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Abstract: The Recursive Decol_'nposition Ordering, a simplification ordering on terms,
is useful to prove termination of term rewriting systems. In this paper we give the
definition of the decomposition ordering and prove that it is a well-founded
simplification ordering containing Dershowitz's Recursive Path Ordering. We also
show that the Recursive Decomposition Ordering has a very interesting incremental
property. In the second paper, we propose two well-founded orderings on multisets
that extend the Dershowitz-Manna ordering. Unlike the Dershowitz-Manna ordering,
ours do not have a natural monotonicity property. This lack of monotonicity suggests
using monotonicity to provide a new characterization of the Dershowitz-Manna

ordering. Section 5 proposes an efficient and correct implementation of that ordering.

Résumé: L'ordre récursif de décomposition est un ordre de simplification utilisé pour
prouver la terminaison des systémes de réécriture de termes. Dans cette
communication, nous donnons la définition de I'ordre récursif de décomposition, nous
prouvons qu'il est bien fondé, qu'il est un ordre de simplification et qu'il contient
I'ordre récursif sur les chemins de Dershowitz. Nous montrons aussi que l'ordre
recursif de décomposition a une intéressante propriété d'incrémentalité. Dans le
second article, on propose deux ordres bien fondés qui étendent l'ordre de
Dershowitz et Manna. Ces ordres ne vérifient pas une propriété naturelle de
monotonicité que nous définissons. Aussi cela suggére d'utiliser la monotonicité
comme une nouvelle caractérisation de I'ordre de Dershowitz et Manna. La cinquiéme

section de cette note propose une implantion efficace et correcte de cet ordre.

Key-words: Termination, term rewriting systems, equational theories, well-founded
ordering, simplification, multiset ordering.
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Abstract: The Recursive Decomposition Ordering, a simplification
ordering on terms, is useful to prove termination of term rewriting
systems. In this paper we give the definition of the decomposition
ordering and prove that it is a well-founded simplification ordering
containing Dershowitz’s Recursive Path Ordering. We also show that
the Recursive Decomposition Ordering has a very interesting
incremental property.

Résumé: L’ordre recursif de décomposition est un ordre de
simplification utilis& pour prouver la terminaison des systémes de
réécriture de termes. Dans cette communication, nous donnons la
définition de l'ordre récursif de décomposition, nous prouvons qu'il
est bien for_mdé, qgu’il est un ordre de simplification et qu'il contient
I'ordre récursif sur les chemins de Dershowitz. Nous montrons aussi
que l'ordre récursif de déecomposition a une intéressante propriété
d’incrémentalité.



1. Introduction

Term rewriting systems are an important model for non deterministic computations [21].
Therefore, methods for proving termination of term rewriting systems can provide a method for
proving termination in other areas of programming. Term rewriting systems have also become a
major tool in many fields related to programming, like abstract data type specifications (e.g., to
establish their completeness by the Knuth-Bendix superposition procedure [13, 6]), program
verification, theorem provers, and decision procedures for equational theories [1, 5, 24]. The
Knuth-Bendix completion algorithm completes a non confluent set of term rewriting rules into a
confluent (uniquely terminating) one and is used to prove the equivalence of abstract data type
specifications via consistency of theories [3, 8, 18]. The Knuth-Bendix compietion algorithm requires
a universal method for proving finite termination, as in Huet's proof [7]. In other words, if the
termination of the final set of rules is proved using a noetherian ordering, this ordering must be
sufficient to prove the termination property of all the intermediate sets of term rewriting rules
generated by the algorithm. Unfortunately, Huet and Lankford have shown that the finite termination
of term rewriting systems is undecidable [9]. Thus, it is impossible to find a universal procedure to
check for finite termination of any system, and people have been forced to look for specific

techniques (see [10] for a survey).

In that vein Guttag, Kapur, and Musser [4] proposed a method based on superposition of terms
which is similar to that used by Knuth and Bendix to prove confluence. Here we are mostly interested
in simplification orderings. These are orderings compatible with the structure of terms and which
have the subterm property. Dershowitz established that simplification orderings are powerful tools for
proving termination and proposed recursive path-ordering [2] after Plaisted’s recursive path of
subterms ordering [20]. These methods use an ordering on the set of function symbols. In [15] and
[16] a new ordering was used to prove simply the well-foundedness of the recursive path ordering
when the ordering on function symbols is total. In [22] and [23] it was shown that a similar ordering
could also be defined when the ordering on function symbols is only partial, capturing easily the case
of terms with variables. This ordering is a well-founded simpilification ordering which has the
additional useful properties. First, it contains strictly the path recursive ordering. Second, it is
monaotonic with respect to the ordering on the function symbols, i.e., if one increases the ordering on
function symbols then one increases the ordering on terms. We call the third major property
incrementality: it is easy to find an expansion of the ordering on the function symbols when a given
pair of terms needs to be ordered. This idea might be used in the Knuth-Bendix completion algorithm
to build the required universal ordering in an incremental and automatic way as the set of rules is
completed.



In the second section of this paper we give classical definitions and notations about terms and
orderings [10]. In the case of a total ordering on function symbols the decomposition ordering is
based on a decomposition of terms into three parts which are compared lexicographically [16]. In the
case of a partial ordering on function symbols these decompositions are quadruples, and, instead of
one decomposition for a term, a set of decompositions is associated with each term and comparisons
of sets of decompositions provide the decomposition ordering [22, 23]. The third chapter is devoted
to extending these concepts to ground terms (i.e., terms without variables). In Section 5 and
Section 6 the decomposition ordering is proved to be a simplification ordering and a well-founded
ordering. In Section 7 we prove that the decomposition ordering is more powerful than the recursive
path ordering. An extension of the decomposition ordering to non-ground terms is given in Section 8.

The incrementality property is illustrated in the conclusion.
2. Orderings and Terms
2.1 Set and Multiset Ordering

An ordering << on a set E can be extended to the set SRE) of sets on E by:

S << Tiff S=Tand V x (x€Sandx¢ T)= Jy (y€ T and y¢ Sand x< y).
Intuitively, a multiset on E is an unordered collection of elements of E, with possibly many
occurrences of given elements. A multiset can be seen as a mapping E—N where N is the set of
natural numbers. Let AG(E) be the set of all the finite multisets on E, i.e., the multisets M such that

their support {x€E | M(x)#0} is finite. The empty multiset { } is the multiset such that { }(x) =0, for

‘ all x in E. A set is a particular case of a multiset such that S(x) is 0 or 1. Usually multisets are written
as lists {x,,....x} with a straightforward interpretation. If M is a multiset, x€M means M(x)> 0. An
ordering on E can be extended to multisets [11] by

M<< N iff M#N and Vy ([N(y) < M(y)] = [(3 x€ E) y<xand M(x)< j-N(x)]).
The extension to sets is a particular case of ’Ehe extension to multisets. If the ordering is well-founded

on E the extensions are well-founded on AL(E) and SHE).

