"HOARE'S LOGIC IS NOT COMPLETE WHEN IT COULD BE"

J. Bergstra
A. Chmielinska
J. Tiuryn

August 1982
"HOARE'S LOGIC IS NOT COMPLETE WHEN IT COULD BE"

J. Bergstra
A. Chmielinska
J. Tiuryn

August 1982
Hoare's Logic is Not Complete
When It Could Be

J. Bergstra ¹
A. Chmielinska ²
J. Tiuryn ³

5 August 1982

1. University of Leiden, Department of Computer Science, The Netherlands
2. University of Torun, Department of Mathematics, Poland
3. M.I.T., Laboratory for Computer Science, USA,
 Boston University, Department of Mathematics, USA and
 University of Warsaw, Department of Mathematics, Poland.

This work was supported in part by The National Science Foundation, Grant No. MCS 8010707, and by a grant to the M.I.T. Laboratory for Computer Science by the IBM Corporation.
Abstract

It is known (cf. [2]) that if the Hoare rules are complete for a first-order structure \mathcal{A}, then the set of partial correctness assertions true over \mathcal{A} is recursive in the first-order theory of \mathcal{A}. We show that the converse is not true. Namely, there is a first-order structure \mathcal{C} such that the set of partial correctness assertions true over \mathcal{C} is recursive in the theory of \mathcal{C}, but the Hoare rules are not complete for \mathcal{C}.

KEY WORDS

Hoare Logic, Partial Correctness Assertions, Relative Completeness

1. Introduction

A first-order partial correctness assertion is a formula $\{P\} \alpha \{Q\}$, where P and Q are first-order formulae and α is a while-program. The assertion $\{P\} \alpha \{Q\}$ means that if P is true of some machine state, and if the program α halts when started from this state, then the formula Q will be true in the halting state of α. Since the set of valid partial correctness assertion is Π^0_2-complete [6], there is no finitary sound and complete axiom system for partial correctness.

Cook [4] has shown that the axiom system composed of the rules of Hoare [7] together with the first-order theory of a structure is complete for a certain class of structures. More precisely, for any first-order structure \mathcal{A}, the system $HL(\mathcal{A})$ consists of Hoare’s inference rules together with the first-order theory of \mathcal{A}. The structure \mathcal{A} is expressive if, for any program α and first-order formula Q, there is a first-order formula P such that for all $\bar{a}^\mathcal{A}$

$$\mathcal{A} \models P(\bar{a}^\mathcal{A}) \equiv (\{x\bar{x} = \bar{a}^\mathcal{A}\} \alpha \{Q\}).$$

Cook’s theorem states that if \mathcal{A} is expressive, then $HL(\mathcal{A})$ is complete. In general, however, the set $PC(\mathcal{A})$ of partial correctness assertions that are valid over \mathcal{A} is Π^0_1 in the first-order theory $Th(\mathcal{A})$ of \mathcal{A} (cf. [1]) whereas $HL(\mathcal{A})$ is Σ^0_1 in $Th(\mathcal{A})$. Thus $HL(\mathcal{A})$ is not complete for arbitrary \mathcal{A}.

Although expressiveness is sufficient to guarantee the completeness of $HL(\mathcal{A})$, it is not a necessary condition. For example, any nonstandard model of the integers has a complete Hoare logic, but cannot be expressive (cf. [2]). Moreover, proving properties of programs
over expressive structures may be considered a degenerate case. When expressiveness holds, partial correctness assertions reduce to first order formulae.

Since $PC(\mathcal{A})$ is always Π_1^0 in $Th(\mathcal{A})$ and $HL(\mathcal{A})$ is Σ_1^0 in $Th(\mathcal{A})$, then if HL is complete the partial correctness theory $PC(\mathcal{A})$ is recursive in $Th(\mathcal{A})$. This paper is motivated by the following question: is $HL(\mathcal{A})$ complete for every structure \mathcal{A} such that $PC(\mathcal{A})$ is recursive in $Th(\mathcal{A})$? We show that it is not. We will present a general construction of counterexamples for this situation. A corollary of our construction is that the ability to code finite sequences cannot be removed from the hypothesis of Harel’s completeness theorem for arithmetical universes (cf. [5]).

