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1. Introduction

Recent advances in Very Large Scale Integration (VLSI) circuit technology have
made it possible to wire tens of thousands of transistors onto a single chip. In the
near fututre, it is expected that fabrication of chips containing millions of transistors
will be commonplace [MC80]. In order that this massive computational resource be
effectively utilized, theoretical researchers have been actively trying to develop
models and methods for designing VLSI chips. Most of these efforts have been
directed towards producing network layouts which minimize the amount of area
consumed by the chip. This is due to the fact that small chips are usually much
cheaper and more reliable than large chips.

Of the several mathematical models that have been proposed for VLSI
computation, the simplest and most widely accepted is the Thompson grid model
[T79, T80]. The grid model of a VLSI chip is quite simple. The chip is presumed to
consist of a grid of horizontal and vertical tracks which are spaced apart by unit
intervals. The nodes of the network are viewed as points and are located only at the
intersection of grid tracks. Wires are routed through the tracks in order to connect
pairs of nodes. Although a wire in a horizontal track is allowed to cross a wire in a
vertical track (without making an electrical connection), pairs of wires are not
allowed to overlap for any distance or to overlap at corners (i.e., they cannot overlap
in the same track). Further, wires are not allowed to overlap nodes to which they are
not linked. (The routing of wires in this fashion is also known as layer per direction
routing and Manhattan routing.)

The area of a layout in the grid model is defined to be the product of the number
of horizontal tracks and the number of vertical tracks which contain a node or wire
segment of the layout. For example, the layout shown in Figure 1 has area 15.

Figure 1: A layout which has area 15.



It is easy to construct a layout for the graph shown in Figure 1 which has area 9,
implying that the layout in Figure 1 is not optimal. In general, however, it is very
difficult to tell if a layout is optimal or even close to optimal. This is due to the fact
that relatively little is known about proving lower bounds on the area needed to lay
out a graph. Past research in this area has centered on the related problem of finding
good lower bounds on the bisection width of a graph [T79, T80, V80, LS81]. (The
bisection widih of a graph is the minimum number of edges which must be removed
in order to partition the graph into two nearly-equal-sized subgraphs.)

The relationship between bisection width and layout area was first noticed by
Thompson [T79] who showed that the layout area of a graph with bisection width B
is at least ©(B?). Since that time, Thompson [T80], Vuillemin [V80] and Lipton and
Sedgewick [LS81] have all shown how to use information theoretic arguments in
order to find good lower bounds on the bisection width of a graph and thus on its
layout area. While these methods are useful in finding good lower bounds on the
layout arca of some networks (such as the shuffle-exchange graph), they have not
been of use in resolving two of the key open questions in VLSI theory; namely,

1) "How much area is needed to lay out a planar graph?," and

2) "How much area is required to lay out a graph with an O(x’/?)-separator?.”
(An N-node graph is said to have an f{x)-separator if it can be partitioned into
two nearly-equal-sized subgraphs G, and G, such that at most V) edges link
G; o G, and both G ; and G, have f{x)-separators.)

The planar graph question is particularly important since (as we will show in
Theorem 2) the layout problem for an arbitrary graph can be reduced to that for a
planar graph. Although no nontrivial lower bounds are known for either problem,
progress has been made on the corresponding upper bounds. In particular, Leiserson
[L80a] and Valiant [V81] have shown how to lay out any N-node graph which has an
O(x!/?)-separator in at most O(N/og’N) area. As Lipton and Tarjan [LT80] have
proved an O(x//?)-separator theorem for the class of planar graphs, their O(Nlog?N)
area layout technique also works for planar graphs. Although it is suspected that
better layout techniques exist for planar graphs, none have yet been found.

In this paper, we pursue an entirely different strategy in developing new lower
bound techniques for VLSI. Whereas previous researchers have been concerned
primarily with the bisection width of a network, we shall be concerned with its
crossing number and wire area. The crossing number of a graph is the minimum



number of pairs of edges which must cross in any planar drawing of the graph. The
wire area of a graph is the minimum amount of wire which is needed to lay out the
graph in the Thompson grid model [T79, T80]. Clearly, the crossing number and
wire area are lower bounds on the layout area of any graph. In fact, we will show in
Theorem 1 that ‘ _

QUB) < C+N< W< A

for any N-node graph with bisection width B, crossing number C, wire area W and
layout area A.

The preceding inequality implies that every lower bound technique for bisection
width can be translated into a lower bound technique for crossing number and wire
area. Thus nothing is lost by forgetting about bisection width and concentrating ones
efforts on finding good lower bounds for the crossing number and wire area of a
graph. In fact, much can be gained. For example, we will use such techniques in
this paper to construct

1) an N-node planar graph which has layout area O(NlogN) and

2) an N-node (nonplanar) graph with an O(x//?)-separator which has layout area
O(Nlog’N).

The first result demonstrates that not all planar graphs can be laid out in linear
area, thus disproving a popular conjecture. The second result indicates that
Leiserson and Valiant's O(Nlog?N)-area layout technique for graphs with O(x’/?)-
separators 1S optimal at least some of the time and thus cannot, in general, be
improved.