2.2 Terms and Occurrences

In this paper we will deal with terms with fixed arity function symbols. But all the results can
easily be extended to varyadic terms. Suppose a set F of function symbols and a function ar:F— XNis
given. T(F,X) is the set of terms on F with variables in X. s€ T(F,X) is either a variable or of the form
f(s4,..,8,) with f€ F such that ar(f) =m and S4s--48, @re in T(F,X). T(F,X,0J) is the set of box terms. A
box term is either the symbol OJ or has the form f(s4,.--s8,) for f€ F such that ar(f) = m and there exists
i€[1..m] with s5,€ T(F,X,00) and, for i=j, sjE T(F,X). Intuitively, T(F, X, O) is the set of terms with one



terminal occurrence of [J. The symbol [ may be viewed as the empty term. It is used to deal with
function symbols having fixed arities. If X is empty, we will write T(F) and T(F,X) instead of T(F,J) and

T(F,X,0) and we call these terms, ground terms.

We assume by convention that ar(J) = ar(x) = 0 for all x€X. Terms may be viewed as labeled
trees in the following way. A term is a partial function of .Nt (the monoid over N with ¢ as empty
word) in F U X, such that the domain or set of occurrences Occ(t) = {u€ .Nt | t(u) is defined} verifies:

(1) € € Oceft)

(2) ui€0cc(f(...4;...) iff Vi 1<i<ar(f) = u€O0cc(t).
If v and v belongs to N* then u/v is a w€N® such that vw=u. In the following, |t]| =
| {u€0cc(t) | t/u=0O} | where t/u is the subterm of t at the occurrence u. tfu+—t'] is the term obtained
by replacing t/u by t' in t. We define the set of paths of s as the set Path(s) = {pE€Ccc(s)|ar(s(p))
= 0}. Given a path p, the set of prefixes of p in s is Prefix(s, p) = {p€0cc(s) |u<p} if s/p#O and
Prefix(s, p) = {p€0cc(s) |u<p}if s/p=0. Given a path p and a prefix v of p, we define suce(u, p) as
ui if ui€Prefix(s, p) and succ(p, p) = oo, we will state t/c0 = [, thus t/succ(p, p) = O. A substitution
is a mapping o: X— T(F,X) such that o(x) = x except for a finite number of variables x€X. It can be
extended to a mapping o: T(F,X)— T(F X) by a(f(s,,....s ;) = f(o(sy),...,0(s ).

2.3 Simplification Orderings

An ordering < on T(F,X) is a simplification ordering if it has the properties:
Subterm Property: t—=< f(...,t,...).
Compatibility Property: t,<t, = f(...,t,...) < { (P HO0EY B

Dershowitz’s Theorem [2]: A term rewriting system R = {g, = d, | i€ 3} with a finite number of
symbols is finitely terminating if there exist a simplification ordering < such that for all i in J and for all
substitution o, o(g;) > o(d,).

3. Decomposition Ordering for Ground Terms
We define first the concept of elementary decomposition of terms in T(F, O).

Definition 1: Given a term t, a path p€Path(t) and an occurrence u€Prefix(t,p), the elementary
decomposition df(t) of ¢ in u along the path p is the quadruple <g, t’, 7, t'*> where

g=t(u),

t'=t/succ(u,p),

Tis the multiset {t/uj | 1<j<ar(t(v)), j#succ(u,p)}

t” is the "box term" tfu«0].



In the following, we never refer to the elementary decomposition in u where t/u =, thus we do not

define such a decomposition.

Example 1: Let

t nd s =

e i
| |

r r r

then d3'(1) =<g; T : {a}; s>.
r

Assume now that a partial function Q: T(F)X.N"jr—ﬁ.P(J\"‘:_), called an occurrence choice, such
that Q(i,p) is defined if p€Path(t) and such that Q(i,p)CPrefix(s, p) is given. We extend the previous
definition to the set Q(t,p) and we obtain the set d"(’)(r) (or more simply dP(t) if this is not ambiguous)
that we call path decomposition of t along p:

di ) ={dq(n) | u€Qlt.p)}.

Note that for any Q and any p, d%(l:l) is the empty set.

In the same way, assume a partial function P:T(F)—>@(.N‘:), called path choice, such that
P(t)CPath(t). We extend once more the definition and obtain a set of sets of decompositions, dg(r) (or
more simply d(t) if no ambiguity on P and Q), that we call a decomposition of t:

dg(t) = {0 | pEP(1)}.

Example 2: If t is chosen as in Example 1 and if P(t) ={111,3}, Q(t,111) = {1,111} and Q(,3) = {¢} then
f

mama

r e O
r

.

f g ga g g
dit) ={{<g;m; {a}; Oga>,s1)<; O0; { }; >} {t a; {ma; ma}; O},
roor

We are now able to define the decomposition ordering. Notice that in addition to the ordering
<F on F, this definition uses two other orderings %Qp and <QP. %OP is an ordering on T(F) and <QP
is an ordering on decompositions which depends upon the choices P and Q. In order to simplify
notations, the multiset extension of <Qp and %Qp will be written <<QF> and %%op instead of

<gp<qpand %QP&QP'



Main Definition: Given a partial ordering < on F, a path choice F and an occurrence choice Q, we
define the recursive decomposition ordering (or more simply decomposition ordering) % in the
following way:
; P P
s€pt i dRl) Kgp<Kge dB)
with
db(s) =<f; 5" £, ' <gp Al =<gt; T
iff in a lexicographical way:
(dec.1) f<.g
(dec‘z) d%/SUCC(U,p)(S!) <<Qp dqQ/SUCC(V,q)(rl)
(dec.d) ¥ T
(dec.4) di(s”) <<qgp di(”).

Remarks: 1) In general, we will have p€ P(s), u€ Q(s, p), g€ P(t) and g€ Q(t, g). Notice, however, that
df(s) <ap dd(t) has a meaning although p&Path(s) - P(s), u€Prefix(s, p) — Q(s,p), g€Path(t) - P(t),
vEPrefix(t, g) - Q(t.q). We will use this fact in further proofs.

2) Cases (dec.2) and (dec.4) in the main definition do not use a path choice, because the path
is fixed. Therefore it is not necessary to extend the concept of path choice for terms in T(F,[J).

Full examples are given in Appendix.
Theorem 1: QQP and <QP are strict orderings.

Proof: We prove the property for <gp- It will be true for &QP which is a multiset extension of
<QP. The proof is easily done by induction, since the extensions of orderings as lexicographical

ordering or set ordering preserve together irreflexivity and transitivity. |
4. Choices in Decomposition Ordering

The choice of P and Q in the previous definitions seems to be a main point. In this section, we
study two possible choices: the fi'rs’( one consists of taking all the occurrences and paths, the second
one consists of keeping only the maximum occurrences and paths (in a sense we will make precise
later). The first one provides easier prcofs and the second one leads to more efficient
implementations, but they define the same decomposition ordering.



