MIT/LCS/TM-233

IMPLEMENTING INTERNET REMOTE LOGIN
ON A
PERSONAL COMPUTER

Louis J. Konopelski
December 1982



Implementing Internet Remote Login
on a Personal Computer

by

Louis J. Konopelski

December, 1982

© Massachusetts Institute of Technology 1982

Funding for this research came from IBM through discretionary funds
provided to the M.L.T. Laboratory for Computer Science.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts

02139






Implementing Internet Remote Login
on a Personal Computer

by
Louis J. Konopelski

Submitted to the
Department of Electrical Engineering and Computer Science
on December 17. 1982 in partial fulfillment of the requirements
for the Degree of Bachelor of Science

Abstract

This thesis demonstrates that a desktop personal computer can support an efficient internet
remote login implementation with the same protocols used by large mainframes. It
describes a project in which the Telnet remote login protocol. along with the supporting
Transmission Control Protocol and Internet Protocol were implemented on an 1BM
Personal Computer, The utility of the implementation depended heavily on the software
speed. Strategies discussed to insure quick performance included tailoring protocols to their
clients needs. sharing the overhead of asynchronous actions. and sharing data. A natural
order in which to process the protocol data was identified. and two control structures were
presented that allowed the protocol modules to run in this order. One of the control
structures used procedures and processes. while the other used procedures alone.

A full scale protocol was successfully placed in the personal computer. With some foreign
hosts. the implementation echoed characters in less than a quarter of a second, and
processed a screenful of data in less than three seconds. The protocol software overhead was
never the dominating performance bottleneck. The serial line interface limited the character
echoing performance while the speed with which the processor could operate its display

limited the processing speed of large amounts of data. Memory size was not a significant
constraint.
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Chapter One

Introduction

Personal computers are the most recent outerowth of the hardware revolution to attract the
autention of the public. Their mass market potential allows manufacturers to provide them
at relatively low costs, yet they remain significant sources of computational pdwcr with a
range of applications much wider than video games or simple mathematical calculations. A
goal of the Computer Systems and Communications Group [1] at the M.1.T. Laboratory for
Computer Science is to show that such machines are powerful enough to exploit the
advantages of network communications in ways that were previously reserved for much
larger machines. This thesis deals with a subset of this problem. implementing internet

remote login on a desklop personal {:umpul{:r,l

Remote login protocols allow a user on
one computer to log onto another computer via a network. They provide a facility for
communication that is much more flexible than directly wiring a terminal to a computer. yet
is many times faster than a connection across 300 or 1200 baud commercial telephone lines.
With appropriate network connections. a computer can be accessed by users nationwide
with data transfer rates measured in kilobits or megabits. The primary disadvantage to
internetwork communication is equipment cost, but as hardware prices have been falling,

this barrier has been crumbling.

Compared with the machines on which remote login protocols usually run, personal
computers have smaller memories, narrower data paths. and slower processor speeds.
Efficient design is necessary if protocols on personal computers are 10 have acceptable
performance. In the design described by this paper. areas of special efficiency emphasis

include copy minimization. data sharing. buffering strategies. asynchrony minimization and

Karl Wright, in a companion paper [2]. wrote about a different subset of the problem of using personal
computers for network communication, namely, implementing a file transfer program on a personul compuler,



writing tilored layer implementations to better meet the needs of client lwers. An area of
particular concern is the overhead of dealing with asynchronous events. This paper proposes
a natural order in which 1o process data generated by asynchronous events. and presents a

control structure which efficiently and modularly follows this order.

This thesis shows that a desktop personal computer can support an efficient internet remote
login implementation with the same protocols used by larae mainframes. It describes an
implementation of the Telnet. TCP. and Internet Protocols on an 1BM Personal Computer

which allows data to be transferred at rates in excess of 5000 bits per second.

