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Abstract
In this paper we show that after sufficiently many modular
multiplications, any knapsack system becomes a trapdoor system

that can be used in public-key cryptography.
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I. Introduction

All the knapsack-based public-key cryptosystem proposed so
far (e.g., Merkle and Hellman [1978] and Shamir and Zippel [1980])
are based on the following paradigm:

1. Pick an easy knapsack system;

2. Scramble its elements by iterated modular multiplications;
3. Publish the resultant randomly-looking system.

In this paper we show how to replace part 1 by:

1'. Pick an arbitrary knapsack system.

The initial knapsack system need not be one-to-one and its
elements can be of arbitrary sizes. All the known knapsack
cryptosystems are special cases of the new "random knapsack
cryptosystem," and thus any successful cryptanalytic attack
against it will also break the other cryptosystems (but not
necessarily vice versa). 1In addition, the fact that the initial
knapsack system has no structure whatsoever implies that the
cryptanalyst cannot expose the secret trapdoor by looking for
this structure (as was done, for example, in Shamir [1982]}),
and his only hope is to attack the scrambling mechanism itself.
While the modular multiplication technique is the only known
method for scrambling knapsacks without changing their solutions,
it is conceivable that other methods will be found in the future.
The idea presented in this paper can be used with any iterative
scrambling technique, as long as all the intermediate knapsack
problems have the same solutions and their entries are randomly-

looking.



II. The Random Knapsack Cryptosystem

Let ai,...,ai be an arbitrary initial knapsack system,
and let ai,...,ag be the system obtained after j - 1 modular

multiplications. We denote the J-th modulus by M?  and the

j=-th multiplier by Wj, and define:

a?+l

= W) . al (moda M)
1 1

The values of MJ and W) are arbitrary, as long as they are

relatively prime and

Mj > a:
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These modular multiplications are iterated n - 1 times, and
the resultant system a?,...,aﬁ is published as the encryption
key.

Given a binary cleartext =x <X (in which each X is

1°

0 or 1), the sender computes a message-dependent partial sum

and sends the ciphertext b" to the reciever over the (insecure)

communication channel.

To decrypt bn, the reciever multiplies the equation by the

inverse of Wn_l modulo Mn_l (the inverse exists
since Wn_l and Mn_l are relatively prime). Each a? is
transformed back into ag_l, and the b" is changed to a new

value bn_l:



x.a¥ 1 = p»1  (moa M1y
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Since each X, is at most 1 and Mn_l is larger than the

- _ , -1

sum of all the a? l, this equation holds even when the (mod M )

clause is deleted:

X.a.
11

I o133
]
|
'_l
(=)
1
I,_I

i=1
Continuing in this way, the reciever can gather n non-

modular equations in n unknowns of the form:
n . .
z x.ai = bj j=1,...,n

The ag coefficients in these equations are randomly looking,
and when they are large enough, the system of equations is almost
certainly non-singular. If this is the case, the reciever can

solve the equations and find x <o X without relying on the
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easy solvability of the initial knapsack system ai,...,ai.
Instead of solving the equations over the rationals, the
reciever can reduce the equations mod 2 and solve them over
GF(2). The reduced equations contain only the least signifi-
cant bits of ag and bj, and they are much easier to store
and manipulate. However, for random binary matrices, the proba-
bility of non-signularity is only 0.3, and thus a few random
keys have to be generated before a useful one is found. The
inverse of the matrix of least significant ai bits can be
precomputed during the key generation phase, and thus the de-

cryption procedure consists of collecting the least significant

bits of the b7 numbers and multiplying this vector by a fixed



n x n binary matrix.

Example

Consider the initial knapsack system 3, 8, 11. If we
1

choose Ml = 25 and W 14, we get the transformed system

17, 12, 4. By using M2 = 37 and W2 = 17, we get the doubly
transformed system 27, 19, 30. For any ciphertext b3, the

system of equations is:

_ .1
Xq* 3 + Xy" 8 + x3-ll = Db
17 + %12 + %, 4 = b2
Xq X, X5 =
3

xl-27 + X2'19 + x3-30 =b

This system can be soved over the rationals, but it is simpler

to reduce it mod 2:

~1
Xl 1 + x2-0 + x3-l = b
‘1 + %,°0 + x,-0 = b*
| 2 %3
R
.1 + 2.1 + x%x.-0 =0b

1 2 3

~ 3 .
where b7 is the least significant bit of b .