4.1 Entire Choice

Here we define two choices P, and Q,. They are called the entire choice because they
correspond to choosing all the paths or occurrences in the term. P, is defined by P,(t) = Path(t).
Q, is defined by Q,(t, p) = Prefix(t, p). We will write d2 and d for the associated sets and sets of

sets, instead of d‘é and dg*. The associated ordering will be written %** and <,,.
* *

In the following, we will use also the ordering <*p and %*P associated with the choices Q,
and P.

4.2 Maximal Choice

We define here the maximal choice which corresponds to selecting from among the paths and

the occurrences the maximal ones.

Definition 3, Maximal Paths: The set Mp(t) of the maximal paths of atermt = g(t,,....t) is defined by:
(1) Mp(t) = eifn =10

(2) Mp(t) = U iMp(t)
i€d
such that T={t, | i€} is a minimal and complete set of maximal elements of S={t,,....t }.i.e.,

Minimality (VtET)(VLET) (1€, ,1).
Completeness (Vfi€S)(":Iri€T) fj%uf;-

Let now defineP _ and Q _ .
P, () = Mp(t)
Q . (t,p) = {vEPrefix(t, p) | (Yw) [w<v = —(t(v)<t(w))] and [v<w<p = —(t(v) <t (w))1}

We will write df_(t) and d (1) instead of dg+ and dE: o ., and <_ _ will be the associated

orderings.
~ 4.3 Decomposition Ordering is Almost Independant of the Choices

Our aim now is to prove that % +, and %** are the same ordering. More precisely, we want to prove
that 2** and %Qp are the same ordering if the choices exhibit the following minimality condition:

P(t) 2P (1).

Qt,p) 2Q_(t,p)forallp €P _(1).

Lemma 1: Let pE€Path(s) and u € Prefix(s, p). Then there exists v'€Q (s, p) such that
dﬁ(s) SQP dﬁ.(s), for any choice that satisfies the minimality conditions.



Proof: Ifu€Q (s, p) then v’ = u.
If u(EQ+ (s, p) then there exits u'€Q+ (s, p) such that s(u) <s(u’).
If s(u)<s(u’') the result is true.
If s(u) =s(u’) then v’<u and s/succ(u, p) is a strict subterm of s/succ(u’, p). The result follows from
(dec.2) and Lemma 2. 1

Lemma 2: Let p€Path(s) and k<p. Then dg/k(s/k)ggopd%(s), for any choices P and Q which satisfy
the minimality condition. The inequality is strict if k#¢ that means s/k is a strict subterm of s.

Proof: By induction on |p| - |k|
Basic Case: If [p| = [k] = 0, then s/k is a term reduced either to [ then dg“(s/k) ={ } or to the symbol
s(p) which occurs in s. The result will be true if a symbol greater or equal to s(p) appears in the

decomposition of s, that comes then from the minimality condition.

General Case: Let u € Q(s/k, p/k). For any decompaosition of s/k in v along p/k, we want to find a
greater decomposition of s in v along p. Two cases may happen:

- ku€ Q(s,p). Then v=ku works. The two decompositions are compared using case (dec.4) of
the main definition applied to dg(s/k[u»EI]) and dg“(s[ku*—D]). The result is obtained from the
induction hypothesis because the path ku in s[ku+0O] has length [ku] - 1 < |p|, the subterm
occurrence being the same (that is k).

—ku € Q(s, p). Thus there exists v € Q_ (s,p) = Q, (t, p) CQ(s, p) such that s(v)>s(ku). This
case divides into two subcases:
- s(v) > s(ku), then the result is straightforward.
- s(v) = s(ku), then v<ku and the result is obtained using case (dec.2) of the main definition
applied to d/k/suectv.p/K(s/k /succ(u, p/k) and dg/sueelv.Pip /suce(v, p)). On one hand,
p/k/succ(u, p/k) = p/succ(ku, p) is a strict subterm of p/succ(v, p) because v<ku. On the

other hand, )
ol = (vl + 1) =[(kul + 1D = (vl + D] = ol = k] = lul - 1< clp] - 4l.
The wished result is thus true by using induction hypothesis. |

Proposition 1: <Qp and <, are the same ordering if the choices verify the minimality condition.

Proof: We prove s<qpt if and only if s<, t by induction on |s| + [f]. Both = and = ways use
Lemma 1 in order to delete the supplementary computation (for the < way) or to add the missing
ones (for the = way). 1



We now want to prove the equivalénce of <,p and <44 Once more the method is based upon a

lemma which proves that the supplementary computation performed by <, is useless.

Lemma 3: Let s be atermin T(F) and p a path in s. If p€P + (s) then there exist g€P  (s) such that:
dl(s) <<, p di(s).

Proof: By induction on [s]. If p€Path(s) - P  (s), then there exists ¢, mEN* and i € N* such that:
-p = c.i.m.
- the subterm s/c belongs to a maximal class of the subterms at the depth c.
-§; = s/c.idoes notbelongto a maximal class of the subterm of s/c.
In addition there exists ]EN’" such that

s = s/c.jand sig*st.

Therefore there exists n€P(sj) such that d;”(si)<<*p d’;(si). By induction, n can be supposed to
belongto P * (s;)- Clearly c.j.n belongs to P _ (s). Let g be c.j.n, then the result
dg!M(s) <<, p d3H(s)

is obtained by the following lemma. |

Lemma 4 Let s be aterm in T(F) and ¢, n, m be in .N‘: and i,j be in N+ such that c.i.n and c.j.m are
pathsin s. If d7(s/c.i) <<, d7(s/c.j) then d5HM(s) <<, p dSI(s).

Proof:By induction on |c| + |m|. For all prefix u of c.i.m, one must find a prefix v of c¢.j.n such that
dSHM(s) <, pdS I (c).
Three cases can be distinguished:
1) u<c: then suppose u =v. The result is true by case (dec.2) by using the inequality
di“cc(“’c'i'm)(s/succ(u Clhm << di“cc(“’c'i'm)(s/succ(u,c.j.m))
which is true by induction hypothesis applied to s/succ(u, ¢) with |c/succ(u, ¢)] + Im] <)clc|+Iml.
2) u=c. Then v=c¢ and the result is true by case (dec.2) and the hypothesis
d7(s/c.i) <<, pd1(s/c.j).



-10 -

3) u<c. Then there exists hEN‘: such that u =c.i.h and ké.N': such that: dg’(s/c.i)%*Pdﬁ(s/c.j).
Letv be c.j.k and let us prove dj:?:?(3)<*pdg:§:ﬁ(5). If (dec.1), (dec.2) or (dec.3) are used, the result is
straightforward. If (dec.4) is used, that leads to prove di'i'”(s[c.i.h*—D] <<yp di‘j'k(s[c.j.ki—lil] which
results from d’;(s/c.i[m—l:!]) <<,p d’;(s/c.j[kf——D]) by using the induction hypothesis with |c| + |h]

<ylel + Iml. i
Proposition 2: <, and <,, are a same ordering if P verifies the minimality condition.