As pointed out in [5], any structure \mathcal{A} can be expanded to a structure with a complete Hoare logic by expanding to an arithmetical universe. This expansion may increase the degree of undecidability of the first-order theory of \mathcal{A}. However, when $HL(\mathcal{A})$ is incomplete but $PC(\mathcal{A})$ is recursive in $Th(\mathcal{A})$, the structure \mathcal{A} may be expanded in a much simpler way to obtain a complete Hoare logic. We may consider proof systems $HL(\mathcal{E},E)$ over a first order theory E in language \mathcal{E}. $HL(\mathcal{A})$ is then identified with $HL(\mathcal{E}, Th(\mathcal{A}))$, when \mathcal{A} is an \mathcal{E}-structure. It follows from [3] that \mathcal{A} can be expanded to an \mathcal{E}^*-structure \mathcal{A}^* with \mathcal{E}^*-being finite, such that for some decidable theory $T \subseteq Th(\mathcal{A}^*)$, $PC(\mathcal{A}) \subseteq HL(\mathcal{E}^*, Th(\mathcal{A}) \cup T)$. Thus $Th(\mathcal{A}) \cup T$, where T is decidable but formulated in an extended language, contains enough information to derive all of $PC(\mathcal{A})$.

2. Preliminaries

We begin by presenting a version of Hoare’s inference rules that suits our purposes. In the following rules, P, Q and R denote first-order formulae, B denotes any quantifier-free first-order formula, t a term, and x a variable. We use $Q[t/x]$ to denote the formula Q with t substituted for all free occurrences of x. Greek letters α and β denote arbitrary while-programs.
(Assignment Rule) \[P \supset Q[t/x] \vdash \{P\} x = t \{Q\} \]

(Composition Rule) \[\{P\} \alpha \{Q\}, \{Q\} \beta \{R\} \vdash \{P\} \alpha; \beta \{R\} \]

(Conditional rule) \[\{P \land B\} \alpha \{Q\}, \{P \land \neg B\} \beta \{Q\} \]
\[\vdash \{P\} \text{if} B \text{then} \alpha \text{else} \beta \{Q\} \]

(Iteration rule) \[P \supset R, \{R \land B\} \alpha \{R\}, R \land \neg B \supset Q \]
\[\vdash \{P\} \text{while} B \text{do} \alpha \text{od} \{Q\} \]

(Oracle axioms) Every \(P \in \text{Th}(\mathcal{A}) \) is an axiom.

In the composition rule, the formula \(Q \) is called an intermediate assertion, and in the iteration rule, \(R \) is called the loop invariant. Formally, \(\text{HL}(\mathcal{A}) \) denotes the set of all asserted programs \(\{P\} \alpha \{Q\} \) provable from \(\text{Th}(\mathcal{A}) \) using the above rules.

The reader may easily verify that the Rule of Consequence,
\[P \supset P_1, \{P_1\} \alpha \{Q_1\}, Q_1 \supset Q \vdash \{P\} \alpha \{Q\} \]
is a derived rule of \(\text{HL} \). Another rule that is easily derived is
\[\{P\} \alpha \{Q\} \vdash \{\exists x P\} \alpha \{\exists x Q\}, \]
where \(x \) is a variable that does not occur in \(\alpha \). Together, these two rules imply that superfluous free variables may be eliminated from invariants and intermediate assertions of proofs.

Lemma 1: Let \(X \) be the set of all variables occurring free in \(P, Q \), or \(\alpha \). If \(\text{HL}(\mathcal{A}) \) proves \(\{P\} \alpha \{Q\} \), then there exists a proof of \(\{P\} \alpha \{Q\} \) in \(\text{HL}(\mathcal{A}) \) using only invariants and intermediate assertions with free variables in \(X \).

The idea of the proof is as follows. Suppose we have proof of \(\{P\} \alpha \{Q\} \) in \(\text{HL}(\mathcal{A}) \) and assume that \(x \) is free in \(P \) or \(Q \) but does not occur in \(\alpha \). This proof can be transformed into another proof by quantifying over \(x \) in each formula.

