MIT/LCS/TM-228

TWO REMARKS ON THE POWER OF COUNTING

Christos H. Papadimitriou

Stathis K. Zachos

August 1982

TWO REMARKS ON THE POWER OF COUNTING

Christos H. Papadimitriou and Stathis K. Zachos
Laboratory of Computer Science, M.L.T., Cambridge, USA

August 1982

Abstract: The relationship between the polynomial hierarchy and Valiant’s class #P
is at present unknown. We show that some low portions of the polynomial hierarchy,
narely deterministic polynomial algorithms using an NP oracle at most a logarithmic
number of times, can be simulated by one #P computation. We also show that the
class of problems solvable by polynomial-time nondeterministic Turing machines
which accept whenever there is an odd number of accepting computations is

idempotent, that is, closed under usage of oracles from the same class.

Keywords: Counting problems, oracle computation, polynomial hierarchy, parity

problems, machine simulation.

1. Introduction.

Counting Turing machines, and the class #P of counting problems.that can be
solved by such machines in polynomial time, were first introduced and studied by
Valiant [Val]. The relationship of # P with other complexity classes has since been an
intriguing open question. It is well-known that NP is contained in #P (we use the
term # P, originally meant for a class of functions, to denote the class of languages
which are accepted in polynomial deterministic time with one invocation of a #P
computation). Furthermore, Simon [Si] showed some close relationships between #P
and the probabilistic class PP [Gi]. On the other hand, it was suspected that #P lies
above the whole polynomial hierarchy [St], but no proof of this is known to date.

Angluin [An] showed that # P, appropriately relativized, is more powerful than 9P,

We were interested in showing that, in the unrelativized case, the class Azp = pNP
is contained in #P. What we were able to show is that a portion of A>P, namely the
class PNPllog] of problems solvable by polynomial-time algorithms using a
logarithmic number of calls to an NP oracle, is indeed contained in #P. This class
contains, for example, the problem of testing whether a given undirected graph has a
unique optimum clfque [Pa] (it is not known, however, whether this problem is
complete for PNP[IOg]). It also contains the class DP [PY] of languages that are the
intersection of a language in NP and one in coNP. Furthermore, there is a whole
hierarchy of classes of languages definable as NP predicates combined by Boolean
connectives. The ith level of this hierarchy consists of all languages that can be
expressed as the union of /languages in DP. The limit of this hierarchy turns out to
be identical to the class of languages recognized by polynomial algorithms using a

bounded number of calls to an NP oracle, and thus is also a subset of #P, by our result.

The technique used in the proof of this theorem employs a simple way of encoding
a computation with oracle branchings into the number of accepting computations of a
single nondeterministic computation, which can then be computed by a counting
Turing machine, and then decoded. This technique seems to be useful in simulations
by counting machines. Using a variant of this technique, we show an interesting
property of the class ®P of problems that can be solved by Turing machines which
accept if the number of accepting computations is odd. A typical (complete) problem
in @®P is the set of all graphs that have an odd number of Hamilton circuits. @P can be
considered as a more moderate version of the counting idea. The relationship between
@P and NP is not known, although it is suspected that NP is weaker [Va2). What we
show is that ®P®P = @P, and thus &P appears to behave differently from NP. This
fact had‘been proved independently by Valianf [Va2].

2. Definitions

For basic Turing machine definitions see [GJ, LP]. All computation paths of a
nondeterministic Turing machine on a particular input (or the computations from any
given configuration) form a tree. We do not insist that all leaves of this tree have the
same depth (this can be achieved by a variety of padding techniques). We shall need
to define certain notation for manipulating nondeterministic computation trees. If Cy,
... .G are configurations of a Turing machine (equivalently, the computation trees
starting from these configurations), then CHOOSE(Cy, . .. ,Cy) denotes the
computation tree consisting of a new root, which has nondeterministic branches to all
these computations. Also, APPEND(Cy,Cy) denotes the computation tree consisting
of the computation tree of Cy with a copy of C5 hanging from each accepting leaf of

C;. Finally, DUPL,, denotes a computation tree which has exactly n accepting leaves.