There has also been a great deal of interest lately in the problem of determining
the length of the longest wire in any layout of a network on a chip [BL81, CM81,
PRS81]. Bhatt and Leiserson [BL81], in particular, have found some nice upper
bounds for this problem. Very little has been accomplished in the way of lower
bounds, however, since bisection width arguments do not seem to be applicable to
edge length considerations. Crossing number and wire area arguments, on the other
hand, are very helpful in proving good lower bounds on maximum edge length. In
this paper, we will use such arguments to find

1) an N-node planar graph for which any layout must have a wire of length
o( NI2/10 g1/2 N),



2) an N-node (nonplanar) graph with an O(x/?)-separator for which any layout
must have a wire of length O(N/?logN/loglogN) and

3) an N-node graph with an O(x/"//")-separator for which any layout must have
a wire of length ©(N"/7) for any r>3.

The latter two results achieve the known upper bounds for maximum wire length.
They also indicate that some wires in layouts of certain graphs must be very long
(possibly as long as the length of the entire layout).

For easy reference, we have summarized our new lower bounds along with the
previously known upper and lower bounds in the Tables 1 and 2. The nontrivial
upper bounds in Table 1 are due to Leiserson [1.80a] and Valiant [V81] while those in
Table 2 are due to Bhatt and Leiserson [BL81]. The previously known lower bounds
are, for the most part, trivial. The only exception is the N°® area lower bound in
Table 1 which is due to Thompson [T80]. In each table, the upper bounds apply to
all graphs while the lower bounds pertain only to a special class of graphs. (For
convenience, we have left out the O( ) notation on the upper bounds and the Q( )
notation on the lower bounds.)

Table 1

Area Bounds

previous our upper
separator lower bound lower bound bound
x*, a< 12 i - N
X a=1/2 N Niog’N Nlog’N
Sl N« N2
(planar) N NlogN Nlog’N



Table 2

Maximum: Edge Length Bounds

previous our upper
separator lower bound lower bound bound
X%, a< 172 N2/logN N/2/logN

X, a=1/2 NI2/jogN  NI21ogN/loglogN - N'/2logN/loglogN
Xt a> 172 Ne/logN N« N«

(planar) N2/jogN NV%ogl”?2N - NI2[ogN/loglogN

The remainder of the paper is organized as follows. In section 2, we describe the
networks for which we will later prove lower bounds. As these networks are new
and interesting in their own right (they include new networks for fast sorting and
matrix multiplication), we devote a fair amount of space to each. In section 3, we
describe the general relationship between crossing number and layout area. We also
prove crossing number and maximum edge crossing lower bounds for the nonplanar -
networks described in section 2. In section 4, we generalize the methods developed
in section 3 and prove wire area and maximum edge length lower bounds for a
variety of networks. We conclude in section 5 with several remarks, related results
and open questions.

Throughout, we limit our discussion of graphs to those with bounded node
degree and of layouts to those in the Thompson grid model. Neither constraint is
crucial to our results, however. For example, all of the lower bound proofs work
equally well for the Lipton-Sedgewick [LS81] (or any similar) model of chip design.

2. Network Constructions

(2a) The 2-dimensional Mesh of Trees

The 2-dimensional nxn mesh of trees M, , is defined when # is a power of 2 as
follows. Starting with an nxn matrix of nodes and adding nodes wherever necessary,



construct a complete binary tree in each row and column of the matrix. The trees
should be constructed so that

1) the leaves in each tree are precisely the nodes in the corresponding tow or
column of the original matrix, and

2) the subgraph induced on the nodes in each quadrant is My, .

For example, we have drawn M 24 In Figure 2. The nodes in the original 4x4
matrix are represented by dots. The nodes which were added in order to form row
trees are drawn as small triangles while those added to form column trees are shown
as small squares. Solid lines indicate row tree edges while dashed lines indicate
column tree edges.

Figure 2: The 4x4 mesh of trees M 24

Notice that if we were to remove the roots of the row and column trees of M 24
and the edges incident to them, we would be left with 4 copies of M 57, one in each
quadrant. In general, if we were to remove the nodes and edges in the top k levels



of the binary trees in M,, , we would be left with 2% copies of M, . This
important property of meshes of trees is used extensively in the proofs of Theorems
3,4, 5 and 8.

- Computationally, the nxn mesh of trees is a very powerful network. Among
other things, it can be used to

1) multiply a fixed nxn matrix by m different n-vectors in m+ 2logn (word)
steps, |

2) sort a list of #n m-bit words in 2m+3logn (bit) steps, and

3) link # input terminals to # output terminals in ahy order in logn (bit) steps.

The processors and algorithms needed for these operations are extremely simple.
For example, in order to sort a list of # m-bit words, each node need only contain a
few and and or gates. The algorithm for this operation proceeds as follows. Starting
at the roots, the ith word to be sorted is input (bit by bit) into the ith row and
column trees for each i, /<i<n. The bits are passed down cach tree so that after
logn steps the leading bit of the ith word has reached each leaf of the ith row and
column trees. Comparison of the itk and jth words for all / and j can then proceed
simultancously. After at most m additional steps, the (i) leaf has decided whether
the ith word is smaller or larger than the jth word. Ties are broken arbitrarily (e.g.,
depending on the values of 7 and j). Once this is done, each leaf transmits a 0 or a 1
to its column tree father depending on whether its column tree word was smaller or
larger than its row tree word. Each column tree then sums these values in order to
determine the position of its word in the final ordering. (If the sum is carried out bit
by bit starting with the least significant bit, this process takes 2logn steps.) This
information is then used to mark a path in each column tree from the root to that
leaf which is also in the appropriate row tree (again taking 2/ogn steps). Once this is
done, it is a simple matter to transmit the bits of the ith word along the unique path
from the ith column tree root to the appropriate row root for each i. As the paths
are all pairwise disjoint, this process takes only m+2logn steps.

