MIT/LCS/TM-229

THE COMPLEXITY OF EVALUATION RELATIONAL QUERIES

Stavros S. Cosmadakis

August 1982

THE COMPLEXITY OF EVALUATING RELATIONAL QUERIES

Stavros S. Cosmadakis

Laboratory for Computer Science

M.LT., Cambridge, U.S.A

Abstract

We show that, given a relation R, a relational query ¢ involving only projection and join, and a
conjectured result r, testing whether @(R)=r is DP-complete. Bounding the size of @(R) from below
(above) is NP-hard (co-NP-hard), and bounding it both ways is DP-hard. Computing the size of
@(R) is # P-hard.

We also show that, given two relations R; and R and two queries @; and @) as above, testing
whether @ (R /)Co ¥R) and testing whether @ (R)=¢ xR ;) are both I f—comp!ctc, even when

R;=R) or when @;=g,

Keywords: Relational database, relational expression, polynomial transformation, completeness,

hardness, NP, co-NP, DP, enumeration ;Srobicm, polynomial-time hicrarchy.

This work was supported (in part) by the National Science Foundation under Grant No. MCS 81-
20181.

1. Introduction

The relational model for databases [3] has been proposed as a formal means to describe data
organization and to express queries. In this paper we are using the relational model to formalize the
problem of evaluating a databasc quer}"and the related problem of computing (or estimating) the
size of the result, and we are using complexity theory to characterize the complexity of these
problems, Specifically, we prove the following:

(i) Given a database s, a relational query @ and a conjectured result 7, testing whether Q(s)=r
is complete for the class DP (the class of lanquages which arc equal -to the intersection of a language
in NP and a lanquage in co-NP --scc [10, 6] for the relevant definitions). The problem is known to
be NP-complete if we replace "=" by "2D" [16], and co-NP-complete if we replace "=" by "C"
[9]: we also give direct proofs of these facts.

(ii) Given a database s, a query Q and two non-negative im;:gcrs d;. d,, testing whether
d;<|0(s)|<d; (where |Q(s)| is the number of tuples of O(s)) is DP-hard, even when dj=dj or
when d;<d,. Testing whether d 1<IQ(s)| is NP-hard, and testing whether |Q(s)|<d is co-NP-hard
(the co-NP-hardnesss result also follows from the co-NP-completeness result of [9]).

(iii) Given a database s and a query Q, the enumeration problem of counting the number of
tuples in the result Q(s) is # P-hard (sece [13, 6] for relevant definitions).

We also prove the following results, rélated to the behavior of relational queries when viewed as
mappings (as in [2]):

(iv) Given a database s and two queries Q;, Q), testing whether Q(s)CQxs) and testing
whether Q;(s)=Q(s) are both complete for the class I 21’ of the polynomial-time hierarchy (see
[11, 6] for relevant definitions).

(v) Given two databases s o '52 and a query @, testing whether O(s)C 0(s5) and testing whether
O(s))=Q(sy are both II zp-complete.

In all the above results, databases can be constrained to consist of a single relation, and queries

are restricted to only use the operations of projection and (natural) join.

2. Basic Definitions

The relational database model [3] assumes that the data are stored in tables called relations. The
columns of a table correspond to attributes, and the rows to fuples (records). Each attribute 4 has an
associated domain of values Dom(A). A relation scheme is a finite set of attributes labeling the
columns of a table, and it is usually written as a string of attributes. Let X be a relation scheme: an
X-tuple is a mapping p from X into U Dom(A) such that p(4)€Dom(A) for each attribute A

AEX
in X; a relation over X is a finite set of X-tuples. A database scheme S is a finite set of relation
schemes. A database over S is a st of relations containing exactly one relation over each relation
scheme in S.

In the context of the relational model, one way of formulating queries is by using a set of
operations defined on relations (relational algebra [3, 4]). In this paper we only consider two
operations, projection and join.