We define the disjoint union \(\mathcal{A} \oplus \mathcal{B} \) of first-order structures \(\mathcal{A} \) and \(\mathcal{B} \) in order to state our theorems. Let \(L_1 \) and \(L_2 \) be two similarity types. Let \(A \) and \(B \) be unary predicate symbols
and \(\bot \) a constant symbol, none of which belong to \(L_1 \cup L_2 \). Let \(\mathcal{A} \), \(\mathcal{B} \) be \(L_1 \)-, \(L_2 \)-structures, respectively. For any integer \(i \) and set \(X \) let \(X \times i \) denote \(X \times \{i\} \). Let
\[L = L_1 \cup L_2 \cup \{A,B,\bot\}. \]
We define an \(L \)-structure \(\mathcal{A} \oplus \mathcal{B} \) with carrier \(|\mathcal{A} \oplus \mathcal{B}| = |\mathcal{A}| \times 0 \cup |\mathcal{B}| \times 1 \cup \{2,2\} \). We interpret \(A \) as the characteristic predicate of \(|\mathcal{A}| \times 0 \), \(B \) as the characteristic predicate of \(|\mathcal{B}| \times 1 \) and \(\bot \) as \(\langle 2,2 \rangle \). We interpret the \(L_1 \) (respectively \(L_2 \)) function symbols as in \(\mathcal{A} \) (as in \(\mathcal{B} \), respectively), provided all arguments are taken from \(|\mathcal{A}| \times 0 \) (from \(|\mathcal{B}| \times 1 \), resp.) Otherwise, we take the value of a function to be \(\bot \). We interpret \(L_1 \) (respectively \(L_2 \)) predicate symbols as in \(\mathcal{A} \) (as in \(\mathcal{B} \), resp.), provided all arguments are taken from \(|\mathcal{A}| \times 0 \) (from \(|\mathcal{B}| \times 1 \), resp.), and set to be false elsewhere. In particular, if \(R \in L_1 \cap L_2 \), then either all arguments of \(R \) should be taken from \(|\mathcal{A}| \times 0 \) or all from \(|\mathcal{B}| \times 1 \).

Clearly a meaningful alternative to this definition would be to use two-sorted structure, but the disjoint union keeps us closer to the standard Hoare formalism.

We are now in position to formulate two general theorems which answer the question posed in the introduction.

Theorem 1: For every \(\mathcal{A} \) there is a structure \(\mathcal{B} \) such that
\[
\text{PC}(\mathcal{A} \oplus \mathcal{B}) \text{ is recursive in } \text{Th}(\mathcal{A} \oplus \mathcal{B}), \text{ and}
\]

Theorem 2: For every two structures \(\mathcal{A} \) and \(\mathcal{B} \)
if \(\text{HL}(\mathcal{A}) \) is incomplete, then so is \(\text{HL}(\mathcal{A} \oplus \mathcal{B}) \).

The following corollary, stated as a claim in the introduction, follows immediately from these theorems.

Corollary: There is a structure \(\mathcal{C} \) such that
\[
\text{PC}(\mathcal{C}) \text{ is recursive in } \text{Th}(\mathcal{C}) \text{ and } \text{HL}(\mathcal{C}) \text{ is incomplete.}
\]

Proof. Take \(\mathcal{A} \) to be any structure for which \(\text{HL}(\mathcal{A}) \) is incomplete (cf. [1, 8] for examples). Then, according to Theorem 1, exists \(\mathcal{B} \) such that \(\text{PC}(\mathcal{A} \oplus \mathcal{B}) \) is recursive in \(\text{Th}(\mathcal{A} \oplus \mathcal{B}) \). Moreover, according to Theorem 2, \(\text{HL}(\mathcal{A} \oplus \mathcal{B}) \) is incomplete. Thus we can put \(\mathcal{C} = \mathcal{A} \oplus \mathcal{B} \).

Theorem 1 also gives us some insight into Harel's theorem on arithmetical universes (cf.
[5]). Let \mathcal{N} stand for the standard model of arithmetic. By Theorem 2 we know that for any \mathcal{A} with $\text{HL}(\mathcal{A})$ incomplete, $\text{HL}(\mathcal{A} \oplus \mathcal{N})$ is incomplete. Harel's theorem says that if \mathcal{B} is a structure which contains the standard model of arithmetic (as a first order definable part of \mathcal{B}) and if \mathcal{B} has the ability to code finite sequences of elements from $[\mathcal{B}]$, then the first order language is expressive for while-programs over \mathcal{B}, and therefore $\text{HL}(\mathcal{B})$ is complete. Since obviously \mathcal{N} is a first order definable part of $\mathcal{A} \oplus \mathcal{N}$, but $\text{HL}(\mathcal{A} \oplus \mathcal{N})$ is not complete, Harel's encoding assumption is necessary to ensure the completeness of his axioms.

We prove Theorem 1 in Section 3 and Theorem 2 in Section 4.