The algorithm just described sorts a list of n m-bit numbers in 2m+ 7logn steps.
It is a simple exercise to speed up the aigorithm to obtain the 2m -+ Slogn step bound.
We should also point out that this algorithm is similar to the one described by'
Muller and Preparata in [MP75]. The VLSI implementation of the algorithm is new,
however, and far superior to many of the VLSI sorting algorithms discussed by
Thompson in his recent survey paper [T81].



It is easy to show that the nxn mesh of trees has N=3n?-2n nodes, bisection
width n=6(N!"?), and an O(x!/?)-separator. In Theorems 3, 5 and 8 (respectively)
we will show that any layout for the N-node 2-dimensional mesh of trees has

1) at least Q(NlogN) crossings,
2) at least Q(Nlog?N) wire area, and
3) some edge of length at least Q(N'?logN/loglogN).

(It is worth noting that all of these bounds are tight.)

(2b) The rdimensional Mesh of Trees

The 2-dimensional mesh of trees can be easily generalized to higher dimensions.
For example, the 3-dimensional nxnxn mesh of trees M 3 Can be constructed as
follows. Starting with an nxnxn cube of nodes and adding nodes wherever necessary,
construct a set of n? complete binary trees in each of the three dimensions of the
cube. As before, the trees should be constructed so that the leaves are precisely the
nodes of the original cube and so that the subgraph induced on each octant of nodes
s Mz, .

The nxnxn mesh of trees is also a very useful network for parallel computation.
For example, it can be used to compute the products of m pairs of nxn matrices in
m+ 2logn (word) steps. The algorithm and processors needed for this operation are
quite simple. The algorithm proceeds as follows. At each time step, a pair of
matrices is entered into the network via the roots of the trees in two of the
dimensions (one dimension for each matrix). The entries are passed down through
the trees so that after logn steps, the leaf in the (75,7) position of the cube contains
the (,s) entry of the first matrix and the (s,7) entry of the second matrix for each r,s
and 1. All 7 multiplications can then be performed simultaneously. The entries of
the product matrix are then calculated by summing the values of the leaves of each
tree in the third (previously unused) dimension. This process takes an additional
logn steps. As the network is easily pipelined, it is clear that the total computation
time is just m+2logn (word) steps. '

A simple counting argument reveals that M 3, has N= 4n3-2n? nodes for each n
and that the class of such graphs has an O(x%7)-separator theorem. Thus the N-
node 3-dimensional mesh of trees can be laid out in O(N¥3)=0(s?) arca. As the
the bisection width of the network has size O(N>3), we can conclude that the layout



area is precisely O(N¥?). At the same time, we can also observe that the network
nearly achieves the optimal 477 bound for matrix multiplication [T79]. Although
Preparata and Vuillemin [PV80] have already found an optimal network for fast
matrix multiplication, it appears that M; , is much simpler and far easier to program.

Our primary interest in the higher dimensional meshes of trees is not in their
computational power, however., We are interested more in the fact that all layouts
for such graphs must have very long edges. In fact, we will show in Theorem 4 that
any layout for the N-node r~dimensional mesh of trees must have an edge of length
O(N'1/1) for any N and r>3. It is not difficult to show that the ~dimensional mesh
of trees has an O(x/"//")-separator and thus that such edges are (up to a constant) as
long as the side length of any optimal layout.

(2¢) The Tree of Meshes

The tree of meshes is similar to the 2-dimensional mesh of trees in that it
combines the structure of a mesh with that of a complete binary tree in a natural
way. Unlike the 2-dimensional mesh of trees, however, the tree of meshes is a planar
graph. It 1s formed by replacing each node of a complete binary tree with a mesh
and each edge by several edges which link the meshes together. More precisely, the
root of the binary tree is replaced by an nxn mesh (where # is assumed to be a power
of 2), its sons are replaced by n/2 x n meshes, their sons are replaced by n/2 x n/2
meshes, and so on until the leaves are replaced by /x/ meshes. In the place of each
right edge of the binary tree (i.e., one which links a node to its right son), we link the
rightmost column of nodes in the mesh corresponding to the father to the topmost
row of nodes in the mesh corresponding to the right son. Similar replacements are
made for lefi edges of the binary tree. In both cases, the connections are made so as
to preserve the column and row order of the nodes and to insure that the resulting
graph is planar. A simple counting argument reveals that the resulting graph (which
we call the nxn tree of meshes 7)) has N= 2nllogn+n? nodes. For example, we
have drawn T, in Figure 3.

The tree of meshes is a particularly interesting planar graph since it can embed
arbitrary planar graphs much more efficiently than can the ordinary mesh. For
example, it is not known how to embed an arbitrary planar graph in less than an
O(Nlog?N)-node mesh. As we show in our thesis [L81a], however, any N-node
planar graph can be embedded in an O(NlogN)-node tree of meshes. Thus the tree
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Figure 3: The 4x4 tree of meshes Ty.

of meshes is an excellent candidate for a planar graph which cannot be laid out in
linear area. In fact, we will show in Theorem 6 that the N-node tree of meshes has
layout area Q(NlogN).

The tree of meshes can also be used to embed many nonplanar graphs which
have O(x//?)-separators. Of particular interest here is the fact that M 5, Can be
embedded in T, for any n. In order to construct such an embedding, we first
embed (recursively) four copies of M 2.ns2 I four copies of 7, (one in each). Next,
we embed the roots of M, in the 2n x 2n mesh of 7,, . The embedding of M,,
is completed by using the # x 2n meshes of T, as switching networks to link the
roots of M 2. 10 its four subgraphs M 202 (€ach of which is already embedded in a
copy of T,).

