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1. Introduction

The shuffle-exchange graph has long been recognized as one of the best
structures known for parallel computation. Among its many applications, a shuffle-
exchange computer can be used to compute discrete Fourier transforms, multiply
matrices, evaluate polynomials, perform permutations and sort lists [S71, P80, S80].
The algorithms needed for these operations are extremely simple and many require
no more than logarithmic time and constant space per processor.

Recent developments in Very Large Scale Integration (VLSI) circuit technology
have made it possible to fabricate large numbers of very simple processors on a
single chip. As most of the processors contained in a shuffle-exchange computer are
very simple, the shuffle-exchange graph serves as an excellent basis upon which to
design and build chip-sized micrdcomputels. One of the main difficulties with such
an architecture, however, is the problem of routing the wires which link the
processors togéther in a shuffle-exchange network. Current fabrication technology
limits the designer to two or three layers of insulated wiring on a chip and demands
that he make the chip as small in area as possible.

Abstracted, the designer’s problem becomes the mathematical question of how to
embed the shuffle-exchange graph in the smallest possible two-dimensional grid.
Thompson was the first to formalize the question mathematically. In his thesis
[T80], he showed that any layoull(i.e., embedding in a two-dimensional grid) of the
N-node shuffle-exchange graph requires at least Q(N2/log?N) area. In addition, he
described a layout requiring only O(N2/log!”2N) area. Shortly thereafter, Hoey and
Leiserson [HL80] described an embedding for the shuffle-exchange graph in the
complex plane (which we refer to as the complex plane diagram) and showed how
the diagram could be used to find an O(NZ2/logN)-area layout for the N-node
shuffle-exchange graph.

In this paper, we investigate the algebraic properties of the complex plane
diagram in order to find several O(N2//og’ ?N)-area layouts for the N-node shuffle-
exchange graph. In addition to being asympiotically superior to previously
discovered layouts, the layouts described in this paper are also superior for small
values of N. In fact, one of these layouts serves as the basis for the more recent
work of Leighton and Miller who have described oprirmal layouts for small shuffle-
exchange graphs in [LM81]. _



Subsequent to the completion of the research presented in this paper, we lcarned
that Rodeh and Steinberg independently discovered an O(NZ//og??N)-area layout
for the N-node shuffle-exchange graph. Their work is also based on the complex
plane diagram and appears in [SR81]. Even more recently, Kleitman, Leighton,
Lepley and Miller [KLLM81] have discovered an entirely new method for laying out
shuffle-exchange graphs which can be used to find asymplortically optimal
O(N2/log?N)-area layouts. Although their layouts are not entirely practical, they are
the only layouts known to achieve Thompson’s lower bound asymptotically.

The remainder of the paper is divided into six sections. In section 2, we define
the shuffle-exchange graph and the grid model of a chip. We also describe
Thompson's O(NZ/log!”?N)-area layout for the N-node shuffle-exchange graph. In
section 3, we define the complex plane diagram for the shuffle-exchange graph and
mention several of its properties. In section 4, we describe several layouts for the
shuffle-exchange graph which are based on the complex plane diagram. These
include a straightforward O(N2/logN)-area layout and several new O(N2/log*’N)-
area layouts. Section 5 contains some remarks and open questions, and sections 6
and 7 contain the acknowledgements and references.

2. Preliminaries
2a) The shuffle-exchange graph

The shuffle-exchange graph comes in various sizes. In particular, there is an
N-node shuffle-exchange graph for every N which is a power of two. Each node of
the (V= 2%)-node shuffle-exchange graph is associated with a unique k-bit binary
string a;_;- - -ag. Two nodes w and w' are linked via a shuffle edge if w' is a left
or right cyclic shift of w (i.e., if w = a4 ;---ay and w'= az - --qpa;; Or
w'= ag---aga; , respectively). Two nodes w and w' are linked via an
exchange edge if w and w' differ only in the last bit (i.e., if w = a;_;- - -a;0 and
w'= a;_;---a;] or vice-versa). As an example, we have drawn the 8-node
shuffle-exchange graph in Figure 1. Note that the shuffle edges are drawn with
solid lines while the exchange edges are drawn with dashed lines. We shall follow
this convention throughout the paper.
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Figure 1: The 8-node shuffle-exchange graph.