Proof: We prove s%*pt = s%**t by induction |s] + |t]. Both = and = ways use lemma 3 in
order to delete the supplementary computation (for the « way) or add the missing ones {for the =

way). ; |

Theorem 2: If the choices confirm to the minimality condition, then the ordering %Qp and %** are

the same. In particular, the orderings & .. and %** are the same.
Proof: We use successively Proposition 1 and Proposition 2. |

The definition of % . » can now be made intrinsic, that means that instead of using <., in the
definition of the maximal path and the maximal occurrence, we may use < _ _ itself without changing

the ordering as it is proved in [22].

in the following, we write % for any decomposition ordering whose choices verify the minimality

conditions. We will use 2** for the most proofs.

5. Decomposition Ordering is a Simplification Ordering

Subterm Lemma:t &  { (5 s Proof: By lemma 2.1
Compatibility Lemma: 1, 2 t, = f(...,r1,...)Qf(...,tz,...).

Proof: By induction on [f(....t,,..)] + [f(...t,....)| Let p €Path(f(....t,,...)) and u€Prefix(f(...,t;,...),P).
Two cases may happen.
Case 1:p = kg and (...t ,..)/k #t, oru =e. We obtain easily the result dﬁ(f(...,t1,...))<d5(f(...,t2,...)) by
using case (dec.4) of the main definition and the induction hypothesis.
Case 2. p = kq and f(...,t,,..)/k = t; and u#e. Thus q € Path(t,). As 11&t2, there exists ¢’ € Path(t,)
such that (V v<g) (3 v < g') d5(11) < df:(tz). If the proof of the last inequality is by case (dec.1),
(dec.2) or (dec.3) of the main definition, the result is straightforward. If the proof is by case (dec.4) of

definition, the result is achieved by using the induction hypothesis. |
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Corollary: % is a simplification ordering.
6. Decomposition Ordering improves over Recursive Path Ordering
Let us recall Dershowitz’s definition of the Recursive Path Ordering [2].

Definition Congruence of Permutation: f(s1,...,sn);g(f1,...,rn) iff f= g and there exists a permutation
o€S,, such that s; z te i) .
Definition: The recursive path ordering over T(F) is recursively defined as follows:
s=H(s;s )L Qlt gt )=t iff
(rpo.1) f=g and {31,...,sm}22{r1,...,tn}
or (rpo.2) f<_g and for all s;, siér

or (rpo.3) 7f<g and for some t séri ors = t

this definition can be made "less deterministic", by changing (rpo.3) to:

* *
(rpo.3’) for some L s<rj ors= rj

Theorem 3 (Dershowitz [2]): $isa simplification ordering. If <_ is is well founded on F, then <is

well-founded on T(F). If < is total on F, then Z restricted to T(F)/z is total.

We prove now that % contains 2 We first prove some technical lemmas, which prove actually

that & is a fixed point of the functional which defines é
Lemma 5: d(s) <<d%(g(ty,....t,))) and f <g gimply d®(f(s;,....5,,)) <<dUG(t ,-.05t))-

Proof: By induction upon |s}].

Basic Case: |s;| = 0, thatiss; = [0. The result is true because the only possible decomposition takes
placein e and because f <. g.
General Case: Let u<ip. Two cases may be distinguished:

-u = & then dP(f(....s;...)) <d%(t) because f<.g.

- v = iv, there exist w<g such that df(s,)<dl(t). If the proof is performed by case (dec.1),
(dec.2) or (dec.3)of the main definition, then déﬁ(s)<dj(r) in the same way.

— If the proof is performed by case (dec.4), then we have : d"(si[v<-i]])<<dw(r[w<— d]). By the
induction hypothesis, we get d"(s[iv+—[])<<d¥(t[w+0]), which proves the desired result by case
(dec.4) of the main definition. |
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Lemma 6: Forall i, sﬁt and f<.g implies f(s1,...,sm)&t.
Proof: Straightforward from Lemma 5. i
Lemma 7: d¥(s) <<d"(t)) implies dV/(f(....s;,...)) <<d“(f(....t;....)).

Proof: By induction on [s;|. We have to prove that for any p<iu there exist g<jv such that
d2((....8;--)) < d¥(f(....t;....). Two case must be distinguished.
- p =¢, then g = . The result follows from the hypothesis using (dec.2).
— p=ip’. Then there exists g’ such that dg.(si)<d;,(ri). If it is proved by (dec.1), (dec.2) or
(dec.3) of definition, then the desired result is proved in the same way. If it is proved by case
(dec.4), then we obtain dp’(si[p’*—D])<<dq'(ti[q‘<—I:I]) which proves the desired result by
(dec.4). ]

Lemma 8: {...,si,...}&&{...,Ij,...} = f(...,ri,...)%f(...,tj,...).
Proof: By applying Lemma 7. . i
. % . *
Lemma 9: If <F istotalon F, < istotal on T(F)/ =.

Proof: By induction on max(|s|, |t]). Suppose < is total and neither s&t nor r&s, let us prove
that sit. By the induction hypothesis, there exist in s a path p and an occurrence u such that
: dgl(s)%dg(s), for all other paths p’ and occurrences u’. The same thing happens for g and v int. Let
dg be 4, s, §, s> and d;(r) be <g, t', 9, t’>. Because neither st nor t<s and by the induction

*
hypothesis, f=g, s’i-f’, g2 f—.ﬂ'(where == is the congruence on multisets deduced from =) and

s":t”. Then itis easy to see thatszt. i

Theorem 4: Given a partial ordering <. on F, we have b C & If <. is total then g & Otherwise

the inclusion is strict (whenever there exists a function symbol f€F such that ar(f)>2).

Proof:-We can replace "iff" by "if" and 2 by % in the definition of recursive path ordering. By
lemma 8 % verifies (rpo.1), by lemma 6 2 verifies (rpo.2), by subterm lemma and transitivity % verifies
(rpo.3). Then & - & is a consequence of the least fixed point property of £ That ends the first part
of the proof.

To prove that & % if <g is total, we remark that both £ and < are total ordering on T(F)/:

and do not compare terms s and t such that s ke t. As é - %, we necessarily have 2 = & in this case.
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To prove that the inclusion is strict-if <. is not total, we give a counter example. To build this

counter example, we only need a binary function symbol f. Assume now a and b are incomparable

T L e
e L A
a/ \a a/ i N

We assume without loss of generality that a and b are symbols of arity 0. If it is not the case we

and let

replace a by a(...,c,...) and b by b(...,c,...). Itis not possible to compare s and t using 2 because

or

A L
L h L0

is false. On the other hand,

f

A
e L

is also false. However, we have s < t because d'(s)<d () and d'2(s)<d2"(¢). 1

b

d
7. Well foundednes of <
The well-foundedness is based on the following lemma.
o d
Monotonicity Lemma: <. C <= <C g
Proof: Easy, see [22]. ' |

Theorem 5: % is well-founded if and only if < is well-founded.
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Proof: Assume & is not well-founded. Thus, there exists an infinite decreasing sequence
s1gszg...gsng... Let now < be a total well-founded ordering (i.e., a well-ordering) on F which
contains <. (such an ordering exists by a variant of Zermelo’s Theorem which can be seen as a

e . i . i d_d d d d
transfinite topological sort). Using the monotonicity lemma, we obtain s >s,>... >s >.. But < =

z by Theorem 3, which contradicts the well-foundedness of the recursive path ordering [2, 15]. a.
8. Extension of the decomposition orderings to non-ground terms

We will now define two formally different extensions of the decomposition ordering to non-
ground terms. These two extensions are proved to be equivalent . The first one is more tractable for
proofs, the second one leads to more efficient implementations. Moreover, these extensions are
coherent with the definition of the decomposition ordering on ground terms, i.e.,

s&t = c(s)&o(r) for any substitution o.