If M is a nondeterministic Turing machine, we let COUNT(M,x) denote the
number of accepting computations of M on input x. Thus, NP can be defined as the
class of languages L for which there is a nondeterministic Turing machine M such that
L = {x] COUNT(Mx) > 0}. #P is the class of languages that can be recognized by a
deterministic polynomial-time algorithm which uses only once an oracle computing
COUNT. PNPlog] 4 subclass of AP = PNP s the st of problems solvable by
deterministic polynomial-time algorithms which use an oracle in NP a number of
times which is at most proportional to the logarithm of the length of the input of the
algorithm. Finally, @P is the class of all languages L, for which there exists a
nondeterministic Turing machine M such that L = {x] COUNT(M.x) mod 2 = 1}.

3. The Main Theorem

In this Section we prove the following:
Theorem 1 pNP[log] @ 7P

Proof Suppose that L is a language recognized by a deterministic Turing machine M
with an oracle in NP, so that at most p(]x|) steps, and at most log(|x|) oracle steps are
used in the computation on input x. Assume without loss of generality that the oracle
queries are of the form (M’x"), asking whether a nondeterministic Turing machine M’
accepts an input x” in time p(|x|). We also assume that M always asks exactly Llog ||
queries. We shall design a deterministic polynomial algorithm which decides L by

using one computation of COUNT.

The idea is the following: By multiplying the number of leaves in different subtrees
of the computation tree of M by exorbitantly large numbers, we can unambiguously

encode the outcomes of all the oracle calls along all possible computation paths of M.

(Notice that M, although deterministic, has a polynomial number of computation

paths, due to the oracle steps.)

The algorithm first constructs, based on M and x, a nondeterministic Turing
machine N, as follows. N is programmed basically like M, except in the query
configurations. If the query (M’,x’) is the ith query asked by M, and M goes to
configuration Cy if the answer is "yes", and Cyy if "no", then N executes the
nondeterministic program shown below:

CH OOSE([DO(M‘,x‘),APPEND(DUPLk(i),CI),A PPEND(DUPLk(i)lCO)),

where 1D((M’,x") denotes the initial configuration of the machine M on input x), and
the k(i)'s are integers to be defined later. In words, N nondeterministically chooses
among three possibilities: Either to simulate M’ on x” and stop; or to assume the
answer is "yes" and amplify the subsequent computation by a factor of k(i); or finally
to assume the answer is "no", in which case the answer is amplificd by k(i)2 (see the

figure below for a pictorial presentation of the construction using computation trees).

Computation Tree of M Computation Tree of N

1h query

ith Query: Does T have an Accepting Leaf?

The full algorithm is the following:

ALGORITHM A;
begin
construct N as described above;
n « COUNT(N,x);
]
whilen > 1do

begin :
if n mod k{i) = 0 then n « n div k(i)2

else n « (n mod k()2 div k(i);

ici+1

end;
if n = 1 then accept else reject
end.
The k(i)’s are defined by the following equations:

k(Llog |xj1) = 2p(xD)
k(i) = k@i + 1*

Thus, k(i) increases rapidly as i decreases (or, equivalently, as we proceed from later to
earlier queries). The maximum value of k(i) is k(1), which is 2P(XDIxI74 Notice that
this number is of length polynomial in |x|], and therefore our construction produces a
nondeterministic Turing machine N which still obeys a polynomial bound on the
depth of all computations. It is this growth of the k(i)'s, a necessary ingredient for our
arguments, which limits the applicability of our proof to the case of logarithmically

many queries.