By replacing the nodes and edges of the shuffle-exchange graph by processors
and wires (respectively), the shuffle-exchange graph can be transformed into a very
powerful parallel computer (which we call the shuffle-exchange computer). The
computational power of the shuffle-exchange computer is partly derived from the
fact that every pair of nodes in an M-node shuffle-exchange graph is linked by a
path containing at most 2/ogN edges and thus the communication time between
any pair of processors is short.

More importantly, however, the shuffle-exchange computer is capable of
performing a perfect shuffle on a set of data in a single parallel operation. For
example, consider a deck of 8 cards distributed among the 8 processors of the 8-
node shuffle-exchange graph so that processor 000 initially has card 0, processor
001 initially has card 1, processor 010 initially has card 2, and so forth. Next,
consider a (parallel) operation of the shuffle-exchange computer in which each
processor a,a;a, sends its card across a shuffle edge to the neighboring processor
ajapga; . It is easily verified that, after completion of the operation, processor 000
contains card 0 (the top card in the shuffled deck), processor 001 contains card 4
(the second card in the shuffled deck), and so forth.

The power of card shuffling and its mathematical abstractions is well known to
magicians and mathematicians [DGK81] as well as to computer scientists [S71,
S801. For a good survey of the computational power of the shuffle-exchange
graph, we recommend Schwartz’ paper on ultracomputers [S80]. In addiﬁon,
Stone’s paper [S71] contains a nice description of some important parallel
algorithms based on the shuffle-exchange graph.



2b) The grid model

Among the many mathematical models that have been proposed for VLSI
computation, the most widely accepted is due to Thompson and is known as the
Thompson grid model [T79, T80]. The grid model of a VLSI chip is quite simple.
The chip is presumed to consist of a grid of vertical and horizontal rracks which
are spaced apart by unit intervals. Processors are viewed as points and are located
only at the intersection of grid tracks. Wires are routed through the tracks in order
to connect pairs of processors. Although a wire in a horizontal track is allowed to
cross a wire in a vertical track (without making an electrical connection), pairs of
wires are not allowed to overlap for any distance or to overlap at corners (i.e., in
they cannot overlap in the same track). Further, wires are not allowed to overlap
processors to which they are not linked. (The routing of wires in this fashion is
also known as layer per direction routing and Manhattan routing.)

As an example, we have included a grid layout for the 8-node shuffle-exchange
graph in Figure 2. As before, the shuffle edges are drawn with solid lines while the
exchange edges are drawn with dashed lines. Notice that we have omitted the self-
loops in Figure 2 since they are clectrically redundant. In gencral, the processors
need not all be placed on a single horizontal line (as they are in this example).
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Figure 2: A grid model layout of the 8-node shuffle-exchange graph.

Practical considerations dictate that the area of a VLSI layout be as small as
possibie. The area of a layout in the grid model is defined to be the product of the
number of horizontal tracks and the number of vertical tracks which contain a
processor or wire segment of the layout. For example, the layout in Figure 2 has
arca 48. As can be easily ‘observed, this is far from optimal.



2c) Thompson’s layout

Given any k-bit string w, define the size of w to be the number of 7/-bits it
contains. For example, the size of /0710 is 3. Thompson’s idea was to lay out the
N=2% nodes of the shuffle-exchange graph on a straight line in order of
nondecreasing size. [t is easily seen that shuffle edges link nodes which have the
same size and that exchange edges link nodes which have sizes differing by one.
Thus the edges of such a layout are relatively short. In fact, nodes connected by
shuftle edges can be placed in a group, so that only 2 horizontal tracks are used for
all the shuffle connections. The remaining horizontal tracks are occupied by
exchange edges.