The Telnet, TCP and Internet Protocols. the IBM Personal Computer. and the other
hardware and software which support the remote login protocol are described in the next
chapter. Chapters 111 and IV describe ways to make the protocol implementations efficient
Tailoring layers to meet the needs of their clients. sharing the overhead of asynchronous
action, and sharing data are the subjects of Chapter 111 Chapter 1V discusses control
structure. The notion of a natural order of data processing is developed. and two methods
for achieving it are presented. Implementation details are the subject of Chapter V. Testing
and protocol evaluation are discussed in Chapter VI, while the final chapter summarizes the
results and presents suggestions for improving the implementation and areas for further

research.

1.1 Delinition of Terms

A number of terms need to be defined before proceeding. If A and B are procedures, they
arc in the same thread of control if their local variables are on the program stack at the same
time. Another way of phrasing this is that A and B share a thread of control if either A or B
calls the other or calls some other program which calls the other. A process, for the purposes
of this paper. is a program in execution. (The remote login protocol described herein
required three processes: one to process information typed by the user. one to process
information from the network. and one 1o send packets.) Processes do not have separate

address spaces. A process is blocked when it is not executing and when it will never execute



unless some specific (awakening) action is taken. A process is awake when it is not executing
but when it will execute at some point in the future without any additional action being
laken. A running process is a process in execution. Scheduling means deciding which

process to run next,

Interrupt driven code runs in response to an interrupt. and preempts the code that is
currently executing. It stores the contents of the registers in memory, and sets up a new
stack on top of the old stack. It also turns off interrupts. i.e.. it prevents the microprocessor
from preempting it if an interrupt occurs while it is running. When the interrupt driven
code is done. it turns interrupts back on, restores the stack and the registers, and allows the

program that was running before it to continue execution.

If a second interrupt occurs while code is running in response to a first interrupt. the second
will not be processed until the first’s code hus finished. The event that causes the second
interrupt can be lost if the lifetime of the event is shorter than the time taken by the code
that processes the first interrupt. In practice. interrupt driven code 100k less time than the
lifetime of most events. so very few events were lost in this way.

10



Chapter Two

Software and Hardware Choices

The evidence that personal computers can cfficiently support internet remote login was
built out of particular software and hardware, This section describes the reasons for

choosing the particulars.

L1 The Protocols

The remote login protocol chosen for the demonstration described by this thesis was Telnet,
the DOD standard remote login protocol.  Supporting it were the DOD standard
Transmission Control Protocol and Internet Protocol.  These protocols were becoming
widely implemented on the various local networks to which the personal computers were

attached. They would also allow the personal computers 1o send packets nationwide via the
ARPANET.

2.1.1 The Internet Protocol

The Internet Protocol [3] provides a level of standardization that allows long distance data
communications across nonstandardized local networks connected by gateways. It is
designed for transferring blocks of data across packet switched networks. To each block of
data. the Internet Protocol adds a header that contains information allowing gateways to
appropriately send the packet across the local network, Internet does not provide a reliable

transmission facility. It drops packets it cannot appropriately process.

The most important function of the Internet layer is addressing. Each source or destination
is a host, identified by a fixed length address, If the destination of a packet is a host on the
local network to which a gateway is attached. it sends the pucket 1o the host. Otherwise, it
forwards the packet 10 a gateway closer to the ultimate destination. (The mechanism which
gateways use o decide where to forward a packet is beyond the scope of this paper.)

11



The Internet header also carries information o allow gateways 10 adjust the parameters of
the local network o best transmit a packet.  Internet allows the sender o rate the
importance of a packet on a scale of one to cight. It also allows the sender to specify if the

packet requires low delay. high throughput. or high reliability.

A particularly important parameter of a local network is the maximum packet size that it
can transmit. Internet provides a facility where packets can be broken into smaller units
called frogments and reassembled at their ultimate destination. Each fragment is marked as

such and assigned an 1D number starting with 0. The last fragment is additionally marked.

Internet provides a time-to-five ficld 1o prevent misrouted packets from being forwarded
forever, and a header checksum 1o insure that the information in the Internet header is
correctly transmitted. Optional Internet control fields allow hosts to send timestamps.
security information and special routing information. Internet can demultiplex packets

among various client layers.