As an example of the procedure, we have included the embedding of M 2410 Ty
in Figure 4. The embedding has been drawn as though it were constructed as part of
a larger embedding (say, of M 28 in order to illustrate the recursive nature of the
embedding algorithm. In addition, we have drawn the nodes and edges of M, 4 as
they appear in Figure 2. For clarity, we have represented the nodes of Ty as
pinpoints and omitted its edges altogether. (For a more complete description of the
embedding algorithm, we again refer the reader to [L.81a].)

10
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Figure 4: The embedding of M, 4in Tg.

As we will show in Theorem 5, any layout for M, , requires Q(n?log?n) area.
Thus it is easy to see that any layout for T,, also requires Q(n?log?n) area.
Equivalently, any layout for the N-node tree of meshes requires at least Q(NlogN)
area. (It is worth noting that an O(NlogN)-area layout for the N-node tree of meshes
can, in fact, be constructed by expanding the standard H-tree layout for binary trees.)

1.



(2d) The Augmented Tree of Meshes

In [L81a], we show that the maximum edge length of the N-node tree of meshes
is O(/ogN). By slightly modifying the gréph, however, it is possible to increase the
maximum edge length dramatically. The basic idea is to add a complete binary tree
with 12 leaves to the nxn tree of meshes so that the Jeaves of one are linked in a one-
to-one fashion to the leaves of the other. 1t is important that the attachments
between the two graphs be made so that the resulting graph (which we call the nxn
augmented tree of meshes T,') is planar. For example, we have drawn the 4x4
augmented tree of meshes in Figure 5.

tree of meshes
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Figure 5: The 4x4 augmented tree of meshes T}" .



It is easily seen that the augmented tree of meshes has, up to a constant, the same
bisection width, separator, layout area and number of nodes as does the original tree
of meshes. By adding the binary tree, we have simply decreased the distance (i.e.,
the length of the shortest path) between any two leaves of the tree of meshes. In
section 4, we will show that any layout of the N-node tree of meshes must have two
leaves which are spaced at least Q(N//2log!/2N) apart. We will thus be able to
conclude that the maximum edge length of the N-node augmented tree of meshes is
at least Q(N'"2/log!”2N). Using arguments similar to those found in [BL81], it can
be shown that this bound is tight.

3. Crossing Number Arguments

(3a) General Results

We first demonstrate the power of the crossing number as a general lower bound
technique for layout area.

Theorem 1: [f G is an N-node graph with crossing number C and bisection width
B, then C+N > QUBY).

Proof: Let D be a drawing of G in the plane with C crossings. Replace each
crossing of D with an artificial node. Call the resulting graph G' and note that it has
precisely C+ N nodes. Using the weighted version of the Lipton-Tarjan planar
separator theorem [LT80], it is possible to bisect the real nodes of G' (by assigning
weight 1 to the real nodes and weight 0 to the artificial nodes) without cutting more
than O((C+N)/7?) edges. After replacing the artificial nodes with their original edge
crossings, it becomes apparent that we have, in fact, constructed an O((C +N)I1/ 2)
bisection for G. Squaring, we find that C+N > QB O

Using a similar proof technique, we can show that the crossing number is also
close to an upper bound for the layout area of a graph. In fact, should a really good
layout algorithm for planar graphs be found, then the following result could become
useful in laying out arbitrary graphs.

Theorem 2:  Given an optimal drawing D for an N-node graph G with crossing
number C, it is possible to construct a layout for G with area at most
O(C+MNiogX(C+N)). Should a procedure be found which lays out an arbitrary

13



N-node planar graph in A(N) area, then we could construct a layout for G with area at
most O(A(C + N)).

Proof: As in the proof of Theorem 1, we replace each edge crossing of D with an
artificial node. The resulting graph G' has C+ N nodes and is planar. Using the
methods developed by Lipton and Tarjan [LT80] and Leiserson [L80a], G' can be
laid out in O((C+ N)log’(C+N)) area. It is then a simple matter to replace the
artificial nodes with their original edge crossings to obtain the desired layout for G.
Alternatively, should an A(N)-area planar graph layout procedure be discovered, we
could construct an O(A(C+ N))-area layout for G O.

As we have just seen, the idea of replacing edge crossings with artificial nodes is
simple but powerful. Jai-Wei and Rosenberg have also employed this strategy in
their work with embeddings of graphs in binary trees [JR81].

(3b) Specific Lower Bounds

From Theorem 1, we know that crossing number arguments can give good lower
bounds on the layout area of many graphs. For example, we could simply
reformulate the techniques developed by Thompson [T79, T80] and others [V80,
LS81] in terms of crossing numbers. Of much greater interest, however, is the fact
that there are also several purely combinatorial techniques for proving crossing
number lower bounds. (For example, see Kleitman’s work [K70] and our thesis
[L81a].) In what follows, we will develop a new procedure for proving crossing
number lower bounds in order to show that the crossing number of the N-node 2-
dimensional mesh of trees is at least Q(N/oglN). We will also show that any drawing
of the N-node rdimensional mesh of trees contains an edge which crosses at least
Q(N-1/7) other edges. '

Our results require the following standard result. For completeness we have
included one of the many proofs from [K70].

Lemma 1: The crossing number of Ky;, the complete graph on N nodes, is at least
N(N-1)(N-2)(N-3)/120 for N>5.