3. Adding an Expressive Structure

This section shows that for any structure \mathcal{A}, there is a structure \mathcal{B} such that $\text{PC}(\mathcal{A} \oplus \mathcal{B})$ is recursive in $\text{Th}(\mathcal{A} \oplus \mathcal{B})$. If the domain of \mathcal{A} is finite, then \mathcal{B} may be chosen to be any finite structure. Then $\mathcal{A} \oplus \mathcal{B}$ is finite and $\text{PC}(\mathcal{A} \oplus \mathcal{B})$ is recursive in $\text{Th}(\mathcal{A} \oplus \mathcal{B})$. When \mathcal{A} is infinite, we will define \mathcal{B} to be a copy of \mathcal{A} which also has the standard arithmetic operations defined on the elements of its domain. By construction, the first-order theory of \mathcal{B} will contain both the first-order theory of \mathcal{A} and the first-order theory of arithmetic. As a consequence, $\text{PC}(\mathcal{A} \oplus \mathcal{B})$ will be recursive in $\text{Th}(\mathcal{A} \oplus \mathcal{B})$. However, the structure $\mathcal{A} \oplus \mathcal{B}$ need not be expressive since there may not be any way to code pairs of elements of $[\mathcal{A}]$ in $\text{Th}(\mathcal{A} \oplus \mathcal{B})$.

Assume now that \mathcal{A} is infinite and its similarity type is L_1. We construct \mathcal{B} so that $\text{PC}(\mathcal{A} \oplus \mathcal{B})$ is recursive in $\text{Th}(\mathcal{A} \oplus \mathcal{B})$ as follows. First, we expand \mathcal{A} to an arithmetic universe in the sense of [5]. To do this, we add a defining predicate for "non negative integers" \mathbb{N}, arithmetic operations, constants 0 and 1, and in addition, we add a pairing function. The resulting structure, \mathcal{B}, has the same domain as \mathcal{A} but has a richer similarity type which we denote by L_2.

It is clear that $\text{Th}(\mathcal{B})$ is recursive in $\text{Th}(\mathcal{A} \oplus \mathcal{B})$. This follows immediately from the
definition of the ⊕-construction. Because \mathfrak{B} is expressive (being an arithmetical universe), $\text{HL}(\mathfrak{B})$ is complete. Therefore $\text{PC}(\mathfrak{B})$ is recursive in $\text{Th}(\mathfrak{B})$. Thus, it remains to be shown that $\text{PC}(\mathfrak{A} \oplus \mathfrak{B})$ is many-one reducible to $\text{PC}(\mathfrak{B})$.

We will outline the reduction of $\text{PC}(\mathfrak{A} \oplus \mathfrak{B})$ to $\text{PC}(\mathfrak{B})$ by showing an effective simulation of computations on $\mathfrak{A} \oplus \mathfrak{B}$ by those on \mathfrak{B}.

In order to describe a smooth translation of assertions and programs, we introduce an infinite family of new variables: y_0,y_1,\ldots. The translation will take a formula with variables x_0,x_1,\ldots to a formula with variables x_0,y_0,x_1,y_1,\ldots with double the number of quantifiers.

Because the structure \mathfrak{B} contains in its language names for 0,1 and 2 (since it contains the language of arithmetic) it is natural to identify the elements of $[\mathfrak{B}]$ which correspond to these names with the actual numbers 0,1,2. By means of this identification, we can view

$$[\mathfrak{A} \oplus \mathfrak{B}] = [\mathfrak{A}] \times \{0\} \cup [\mathfrak{B}] \times \{1\} \cup \{2,2\}$$

as a subset of $[\mathfrak{B}] \times [\mathfrak{B}]$ (recall that $|\mathfrak{A}| = |\mathfrak{B}|$). In what follows we use the projection functions on the coordinates, π_1 and π_2 on elements of $[\mathfrak{B}] \times [\mathfrak{B}]$.

We show an effective translation Tr of first order formula over the language of $\mathfrak{A} \oplus \mathfrak{B}$ to first order formula over L_2. The translation will have the property that for every $P(x_1,\ldots,x_n)$ over the language of $\mathfrak{A} \oplus \mathfrak{B}$, and for all $c_1,\ldots,c_n \in [\mathfrak{A} \oplus \mathfrak{B}]$,

$$\mathfrak{A} \oplus \mathfrak{B} \models P(x_1,\ldots,x_n)[c_1,\ldots,c_n]$$

iff

$$\mathfrak{B} \models \text{Tr}(P)(x_1,y_1,\ldots,x_n,y_n)[\pi_1(c_1),\pi_2(c_1),\ldots,\pi_1(c_n),\pi_2(c_n)].$$

Because the formal definition of Tr is slightly cumbersome we present its details. We first introduce some notations. For a term t we define $L_1(t)$ to be true if t is a term over language L_1 and false otherwise.