Intermet does not provide for data error checking. retransmission of lost data, or flow
control. These functions are ussumed o be part of higher level protocols. Additionally,
Internet makes no guarantee of the order in which it passes packets 1o its clients, and. except

for fragments. assumes that each packet is separate from all others,

2.1.2 The Transmission Control Protocol

The Transmission Control Protocol [4). better known as TCP. makes use of the unreliable
Internet Protocol to provide reliable internetwork communications between pairs of
processes. It provides an error free. correctly ordered. and bidirectional (full duplex)

transmission of streams of data.

To insure reliably ordered data. each process assigns a sequence number to the first byte of

data in the stream that it is sending. Processes refer to each succeeding byte of data by the
f i - .

succeeding sequence number (modulo 13'}. The receiving process acknowledges data it

receives by retumning an acknowledgment number which is just the sequence number of the

12



nest byle that it is expecting to receive. When the sending  process reccives this
acknowledgment number, it assumes that the receiving process has correctly reccived all
previous bytes. The sender retransmits any data not positively acknowledged in a reasonable
period of time. The sequence numbers. when combined with a TCP length field and a

checksum on the TCP header and data. insure reliably ordered. error-free data delivery.

TCP also allows each host to have multiple processes and each process to have multiple
connections, When a process wishes 1o open a connection. it asks the host for a host unigue
connection 1D. called a port number. The process concatenates this 1D with the host's
Internet address to form a socket number. The socket numbers of two communicating
processes uniquely specify a connection. The TCP specification reserves certain port

numbers. In particular. it reserves port 23 for the Telnet server process.

TCP provides flow control by having a process specify a window of the number of bytes of
data that it is prepared 1o receive. This defines the maximun number of bytes of data that
the sender may normally have outstanding, i.e.. sent but not acknowledged. The window
size also implies that the receiver can store and reorder any data in the window arriving out
of sequence. Qur-of-sequence duta refers to the situation where 2 receiving process gets the
data byte with the sequence number 2001 before it receives the dat byte with sequence
number 2000. Because TCP promises its client a reliably ordered stream of data, it must
buffer data byte 2001 until it receives byte 2000, at which point it may pass both bytes to the
client,

TCP generally determines the best time to send data by its own volition. However, it
provides a push function through which the applications layer may tell it to send data
immediately. TCP also provides un urgent function through which the applications layer
causes TCP to set an urgent pointer to the data. The urgent puinter specifies the location of
the urgent data in the upcoming data stream so that the foreign TCP can process the urgent
data quickly.

13



2.1.3 The TI'elnet Protocol

The Telnet Protocol [5] provides a bi-directional. cight-bit-byte oriented remote login
facility by specifving a nerwork virtual terminal (NVT) through which terminal-oriented
processes communicate. Telnet also provides a mechanism whercby processes can negotiate
options different from those provided by NVT. Telnet uses TCP 10 transmit a stream of

bytes which consist of USASCII characters with interspersed Telnet commands,

The network virtual terminal uses USASCI codes. The local terminal is responsible for
echoing. NVT is essentially a half duplex device operating in line buffered mode. It
normally transmits characters a line at a time unless explicitly 1old 10 do otherwise by the
user. The Telnet server must send a Telnet go akead command when it can not proceed
without further instructions from the user. This ullows a process with a hall duplex terminal

to decide when to switch control of the terminal to the user.

Telnet defines standardized commands for certain control functions found on most servers
that are often invoked differently. It defines a commands to interrupt running processes.
abort output, signal that the server is still running. erase characters. and erase lines. It also
provides a mechanism for the server to tell the user to ignore any data buffered between the

server and the user,

Terminal options can be changed from those provided by the network virtual terminal by
negotiation, Four special Telnet signals, WILL. WON'T. DO. and DON'T are defined for
this purpose. DO indicates a request for the other party to perform a service. DON'T asks
the other party to stop. WILL indicates the desire to begin performing a service while
WON'T indicates a desire to stop a service. The personal computer Telnet can negotiate a
full duplex connection by turning off go ahead commands, and it can negotiate remote

character echoing.