The exchange edges are inserted from left to right so that each exchange edge
occupies two vertical tracks and a portion of the lowest horizontal track which is
empty at the time of its insertion. (For example, Figure 2 displays a layout for the
8-node shuffle-exchange designed in this way.) This well-known strategy for
inserting exchange edges guarantees that the number of horizontal tracks used will
be minimal, and equal to the maximum number of edges which must (at some
fixed point) overlap one another. Since exchange edges link nodes which differ in
size by one, it is easily seen that the maximum overlap is at most O(OT?ick B
where B, is the number of nodes of size s.

It is easy to show that B, = C((ks) for each s, where

C(k,s) = KV/[s\(k-5)']

is the well-known function for binomial coefficients. It is also well-known that
C(k,s) achieves its maximum value at s= k-2 for any k. Using standard asymptotic
analysis, it is easily shown that C(k,k72) ~ (277 )22k k172 for large k. (For a
good review of such techniques, see Bender and Orszag’'s book [BO78].) Thus
Thompson’s layout requires only O(Nlog/”?N) horizontal tracks. Since only 1 or
2 vertical tracks are needed to embed the vertical portions of the edges incident to
any given node, we can conclude that Thompson's layout has area O(N2/log!”?N).

3. The Complex Plane Diagram

In [HL80], Hoey and Leiserson observed that there is a very natural embedding
of the shuffle-exchange graph in the complex plane. In what follows, we describe



this embedding (which we call the complex plane diagram) and point out some of
its more important properties.

3a) Definition

Let 8, = 27k denote the kth primitive root of unity. Given any k-bit binary
string w = ag; - - - ay ., let p(w) be the map which sends w to the point

p(W) = ak_ISkk'] + e e 018k -+ ao

in the complex plane. As each node of the (N=2%)-node shuffle-exchange graph
corresponds to a k-bit binary string, it is possible to use the map to embed the
shuffle-exchange graph in the complex plane. For example, we have done this for
the 32-node shuffle-exchange graph (whence k=J5) in Figure 3. For simplicity,
each node is labeled with its value instead of its 5-bit binary string. (By the value
of a node, we mean the numerical valuc of the associated k-bit binary string.)

+24

e by

Figure 3: The complex plane diagram for tle 32-node
shuffle-exchange graph. (Taken from [HL80].)



3b) Properties

Examination of Figure 3 indicates that the complex plane diagram has some
very interesting properties. First, it is apparent that the shuffle edges occur in
cycles (which we call necklaces) which are symmetrically placed about the origin.
This phenomenon is casily explained by the following identity:

Skp(ak_l---a(}) = ak_lakk‘/'ak_zakk‘]‘f“"+018k2+aoak
= akﬁzakk‘]+---+a()8k+ak_l

= Pagy---apag.p)-

Thus traversal of a shuffle edge corresponds to a 2wk rotation in the complex
plane.

Except for degenerate cases, the preceding identity also indicates that each
necklace is composed of k nodes, each a cyclic shift of the other. Such necklaces
are called full necklaces. Degenerate necklaces contain fewer than k nodes and,
because they must have some symmetry, are mapped entirely to the origin of the
complex plane diagram. For example, {00000} and {0101, 1010} are degenerate
necklaces while both {70/, 07/, 110} and {77100, 11001, 10011, 00111, 01110} are
full. As we note in the following proposition, the number of degenerate necklaces
is quite small compared to the number of full necklaces.

Proposition 1: There are O(N!7?) degenerate necklaces and N/IlogN -
OWN!"2/logN)  full necklaces in the N-node shuffle-exchange graph.

Prooff A node w is in a degenerate necklace if its binary representation has a
nontrivial symmetry with respect to cyclic shifts. Without loss of generality, such a
string of bits must consist of a block of k&7p bits which is repeated p times where p
is some prime divisor of k. As there are 2%? binary strings of length &7p, this
means that the number of nodes in degenerate necklaces is at most

Pl
22k < OWNI7D,

pZ2

The remaining N - O(N!“?) nodes are in full necklaces. As each full necklace
contains logN nodes, there are N/logN - O(N!"2/jogN) full necklaces 0O

It will often be convenient to refer to a nccklace by one of its nodes. In



particular, we will use the notation <w> to indicate the necklace generated by w.
This is simply the collection of cyclic shifts of w. For example, the necklace
generated by 701 is <I0I> = {101, 011, 1£0% ..

