — 1 as m — oo, and as noted in Section 3 the existence of

asymptotically optimal codeword sets proves that R*(0, Uy o) — 1 ask — oo.
Appendix: Specific algorithms for R*, D*, r* and d*.

A.1 Algorithms for R* and D* .

The function F* required to compute D* and R* on S, is jlog j. The corresponding convex {J hull

F'in (5.3)is

y  logk, 0< i<k,
Fl(j) =47 8% ==
2 {Jlogj, k<j<m+41,

and the difference function f in Problem 2 is given by

1) = {logk, 1<i<k
~ lilogs— (G —Dlog(f —1), k<j<m+l.

Ifk = mthen f(j) = logk forall j << m + 1.1f2 < k << m then the inequalities

7log(l +1/5) <loge < (5 + 1)log(1 4 1/5)

give

logk < /(j) < logje < f(j 4 1) < logme, 1 < j < m,

so that the number of evaluations of ¢(k) required is at most

g(m) — 9(1) = R(f(m) — /(1)) < Rlog me/k,
and by (A.4) and the definition (5.8) of t(k),
D+ Rlogje <k <D+ Rlog(j+ 1)e
=97} <k <g(j +2)
=7 <tk)<j+1,
using D and R for z and y in Problem 2.
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Using precomputed values of g(1) and g(m), the following algorithm finds t(k) and makes at most one
evaluation of g(7) for some j so it requires O(1) steps rather than the O(log m) steps required by a binary
search.

if k < g(1) then return 0;
ifk > g(m) then return m; AT
t: = [b6—DVR |, (A )
if ke < g(t 4+ 1) then return ¢ else return ¢ 4+ 1.

The first two lines follow from the definition of t(k) in (5.8), and the rest from (A.6). It follows that

n-bit values of D¥(S;, ,,) and R¥(S; ,,) can be computed in O(n log me/k) steps. (Note that the algorithm
terminates in its first or second line when R.= 0 and g(1) = g(m) =D)

A2 Algorithms for * and d* on Vj, ,, for k = b — (b — 1).

The function F(5) required to compute d*, r* and related cost measures on Vk,m is jh({g;) in (4.11), and
by Theorem 2 the relevant value of the parameter k in Problems 1 and 3 isb*. - -

By Lemma 5 the corresponding lower convex hull F* (4) is equal to F(5) for 5 in J, where for finite m

J={0,6%b""1, ... m—p m}and

| (48)
p = remainder of m — 1 (mod &b — 1),

and the other values of F” are given by linear interpolation between neighboring values in J: the difference
function f in Problem 2 is

a. 1<5;<¥,
Y=L - +b/—1), F<j<m—p+1, (A.9)
F(m)—Fm—0))/p, m—p<j<m+l

Using d and r for z and y in Problem 2 the value of t(k) in (5.8) is given by the following algorithm:

ifk << g(1) then return 0;

ifk > g(m) then return m;

ifk > g{m — p) then return m — p;
ifk < g{b” + 1) then return b%;

w: = [(k—d)/r —b/(b— 1)];
return b%,

(A.10)

which runs in O(1) steps,. and al most g(m) — (1) ~ rlog m/k such evaluations are required (0 cover the
imteger slopes in the range of g. As in (A.7) the algorithm terminates in its firs( or second line whenr = (
and g(1)=g(m)=d.

A.3 Algorithms for d* and 7* on W, for k == p% — (b—1).
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The function F'(5) required to compute d*, r* and related cost measures on Wi, m is 7hm(g;) in (4.11),
and by Theorem 2 the relevant value of & for use in Problems 1 and 3 isk — 5% — 1.

Forb = 2, by Lemma 5 the lower convex hull F'(5) is equal to F(5) for j in J, where

J={0,2°—1,2%2T1 _ mgm},
my = 2-m—1) and (A.11)
L(5) = [logy(5)].

The difference function £ in Problem 2 is

a Isyp=52"—§

y_JetL i=2<m+1,
= 2 . A.12
Ll Vi 2 << mot 1, e
(F(m) — F(mo))/(m —mg), mo<j<m-+1
Using d and r for z and y in Problem 2 the value of t(k) in (5.8) is given by the following algorithm:
ifk < g(1) then return 0;
if k > g(m) then return m;
ifk > g(my) then return my; (A.13)

ifk < g(2°) then return 2% — 1;
Cw: = [(k—d)/r —2];
return 2%,

For b > 2 the lower convex hull F¥ of F* is more complex. By Lemma 5 F¥(5) = F(5) for j in J, where

J={0,b°— 1,0+ (b — 2), p*+! — Lo 4 (6—2),...,mp,m},

L(m—1) L
mﬂ:{b 2 prgl,}’and

(A.14)
m — p otherwise

p = remainder of m (mod b — 1),

and its values at other arguments-are given as before by interpolation. Then the function f in Problem 2 is

a, ' 1<ji<br—1,
S OEat b < < nlj) <mlm— 1) 41,
TD=11G) 06— 1), r<nG)<j<m—p41, @)

(F(m) — F(mo))/(m —my)), mo<j<m + 1.

The following algorithm finds £(k) in O(1) steps, using d and r for z and y in Problem 2.
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if k < g(1) then return 0;

if £ > g(m) then return m;

if k > g(my) then return my;

if k < g(b°) then return b — 1; (A.16)
v=(k—d)/r,w:=[v—1];

ifv—w> 1/(b— 1) then return b* — 1;

elscreurn b1 4+ p— 2.
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