All Telnet commands are one byte long and are preceded by the JAC character, (data byte
235). Telnet considers all characters not preceded by 1AC w be data, Character 255 is sent
by sending 1AC twice.

14



There is a distinction between aser Telnet and server Telnet. User Telnet. when running on
computer A, allows a user of A to login o computer B. It reads characters from the
keyboard and sends them o the net. and prints characters from the net on the screen. Server
Telnet. when running on computer A, allows users on any foreign host 1o login to computer
A. It passes incoming characters 1o the operating system and writes the operating system’s
responses to the net. We only wrote user Telnet for the personal computers since we had no
current need for server Telnet. und since its implementation would only have delayed

completion of the much more usefutl user Telnet.

User Telnet normally sends all characters that the user types to the foreign host. but it also
provides the user with an escape sequence that the user employs 1o request a Telnet service
such as negotiating an NVT option or sending the Telnet command that will interrupt the
foreign process.

2.2 The Personal Computers

The IBM Personal Computer was a typical product in the 1982 desktop personal computer

market. We chose it for our project because it had a number of useful features:

L. Its memory was not restricted to 64 kilobytes.

2. The documentation was well suited to sofiware development because it included
commented ROM listings and many schematic diagrams.

3. High level programming languages and software tools were available for it

The processor was the sixteen bit Intel 8088 which had an eight bit data path and which ran
on a 4.77 Mhz clock. The configuration that we used had 194 KB of primary memory and
two disk drives, each capable of holding a 160 KB floppy disk. It also had an asynchronous

communications adapter which could connect to an RS-232 line.?

5
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2.3 Software Development Tools

Al the time we started this project. we seriously considered two languages for software
development: Pascal and C. We would have written and compiled Pascal programs on the
IBM Personal Computers. while we had to write and cross-compile C programs on an
available PDP 11/45° with a Unix®* operating system, and download the programs to the
personal computers. We chose the second option because a Pascal-compatible assembler

was not available for the IBM Personal Computer at the time we started this project.

The software tools available to develop programs described in this paper included a
compiler for the C language. an assembler. a linker. a C Standard 1/0 Library. and some

Heath 19 terminal emulator routines.

2.4 The Network Interface

We attached the IBM Personal Computers via an RS-232 line to a Digital LSI-11 which
acted as a packet concentrator and gateway between the IBM Personal Computers and the
V1 ring. a 1 Mbit/sec token ring net with a Unibus® interface. From the V1 ring, packets
could get to the ARPANET and a number of local networks.

We used a packet concentrator to provide a cost effective way of connecting multiple 1BM
Personal Computers to the V1 ring. until such time as a local net for the IBM Personal
Computers became commercially available. We chose an 1.51-11 as a packet concentrator

and gateway because we had a software development system for code of this type for it.

The low level protocol. (LL.P), the interrupt driven code that ran on the personal computers
and dealt with the serial line is described in detail in Section 5.3.

3PDrP 15 a trademark of the Digital Equipment Corporation,
4L’nix is a trademark of the Bell Telephone Luboratory,

SL'nihus 15 a trademark of the Digital Equipment Corparation.
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Chapter Three

Designing an Efficient Implementation

Perhaps the most noticeable difference between small and large computers from the point
of view of the user is the difference in the speed with which similar programs run. The
usability of the personal computer protocols depended heavily on the efficiency or
quickness of the implementation. Experience with other implementations indicated a
number of guidelines to follow to insure the efficiency of the final code. They are presented
in this chapter,

3.1 The Meaning of Efficiency for Personal Computer Telnet

Protocols are programs for transferring data. A goal of the personal computer protocol
implementation is to transfer data as quickly as possible. For the purposes of this paper.
efficiency refers to the time it tukes to transfer data. The less time it takes to transfer data.

the more efficient the protocol.