Exchange edges are also embedded in a very regular fashion by the complex
plane diagram. In fact, each exchange edge is embedded as a horizontal line
segment of unit length. This phenomenon is explained by the identity

p(ak_l_..010)+1 = ak_lﬁkk"+...+a,8k+l
= p(ak_l...all).

In some cases, several exchange edges are contained in the same horizontal line
of the diagram. Such lines are called /evels. For example, there are 9 levels in the
diagram of the 32-node shuffle-exchange graph shown in Figure 3. We will use

the properties of levels to find O(WN2/Tog3?N)-area layouts for the N-node shuffle-
exchange graph.

4. Layouts Based on the Complex Plane Diagram

In this section, we present several layouts of the shuffle-exchange graph which
are based on the complex plane diagram. We commence with a straightforward
O(N2/logN)-area layout of the N-node shuffle-exchange graph. This layout has
been discovered by many researchers (including Hoey and l.eiserson). Later, we
show how the layout can be modified so as to require only O(N</log>?N) area.

4a) A straightforward O(Nz/logf\/)-area layout

In what follows, we describe a straightforward layout of the shuffle-exchange
graph which requires only O(N2/logN) area. The layout is formed from a grid of
levels and necklaces which we refer to as the level-necklace grid. Each row of the
orid corresponds to a level of the complex plane diagram. The columns of the grid
are divided into consecutive column pairs, each pair corresponding to a necklace.
The leftmost column of each column pair corresponds to that part of the necklace
which is contained in the left half of the complex plane. Similarly, the rightmost
column of each pair corresponds to the part of the necklace contained in the right
half of the complex plane. -



The rows of the level-necklace grid must have the same top-to-bottom order as
do the corresponding levels in the complex plane diagram. The columns, however,
may be arranged arbitrarily (provided that columns corresponding to the same
necklace are adjacent in the grid).

Each node of the shuffle-exchange graph is placed at the intersection of the row
and column of the grid which correspond to the level and part of the necklace (left
half or right half) to which it belongs in the complex plane diagram. For example,
we have done this for a random ordering of the necklaces of the 32-node shuffle-
exchange graph in Figure 4. (Notice that we have used just one column each for
the degenerate necklaces <0> and <31> since they each contain just one node. In
general two columns will be required for necklaces which are mapped to the origin
of the complex plane diagram, but the nodes of each such necklace should still be
lumped togther at a single point of the level-necklace grid.)

necklaces
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Figure 4: A level-necklace grid for the 32-node shuffle-exchange graph.

Given a level-necklace grid for a shuffle-exchange graph, it is not difficult to
produce a layout for the graph. The main step is to partition the exchange edges in
each row of the grid into nonoverlapping subsets. Each subset can then be
assigned to a horizontal track of the layout. Except for the row corresponding to
the real line in the complex plane diagram, the assignment of subsets to horizontal




tracks within a row is arbitrary. (The assignment of horizontal tracks containing
nodes on the real line must preserve the cyclic orientation of the nodes which are
in nccklaces that are mapped to the origin.)

Once this is done, the exchange edges can be inserted in the horizontal tracks
and the shuffle edges can be inserted in the vertical tracks. (To be precise, some of
the shuffle edges also occupy part of a horizontal track at the top or bottom of the
layout.) By Proposition 1, the number of vertical tracks occupied by the necklaces
is at imost 2N/logN + O(N!7?). Since there are precisely N2 exchange edges, at
most N2 + 2 horizontal tracks are contained in the layout. Thus the total area
of the layout of the N-node shuffle-exchange graph is at most N2/logN+ O(N3?).
As an example, we have displayed in Figure 5 a layout of the 32-node shuffle-
exchange graph produced from the level-necklace grid in Figure 4.
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Figure 5: Layout of the 32-node shuffle-exchange graph
produced from the level-necklace grid shown in Figure 4.
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4b) An improved O(N2/10g3/2M-nrczl layout

It is possible to improve the layout described in section 4a by reducing the
number of horizontal tracks needed to ecmbed the exchange edges. This can be
done by reordering the necklaces from left to right so as to increase the average
number of exchange edges which can be inserted on each horizontal track. For
example, the ordering of the necklaces shown in Figure 6 results in far fewer
horizontal tracks being usced than did the ordering of necklaces shown in Figure 5.

necklaces
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Figure 6: An improved layout for the 32-node shufjle-exchange graph.