Proof: Let D be a drawing of K, in the plane with the smallest possible number
of crossings C(N). We may assume that no pair of edges which cross in D are
incident to a common node. Otherwise, it would be possible to produce a drawing

14.



D' for Ky with C(N)-I crossings by exchanging the parts of the crossing edges
which lie between the common node and the point of crossing. This would
contradict the minimality of C(N).

‘Consider the N subdrawings of D obtained by deleting one of the nodes and all
of the edges incident to it. Note that each crossing of D appears in precisely N-4 of
the subdrawings. (A crossing does not appear in any of the 4 subdrawings which
correspond to the deletion of a node incident to an edge of the crossing.) Since each
of the subdrawings is a drawing of K_;, each must have at least C(N-1) crossings.
Thus (N-4)C(N) > NC(N-I) . Applying the inequality recursively and noting that
C(5)=1, we can conclude that

CN) = [INAN-9] [(N-D/N-5)]-- - [6/7]
= N(N-I(N-2(N-3y120  for N>5 O

Theorem 3: The crossing number of the N-node 2-dimensional mesh of trees is at
least QUNlogN).

Proof:  As before, let M, , denote the 2-dimensional mesh of trees (where nis a
power of 2). We will show that the crossing number of M, , is at least

(n?logn - 121n?+ 121n)/40 for all n>1.
Since M, , has N =0O(n?) nodes, this will be sufficient to prove the desired result.

The proof consists of two steps. In the first, we show how to construct a drawing
of K2 from any drawing of M, by tracing over the edges of M, , . We then apply
Lemma 1 to conclude that there are a large number of crossings among the edges in
the top levels of the binary trees of M, . In the second step, we complete the proof
by inductively applying the result of the first step.

step 1: Let D be any drawing of M, , in the plane. From this drawing, we can
construct a drawing D' of K> in the following way. First locate the n? leaves of the
binary trees of D. They will serve as the nodes for K,, . Given any pair (ij) and
(k,]) of these nodes, draw an edge from (ij) to (k,/) along the unique path from (i)
to (i,/) in the ith row tree of D and then from (i/) to (k,J) in the /th column tree of D.
(In order that each edge not be drawn twice, we shall assume that i<k and, when
i=k, that </) As edges in D will be traced over several times by this procedure, it is
important to draw the edges of D' so that no pair cross each other more than once.

15



We next count the number of crossings in D'. There are two kinds of crossings
to consider. The first kind results from a crossing in D. More precisely, if e; and e,
are edges of M, , which cross in D and ¢, is traced over s; times while e, is traced
over s, times, then the crossing of e; and e, will appear 5,5, times in D'. This
phenomenon is illustrated in Figure 6.

2
duplicated
erossings

//l\ ~
- ~
N ~
original ~
erossing

Figure 6: Crossings of the first kind.

The second kind of crossing results from edges of K, > which must cross while
traversing a common edge of 1. For example, see Figure 7. In what follows, we will
show that the number of crossings of the second kind is relatively small.

Figure 7: Crossings of the second kind.
We say that an edge is type i if it is in the it/ level of a binary tree of My, ltis

not difficult to show that each type i edge is traced over at most

n2i(n%-n?y < n32i
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times for any i<logn during the construction of D'. Thus at most n62-27 crosses of
the second kind can occur at any type i edge of D. Since there are 2i*/n type i
edges in M 2p s We can conclude that the total number of crosses of the second kind
in D' is at most _

Jeqn

logn :
%(2”51)(!162”25"’) = n?Ez-i

L=}

< n.

We next count the number of crossings of the first kind (i.e., those corresponding
to crosses in D). We say that a crossing of D is 1ype i-j if it is the crossing of a type i
edge and a type j edge. Let j denote the number of type /-j crossings in D and set
foyn
G = L -

Since each type / edge is traced over at most #5327 times, each type i~ crossing of D
produces at most

(32 n32hy = w62

crosses of the first kind in 2'. Thus the total number of crossings of the first kind in
D' 1s at most
logn lean N logn .
E nd,.?"‘ftij < n522"’tf.
&) j=i et
Summing, we find that the total number of crossings of either kind in D'is at
most

n + n‘?ﬁ'%i )
By Lemma 1, this number must be at least
rz*?(n*_?~])(n2~2)(n2-3)/120 for n?> 5.
Simplifying, we can conclude that
Zﬁ:}?f:,. > (n%-12Iny/120  for n>6.

Let s, = ili be the number of crossings involving at least one edge from the
top k levels of some binary tree of M, . In what follows, we will use the preceding
inequality to show that s, > (n’-121n)k/40 for at least one value of k>I. Assume
otherwise and observe that

¥



loan lan

22-2{[1- = 22- 21(51*'51',])
where s is defined to be 0. The coefficient of each s; in this sum is positive so for
each i we may substitute (n-12/n)i/40 as an upper bound for s; in order to see that

lagn s ‘
%2’2112‘. < [(n2-12]n)/40] 22“2![1_(1_1)]

legr .
= [(n-121ny40] 34 .

logn

Since 41 < 173 for all n, we can conclude that

ey

)

logm )

iﬂfzi < (nP-121ny120

for all 121, a contradiction. Thus for all #>/21, there is a k>17 such that
S; > (n?-121n)k/40.

step 2: Let C(n) denote the crossing number of M 2n - Using the result of step 1,
we will now show by induction on n that C(n) > (nlogn - 121n? +121n)/40 for all
n>1.