Definition by extension of the basic ordering: Let <. a partial ordering on F. The decomposition
ordering % on T(F) is extended to T(F, X) by simply extending <. to FUX in the following way:
a<gyyb iff a€F, b€F and a<pb.

In other words, the <FUX ordering is the same as < for functions symbols. Variable symbols
can be compared with no other symbols using <FUX' The orderings % and < deduced from this
definition will be writien &1 and <, for the time being. This definition of the decomposition ordering
leads to inefficient computations. For instance, let us suppose that s/p€X and t/g€X and s/p#t/q. It
is quite obvious in this case that the two decomposition sets d°(s) and d9(t) cannot be compared
using the new c«“' However they will be recognized to be incomparable after a lot of useless
computations. We give now a new definition of % on T(F, X) which avoids this drawback. The basic
idea is to modify the definition of the multiset extension << in order to compare sets of

decompositions dP(s) and d9(f) only when it is necessary.

Definition by extension of the decomposition definition: d°(s)<<, d9(t) iff
(1) s/péX and dP(s)<<d9(t)
(2) s/p€EX and t/q =s/p and dP(s)<<d9(t).

In the following, we write << instead of <<,. Using this definition of <<, it is now possible to
decrease the size of the set Q(s, p) of given occurrences in s along the path p, by ruling out the
occurrences p if s/p is a variable.

Definition: Q(s, p)C Prefix{s, p), if s/p € X
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Q(s, p) C {u€ Occ(s) |u<p},ifs/p € X
Q,(s,p) = {vEPrefix(s, p) | (Y w<v), T(s(v)<s(w)) & (Yv<w<p) (s(v)<s(w))}, if s/p¢ X
Q, (s,p) = {v<p[(Vw<v) T1s(v)<s(w) & (Yw>V) —s(v)<s(w)}, if s/p€E X

Notice the analogy between the definitions of Q(s, p) and Q (s, p) when s/p =0 and when
s/p€X. The orderings 2 and < deduced from this definition will be written &2 and <,. Itis clear that
the ordering &1 does not depend upon the choices P and Q, as stated by Theorem 2. But it is not so
obvious for the ordering &2. So we will prove that %1 and 22 are the same ordering, which will prove

the property for 22.
Theorem 6: %1 = &2.

Proof: Let us use the same choice for both orderings. In fact, the choice Q, of the ordering &1 is

not exactly the choice Q, of the ordering 22. because if s/p € Xthen p € Q, (s, p) and p¢ Q,(s, p).

Both choices are the same in all the other cases.

Let us now prove that s&g = s%zr, by induction on |s| + [t]. Let p€ P,(s) and g€ P,(t) such that
dP(s) <<, d(1). T\-.vo cases can occur.
Case 1: If s/p = x€ Xthent/q = x because p € Q,(s, p) and x is incomparable with any other symbol
and therefore x must appear in a decomposition along the path g in t. Thus it is possible to compare
d®(s) and d?(t) with <<,,. Let u€ Q,(s, p). Then u€ Q,(s, p) and there exists v#g and vE Q,(t, g) such
that d(s)<,d%{t). Using now the four cases of the definition and the induction hypothesis, we obtain
 dP(s)<,d(1) and thus d°(s) << ,d(1).
Case 2: lfs/p € X, the Qy(s,p) = Qus,p). Ift/qg ¢ X, there is no problem because Q,(t, q) = Q,(t, ).
Ift/q € Xthen g € Q,(t,q) and q ¢ Q,(t, g). However, dﬁ(s)<1d3(f) implies that v#q because t(q) is not
comparable with s(u)€¢ X. The result is easily.obtained by induction as in Case 1.

Let us prove now that s%zr implies 3211‘ by induction on |s| +|f]. In the same way as before,
dP(s)<,dl(t) follows from df(s)<, di(1) if s/p ¢ X. If s/p € X and t/g€ X, we have to prove the
inequality:

<s(p); O:{ } islp—0ODP <, <t(q); O:{ } ;tlg«ODP
and d?(s[p—0]) <<, d¥(t[g+—0O])) follows in the same way as before from dP(s) <K ,d(1). z

Notice that all theorems proved in previous sections remain valid because of the definition %1.
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Theorem 7: & is closed under instantiation, i.e., s%r = cr(s)&cr(t), for any substitution o.
Proof: Straightforward using definition by extension of the decomposition definition. LB
9. Conclusion

A major advantage of the decomposition ordering is its utility in easily building, from a set of
rewrite rules to be oriented, an ordering on the set F of function symbols. We will illustrate this
property with an example from Dershowitz [2, 20], a system which provides normal disjunctive forms
of propositional expressions:

(i) "x = x

(i) 7 (xVy) = x A Ty

(i) (x Ay) = x V Ty

(VxAyVzZ)=xAyYVXxAZ)

WMy VIAx=AX)V(ZAXx).
The termination of the rule (i) is immediate by the subterm property. Let us prove the termination of
the rule (ii). That means

s ="x Ay ¢ (xVy) = t.
The decompositions arer

dy() = K xVy; {1 D,<Vs x; {y) 0 D)

di2(t) = LK ixVy; {1 DV y; {3 0 D)

dl'(s) = (KA Yl I < { O A )

d2'(s) = KA vh D <y {h —x A D)
Then we will get d}'(s) & d2(1), and d2(s) gg dl2(1), only if A<g = or A < V. By exchanging the
symbols A and V we will get the condition "V <. =1 or V< A" from (iii). Let us now orient the

rule (iv).
s = (x/\y)V(x/\z)%x/\(sz) =1
dll(s) = LVix Ay Ix AzE D<A x {yl (O Ay V (x Azp)
dlz(s) = {KVix Ay {x Az}, T, <A y; {x}:..0)
di’(s) = KV;x Az; {x Ay}, >, <A; x; {2};..0}
diz(s) = {KVix A z; {x Ay}, >, <A; z; {x};..0}
and

a1 = (<A x; Iy V 23 D)
d2'(0) = KAy V z; {x}; O <V 5 {2350}
d2'() = KAy V z; {x}; <V z; {y}.0)
In order to get dl'(s) g dl(t) and d2'(s) 4 di() we need V <. A. This condition provides
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successfully the comparison of s and t. The rule (v) can be oriented by the same condition. From
those conditions we get easily the following ordering on F: V <. A <. 1. Such a process can

obviously be performed starting from a given partial ordering on F.