We define Tr inductively. Suppose P is an equation $t = t'$, where t contains the variables
\[X = \{x_i : i \in J\}, \text{ and } t' \text{ contains the variables } X' = \{x_i : i \in J'\}. \text{ Then we want } \text{Tr}(P) \text{ to be true iff}
\]

(a) both \(t \) and \(t' \) have values in \(\mathcal{A} \times 0 \) and \(t = t' \), or

(b) both \(t \) and \(t' \) have values in \(\mathcal{B} \times 1 \) and \(t = t' \), or

(c) both \(t \) and \(t' \) are \(\perp \).

Formulae (a) - (c) can be written formally as follows:

\[(a') \bigwedge_{i \in J \cup J'} (y_i = 0) \land L_1(t) \land L_1(t') \land t = t'\]

\[(b') \bigwedge_{i \in J \cup J'} (y_i = 1) \land t = t'\]

\[(c') \left[\bigvee_{i \in J} (y_i \neq 0) \lor \neg L_1(t) \right] \land \left[\bigvee_{i \in J} (y_i \neq 1) \right] \land \left[\bigvee_{i \in J'} (y_i \neq 0) \lor \neg L_1(t') \right] \land \left[\bigvee_{i \in J'} (y_i \neq 1) \right]\]

Suppose \(P \) is an atomic formula \(R(t_1, ..., t_n) \) with \(R \in L_1 \) and let \(X = \{x_i : i \in J\} \) contain variables that occur in \(P \). Then \(\text{Tr}(P) \) is:

\[
\{ \bigwedge_{i \in J} (y_i = 0) \land \bigwedge_{j=1}^n L_1(t_j) \lor \bigwedge_{i \in J} (y_i = 1) \} \land R(t_1, ..., t_n) \]

If \(P \) is \(A(t) \), then \(\text{Tr}(P) \) is:

\[
\bigwedge_{i \in J} (y_i = 0) \land L_1(t).
\]

The cases for \(P \) of the form \(B(t) \) or \(R(t_1, ..., t_n) \) with \(R \in L_2 \lor L_1 \) are simpler and we omit them.

If \(P \) is \(P_1 \lor P_2 \), then \(\text{Tr}(P) \) is \(\text{Tr}(P_1) \lor \text{Tr}(P_2) \).

If \(P \) has free variables \(X = \{x_i : i \in J\} \), then \(\text{Tr}(\neg P) \) is:

\[
\bigwedge_{i \in J} (y_i = 0 \lor y_i = 1 \lor y_i = 2) \land \neg \text{Tr}(P).
\]
Finally, \(\text{Tr}(\exists x_i \, P) \) is
\[\exists x_i \, \exists y_i \, ((y_i = 0 \lor y_i = 1 \lor y_i = 2) \land \text{Tr}(P)). \]
This concludes the inductive definition of \(\text{Tr} \) for formulae.

The next step is to extend \(\text{Tr} \) to programs \(\alpha \) over the language of \(\mathcal{L} \oplus \mathcal{B} \) so that for all first order formulae \(P, Q \) over the language of \(\mathcal{L} \oplus \mathcal{B} \)
\[(*) \quad \mathcal{L} \oplus \mathcal{B} \models \{ P \} \alpha \{ Q \} \iff \mathcal{B} \models \{ \text{Tr}(P) \} \text{Tr}(\alpha) \{ \text{Tr}(Q) \}. \]
Let \(\alpha \) be a program and let \(\{ x_1, \ldots, x_n \} \) contain all variables occurring in \(\alpha \). The translation \(\text{Tr}(\alpha) \) will use variables \(x_1, y_1, \ldots, x_n, y_n \) in such a way that the following diagram commutes

\[
\begin{array}{ccc}
|\mathcal{L} \oplus \mathcal{B}|^n & \xrightarrow{\alpha} & |\mathcal{L} \oplus \mathcal{B}|^n \\
\downarrow \pi_1 & & \downarrow \pi_1 \\
<\pi_1, \pi_2>^n & \xrightarrow{\text{Tr}(\alpha)} & <\pi_1, \pi_2>^n \\
\downarrow \gamma & & \downarrow \gamma \\
|\mathcal{B}|^{2^n} & \xrightarrow{\text{Tr}(\alpha)} & |\mathcal{B}|^{2^n}
\end{array}
\]

To achieve this, every assignment statement \(x_i := t \) in \(\alpha \) is replaced by a pair of assignment statements for \(x_i \) and \(y_i \), depending on \(L_1(t) \) and the values of \(y_j \)'s corresponding to \(x_j \)'s occurring in \(t \). Every test \(P \) in \(\alpha \) is replaced by \(\text{Tr}(P) \). The details of this construction are left for the reader.