The projection Y] of an X-tuple ¢ onto a subset ¥ of X is the restriction of 7 to Y. The
projection o y(R) of a relation R over X to Y is the set of projections of the tuples in R to Y. If Ry,
R are relations over the relation schemes X; and X' respectively, the join of R; and R), written
R;*R;, is the relation Ry*Ry={u| p is an X;UX ytuple, p.[X]]ER]_, plX5J€R5). The join of a
finite set of relations {Rj} will be written as * Rf

A relational expression consists of relation schemes as _opemnds and projection and join as
operations. A relational expression ¢ defines, in the obvious way, a function which takes one
argument for each relation scheme X appearing in the expression as operand (the corresponding
. argument i8 a relation over X), and produces as result a relation over a certain relation scheme, the
target relation scheme of ¢, trs(p). We will be using relational expressions to formulate queries in

relational databases.

We also give the definition of the complexity class DP: DP={L,NL,: L;€ENP, LyEco-NP}.
We have NPUCO-NPQDPQAZP:PNP (polynomial time with an oracle from NP). We also note
that, unless NP=co-NP, a problem which is complete for DP is not in NPUco-NP. For a discussion

of the type of languages of which D? is the natural niche. and also for more natural problems

which turn out to be complete for DP, see [10].

3. DP-completeness and #P-hardness Results
We will first prove the following:

Theorem 1:
Given a relation R, a relational expression ¢ over projection and join, and a relation r, it is DP-

complete to test whether @(R)=r.

Theorem 2:

Given a relation R, a relational expression ¢ over projection and join, and two “"small" non-
negative integers dy, d; (i.c. written in unary), it is DP-complete to test whether d;<|@(R)|<d),
even when d;=d, or when d;<d,. Testing whether d;<|p(R)| is NP-complete, and testing

whether |p(R)I<dy is co-NP-complete.

All the reductions in this paper are reminiscent of the reduction in [1]. The reductions used to

prove the DP-completeness results in Theorem 1 and Theorem 2 are from the following problem:

3SAT-3UNSAT: "Given two Boolean expressions G, G' in 3-conjunctive normal form (3CNF}, is it

true that G is satisfiable and G is not?"

It is immediate that 3SAT-3UNSAT is in PP, and it is also a straightforward consequence of the
fact that the 3-satisfiability problem is NP-complete [5, 6, 8] that 3SAT-3UNSAT is complete for DP
(see also [10]). Furthermore, it is clear that we may restrict ourselves to expressions containing at

least three clauses, and such that the variables appearing in cach clause are distinct.

Now let G=F...F,, be a Boolean expression in 3-conjunctive normal form; the Fj’s are clauses

of three literals each and the variables appearing in the expression are x [X2msX e We denote the

variables appearing in a clause FJ1 by xj], sz, xj3

as follows: R has n+1+m(m+1)/2 columns. The first m columns correspond to the clauses of G

. We construct a relation R corresponding to G

and are labeled by the attributes F [Fyps the next 1 columns correspond to the variables in G and

column is labeled by the attribute S.
For each clause FJ of G, R has 7 tuples as follows: let hjk k=1,..7, be the seven satisfying
truth assignments of the clause P} (each hjk is a function from {x i sz, xjj} to {0, 1}); for each

hjk* R contains a tuple pg such that ;ij(Fj):L pjk([’])::e for I#j, “jkijl):hjk(sz)’ i=123,

p.jk(Xl):e for I#j; i=123, lujk(Y{il}):x if j=i or j=1I and ij(Y{f,U):e otherwise, pjk(S)za.

Finally, R; contains a tuple », where v(Ff):l, p(S)=>b, v(W)=e for W#Fj, S

We also consider the following relational —expression @5 corresponding to G
or=mp. (T * [* 7pyv.v.v.v. -V, .«1)] where T is the relation scheme
G by i 'IJ'XUXJQXJg)ﬁJ} }{J.m}s
of R namely FI"'I"mXIXQ'"XnY{1,2}'"Y{I,m}"'y{m-l,m}s‘
Example. Let G:(xl+x2+x3)("lx2+x3+"1x4)(“'1x3+'"rx4+"x5) (mx stands for the

negation of the variable x); the relation RG is

Fl-oF2oPE3. XL X2 X5 N4 Xe ML) W3R Y23}
e e l e e X e

N NN NN A RN E R EEE E R

1
1
1
1
1
1
1
e
e
e
e
e
e
e
e
e
e
e
e
e
e
1

(S T T T T T T T i e R T SO S S T T
p— = = T ™M Mmoo mom o DN
® ™ ® M M B B M O 6 & O B B O KM MHMHOOO
M ® MM OE M OO OO O
N b e DO O Ot O DO e O e O O
n - OOHMFOOHOOH OO MMM™®D N
S O O OO 0 N R R N B
D @ ® ™MD N ® X KKK X KKK XX X KX
AL T T T O S S T T T Y S R GRS S SO
T ow b e o omoB oON ON ON N X X N oo o oo o