Although we do not know how to best order the necklaces in general, we have
found several orderings which yield O(NZ2//log?/?N)-area layouts for the N-node
shuffle-exchange graph. For instance, we will show in what follows that such a
layout can be constructed by arranging the necklaces from left to right in order of
nondeccreasing size. (The size of a necklace is simply defined to be the size of any
of its nodes.) As an example, the layout displayed in Figure 6 is of this form.
(This observation has also been made by Steinberg and Rodech in [SR81].)

In order to bound the number of horizontal tracks needed to insert the exchange

1018



edges, we will show that the maximum overlap of exchange edges on each level is
at most the number of nodes of size h = |[(k-7)/2] on that level. Since the
maximum overlap of exchange edges on each level is an upper bound on the
number of horizontal tracks needed to insert the exchange edges on that level, we
can thus conclude that the total number of horizontal tracks needed to insert all of

the exchange edges is at most :

By, < By, = (/m)72N/log”?N + O(N/log??N) .

Thus the resulting layout will have area at most
22/w)!2N2710g7?N + O(N/log® 2N).

Although it is clear that the maximum total overlap (over all levels) of exchange
edges is at most B, 5, this is not sufficient to prove the result since any layout
must also preserve the top-to-bottom partial order induced by the necklace
structure on the exchange edges. It is only within individual levels that the top-to-
bottom ordering of exchange edges is arbitrary. (As we noted earlier, some minor
precautions are necessary for the level corresponding to the real line.) It is not
immediately clear, however, why the maximum overlap on cach level is at most the
number of nodes of size h<kik~”2 on that level. In what follows, we establish this
result by breaking up cach level into sublevels (for which the analysis is easier) and
showing that the maximum overlap on each sublevel is at most the number of
nodes of size /# on that sublevel: The analysis requires some additional notation.

Consider a node of the form ay_;- - -a;0 for which either a5 ;=0 or a,=0 or
both for each i<k. We will refer to such a node as basis node. A node
byp_;---by is said to be generated by the basis node ap ;---4qp if

1) by ;=ay_; and b;=a; whenever a;_#a; for 1 < i< k-1, and
2) by.;=b; whenever a;_;=a;=0 for 1 <i < k-I.
For example, 70000 generates 70001, 11100 and 11101 but not 711111.

It is not difficult to show that if « generates v, then both v and v are on the same

level of the complex plane diagram. For example, let « = aq; ;---a; and
v = by ;---by and observe that
V) - p() = Bpg-ap. D) 8K + -+ (by-ap) 8 + (by-ap)
== ck,ISkk'! S . o f c,6k -+ C.o

17



where ¢, ;=c; foreach i I <i < k-/. Since Skk'i is the complex conjugate of
Skf for 1 < i < k-1, we can conclude that {(v) - p(&) is a real number and thus
that ¥ and v are in the same level of the complex plane diagram.

It is also easy to show that each node of the shuffle-exchange graph is generated
by a unique basis node. In particular, the node which generates by ;- - - by can
be found by

1) setting by=0 and (if k is even) setting b, ,=0, and
2) setting b;=b; ;=0 for each i such that (originally) b;=b; ;=1.

Since exchange edges link nodes which have the same basis node, we can
conclude from the preceding arguments that it is possible to partition each level of
the complex plane diagram into sublevels so that the nodes in each sublevel are
precisely the nodes generated by some basis node. We will now show that the
maximum overlap on each sublevel is at most the number of nodes of size & on
that sublevel.

Since the necklaces have been arranged from left to right in order of
nondecreasing size, the overlap of exchange edges between two nodes of size s in
any sublevel is at most O(offfk B.') where B;' is the number of nodes in that
sublevel with size s. In the following proposition, we compute B,' and show that
its maximum for any sublevel . occurs at s=~#h.