It follows from \((*) \) that \(\text{Tr} \) is many-one reduction of \(PC(\mathcal{L} \oplus \mathcal{B}) \) to \(PC(\mathcal{B}) \). This completes the proof of Theorem 1.

4. Hoare's Logic over Direct Sum
In this section we will show that incompleteness of \(\text{HL}(\mathcal{L}) \) implies incompleteness of \(\text{HL}(\mathcal{L} \oplus \mathcal{B}) \).
Let P be a first order formula over the language of \mathcal{L}. We define P_A, a relativisation of P to $[\mathcal{A}]$, inductively as follows.

(i) if P is atomic, then P_A is P

(ii) $(\neg P)_A$ is $\neg (P_A)$

(iii) $(P \lor Q)_A$ is $P_A \lor Q_A$

(iv) $(\exists x \; P)_A$ is $\exists x \; (A(x) \land P_A)$.

If X is a finite set of variables, then $A(X)$ denotes $\bigwedge_{x \in X} A(x)$. We define P_B and $B(X)$ similarly.

Using relativized formulae, we can interpret $PC(\mathcal{L})$ in $PC(\mathcal{L} \oplus \mathcal{B})$.

Lemma 2: Let P, Q be first order formulae over \mathcal{L}_1, and let α be a while-program over \mathcal{L}_1. Let X be the set of all variables occurring free in P or Q or α. Then

$\mathcal{A} \models \{P\} \alpha \{Q\}$ iff $\mathcal{L} \oplus \mathcal{B} \models \{A(X) \land P_A\} \alpha \{A(X) \land Q_A\}$.

Furthermore, if $HL(\mathcal{L} \oplus \mathcal{B})$ proves $\{A(X) \land P_A\} \alpha \{A(x) \land Q_A\}$ using only invariants and intermediate assertions with free variables in X and of the form $\Lambda(X) \land R_A$, then $HL(\mathcal{L})$ proves $\{P\} \alpha \{Q\}$.

The proof of this lemma is straightforward and is omitted. To finish the proof of Theorem 2, we need the following proposition.

Proposition 3: Let P be a first order formula over the language of $\mathcal{L} \oplus \mathcal{B}$ and let X be the set of all variables occurring free in P. Then there exists a first order formula Q over \mathcal{L}_1 such that

$\mathcal{L} \oplus \mathcal{B} \models \{A(X) \land P\} \equiv \{A(X) \land Q_A\}$.

Before we prove Proposition 3, we show how it yields the proof of Theorem 2.

Proof of Theorem 2: Assume that $HL(\mathcal{L})$ is incomplete and $HL(\mathcal{L} \oplus \mathcal{B})$ complete. Choose $\{P\} \alpha \{Q\}$ true in \mathcal{L} but not derivable in $HL(\mathcal{L})$. Let X be the set of all variables occurring free in P, Q, or α. By Lemma 2, $\{A(X) \land P_A\} \alpha \{A(X) \land Q_A\}$ is true in $\mathcal{L} \oplus \mathcal{B}$, and therefore if $HL(\mathcal{L} \oplus \mathcal{B}) \models \{A(X) \land P_A\} \alpha \{A(X) \land Q_A\}$.
We derive a contradiction by constructing a proof of \(\{P\} \alpha \{Q\} \) in \(\text{HL}(\mathcal{L}) \). By Lemma 1, there is a proof of \(\{A(X) \land P\} \alpha \{A(X) \land Q\} \) in which all intermediate assertions and invariants have their free variables in \(X \). In addition, each \(\{R\} \alpha \{S\} \) in the proof may be replaced by \(\{A(X) \land R\} \alpha \{A(X) \land S\} \) to yield another valid proof. Then, according to Proposition 3, all invariants and intermediate assertions can be written in the form \(\{A(X) \land R' \} \alpha \{A(X) \land S' \} \) with \(R' \) and \(S' \) are first order formulae over \(\mathcal{L}_1 \). By Lemma 2, \(\text{HL}(\mathcal{L}) \) proves \(\{P\} \alpha \{Q\} \) in contrast to our assumptions. \(\square \)

The proof of Proposition 3 uses Lemmas 4 - 6 stated below.