The relational expression @ is
TR EFy T X XoX3Y 1y 2 s1 53S TEXX X Y1 ¥ 1y 38 TFX X XYy 12¥ 77 228
by TR A Yy 03Ty 335 VXX 3 g Yy 02X 1) 335 TH3A3XgX5Y 1y 32K 12 32

We remark at this point that the fact that the same symbols (0, 1, ¢, x) are used in different
columns is irrelevant; onc could imagine replacing (in a consistent way, of course) any symbols in

any particular column by new symbols, appearing only in that column.

R and @; can be constructed in time polynomial in the space needed to write down G; they
capture the satisfiability (or unsatisfiability) of G as described below (let I denote the relation

scheme F 1.._F?

, and Y denote the relation scheme Y{I,Q}‘“Y{Lfn}"‘y{m- I.m}):

Lemma 1:
P(Rz)=RGUR, where for each tuple p in R, ,u(Fj):l, p(Y{”}):x, p(S)=a, and
plX ;X 5..X,] defines a satisfying truth assignment 4 for G (by taking h(xy)=p(X}), conversely, for

cach satisfying truth assignment for G there is a corresponding tuple in R.

Proof: Let p be a tuple in PHRG- If w(S)=b, then p=v. If p(S)=a, then cither p[l-]:pjk[ﬁ} for
some j, k, or p[/]=»[F]. In the first case, it is not difficult to check that u=p ik (this is enforced by
the Y attributes); in the second case, it is clear that p(Fj):l, p(Y {i [})zx, p(S)=a and

plX;X,..X,] goes through exactly the satisfying truth assignments for G. i

Proposition 1:
If G is unsatisfiable, 7 yp (R)=7 (R); if G is satisfiable, = Y G(RG =7 y(R)Uug where
ug is the Y-tuple such that ucl Y{i, l}): X.

Proof: Immediate, from Lemma 1. |
The following is a simple fact which we will also be using in subsequent proofs:

Proposition 2:

Given a relation R, a relational expression ¢ over projection and join, and a tuple # testing

whether €@(R) is in NP.

Proof: Immediate, by an inductive argument on the structure of ¢. Alternatively, one may consider

the tableau [1] corresponding to g, and guess a valuation showing that €@(R). -]

Notice that it immediately follows from Proposition 1 that G is satisfiable iff
ucEw yo ((R). Combining this fact with Proposition 2, we get a direct proof of the following

result, proved indirectly in [16]:

"Given a relation R, a tuple 7, and relation schemes X, Y it is NP-complete to test whether

Fs
(€ my(* wy(R)".

It also follows from Lemma 1 that G is unsatisfiable iff ¢ (Rs)=R, and combining with

Proposition 2 we get a direct proof of the following result [9]:

"Given a relation R and relation schemes Y

5 testing whether * WYZ{R):R

is co-NP-complete".

We now prove Theoremm 1 and Theorem 2.

Proof of Theorem 1:

We first show membership in D7 it suffices to show that testing whether rC(R) is in NP, and
testing whether @(R)Cr is in co-NP. The first is a simple consequence of Proposition 2: just test
whether r€q@(R) for all tuples 1€r. The second is equivalent to showing that testing whether p(R)ZL r
is in NP (Q stands for the negation of C): for this, just nondeterministically guess a tuple ¢ and
check that €q@(R), and also check that t€r.