This property of the recursive decomposition ordering which leads to the automatic
construction of the right ordering < on the function symbols is a consequence of our definition
when two symbols f and g are incomparable. In that case the two decompositions <f; s’ f; "> and
<g;t";9:t"> are incomparable. Thus the comparison process stops whenever two such
decompositions are required to be comparable. The idea is then to add at this step the pair <f,g> to
the ordering <F in order to get comparable decompositions. Such a technigue does not work with the
recursive path ordering because the comparison fails when it exhausts one of the two terms.
Because of this essential feature, our ordering is more suitable than Dershowitz’s to any application
which requires automatic proofs of termination. Our ordering is thus useful in implementing the
Knuth-Bendix completion algorithm. A non-incremental version of the decomposition ordering is now

implemented and we are currently implementing the incremental one.

Acknowledgment: We would like to thank Nachum Dershowitz and Jean-Luc Remy for their

helpful suggestions and John Guttag for reading the manuscript.
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APPENDIX: Examples of decompositions

Let f < g <h and a < b.
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On Multiset Orderings

Jean-Pierre JOUANNAUD
and
Pierre LESCANNE2

Abstract: We propose two well-founded orderings on multisets that extend the Dershowitz-Manna ordering. Unlike the
Dershowitz-Manna ordering, ours do not have a natural monotonicity property. This lack of monotonicity suggests using
monotonicity to provide a new characterization of the Dershowitz-Manna ordering. Section 5 proposes an efficient and
correct implementation of that ordering.

Résumé: Dans cette note, on propose deux ordres bien fondés qui étendent I'ordre de Dershowitz et Manna. Ces ordres ne
vérifient pas une propriété naturelle de monotonicité que nous définissons. Aussi cela suggére d'utiliser la monotonicité
comme une nouvelle caractérisation de I'ordre de Dershowitz et Manna. La cinquiéme section de cette note propose une
implantion efficace et correcte de cet ordre.

1. Introduction

The multiset ordering proposed by Dershowitz and Manna [2] is a basis for many orderings used
for proving termination of programs and term rewriting systems [1], and it would be nice to have an
efficient implementation of it. Often, deriving an algorithm directly from a mathematical definition is
not the best way. Thus a more suitable definition and a proof that this new program implements the
desired function must be found. Our approach was as follows. We tried two definitions, both having
efficient implementations but both failing to be equivalent. In fact, they are stronger than the
Dershowitz-Manna multiset ordering but do not have a monotonicity property. As an explanation of
these facts, we give a new definition of the Dershowitz-Manna ordering based on the main
characterization of this ordering: no stronger monotonic ordering exists on multisets. In section 5 of
this paper, we propose a correct and efficient implementation of the Dershowitz-Manna ordering.

2. The Dershowitz-Manna ordering

Intuitively, a multiset M (or bag) on E is an unordered collection of elements of E, with possibly
multiple occurrences of elements. More formally M is a mapping E—= XN, where Nis the set of natural
numbers, associating with each value in E the number of times it occurs in the multiset. For example,
xis in M if M(x)>0. AM(E) denotes the set of all the finite multisets on E, i.e. the multisets M with finite
carrier {x€E | M(x)#0}. The empty multiset { } has { }(x) =0, for all x in E. A setis a particular case of
a multiset such that S(x)<1 for each xin E.

Definition: Sum of multisets. The sum of two multisets M and N is the multiset M+ N such that
M + N(x) = M(x) + N(x).

1. Centre de Recherche en Informatique de Nancy, CO 140, F54037 Nancy, France
2. Centre de Recherche en Informatique de Nancy, CO 140, F54037 Nancy, France and Laboratory for Computer Science,
Massachusetts Institute of Technology, 545 Technology Square, Cambridge, Massachusetts, U.S.A.



M+N is an associative and commutative operation on L(E) with neutral element {}. |If

M, ,M2,...,Mp are multisets, ;=%1Mi is the multiset such that (i =§:1Mi (x) =i§1 M(x). M+Nis aset only itM
and N are disjoint sets; in this case + is the classical disjoint union or direct sum of sets.

Definition: /Inclusion of multisets. Multiset M is included into multiset N, (written MCN), if and only if
(V x€EE) M(x)<N(x).

Definition: Difference of multisets. If MCN, the difference N — M is defined by (N — M)(x) = N(x) - M(x).

In this paper, an ordering < on a set is a partial or total strict ordering i.e. an irreflexive and
transitive relation on E. We use the notation x#y to mean —(y—<x or x=y or x=<y). Assume
throughout that E is ordered by <.

Definition: The Dershowitz-Manna Ordering.

M—=<N if there exist two multisets X and Y in AL(E) satisfying
(i) { }#XCN
(i) M=(N=-X)+Y
(ili) X dominates Y: (V y€Y)(IxEX) y<x.

Using this definition, it may be difficult to prove that two multisets are not related by <<. In [3],
Huet and Oppen give a different and more tractable definition.

Definition: The Huet-Oppen Definition.
M—<<N iff M=N & [M(y)> N(y)= (IxEE) y=<x & M(x)<N(x)]. (HO)

Lemma 1: The Dershowitz-Manna definition is equivalent to the Huet-Oppen definition.

Proof: Let <<, and <<, be the Dershowitz-Manna and Huet-Oppen orderings, respectively.

Assume M—<,4 N, and define Xand Y as follows:

X(x) = max{N(x) - M(x), 0}

Y(y) = max{M(y) - N(y), 0}.
Let us prove (i)

1) XCN is clear by definition.

2) Because M#N there exists z such that M(z)#N(z). If M(z)<N(z) then z€X, if M(z)>N(z), by

(HO) there exists x, such that z<x and M(x) <N(x). Hence x€X. In both cases X#{ }.
(ii) is true by construction. To prove (iii), let yEY. By hypothesis, there exists x satisfying y<x and
M(x)<N(x). Hence (IxEX) y<x.

Suppose M=<<,, N. M#N because X={} and Y#X. Without losing the generality we may
assume X and Y disjoint i.e. X(x)>0 = Y(x) =0 & Y(x)>0 = X(x) = 0. Otherwise X would be replaced
by X-Z and Y by Y-Z where Z(x)=min{X(x),Y{x)}. Assume  M(y)>N(y). By (ii)
M(y) = N(y) + Y(y) - X(y) that implies Y(y)>X(y)>>0 which means yEY. By (iii) there exists x€X, i.e.
X(x)>0, such that y=<x. The value of M in x is M(x) = (N(x)-X(x))+Y(x) = N(x)-X(x) because
Y(x) = 0. Thus M(x)<N(x). ' |



Another important property of the Dershowitz-Manna ordering is monotonicity.

Definition: Monotonicity. Let < be a partial ordering on E and = a mapping from E X E into
JMH(E) X AL(E). 7(<) is said to be a monotonic extension of < iff: :

(1) 7(<) is an ordering.