We shall argue that the algorithm above accepts x iff M does. We shall show, by

induction on i, that the number n in the beginning of the ith iteration of the main loop

of the algorithm A denotes the number of accepting leaves of the computation subtree
of N, which corresponds to the computation subtree of M starting at the ith query.
This certainly holds fori = 1. Assume now that it holds after the firsti - 1 iterations.
Suppose that the ith query has answer "no". This means that there is no accepting
path of M” on the queried x’. Since such paths are the only paths in the subtree of N
which are not multiplied by a multiple of k(i), and since the number of such paths
cannot exceed k(i) - 1, this is equivalent to saying that the value of n before the ith
iteration (by induction hypothesis the total number of such paths) is divisible exactly
by k(i). Thus the then branch of the test is taken, and the new value of n is n div k(i)?,
which is exactly the number of accepting computations in the subtree of N
corresponding to Cy. This is because the growth of the k(i)’s is such that the total
number of leaves in the subtree of N corresponding to Cyy (or for that matter to Cyis
less than k(i). Similarly, if the answer to the ith query is "yes", then the else branch is
taken, and n becomes the number of accepting leaves in a subtree of N that

corresponds to Cy. The induction is complete.

Therefore, after the last execution of the loop, the value of n is the number of
accepting computations of M after the last oracle step. This number is of course 1 or 0

ki

depending on whether x is accepted by M or not. Q.E.D.

Notice that we can prove the same way a stronger result, namely that #P can
simulate a logarithmic number of queries from PP. PP is defined as the class of
languages L for which there is a nondeterministic Turing machine M such that all
computations of M on input x have length exactly p(Jx|) for some polynomial p(.), and

L = {x] COUNT(Mx) > ZPUXD'I}. PP is known to contain NP [Gi].

4. Parity Counting

A variant of the proof technique of the previous Section can be used to show the

following result:
Theorem 2 @P®P = op,

Proof: Let L be a language recognized by a parity machine M which uses as an oracle
another parity machine M). We shall design a parity machine N which accepts L with
no oracles. N is programmed exactly like M, except in the oracle steps. Suppose that
M is at an oracle step with query (M’,x’), and let Cj be the configuration
corresponding to a "yes" answer, and Cjy to "no". At this query step, N does the
following: ‘

CHOOSE(APPEND(ID)(M" x*),C1), APPEND(CHOOSE(] Dp(M’,x’),aceept),Co).

In words, the ﬁumbcr of accepting leaves of Cy is multiplied by the number of
accepting leaves of M’ on x', whereas the number of accepting leaves of Cois

multiplied by that of M" on x* plus one.

We now claim that N accepts x iff M does. To see this, notice that each leaf of the
computation of M corresponds to a number of leaves in the computation of N which is
the product of as many numbers as there are oracle steps in the computation leading to
the leaf. If the path leading to the leaf corresponds to the correct answer to the query,
then the multiplicant is odd, otherwise it is even. So, the leaf contributes an odd
number to the total count (and thus it is taken into account as an accepting
computation) iff it corresponds to correct answers to a/l the queries asked along the

path. It follows that the total number of leaves of N is odd iff the total number of

leaves of M, corresponding to correct sequences of oracle answers -~that is, the leaves

of M that are finally counted-- is odd. QED.

10

References

[An] D. Angluin "On counting problems and the polynomial-time hierarchy",
Theoretical Computer Science 12(1980), pp. 161-173.

[GJ] M.R. Garey, D.S. Johnson C dnputers and Intractability: A Guide to the Theory of
NP-completeness, Freeman, 1979.

[Gi] J. Gill "Computational complexity of probabilistic Turing machines”, STAM J,
Computing, 6 (1977), pp. 675-695. :

[LP]H.R. Lewis, C.H. Papadimitriou Elements of the Theory of Computation, Prentice-
Hall, 1981.

[Pa] C.H. Papadimitriou "The complexity of unique solutions”, Proc. 13the FOCS
Conference, 1982, to appear. :

[PY] C.H. Papadimitriou, M. Yannakakis "The complexity of facets (and some facets
of complexity"”, Proc. 14th STOC, pp. 255-260, 1982. Also to appear in JCSS.

[Si] J. Simon "On the difference between one and many" Proc. 4th Intern. C olloquium
on Automata, Languages and Programming, pp. 480-491, 1977.

[St] L.J. Stockmeyer "The polynomial-time hierarchy", Theoretical Computer Science,
3(1977), pp. 1-22. : :

[Val] L.G. Valiant "The complexity of computing the permanent”, Theoretical
Computer Science, 8 (1979), pp. 181-201.

[Va2] L.G. Valiant, private communication, August 1982.