For the DP-hardness part, we will make a reduction from 3SAT —SUNSAT. Let G, G be two
Boolean expressions in 3CNF. Let R; be the relation corresponding to G over the relation scheme
T=F;.. mXIX,?"'XnY{],Z}"'Y{l‘,m}"‘Y{m-!,m}S’ and R¢ be the relation corresponding to G
over the relation scheme T:F]...meX']X'Z...X'HfY'{],z}...Y'{I,mf}...Y'{mr_],mf}S’. Let
RG ¢ =RG*Rg: observe that TNT =@ , and that for ZCT we have 7RG ¢)=77(Rg), and
for ZCT we have = 7RGe)=m7(Rz) let g be the relational expression
7 yy(9G 9). taking as argument the relation scheme TUT"; clearly (;OG’G‘(RG,G‘):WWG(RG)

* 7ye(Re). and thus using Proposition 1 it is easy to see that G is satisfiable and G’ is
unsatisfiable iff QDG’G'(RG’ G“):(’” Y(RG)UuG) * ay(Rg) (call this relation ’G,G')‘ Since RG.G"
PG G- TG ¢ can be constructed in time polynomial in the space needed to write down G, G, we

are done . 1

Observe that in order to be able to make the reduction (and so in order for Theorem 1 to be
true) it suffices to consider relational expressions of a certain restricted form. This will be the case

for all of our results.

Proof of Theorem 2:

To prove the membership assertions, it suffices to show that testing whether d,gicp(R)| is in NP
and testing whether |@(R)|<d 5 is in co-NP. The first follows from Proposition 2; just guess
nondeterministically d; distinct tuples (recall that dj is in unary) and check that cach of them is in
@(R). For the sccond it suffices to show that testing whether icp(R)lzd2+l is in NP, which is the
same as the first.

For the DP-hardness part let G, G' be as before, and let B=Tm+1, B'=7m'+1. By
appropriately padding G’ (add a sufficient number of extra clauses not affecting its satisfiability) we
can make sure that B<B’. Now log ¢(Ra N=Tye (R |my (Rl and furthermore
|7 yo (R)I=B if G is unsatisfiable and |7 P (R =B+1if G is satisfiable, and similarly for G
(Proposition 1). Thus, G is satisfiable and G is unsatisfiable iff W’G,G(RG, G«)I:(B+1)B', iff
BB+ +1<le G (RG gNSBB +1)+ B

For the remaining hardness assertions it suffices to observe that, by Lemma 1, G is satisfiable iff

B+1<|lp(R)l, and G is unsatisfiable iff lo G(RGN<ZB. |

Using the constructions described, we can also show that counting the number of tuples in Q(s),
where s is a database and Q a relational query, is at least as hard as counting the number of
accepting computations of any polynomial time nondeterministic Turing machine. We make use of
the fact that the problem of counting the number of satisfying truth assignments for an instance of

3-SATISFIABILITY is #P-complete [14].

Theorem 3:
Given a relation R and a relational expression ¢ over projection and join, the enumeration

problem of counting the number of tuples in @(R) is #P-hard.

Proof: Immediate, by the fact that if a(G) denotes the number of satisfying truth assignments for G,

then a(G)=lp(R|-Tm-1 (Lemma 1). 1
By observing the form of @5 we can also see the following:

Corollary:
Given a relation R and relation schemes Y, the enumeration problem of counting the number

of tuples in * @y (R) is #P-complete.
YI

Proof: By the proof of Theorem 3, it suffices to show membership in #P. Consider the following
"counting Turing machine” M: M nondeterministically guesses a tuple #, and accepts if and only if
{YJER for all i. Clearly M runs in polynomial time, and the number of accepting computations

of M is the same as the number of tuples in * qy(R). i
YI

4. T1,P-completeness Results
In this section we prove the following:

Theorem 4:
Given a relation R and two relational expressions ¢ ;> @2 over projection and join, testing

whether @ (R)CoxR) and testing whether @ ;(R)=¢xR) are both I, -complete.

Theorem 5:

Given two relations R, R, and a relational expression ¢ over projection and join, testing

whether @(R)C@(R,) and testing whether @(R P=9(Ry) are both ngncomplete.

We first prove that the problems above are in ITF.