(2) 7 is monotonici.e. < C < = 7(<) C 7(<).

Lemma 2: Monotonicity Lemma. The Dershowitz-Manna ordering << is a monotonic extension
of <.

Proof: Straightforward using the Huet-Oppen definition. |
3. Partition based orderings

We now define two multiset orderings based on partitioning a multiset. We say that

{M;li=1,...,p} is a partition of a multiset iff M= i_§1Mi. Assume now, we are able to compare the M,
using an ordering <<, and thus to sort them such that Mp--_<Mp _1=..=M,. ltis now easy to define a

new ordering <g for comparing the multisets M=E§J1Mi and I’\i:iéNi using a lexicographical
extension of <:
M—<gN iff M, My...M_<"*N,N,,...N,.

In practice, we have to define the basic ordering < and the method for constructing the
partition of a given multiset.

3.1 The multiset ordering << 4,

Assume that the partition M = (M, |i=1,...,p) of the multiset M satisfies the following properties:
(1) XEM, = M,(x) = M(x).
(2) x€M, and yEM, = x and y are incomparable.
(3) (Vi€[2..p]) xEM, = (FyEM, ) x<y.

Intuitively the partition is built by first computing the multiset M, of all the maximal elements and
then recursively computing the partition of M- M1.

Example 1:M={a, a, 2,2, b, 1, 1} witha<b, 1<2. M;={2,2,b} and M,={a, a, 1, 1}.

Let <_y, be the following basic ordering on multisets.

M< 4N iff M#Nand (VXCE) M(x) <N(x) or (Jy€EN) x=<y.
Let M'(E) be the subset of AL(E) such that if MEAM’(E) and x€EM and yEM then x and y are
incomparable. <y is an ordering on Ab’(E) equivalent to the restriction of the Dershowitz-Manna
ordering to AL’ (E). '

Definition: Let M and N be multisets. We say that M—<_y N iff M<'S% N.

Example 2: If a<b and M={1, a, b} then M, ={1, b}, M, ={a}. If N={1,1,b} then N, ={1,1,b} and
M—< g, N.



It is easy to see that << 4y is an ordering because lexicographical extension preserves the
orderings. We will show that <<_y is more powerful than <<.

Lemma 3: M<<Nimplies M<<_y© N.

Proof: Suppose M~<N, and M = M1...Mp, and N =N1...Nq. Then we have M<< 4 N. The proof
is by induction on p+q. The result is obvious if M={}. Assume that p#0 and q#0. Three cases
have to be distinguished. '

- M;<_g,N;. The result is straightforward.

-M, =N,. Thus Mz...Mp—<—<%N2...Nq and the result follows by the induction hypothesis.

- Ny<qM; or My and N, are incomparable. There must exist an x € M, such that
M, (x)>N,(x) and (Yy € N,) x Ky. This contradicts the hypothesis M<<N. i

We show that the converse is false by using the previous example. We see that
M(a) = 1>N(a) = 0. However, the only element in N greater than a, i.e. b, has one occurrence in both M
and N. Thus M and N are incomparable using the Dershowitz-Manna ordering. On the other hand,
—<_y, has a serious drawback, which prevents it from being used in some usual cases, requiring

incremental orderings; it is not monotonic. Let us go back to Example 2 and assume now 1<a—<b.
This increases the basic ordering by adding the new pair 1-<a. We now get:

M, ={b}, M,={a}, My ={1}

N, = {b}, N, = {1,1}.
Thus N<< yM !

3.2 The muitiset ordering <<y

A different way to construct a partition of a multiset is to require that each multiset in the
partition be a set. Thus the partition M = (S | i=1...p) must satisfy the following properties:
(1) S,is a set, that is Si(x)g‘l .
(2)x € S;andy € S, implies x and y are incomparable.
B)(Vi€[2.p]) x€ S; implies (3y € S, ;) x=y.

The only difference between the partitions created by << 4 and —<<y is in condition (1). As
with <<y, the partition here is built by first computing the set S, of maximal elements, and then
recursively computing the partition of M- §,.

Example 3: M= {a,a,2,2,b,1,1} with a<b and 1<2and S, = {2,b}, S,={2,a}, S;={1.a}, §,={1}.

Let <ybe the following ordering on sets:
S<¢Tiff S#T and (V x € S) (Jy € T) x=xy.

In the following, N = (T, |i=1..q) will be the partition of N. If sets are considered as a particular case
of multisets, <y is << on the sets of incomparable elements.

Definition: Let M and N be multisets. We say that M<<¢N iff M<$*N.

Example 4: Suppose a and b incomparable. If N={a,b} then T, ={a,b}, if M={b,b} then S,={b},
S, ={b} and M<<¢N.



Once more, it is easy to see that <<y is an ordering. Let us show that it is more powerful that
<.

Lemma 4: M<<N implies M<<yN.

Proof: by induction on p and q. The result is straightforward if M={}. Else, we have to
distinguish three cases.
- S, <¢T,, the resultis straightforward.
- S, =T,, by induction hypothesis.
- T,<y S, or S, and T, are incomparable. There must exist an x € S, such that (V y €T,),
—1x—=y. This contradicts the hypothesis M—<<N. i

Once again, the converse is false, in the same way as shown in the previous example: M= {b,b}
and N = {a,b}.

Suppose now a<b and M and N are as in example 4. We get S, = {b}, S,={b} and T, = {b},
T,={a}. Thus N <<¢M. Therefore << is not a monotonic ordering.

Now, let try to compare —~<<yand << _y, using two examples with a<b:
-M={1,ab}, N={1,1b}, M—<< g, Nand 77 M=<<¢N.
-M={b,b},N={1,b}, M<<¢Nand " M—<< 4 N.

Thus <<yand << _y are not comparable.

3.3 Well-foundedness
We have the following theorem.
Theorem 1:If < is well-founded on E, then <<, <<y, and <<yare well-founded on AL(E).

Proof: [2] contains a proof of the well-foundedness of —<. Note that a proof of
weli-foundedness of <<y or << 4 is also a proof of well-foundedness of << by Lemma 3 and 4. A

proof of well-foundedness of <<y and << y can be easily obtained by proving that < and <M
are well-founded. This can be done by using Konig Lemma as in [2]. On the other hand, note that <y
and <_y, are particular cases of <<. |

4. A property of maximality of the Dershowitz-Manna Ordering

In the previous section, we showed two non monotonic orderings containing the
Dershowitz-Manna ordering —<<. A natural question arises: Do monotonic orderings exist on Ab(E)
that contain <<? The answer is negative and provides a new important characterization of <<. Let
us first prove an important lemma.

Lemma 5: Let < be a partial ordering on E and let M and N be two multisets on E such that N<A M
that is (N =M or N<<M). Then there exists a partial ordering < on E such that < 2 < (that is y<Xx
= y<x)and M < N.



Proof: By induction on the setD = {(x,y)EMXN | x #y}.