Lemma 4: (\(\bot \)-elimination) For every first order formula \(P \) over \(\mathcal{L}_1 \cup \{A, B, \bot\} \) there is a formula \(P^\bot \) over \(\mathcal{L}_1 \cup \{A, B\} \) such that

(i) \(A \equiv B \Rightarrow P \equiv P^\bot \)

(ii) \(A \equiv B \Rightarrow (P^\bot)_A \equiv (P^\bot)_B \).

Proof: It suffices to notice that we can define the constant \(\bot \) using the unary relations \(A \) and \(B \): \(x = \bot \) iff \(\neg A(x) \land \neg B(x) \). \(\square \)

We say that a formula \(P \) of the language of \(\mathcal{L} \oplus \emptyset \) is normalized iff there is a number \(n \), formulae \(F^1, \ldots, F^n \) over \(\mathcal{L}_1 \cup \{A, B\} \) and formulae \(G^1, \ldots, G^n \) over \(\mathcal{L}_2 \cup \{A, B\} \) such that \(P \) of the form \(\bigwedge_{i=1}^n (F^i_A \lor G^i_B) \).

Lemma 5: Let \(P \) be a formula over \(\mathcal{L}_2 \cup \{A, B\} \). There exists a normalized formula \(Q \) of the form \(\bigwedge_{i=1}^n (F^i_A \lor G^i_B) \) such that \(A \oplus \emptyset \Rightarrow A(x) \supset (P_B \equiv Q) \) and \(x \) is not free in \(G^i_B, i=1,\ldots,n \). Moreover all variables free in \(Q \) are free in \(P \).

Proof. Let us consider first the case when formula \(P_B \) is atomic. If \(P_B \) is over \(\mathcal{L}_1 \cup \{A, B\} \) then \(Q \) can be \(P_B \lor \text{false} \). If \(x \) does not occur in \(P_B \) as a free variable, then \(Q \) can be \(\text{false} \lor P_B \). If \(P_B \) is not over \(\mathcal{L}_1 \cup \{A, B\} \), contains \(x \) as a free variable and is of the form \(R(t_1, \ldots) \) then \(A(x) \) implies \(P_B \equiv \text{false} \). The remaining subcase is a formula of the form \(t_1 = t_2 \), not over \(\mathcal{L}_1 \cup \{A, B\} \), and containing \(x \) as a free variable. Then \(A(x) \) implies \(P_B \equiv t_1 = t_2 = \bot \), which means that \(P_B \) is equivalent to a propositional combination of clauses of the form \(A(y) \) and \(B(y) \).

If \(P_B \) is not atomic, then we transform it to the desired form in four steps. Steps 2 and 3 should be skipped in case when \(P_B \) is quantifier free.

STEP 1. Replace all atomic subformulae of \(P_B \) containing \(x \) as a free variable and not over \(\mathcal{L}_1 \cup \{A, B\} \) by \(\text{false} \) or by a combinations of
clauses of the form A(x) and B(x), according to the previous reasoning.

STEP 2. Replace each atomic subformula containing both x as a free variable and at least one occurrence of a bound variable. Since every bound variable y of B is assumed to fulfill B(y), we again can replace such subformula by false if it is a relation, and by combination of A and B clauses if it is term equality.

STEP 3. Transform P_B in such a way, that no subformula containing x as a free variable is in the range of any quantifier, and the set of all subformulas is unchanged (we can do it, because due to step 2 no such atomic subformula contains any bound variable).

STEP 4. Use the laws of distributivity and the de Morgan's rule to transform P_B to the form \(\bigwedge_{i=1}^{n} (F_i \lor G_i^1) \) such that F_i's are created from exactly these atomic subformulas in which x occur as a free variable.

Due to the steps 1, 2 and 3 formulae F_i's are over \(\mathcal{L}_3 \cup \{A\} \), moreover they are quantifier free (this is what assures that F is equal to F_A). Since all atomic subformulas introduced in the transformation are of the form A(y) or B(x), the new P_B is still over \(\mathcal{L}_2 \cup \{A,B\} \). Moreover, no new variable has been introduced. Thus the new P_B is of the desired form.

We observe that due to the symmetry of the construction of \(\mathcal{A} \oplus \mathcal{B} \), Lemmas 4 and 5 are true when \(\mathcal{L}_1 \) is interchanged with \(\mathcal{L}_2 \) and A with B.