Proposition 2: Fach basis node of size r generates By' nodes of size s, where
1) B,' =C(h-r i) for s=r+2iand i< h-r, and
2) B' =C(h-rnd for s=r+2i+1 and i< h-r
when k is odd and

1) B,' =C(h-r+1, 1) for s=r+2i and i< h-r+1, and
2) B' =2C(h-rd for s=r+2i+1 and i< h-r
when k is even.

Proof: When k is odd, there are precisely A - r pairs a; =ay.; =0 in a basis
node of size ». In order to generate a string of size s=r+ 2 when k is odd, we
must set b,=0 and set 7 of the A-r pairs so that bj =bk_j =1, Thereare C(h -1, i)
such strings. To generate a string of size s=r+ 2i+1 when k is odd, we must set
by=1 and choose / of the A-r pairs so that bj =bk_j =71. As before, there are
C(h - r, i) such strings.



When k is even, there is also the degenerate pair a;,, =0. To generate a string
of size s=r+ 2/ when k is even, we must choose / of the A - r+ ! pairs so that bj
=by; =1 (this count includes the "pair" b, =b;,, =1). There are C(h - r+1, i)
such strings. To generate a string of size s=r+ 2i+/ when k is even, we must set
either by=1 and by ,,=0 or by=0 and b, ,=1{, and choose i of the A-r pairs so
that b; =b;; =1 (G = k72). There are 2C(h - r, i) such strings O

Given Proposition 2, it is easily checked that the maximum value of B.' for any
sublevel (independent of the value of 7) occurs when s=#A. Thus the sum (over all
sublevels) of the maximum overlap at each sublevel is at most the number of nodes
of size h = |[(k-7)/2] in the ‘entire graph. This is at most C(k, &72) ~
2rm)72(2k/k'7?). Thus the total area of the layout is no more than

20277 ) ’°N2/log>?N + O(N2/log ?N),

as claimed.

4c) Additional O(/NV?/log3?N)-area layouts

By varying the order of the necklaces in the level-necklace grid, it is possible to
produce a variety of layouts for the shuffle-exchange graph which require at most
- O(N</log??N) area. The complex plane diagram itself suggests one such ordering.
For example, consider an arrangement of the necklaces from left to right in order
of nondecreasing radius. (The radius of a necklace is defined to be the distance of
its nodes from the origin in the complex plane diagram.) Such a layout
corresponds to a folding of the 'complex plane diagram along its imaginary axis
followed by a straightening of the necklaces. In what follows, we will show that,
like a layout by necklace size, a layout by necklace radius has area O(N2/7og>?N).

Because the layout by radius is so closely related to the complex plane diagram,
our analysis will center on the complex plane diagram, itself. As before, we will
partition the levels into sublevels and find an upper bound on the maximum
overlap of exchange edges on each sublevel separately. The number of horizontal
tracks needed to insert the exchange edges will then be at most the sum of these
upper bounds. We will show that this sum is at most O(N/Tog’?N).

Notice that the maximum overlap of exchange edges on a sublevel of the level-
~ necklace grid is at most twice the maximum overlap on that sublevel in the
complex plane diagram. (The factor of two is introduced by the "folding" of the

14



diagram along its imaginary axis. Although straightening the necklaces might
affect the maximum rozal overlap of exchange edges, it docs nor affect the overlap
within a sublevel.) :

Within a sublevel, an exchange edge can be identified by' the real part of its
midpoint. For example, the real part of the midpoint of exchange edge.
(B = B0, by D) us

by ycos2afk-1)%] + ... + byecosllask] + L72.

If a is a basis element of a sublevel, then a generates the other nodes in that
sublevel by substitution of the appropriate pairs of ones. For instance, we may set
bl:bk'l: 1, if a[:ak_izo. [.Ct ;

Po s — {‘]5_}5}? | a; = az ;= 0}

a

denote those indices [/ </ <A where a pair of 7-bits may be substituted for a pair
of O-bits. (As before, 7 = [g - I}72] but for convenience, we shall henceforth
assuime that k& is odd.) Notice that if b is generated by a, then the real part of the
midpoint of the exchange edge incident to b is

ieTa ifd7m
= 2b;cos 2mik) + 2cosQmizk) + 172
12igh

We now introduce a random variable Z_,, which has as its image, all of the real
parts of the midpoints of edges in the sublevel generated by a. Since b;=b;_; can
be either 0 or 7 when 7 € T,, let B; be a random variable representing this choice.