10

Proposition 3: Given two relations R;, R, and two relational expressions @, @, over projection

and join, testing whether ¢ (R)Co R,) and testing whether ¢ J(R))=9AR,) are both in II 21’

Proof: For the first part, it suffices to show that testing whether ¢ (R])Cth ARy isin Z 21’ — NPNP
(nondeterministic polynomial time with an oracle from NP). But by Proposition 2 all we have to do
is nondeterministically guess a tuple ¢ and check, by asking an appropriate oracle from NP, that

€9 (R and €@ xRy. The sccond part is similar. i

The reductions used to prove Theorem 5 and Theorem 6 are from the following problem, which

was shown to be IT,’-complete in [11, 15]:

Q-3SAT: "Given a Boolcan expression G in 3-conjunctive normal form and a partition of the
variables in G into two sets X={x,...x,}, X ={xp4 JeXp}, determine whether for all assignments
of truth values to the variables in X G is satisfiable, i.c. determine whether VX3X'(G(X, X)=1)

(we write VX for Vx;.¥x, ectc)".
We will actually need to impose the following technical restrictions on the set X:

Proposition 4:
(Q-3SAT is I1 zp-complete even if X is not contained in any Vj, where Vj is the set of variables

appearing in the clause FJ-. and also X does not contain any Vj.

Proof: To enforce the first restriction, just add to G the clauses (v;+vy+v3), (vg+v5+vg), where
the v/s are new variables, and replace X by XU{v;, vz} If X contains I/} then the problem is
trivial, because there is an assignment to the variables in V. making]} false, and thus

J
VXAX'(GX, X')=1) is false. 1

In the following reductions, we will assume that the restrictions described above are satisfied.

We will use X to denote both the set {xl,...,xr} and the relation scheme X;.X,.

Proof of Theorem 4:
By Proposition 3, we only need to prove the hardness part. Let G, X be as above, and let R’G

be a relation obtained from R; as follows: first, for each clause F] add a tuple ¢ j corresponding to

11

the truth assignment hj: {le, xj3}"+7{0, 1} which does not satisfy I*j; that is, £ j(’Lj): 1,

x.
47

Fo=e for I#j, £LX;:)=h{x;), i=1,23, §{X)=e for I%j, i=123, (Y : p)=x if j=i or j=I
gFP=e for 12], §(X})=hf) =123, §fX)=e for 4y i=123, gV = if j=i or)
and ¢ j{) fi, [}):e otherwise, ¢ J(S):a. Then add a new column labeled by U, and make £ j(U}:cj,
and p(U)=c for any other tuple p in the relation.

Consider also the following relational expressions (T is the relation schemeof R'G, namely
FI'"FmXIXQ'"Xn Y{],Z}"'Y{I.m}'" Y{frz-i,rn}sw:

o' g=vF,.F M) * [RWIRENY

TEY. Y. Y. Y., .
F&; XX Yo Ymp
S oy
R Il] }{J.HI}SU(f

*[ék

o’6=7F,.F, (T)

It is not difficult to see that <p2 G Picks out the satisfying truth assignments for G (despite the
extra tuples, since it looks at both the S and U columns), while cp] G considers G as a tautology
(because of the extra tuples, since it only looks at the S column). More specifically, we have that
7y (R)=7 x(R' URy and 7y (R')=m (R ()URy , where:

a) Ry consists of all possible truth assignments to variables in X, and R Xa consists of the
restrictions of the satisfving truth assignments for G to the variables in X (RX, a=T xR

b) No tuple in 7y R‘G-) may be taken as defining a truth assignmcﬁt (by our first restriction on
X, any such tuple contains at least bne e). |

Thus, VXIX'(GX, X)=1) is true iff RyCRy o iff WX(RIG)URXQWX{RrG)URXa, iff

7@ (R G 39’ (R @), iff wyp! (R)=m yo? ((R'). This completes the proof. B

Proof of Theorem 5:

By Proposition 3, we only have to'prove the hardness part. Let G, X be és above, and let R”G
be a relation obtained from R'G by omitting the U column. We now have
7ye (R =7 y(R")URy and wXqJG{RG):-wX{RG)URX’a. As before, no tuple in either
7y(R") or @ x(R) may be taken as defining a truth assignment; moreover, we actually have
7 x(R" g)=m (R) (by our second restriction on X, the extra tuples in R" do not matter).Thus,
VXAX(G(X, X)=1) is tme iff RyCRy, iff =y(R'QURyCwy(RGURy, iff
TyP R Ty R Iff 7y (R’ 9= ype(Rg). This completes the proof. 1

Observe also that the following fact can be proved by a trivial modification to our proofs:

12

"Given a relation R, a relational expression ¢ over projection and join, and for each attribute
X;in tr(p), a finite subset E; of Dom(X)), it is T1 Zp-complcte to test whether @(R) contains every

possible tuple p such that wX)EE; for all X; in irg(p)".