As (n’logn - 12In°+121n)/40 is nonpositive for small 1, the lower bound
trivially holds for all n</28. Assume that the lower bound holds for all m<n where
n>128 and let D be any drawing for M, , . By counting the crossings of D in two
groups according to whether or not at least one edge of the crossing is contained in
the top & levels of the binary trees of M,, . we can observe that

Cn) > 2%kC(n2% + Sp -

(Recall the definition of s; and the structure of M 25 -) By choosing k as in step 1 so

that s5;, > (n?-121n)k/40 and applying the inductive hypothesis for C(n2%), we

obtain

C(n) > 2°Mn?2?K(logn-k)/40 - 121n222K/40 + 121n2%/40] + n’k/40 - 121nk/40
> nllogn/40 - 12In%/40 + 121n/40 + 121n(2%-k-1)/40

> (nllogn - 121n? + 12In)/40 .

Thus the inductive hypothesis is established and we can conclude that the
crossing number of M,, is at least Q(n2logn):Q(NlogN) O

13



Theorem 4: Any drawing of the N-node r-dimensional mesh of trees contains an
edge which crosses at least QUNT/7) other edges.

Proof:  The rdimensional nxnx---xn mesh of trees M., has N =
(r+Dn" - ™! = O(n") nodes for bounded r. We will show that any drawing D of
M, , contains an edge which crosses at least Q(n")=Q(N"7") other edges, thus
proving the theorem. The method used is very similar to that of Theorem 3.

As we did for the case of r=2 in Theorem 3, we first construct a drawing D'of
the complete graph on the »" leaves of M,.,, . Each type i edge of D is traced over at
most n”* {27 times by this procedure. Thus the total number of crossings in D" is at
most

legn
3r+1 2r+2 2i
(™72 + ne’ 22115
/0314
where, as before, #;= 2[ and lj is the number of type i-j crossings in D. Applying
J=¢
Lemma 1, we can concludt, that
logn

X > QUn?d).

& [

Let 5, = Ez be the total number of crossings of D involving an edge from the top
k levels of the binary trees in M, , . Using arguments similar to those used to prove
Theorem 3, it is not difficult to show that for large n, there exists a k such that
sp > Qn?2%) . As there are only ™ /(2k*1-2) edges in the top & levels of M,,
for any k, we can conclude that at least one of them crosses at least Q(n™!) other
edges I

4. Wire Area Arguments

As we have just seen, crossing number arguments can be very powerful in
establishing lower bounds on layout area and maximum edge length for VLSI
networks. Such arguments are also limited, however, to the kinds of results obtained
in the previous section. For example, in our thesis [[.81a], we show that the crossing
number of any N-node graph with an O(x//?)-separator is at most O(NlogN). Thus,
we could not hope to improve the result of Theorem 3. Nor can crossing number
arguments be used to prove any nontrivial lower bounds for planar graphs.

The technique of using a drawing of a network to construct a drawing for the
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complete graph can be extended, however. In what follows, we use this technique to
find better lower bounds on the wire area of certain networks than were possible
with crossing number arguments alone, More precisely, we will show that the wire
area of the N-node 2-dimensional mesh of trees is at least Q(N/og’N) and, as a
corollary, that the N-node (planar) tree of meshes has wire area at least Q(NlogN).
In addition, we will show that the maximum edge length of the N-node 2-dimen-
sional mesh of trees is at least Q(N?logN/loglogN) while that of the N-node
augmented tree of meshes is at least QN"2/logl/?N).

Theorem 5: The wire area of the N-node 2-dimensional mesh of trees is at least
Q(Nlog’N).

Proof: As usual, we denote the nxn mesh of trees by M, ,, . In addition, let WA(n)
denote the wire area of M,, and let a be a positive constant such that

(*)  a < nA4log’n) for all n>2, and

. 0
(x+) « < 220204320 for all >1 where B=2, j 2 is also a constant.
0

Clearly such a constant exists (a = 2¢ should suffice) and clearly W(n) > anlog’n
for n=1and 2. Consider a value of n>4 which is a power of 2 and assume that for
all values of »<n which are powers 2 that W(m) > am?log’m . We will use
induction to show that WA(n) > an®log’n. Since M ophas N= O(n?) nodes, this will
be sufficient to prove the theorem.

Consider any layout for M,, which uses W(n) wire. Partition the layout into
three vertical strips ¥, , ¥, and V, so that the center strip contains 3n2/4 leaves and
each outer strip contains #2/8 leaves. Similarly partition the layout into three
horizontal strips H,, H; and -H, so that the middle strip contains 3n2/4 leaves
and each outer strip contains n2/8 leaves. For example, see Figure 8.

Let d denote the length of the longest side of the center block formed by the
intersection of ¥; and H,. Without loss of generality, we assume that the longest
side is horizontal. In what follows, we will show that d > (a!“nlogn)/§ .

Since each of the regions VN H; and V,NH; can contain at most n’/8 leaves,
it is clear that ¥;,NH, contains at least n2/2 leaves. Consider the n%? subgraphs
of M, produced by eliminating the top (3logn)/4 levels of the row and column
binary trees of M,, . Each of these subgraphs is isomorphic to M aui/t . By the
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Figure 8: Partitioning of the layout for M on

pigeonhole principle, at least //2 of these subgraphs have at least one leaf in
VinH;. 1f d < (a’?nlogn)/8 (otherwise we are done), then at most
4d < (a'nlogn)/2 edges can cross the boundary of V,nH, . Thus at most
(' niogn)/2 of the subgraphs which have at least one leaf in V;nH,; can also
have a node or part of an edge outside V,NH, . This means that at least
(%2 - «”2pnjogn)/2 copies of M_,',”m are wholly contained in V;,nH,;. Applying
the inductive. hypothesis, we conclude that ¥,NH, contains at least

(n¥2- «2nlogn) Wnl%) /2 > (anlog’n- a32n¥2log3n) / 32
> (anllog’n)/64  wire.