Two units of data were identified as being particularly important in the Telnet environment:
a single character and a screenful of characters. Packets with a single character of data will
be common while Telnet is in remote echo mode. The user will be sensitive 1o the round
trip delay of such a packet. Many user requests will cause the foreign host to send a
screenful of data to the user in large packets: the personal computer protocols must also
process these screenfuls efficiently. (Some requests will produce more than a screenful of
data, but we assume that they will do so a screenful at a time, asking the user for positive
response before showing the next screenful. Thus we assume a screenful of data to be the

largest amount of uninterrupted data that the foreign host will sent.)

The benefits that the protocols derive from improving the the handling time for these two

17



types of data are not linear. nor are the strategies for mproving  them  always
complementary. The user will find a single character round trip delay of more than o fourth
ol a second unacceptable. Yet the user will not notice improvements that decrease the delay
1o less than a fortieth of a second. The protocols should process the 2000 characters
necessary to fill the screen as quickly as possible. but they can not set up claborate schemes
for managing a lot of data if it means that they will process slowly packets that contain a

single data character.

3.2 Tailored and Specialized Protocol Implementations

One of the justifications for a layered protocol specification is that it allows one protocol to
serve several different clients.  Unfortunately. a protocol built 1o serve multiple clients

seems to follow Hammer's Law: If it's good for everything. iU's good for nothing.

An alternative strategy is to design a protocol implementation 10 meet the needs of a
particular client. This strategy can be applied with two different degrees of severity. A mild
use of this idea is to tailor a protocol layer so that while it completely meets its specification,
it does not perform equally well with all clients. A more extreme form of this idea is to omit
some Jeatures of a particular fayer that the client of interest does not use. A protocol
specialized in this way would not work at all with clients that needed the omitted features.
The local experience with tailored and specialized protocols indicates that such protocols
run five 10 ten times faster with particular clients than implementations designed to support
many clients.

An example of tailoring is the personal computer TCP strategy for buffering output data
which TCP must store in case the data is lost and TCP needs to retransmit it. TCP could
have either Telnet or FIP (short for File Transfer Protocol [7]) as its client. FTP almost
exclusively fills output packets with hundreds of bytes of duta drawn from files, Telnet fills
packets with data typed by a human user who types slowly. With Telnet there should never
be more than a few byvies of data outstanding. (i.c.. typed by the user but not yet

acknowledged by the foreign host). while an FTP connection could have thousands of such

18



bytes. The tailored personul computer TCP uses a single packet to hold outgoing data. This
system fully meets the TCP specification. which does not stipulate a minimum number of
output packets. but such a system would have abyvsmal performance with FTP since it
would Timit the amount of outstanding data to the size of a single packet. It works fine with
Telnet. however. where the outstanding data can always fit into a single packet. Tuiloring
TCP 1o use a single output packet saves the overhead of dealing with multiple packets. TCP
does not have to queue packets or otherwise distineuish packets that might need to be
retransmitied. and it does not have to recopy much of the TCP header each time it sends a

new packet. In fact. TCP uses the ficlds of the single outgoing packet as state variables,

In addition to having tilored output data builering. TCP also has a twilored strategy for
buffering incoming out-of-sequence dats. TCP bases the out-of-sequence data buffer size
on the maximum TCP window size. which it in turn bases on the assumption that the largest
amount of data that the user will ever wish to see at once is one CRT screenful. Section 5.6

describes the TCP window and buffer management strategies more fully.

Another example of TCP tailoring is its assumption that the user can never type fust enough
to fill the window advertised by the foreign host. TCP treats the case where the user has
more data to send than the forcign host has advertised window rather inefiiciently so it can
process the normal case faster. Again, this would have resulted in poor performance with

FTP where the local TCP might often fill the window advertised by the foreign TCP.