5. Discussion

The results of Section 3 must be seen as further theoretical evidence supporting the intuitive
fact that processing a query requires in general time exponential in the size of the query. Moreover,
they imply that the intermediate results can be inherently much larger than both the input relation
and the query output They also provide strong evidence of the intractability of the problem of
estimating the size of the query output.

The results of Scction 4 characterize the complexity of testing the equivalence of relational
querics on a fixed given relation (Theorem 4). They are also motivated by the theory of database
mappings, which was proposed as a means to solve the view update problem [2]. If S is a general
statc space of possible values of a database aﬁd fis a mapping on S one considers the partition of
S induced by the cquivalence relation ~ 7 where X~ g iff ffx)=f). Theorem 5 indicates the

hardness of deciding this condition in the special case of relational mappings.

Acknowledgement

The author wishes to thank Professor Christos Papadimitriou and Mihalis Yannakakis for many

helpful ‘suggestions and comments.

13

References
(Note: References [7, 12] are not cited in the text)

[1] Aho, A.V., Sagiv, Y., and Ullman, J.D. Equivalences among reclational expressions. SIAM

Journal of Computing 8, 2 (May 1979), 218-246.

[2] Bancilhon, F.M., Spyratos, N. Data Base Mappings, Part I: Theory. Rapport de Recherche
INRIA No. 62.

[3] Codd, E.F. A relational model for large shared data banks. Communications of the ACM 13, 6
(June 1970), 377-387.

[4] Codd, E.F. Relational completeness of data base sublanguages. In Data Base Systems, R.Rustin,

Ed., Prentice Hall, Englewood Cliffs, N.J., 1972, pp. 65-98.

[5] Cook, S.A. The complexity of theorem proving procedures. Proceedings of the 3rd Annual ACM

Symposium on the Theory of Computing, Shaker Heights, Ohio, May 1971, pp. 151-158.

[6] Garey, M.R. and Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-

completeness (Freeman, San Francisco, CA, 1979).

[7] Honeyman, P. Ladner, R., Yannakakis, M. Testing the universal instance assumption,

Information Processing Letters 10, 1, 14-19 (1980).

[8] Karp, RM. Reducibility among combinatorial problems. In Complexity of Computer

Computations, R.E. Miller and J.W. Thatcher, Eds., Plenum Press, New York, 1972, pp. 85-104.

[9] Maier, D., Sagiv, Y., and Yannakakis, M. On the complexity of testing implications of functional

and join dependencies. Journal of the ACM 28, 4, 680-695 (1981).

[10] Papadimitriou, C.H., Yannékakis, M. The complexity of facets (énd some facets of complexity).
Proceedings of the 14th Annual ACM Symposium on the Theory of Computing, San Francisco,
California, May 1982, pp. 255-260.

14

[11] Stockmeyer, L.J. The polynomial time hierarchy. Theoretical Computer Science 3, 1 (1976),
172

[12] Sagiv, Y., and Yannakakis, M. Equivalences among relational expressions with the union and

difference operators. Journal of the ACM 27, 4, 633-655 (1980).

[13] Valiant, L..G. The complexity of computing the permanent. Report No. CSR-14-77, Computer

Science Department, University of Edinburgh, Edinburgh, Scotland, 1977.

[14] Valiant, 1.G. The complexity of enumeration and reliability problems. SIAM Journal of
Computing 8, 3 (August 1979), 410-421.

[15] Wrathall, C. Complete sets and the polynomial-time hierarchy. Theoretical Computer Science 3,

1, (1976), 23-33.

[16] Yannakakis, M. Algorithms for acyclic database schemes. Procecedings of the 7th VLDB
Conference, 1981, pp. 82-94.