In particular,
; = 0 with probability 772, and
; = 1 with probability 172.
Then e ".%-’a
o — 2cos(2mwisk) B; + . isfos(hri/k) -+ 172
LeTa

= > 2 cos Cmisk) (B;- L42)s

Since the exchange edges have unit length in the complex plane diagram, two
edges overlap if and only if their midpoints are within unit distance of each other.
Thus the number of edges which overlap at position x on the sublevel generated
by a node a is given by the formula
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A7d probix-1/2 < Z,< x+ 177,

where |7T,] denotes the cardinality of 7,,. (We caution the reader that the notation
|x] is also used to denote the absolute value of x.)

Although the distribution function of Z, is difficult to analyzc directly, it does
behave like a normal distribution. This is because Z, is the sum of independent
random variables which have mean 0 and variance o7 =cos’(2wi/k). The Berry-
Esseen Theorem states precisely how far Z_, can vary from a normal distribution.
(For a proof of this theorem see [F71].)

Berry-Esseen Theorem: Ler X,;, X,,..., X,, be independent random

variables such that E(X) = 0, E(Xf) = o-iz, and E(1X1-3i) = p; for I1<i<m.
Set 52 = 0',2+ .. +o-m‘? and r = p;+---+p,,. Inaddition, let F denote
the cumulative distribution function of the sum (X;+ - - -+ X,)/s. Then for all x,

[Ax) - () < 6r/5°

where @ is the standard normal cumulative distribution function O
In the case of a sublevel generated by a node a, we have

X; =, 2cosuik) (B,-1L72) for i€T,,

] a

cela
s?2 = X cos?Qwi‘k) and

a
L e Ta_
r, = 2lcos’ Cmizk)].
Applying the Berry-Esseen Theorem, we can thus conclude that
Problx-122< Z,< x+#2] =2Probl{(x- 1725, < Zyz/s, < (x+172)/s,]
< PUx+172s] - ®Ux-1/2s]) + 12r/s,]°

Because the standard normal density function is symmetric and unimodal, we can
conclude that the maximum of Prob[x-12< Z,< x+1/2] occursat x = 0
and is at most O(L/s, + ry/s>).

In the following proposition, we find bounds for the values of r, and s,.
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Proposition 3: For any basis node a

ce7a

BpO= vlcosg(}n-z/k){ < IT) and
ceZa

52 = 2cosPQuick)y = QUTIKD).

Proof: 'The bound on r, is easy to compute since lcos’(Cmizk)l < 1. The
calculation of s, is a bit more tedious. In order to obtain a lower bound,
cos’(2mi’k) must be made as small as possible. The smallest values occur when
T, contains indices / which are as close to (k-7)/4 as possible. In this case, we can
approximate cos?(2sik) with the value «(#/2 - 2wisk)?, for some constant c.
Dircct computation reveals that the sum of these squares is at least Q(lTal3/k2) O

Since |7T,] < k for all a, we can conclude from the preceding that the maximum
overlap of exchange edges on a sublevel generated by a is at most

o2\7d k3 71T)77?).

Noting that there are prééisely C(h,)) 2" sublevels generated by a node for
which |7, = j and summing, we can conclude that the total number of horizontal
tracks needed to insert all of the exchange edges is at most

h ; :
> Ch, ) 2" O K3 /772
a2

h
= O[ 32" D ch.pri”? 1.