The personal computer remote login implementation 1s specialized in that neither TCP nor
Internet is able 10 demultiplex packets between multiple ports. This specialization does not
affect the performance of Telnet. since Telnet requires only one TCP connection. In fact. it
enables the protocols to run faster since demultiplexing involves at least some extra
overhead. Yet. in this way, the personal computer protocol implementation does not fi ully
meet the specification. TCP could not support FTP which requires multiple simultaneous
TCP connections. nor could Internet support multiple protocols si mullancously. (A strategy

for fixing these deficiencies is discussed in Section 7.1
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An important observation regarding tiloring and specialization is that neither affects the
correctness of the implementation, A foreign computer supporting Internet. TCP, and
Telnet should not be able w0 tell the difTerence between wilored or specialized

implementations and implementations that fully support multiple clients.

3.3 Sharing the Overhead of Asynchronous Action

Any protocol layer which can act as a source of a packet without being prodded by the layer
above it exhibits asynchronous action with respect to the higher layer. TCP exhibits
asynchronous action with respect to Telnet when it sends packets acknowledging data
without being told to do so by Telnet. TCP also retransmits data asynchronously. Telnet
shows asynchronous action with respect o the user when it responds 1o foreign negotiation

requests without prodding by the user.

Asynchronous action is important because every packel requires a certain amount of time
and computer resources to process irrespective of the data it contains. Processing headers,
calling subroutines. and scheduling processes take time. The greater the number of packets
in which protocols send a given amount of data, the greater the amount of unproductive
processing and the more time the protocols will take o process the data, Protocols should

send information in as few packets as possible.

The personal computer protocols combine information resulting from asynchronous action
into a single packet whenever possible. The protocols can combine three types of
information: the TCP acknowledgment number which is updated in response to the
incoming data. any Telnet negotiation characters that Telnet must send in response to data
carried in the incoming packet. and all characters typed by the user while the protocols are
processing the incoming packet. The protocols combine this information by having the part
of TCP that updates the acknowledgment number and the part of Telnet that responds to
foreign negotiation requests run before the part of Telnet that processes characters from the

user which in turn runs before the part of TCP that sends packets.
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3.4 Data Sharing. Buffering. and Minimizing Copies

With the possible exception of process scheduling, protocols tend not to have expensive
operations. They mostly spend time in loops doing simple operations over and over, The
most common loop in protocols is one which processes the data of the protocols one byte at
a time, The number of times a protocol implementation byte processes its data is often a
good heuristic measure of its cificiency. Accordingly. a specific goal of the personal
computer protocols is to minimize the number of times that data was byte processed.

The typical outgoing data byte is processed five times:

1. A code is placed into a buffer by the IBM Basic 1/0 System (BIOS) when the
user types i character.

2. The Heath 19 terminal emulator gives Telnet the ASCIl character
corresponding to this special code.

3. Telnet tests the character to see if it is a carriuge return or a part of the user's
escape sequence. IF it is not a part of the escape sequence. Telnet places it in the
output packet.

4. TCP checksums the outgoing packet

3. The low level protocol writes the packet to the net.

The typical incoming data byte is also processed five times:

1. Interrupt driven code places the data coming off the net into an Internet packet
buffer in memory.

2. TCP computes a checksum on the incoming data.

3. Telnet reads it and checks to see if it is a carriage return or IAC, the Telnet
escape character.

4. The Heath 19 emulator handles it.

5. BIOS places it onto the screen.

TCP sometimes copics data one additional time, 1f an incoming packet acknowledges only
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part of the duta in the currently held owgoing packet, TCP copies cach byte of
umacknowledged data to the strt of the dita area. Because the amount of data that TCP so
copies is usually none or small. the time it spends on these copies is much less than the time

that it would need to deal with multiple output packets.