Lemma 6: For every formula P of the language of \(\mathcal{A} \oplus \mathcal{B} \) there is a normalized formula Q such that \(\mathcal{A} \oplus \mathcal{B} \models P \equiv Q \).

Proof. The proof is by induction on P. In the basis case, if P is over \(\mathcal{L}_1 \cup \{A,B\} \) (resp. \(\mathcal{L}_2 \cup \{A,B\} \)) then Q can be P \(\lor \text{false} \) (resp. \(\text{false} \lor \text{false} \). In the remaining case, if P is of the form R(t_1,..,t_k) then it is equivalent in \(\mathcal{A} \oplus \mathcal{B} \) to false, and if it is of the form t_1 = t_2 then it is equivalent to \(\epsilon \). The latter is equivalent in \(\mathcal{A} \oplus \mathcal{B} \) to a formula over \{A,B\}. The only nontrivial case in the inductive step is for P of the form \(\forall x \ Q \). We assume inductively, that over \(\mathcal{A} \oplus \mathcal{B} \) the formula Q is equivalent to normalized Q', where Q' is of the form \(\bigwedge_{i=1}^{n} (F_i^A \lor G_i^B) \).

Since \(\mathcal{A} \oplus \mathcal{B} \models P \equiv \bigwedge_{i=1}^{n} \forall x (F_i^A \lor G_i^B) \)
it is enough to show a transformation of every formula $\forall x(F^i_A \lor G^i_B)$ for $i = 1, \ldots, n$ into a formula of the desired form. First we observe that such a formula is equivalent over $\mathcal{A} \oplus \mathcal{B}$ to the conjunction of the formulae

(aa) $F^i_A(\bot/x) \lor G^i_B(\bot/x)$

(bb) $\forall x [A(x) \supset (F^i_A \lor G^i_B)]$

(cc) $\forall x [B(x) \supset (F^i_A \lor G^i_B)]$.

Using Lemma 4 we convert the (aa) into an equivalent formula of the desired form. The transformations of (bb) and (cc) are similar and we present here only a transformation of (bb).

Using Lemma 5, we can replace G^1_B in (bb):

(bb') $\forall x [A(x) \supset (F^1_A \lor \bigwedge_{j=1}^m (H^j_A \lor J^j_B))]$.

Since x does not occur free in J^j_B, $j = 1, \ldots, n$, (bb') is equivalent over $\mathcal{A} \oplus \mathcal{B}$ to

(bb'') $\bigwedge_{j=1}^m [(\forall x (F^i_A \lor H^j_A)) \land \lor J^j_B]$.

Because we assumed that F's and H's are over $L_1 \cup \{A, B\}$ and J's are over $L_2 \cup \{A, B\}$, the last formula is normalized. This completes the proof of the lemma.

We can now prove Proposition 3.

Proof of Proposition 3: Let P be a first order formula over the language of $\mathcal{A} \oplus \mathcal{B}$. By Lemma 6 it is equivalent over $\mathcal{A} \oplus \mathcal{B}$ to $\bigwedge_{i=1}^n (F^i_A \lor G^i_B)$, where F's are over $L_1 \cup \{A, B\}$ and G's are over $L_2 \cup \{A, B\}$.

Let X be the set of all variables which occur free in P. Using Lemma 5 repeatedly for every variable from X we can get a normalized formula Q'' of the form $\bigwedge_{i=1}^m (K^i_A \lor L^i_B)$ such that

$\mathcal{A} \oplus \mathcal{B} \models A(X) \land P \equiv A(X) \land Q''$

and in L^i_B no free variable occur. Let ϵ_i be true if $\mathcal{A} \oplus \mathcal{B} \models A(X) \land L^i_B$, and false otherwise.

Clearly

$\mathcal{A} \oplus \mathcal{B} \models A(X) \land P \equiv A(X) \land \bigwedge_{i=1}^m (K^i_A \lor \epsilon_i)$.
Let the formula $\bigwedge_{i=1}^{m}(K^i_A \lor \epsilon_i)$ be called Q' and let Q be obtained from Q' by replacing subformulae of the form $A(t)$ by $true$, and subformulae of the form $B(t)$ by $false$. It is easy to check that such a Q fulfills our requirements.

5. References

Table of Contents

1. Introduction
2. Preliminaries
3. Adding an Expressive Structure
4. Hoare’s Logic over Direct Sum
5. References

1
2
5
8
13