Since over GF(2)

r 1 i ]
1 0 1 0 1 0

1 0 0 = 0 1 1
Ll 1 0_ ‘l 1 0_




for any vector of b) we can compute the X, as:

— - — —]”‘A/T
%q 0 1 0 b1
X, e 0 1 1 b2
~
_XB— _l 1 0 | _b3_

Note that this system of equations is non-singular even though
the original knapsack system 3, 8, 11 is not one-to-one (11l can
be represented in two different ways as the sum of a subset

of the elements).

U

To be secure, any knapsack-based cryptosystem must have at
least 100 unknown X bits, and thus the decryption matrix
contains at least 10,000 bits. There is an easy way to control

the structure of this matrix and to transform it into any par-

ticular matrix we choose. Let Ml,...,Mnnl be odd numbers.
After multiplying ai,...,ag by w9  and reducing them mod M],

we can add Mj selectively to any subset of the results, since
these extra occurrences of Mj will be eliminated during the
decryption phase by the inverse multiplications mod Mj. Since
Mj is odd, the least significant bit of a3+l is flipped when
Mj is added to it, and thus we can independently select all the
entries of the matrix. In particular, we can choose a knapsack
system for which the coefficient matrix is the identity matrix;
the cleartext in this case is simply the sequence of least sig-

nificant bits of the intermediate bj numbers! However, this

technique introduces a small amount of known structure into the



intermediate knapsack systems, and thus to get the highest pos-

sible security it seems advisable to leave the matrix random.

Example (continued)

To get a 3 x 3 identity matrix, we augment our initial
knapsack system to 3, 8, 12. With the same Ml = 25 and
Wl = 14, we get the transformed seguence 17, 12, 18. We change

this sequence to 42, 37, 18 by adding 25 to 17 and to 12.

The sum of the new sequence is 97, and thus we cannot use the

modulus M2 = 37 from the original example. Choosing M2 = 101,

W2 = 23, we get the doubly transformed sequence 57, 43, 10.
By adding 101 to all of them, we get the sequence 158, 144,

111. The three sequences

(1) 3, 8, 12
(2) 42, 37, 18
(3) 158, 144, 111

have the desired structure of least significant bits, and the
reader can easily verify that the j-th sequence can be obtained
from the (j + l)-st seguence by inverse modular multiplications.
Note that to prevent exposure of the last cleartext bit, it is
necessary to add a final scrambling stage in order to make the

least significant bits of the published key randomly looking.

[

III. Conclusions

In this paper we have shown that the modular multiplica-
tion technique can embed its own trapdoor in knapsack systems,

and thus it is not necessary to use easy-to-solve initial systems.



One of the corollaries of this observation is that Merkle-Hellman
cryptosystems may be weakened rather than strengthened by too
many modular multiplications, since they introduce new uninten-
tional trapdoors into the knapsack systems. In particular, it
makes no sense to scramble an n-element Merkle-Hellman crypto-
system more than n times, since both the reciever and the
cryptanalyst can easily compute the cleartext by unscrambling
only the last n iterations. On the other hand, too few itera-
tions also seem to weaken the cryptosystem, and thus the question
of the optimal number of iterations requires careful study.

The new "random knapsack cryptosystem" proposed in this
paper is as secure as any other multi-iteration knapsack-based
cryptosystem, since it makes no assumptions about the initial
system. However, it shares with all the other cryptosystems the
potential weakness that each inverse modular multiplication is
known to reduce the size of all the knapsack elements by at least
log n bits. Information theoretically, this is a very strong
clue, but it is an open problem whether the cryptanalyst can use

it in a computationally efficient manner.
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