The last inequality follows trivially from (*). Thus ViNH, has at least
(an’log’n)/64 area and d > («/“nlogn)/8 , as claimed.

We next use the (Thompson model) layout for M 2 to construct a drawing for
the complete graph on #? nodes (namely, the 72 leaves of M 21 ). No matter how the
edges of the complete graph are drawn in the plane (e.g., they may cross or overlap),
it is clear from Figure 8 that the sum of the lengths of all the edges (as measured in
Euclidean space) is at least n?d/64 > (a’?n’logn)/2° . This is due to the fact that
n/64 edges pass from region V, toregion V), and that these regions are separated
by a distance d.

Let L; denote the sum of the lengths of the edges in the ith levels of the binary
trees of M, , . Since every level 7 edge is traced over at most 7327 times in the
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drawing of the complete graph, we can conclude that

logn 8
-i ey
ZLiZ i3 > (arwilogny??

&y
and thus that

logn

LY > (anllogny?° .
e=r
In particular, this means that

L; > (an2logn2)/(2°B4%)
(=]

for some i< logn . (Recall that B = 2 j 2 .) Otherwise,

3=

L; < (a1’ logn2i)/(29Bi2)

for 1 < i < logn and thus -

leym ) Lan
_ZLIQ'E < i(a’/znzlogn)/(ﬁﬁiz)
=1 €=t e

< (al?n?iogn)/2°, a contradiction.
Using the straightforward relation
Wn)y > 22W(n2h + L,
where i has been chosen so that
L; > (a?nlogn2)/(2°Bi%),
we can conclude that
W(n) > 2%ia(n2)(logn - iy? + (a!°nlogn2hA(2°B %)
> anllog’n - 2ainllogn + (a!?n2logn2)(2°Bi)
> anllog’n
The last inequality follows trivially from (). Thus W(n) > Qn?log’n) for all n O
Theorem 6: The wire area of the N-node tree of meshes is at least Q(NlogN).

Proof: As we showed in section 2c of this paper, the N-node 2-dimensional mesh
of trees can be embedded in an O(NlogN)-node tree of meshes. From Theorem 3,
we can thus conclude that the wire area of the (NlogN)-node tree of meshes is at
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least Q(Nlog?N). Equivalently, the wire area of the N-node tree of meshes is at least
QU NlogN) O

Theorem 7: Any layout of the N-node augmented tree of meshes contains a wire of
length at least QUN"2/logl”’N). .

Proof: 1In the proof of Theorem 5, we showed that any layout of M 2, Must have
two leaves which are spaced at least $2(nlogn) distance apart. Since M, can be
embedded in 7, so that the leaves of M, are embedded in or near the leaves of
T,, (see the embedding in section 2¢), we can observe that any layout of 7, must
also have two leaves which are spaced at least Q(nlogn) distance apart. Since any
pair of leaves in T, are linked by a path of length at most O(logn) in T}, ", we can
conclude that some edge of 7,,' must have length at least @(n)=QN""%/log"?N) O

It is worthwhile to point out that we could have proved both Theorems 6 and 7
directly, using arguments similar to the ones used to prove Theorem 3.

Theorem 8: Any layout of the N-node 2-dimensional mesh of irees contains a wire
of length at least QUN'"?logN/loglogN).

Proof: It is sufficient to show ‘that any layout for M 5, contains a wire of length
at least Q(nlogn/loglogn). Assume for the purposes of contradiction that this is not
the case and consider a layout of M, for which the longest wire has length
g < o{nlogn/loglogn) . We first show that (without loss of generality) the area of
such a layout is at most O(g’log’n) < o(n’log?n) .

Since every pair of nodes of M, , is linked by a path of length at most 4/ogn, all
of the nodes in the layout are contained in a 4qglogn x 4glogn square. At most
16glogn wires may leave and re-enter the square at various points along its perimeter.
Without increasing the lengths of any of these wires, it is possibie to rewire the
segments outside the square using at most O(g?log?n) additional area. Thus, the
resulting layout for M, will have maximum edge length ¢ and area at most

O(g%log’n).

The proof is completed by observing that any layout of M 2. With area o(rn?log?n)
must have a wire of length at least $i(nlogn/loglogn). From the proof of Theorem §,
we know that

logn

it | (a??n2logn)/29 .
i<

2



Thus either
1) there is an i < 4loglogn such that
L= (a1/2n210gn2’;)/ (212loglogn), or
2) there is an i > 4loglogn such that
L; > (a?nllogn2)) / (21987)

el

where, as before, the constant B:Z j . Otherwise,

a=t

logn ) g jgloam . /ogn .
D7t hﬁlﬁzﬂ + DL
v €= £2Gloglign p) g

< (a¥?n2logny210 + [(a!?n?logn)/210B8] 2i?

e=)

< (a!?n?logny’? ,  a contradiction.

The second condition cannot possibly be true, however. If it were, the area of the
Jayout would be at least L; > Qn’logn2i/i?) which, for i> 4loglogn , means that

A > Qn?log’n/loglogn)?)
> Qnlogn), acontradiction.