)

It is not difficult to check that the dominant terms in the preceding sum occur
when j = A2 + O(h!logh). 1n this region, j = (k) and thus the sum is
bounded above by

h
O [2F L2306 h; ) =5 @b gL 2
J—"

=  O(N/1og!?N),

thus completing the proof that a layout by necklace radius takes at most
O(N2/log>?N) area.
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5. Remarks

It is worth remarking that the O(NZ/log®?N)-area layouts for the shuffle-
exchange graph described in section 4 actually require Q(N2/7og%2N) arca and
thus our analysis of these layouts cannot be improved by more than a constant
factor. In each case, the lower bound on arca can be derived from the fact that the
maximum sotal overlap of exchange edges in the layouts is at least Q(N/7og’ ?N).
(Remember that although the maximum rotal overlap of exchange edges is nof an
upper bound on the number of horizontal tracks needed to insert the exchange
edges, it is a lower bound.)

The Q(N-Tlog?”2N) lower bound on maximum overlap is easily established for
the layout according to necklace size since QNTog!/”?N) exchange edges link
nodes of size £72 to nodes of size &2+ /. The lower bound on maximum overlap
is somecwhat more difficult to prove for the layout according to necklace radius.
The first step in the proof is to show that at least N2 exchange edges are
contained -within a square of side length ck//? centered at the origin of the
complex plane diagram (where ¢ is a constant). (This can be done by using the
techniques developed in section 4c.) Next consider the sum (over /) of the total
overlaps at points correspondiné to radii of 72 for I<i<ck!”?. Because the
complex plane diagram is radially symmetric, it is possible to show that at least
Q(N) exchange edges are counted. in this sum. Thus the ovc:lap at one of these
points must be at least Q(N/k!72).

Since Thompson [T80] has shown that any layout for the ~N-node shuffle-
exchange graph must have area at least QN2/log?N), we know that at least
Q(NrslogN) horizontal tracks are needed to insert the exchange edges for any
ordering of necklaces in the level-necklace grid. However, there is no ordering of
the necklaces known for which the exchange edges can be inserted using less than
o(N/log!”?N) horizontal tracks. This suggests an interesting open guestion since it
would be nice to find an O(N2/log?N)-area layout based on the complex plane
diagram. (Although an asymptotically optimal O(N2/log?N)-area layout for the
shuffle-exchange graph has recently been found by Kleitman, lLeighton, Lepley
and Miller [KLLMS81], it is rather complicated and of limited practical use.)

Although we do not know of necklace orderings for which the exchange edges
can be inserted using less than o(N/log/”?N) horizontal tracks, we do know of
orderings for which the maximum total overlap of exchange edges is at most
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O(NloglogN-/TogN). For example, an ordering of the necklaces by minimum value
has a maximum total overlap of O(NloglogNslogN). (The minimum value of a
necklace is simply the minimum of the values of the nodes contained in the
necklace.)

Interestingly, an analysis of the minimum (over all orderings) of the maximum
total overlap for small values of & indicates that there may always be an ordering
for which the maximum total overlap is at most O(N./logN), the least possible. In
fact, for 3 < N < 7, this minimum maximum overlap is precisely |£_2k -2/ A
summary of the minimum maximum overlap data for small values of N is included
in Table 1.

Table 1

Maximum Overlap of Best Known Orderings

maximum overlap of

k N best known ordering optimal?
3 8 2 yes
4 16 3 yes
5 32 6 yes
6 64 ' 10 yes
g4 128 18 yes
3 256 33 yes
9 512 62 ?
10 1024 115 ?
1k 2048 214 ?
12 4096 388 i
13 8192 754 i

In addition to varying the order of the necklaces, improvements in the layout
may also be made by rearranging the level assignments of the exchange edges. For
example, the layout of the 32-node shuffle-exchange graph shown in Figure 7 was
constructed in this way. (The careful reader will notice that we have also
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manipulated the necklaces somewhat in order to produce this layout.)) For a more
detailed discussion of the manner in which exchange edges can be reassigned, we
refer the reader to [LM81]. (Such layouts have also been used in conjunction with
the Blue Chip Project at Purdue [S81].)

o (R 15
L TG [emp S -3
y 5 |10 23
[ S ] o —j-—-1-- o -9
0 |1 12 30 31
! . -
18
.o — - — |- — b
8 9 20 27
6 17 =& 29

Figure 7: An improved layout for the 32-node shuffle-exchange graph.
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