Basic case: Let D=d. Then N=<& M= M—<N,
General case: Let D be not empty. Then either M—<<N and the result is proved with <==<, or N<A M
and there must exist a pair (x,y) such that

(1) M(x)>N(x) and (Vz € E) x<z = N(z) <M(2).

(2) M{y)<N(y) and (Vz € E) y<z = M(z)<N(z).
It follows from (1) and (2) that x # y and thus (x,y) € D. Let now < the transitive closure of the relation
union of < and the pair (x,y). < is clearly an ordering strictly containing <. Therefore < is an
ordering strictly containing <. Since x—<y, either M&N and the result is true or M and N are
incomparable according to < and the result follows from the induction hypothesis used with a new D,
whose the cardinal is strictly less than the previous one. |

Theorem 2 Maximality: Let < a partial ordering on E and 7(<) a monotonic extension of < such
that << C 7(<). Then << and 7(<) are the same ordering.

Proof: Assume first < is total. Then << is total on AL(E) and must coincide with 7(<). Assume
now that < is partial on E. Then << is partial on A(E). Suppose that 7(—<) D—<<. Then there must
exist two multisets M and N such that M 7(—<) N and M # N for the ordering <<. Using Lemma 5 there
exists < ) < such that N&M, which implies N 7(<) M by hypothesis. Using now the monotonicity of
the multiset extension 7 and the hypothesis M 7(<) N, we get M 7(<) N, which is a contradiction. ]

This main property of the Dershowitz-Manna ordering can be used to give a simple proof of
equivalence of (HO) and (DM). In the following, we use this technique to present and prove a new
definition of <<. If < is a total ordering on E, <'®*is a total ordering on the ordered lists on E which
provides a simple definition of the Dershowitz-Manna ordering in that particular case: let
list(M) = {X4,Xo,...,X |} With >i = xjjxi be the ordered list representation of multiset M. Then M—<<N iff
list(M)=<"®Xist(N).

Let us now define a new multiset ordering <<, in the following way:

Definition: Given a partial ordering < on E, let M=<<_ N iff for all < that are total orderings
containing =<, Jist(M)<'®¥ist(N).

It is easy to prove that this new ordering is exactly the Dershowitz-Manna ordering, as an
application of Theorem 2.

Lemma 6: << is a monotonic ordering.
Proof: Follows obviously from the definition. |
Lemma7: << C ~<< -

Proof: Suppose M—<<N and —(M—=<<_N). There exists a total ordering < such that < 2 < and

= (list(N)<'®¥jist(M)). Thus there exists y such that M(y)>N(y) and y<z = N(z) = M(z), which implies
y=<z = N(z) = M(z). Combining this result and (HO), we infer —(M—<<N), which is a contradiction. 1§

Theorem 3: <<, and << are the same multiset ordering.



Prootf: It follows from Thecrem2, Lemma 6 and Lemma 7.
5. An efficient implementation of the Dershowitz-Manna ordering

It is easy to derive an implementation of the Dershowitz-Manna ordering from the Huet-Oppen
definition but it is not efficient because a comparison is performed for each pair of items. Moreover it
leads to an algorithm that does not work symmetrically on the data. We propose an implementation
based on the following idea. Given a pair of multisets M, and N, build a new pair M, ., and N, _,
such that at least one of the two multisets gets smaller and the value of the comparison comp(Mk, Nk) .
does net change, which means comp(M,, N,) = comp(M, _,, N, _,). The process is repeated until it is
possible to decide easily whether M is greater than or less than or equal to or incomparable to N. To
decrease M, and N, choose a pair (a,b) in M, X N, and do the following:

1. lfa=b and M,(a) =N, (b), a is removed from M, and N, .

2. It a<b or a=b and M, (a)<N,(b) then we would like to remove a from M, without changing
the value of comp(M,,N,). This is possible if a is maximal in M, in which case a<b ora=b and
M(a)<N(b) implies M, <<N, or M, and N, are incomparable (written M, # N,). Thus comp(M,,
N,) is-not changed by removing a from M,. Note that in this case one may remove with a all the
elements in M, which are less than a.

Thus instead of choosing any elements a and b in M, and N,, choose maximal elements in M,
and N,. Thus after removing a from M,, we have to compute the set of maximal elements of Mk+1'
This is not difficult. Let us first define the function succ as

(yEsucc(x) = y=<x) & (y<x = [ z€succ(x)] y=<z),
and then .
Incase (1), M, , =M, - {a}, then
Maximal(M, , ,) = Maximal(M,) - {a} + {x | x€succ(a) & x§succ(a’) for a#a’}.

. . _
In case (2), M, . =M, - {x] x€succ*(a)} where succ*(a) = i:Z1succ (a), then
Maximal(M, , ;) = Maximal(M, ) - {a}.

This suggests representing a multiset M as a directed acyclic graph representing the relation
succ. Each node contains a triple: the value x of the element, M(x), the number of antecedents
nb_ant(x,M) of xin Mi.e. card{y|succ(y) = x}. If this last number is 0, x belongs to Maximal(M).

The arrows deduced by transitivity are not necessary and the algorithm is more efficient if they
are not present. For example if the definition of succ is the following minimal one:
yEsucc(x) = y=<x & 71 (JzeEM) x<z<y.

For example if c<a, d<a, d<b, e<c, f<¢, f<d and M= {a,a,b,b,b,c,c.d,e ,f}, a representation
of Mis
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Figure 1 gives an algorithm describing our implementation. Note that if it is not possible to
choose a new pair in the body of the loop, then all the elements present in Maximal(M) and
Maximal(N) are incomparable. Then easily M# 4 N and by Lemma 3, M# N. The only problem is to
prove termination of the algorithm, but it is easy to see that, although Maximal(M) and Maximal(N) can
increase, they remain included in M and N which do decrease. Thus the algorithm terminates for any
choice which computes a new pair (a,b) at each iteration.
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Fig. 1. An algorithm to implement the Dershowitz-Manna ordering

while "possible" do
choose a new pair (a,b) in Maximal(M) X Maximal(N)
if b<a or[a=b and M(a)>N(b)] then
for each x in succ*(b,N) do remove(x,N)
end for
end if

if a<b or[a=b and M(a)<N(b)] then
foreachxin succ*(a,M) do remove(x,M)
end for

end if

if a=b and M(a) = N(b) then
for each x in succ(a,M) do
nb_ant(x,N): = nb_ant(x,N) - 1
if nb_ant(x,N) =0 then ad(x,Maximal(M))
end for

remove(a,Maximal(M))

for each x in succ(b,N) do

nb_ant(x,N): = nb_ant(x,N) - 1

if nb_ant(x,N) = 0 then ad(x,Maximal(N))
end for

remove(b,Maximal(N))
end if

end while

if Maximal(M) = { } then if Maximal(N) = { } then return(" M=N")
else return(" M<<N ") end if
else if Maximal(N) = { } then return{"N<<M")
elsereturn(" M#N ") end if
end if