Thus the first condition must be true and there is an 7 such that
L; > Qn’logn2/loglogn) . Since there are n2'*! type / edges in M,, , we can
conclude that at least one of them has length at least Q(nlogn/loglogn) OO

5. Remarks

(a) In addition to being good lower bounds for layout area, the crossing number
and wire area of a network are interesting in their own right. In particular, both are
worth minimizing when designing a chip. For instance, a chip with a large number
of crossings may have problems with capacitive coupling (i.e., interference between
overlapping wires); particularly if some of the wires cross an unusually large number
of the other wires (as was the case with the r~dimensional mesh of trees). The wire
area is worth minimizing in order to maximize the chip yield. As many chips are
ruined by localized random errors, chips with lower wire density will be less likely to
be affected by such problems.
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(b) Unfortunately, our results indicate that both the crossing number and the
wire area are usually as large (up to a constant) as the area of the layout. In fact, all
of the previously known nontrivial lower bounds for layout area are also lower
bounds for crossing number and wire area. This is due to the fact that the previously
known lower bounds for layout area were proved as a consequence of the identity
A > Q(B?). Since we showed in Theorem 1 that C+N > Q(B?), the same bounds
also hold for crossing number and wire area. For example, this means that any
layout of a network which computes an N-point Fourier transform in 7 steps must
have Q(N?/T?) wire crossings. Hence, we could thus conclude that the N-node
shuffle exchange graph and the N-node cube-connected-cycles graph have crossing
number Q(N?/log?N).

(c) The previous analysis can often be carried one step further in order to show
that some wires in a layout must cross many other wires. For example, any network
which computes an N-point Fourier transform in 7 steps must have a wire which
crosses QN/T7) other wires. This is because the network contains O(N) wires but
has at least Q(N?/7?) crossings. In particular, this means that any layout of the N-
node shuffle-exchange graph or the N-node cube-connected cycles graph contains a
wire which crosses Q(N/log’N) other wires.

(d) The techniques developed in this paper can also be used to reprove other
results in the literature. For example, Brent and Kung showed in [BK80] that any
layout of the complete N-node binary tree in which the leaves are contained on the
boundary of some convex region requires at least (N/ogN) wire area. Subsequently
Patterson, Ruzzo and Snyder [PRS81] showed that any such layout with area 4 must
have some wire of length Q(N/log(A/N)). As we show in [L.81a], both of these
results can be simply proved using the techniques used to prove Theorems 5 and 8.

{e) The methods which we have used to prove crossing number and wire area
lower bounds can also be used to prove bisection width lower bounds. For example,
these techniques can be easily used to show that the bisection width of the N-node
shuffle-exchange graph is at least Q(N/logN) [L81a]. In this case the construction of
the complete graph from the drawing of the shuffle-exchange graph bears a strong
resemblance to Thompson’s [T80] information flow arguments. In fact, it appears
that many of Thompson’s lower bounds can be reproved in this fashion.
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() When defining the 2-dimensional mesh of trees in section 2a, we required
that the binary trees be constructed so that M, , contain 22 disjoint copies of M,y
as subgraphs for any k. It is interesting to note that networks which do not satisfy
this constraint but which are similar to the 2-dimensional mesh of trees in all other
respects have essentially the same computational powef as the more restricted mesh
of trees. Theorems 3, 5 and 8 do not necessarily apply to such networks, however.
In fact, we do not know if the same wire area lower bound need still apply. Using a
somewhat different method, however, we have shown in [L8la] that any such
network must still have a large crossing number. As a key step in the proof, we
generalize Lemma 1 to show that any N-node graph with £ edges has crossing
number at least Q(E3/N?) whenever E > 4N .

(g) The area required to lay out the r-dimensional mesh of trees is very close to
that required to lay out the standard mesh of the same size. For example, for 2 the
amount of area required for the mesh of trees, O(n"), is at most a constant times as
large as the area required for the standard rdimensional mesh. Thus the
computational power of the standard mesh can be greatly enhanced at little or no
cost in layout area by adding the edges of the mesh of trees.

() The r~dimensional mesh of trees was defined as a natural generalization of
the computationally powerful 2-dimensional mesh of trees. M, , can also be viewed
as a generalization of the r-cube, also a very powerful communications network.
(For example, M, , is an rcube with every edge replaced by a path of length 2
Viewed in this light, the ~dimensional mesh of trees motivates the ‘definition of a
shuffle-tree graph in the same way that the rcube motivates the definition of the
shuffle-exchange graph. We would be interested to know if there any practical
applications of such a general comunications network. ‘

(i) Using standard techniques, it is not difficult to show that all of the asymptotic
lower bounds proved in Theorems 3-8 are tight (although it is likely that the leading
constants can be substantially improved). In addition, the drawings and layouts
which achieve the lower bounds for crossing number and wire area also achieve the
lower bounds for maximal edge crossing and edge length. Thus there are no
area/edge length tradeoffs for these networks.

(i) After writing the initial version of this paper, we became aware of several
other papers which describe parallel computation algorithms using the mesh of trees.
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For example:
1) Nath, Maheshwari and Bhatt [NMB81] have used the network (which they call

the orthogonal trees network) for sorting, discrete Fourier transform, minimum
spanning tree, and connected components (as well as many other) problems,

2) Cappello and Steiglitz [CS81] have used the network (which they call the
orthogonal forests) for integer multiplication, and

3) Gannon [GR81] has used the network to find approximate solutions to systems
of partial differential equations.

(k) Subsequent to the final writing of this paper, a great deal more was
discovered about upper and lower bounds for layout area and crossing number. Asa
forward pointer, we refer the interested reader to [L82]. Interestingly, no further
progress has been made on the planar layout problem.
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