Notice that the protocols are never auwtomatically copy packets across protocol layer
boundaries. For example. no layer ever copies data specifically for the Internet protocol

layer--cither TCP or the low level protocol always pass Internet a pointer 1o a packet.
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Chapter Four

Tasking: A Modular Way of Coping with Asynchrony

Protocol implementation is not a well understood science, One cannot turn 1o the relevant
chapter of a textbook to see how to best do it As the number of TCP and Telnet
implementations in the world grows, problems with the current way of doing things become
more obvious. and possible solutions suggest themselves more strongly. This chapter
describes tasking. a way of organizing protocol control structure using a combination of
procedures and processes that seems to meet the requirements of protocols more naturally

than traditional methods of Drganizalion,ﬁ

4.1 The Need for Multiple Threads of Control

This section presents the reasons that multiple threads of control seem desirable in layered
protocol implementations.,

4.1.1 Modularity Through Layering

Writing a program that can reliably send and receive characters and special commands for
the user by twiddling bits on an unreliable network is a large task. Protocol designers have
modularized this task by specifying layers of protocols. each of which performs a certain
subfunction of this task.

A significant advantage of layered modularization is that it limits interaction between

E’ﬂw particular form of tsking used here is the idea of Dr. David Clark and will be fully described by him in
A luture publication. 1L is described here because it provided a convenient way of orgamzing the 1BM personal
computer prolocols. The usking packuge presented here does not necessarily dccurately or compleiely
implement tsking us envisioned by Dr. Clark. This paper is nol meant 1 be the fing word on lasking or a
sumniary of the reasons for using iL.
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protocol layers. Each layer must deal with only two other lavers: the laver immediately
above it and the layer immediately below it. The Telnet layer does not need 1o worry about

the low level protocol, while the TCP layer does not have to deal with the user,

Violating modularity sometimes seems necessary or desirable in order to improve
performance. While each such chunge may produce a local efficiency. the sum of many such
changes will lead 1o code that is difficult to understand and to modify, and which may have
performance problems in the lurge that no one reallv understands. The next lwo sections

describe some characteristics of protocols that make them especially vulnerable 1o creeping
unmodularity.

4.1.2 The Natural Order of Data Processing

Each protocol layer has a function. Examining these functions reveals a natural order in
which to process data between the network and the user. Incoming data should first be
processed by Internet. then by TCP, and finally by Telnet. There is not a one-lo-one
correspondence between the number of packets that Internet receives. the number of
packets TCP receives, and the number of times Telnet and the user receive data. If Internet
finds that the Internet header has a bad checksum. it will not pass the packet 1o TCP. If
Internet passes a packet to TCP that contains only an acknowledgment for data and no new
data, TCP will not pass anything to Telnet Similarly. if Telnet reccives only a negoliation
request, it will not pass anvihing to the user.

The opposite situation occurs with outgoing data from the user. It should first be processed
by Telnet. then by TCP. then by Internet, and finally passed to the network. Again, the fact
that one protocol layer runs does not imply that the next layer in the natural order will also
run. The user may ask Telnet to interpret all future characters in a different way, and TCP
will not immediately run. TCP may buffer data from Telnet unless explicitly told not to do
s0.und Internet may not run.
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4.1.3 Asynchronous Events, Layers, and Threads of Control

While the order in which layers should run 10 process data is straightforward. coming up
with a control structure that both follows this order and preserves modularity is difficult.

Procedure calls scem too inflexible to do this.

To illustrate. suppose Telnet is the top level procedure and that the user passes data 1o it
that must immediutely traverse the network. Telnet calls TCP. and passes TCP the data with
instructions (o send it immediately. TCP formats a packet containing the data and calls
Internet which in turn fires up the low level protocol and sends out a packet. After sending
the packet. the low level protocol returns to Internet which in turn returns w0 TCP which

returns 1o Telnet. Telnet then waits until the user has more information to send.

What now happens if a packet acknowledging the data comes in over the net? Internet and
the low level protocol need 10 run. but control remains in Telnet. We could cive Telnet
knowledge of when a packet comes in from the net so it can call TCP which in turn can call
Internet. but then Telnet would have knowledge of the network which violates layered
modularity, Also. for incoming packets Telnet would be calling TCP which would call
Internet--exactly the opposite of the natural order described above, To achieve the natural
order, procedures that handle asynchronous data must not share threads of control, Because
asynchronous data arises in multiple layers. and because layers cannot share procedures,

there must be at least as many threads of control as there are layers that handle

asynchronous events.

All Telnet, TCP. and Internet implementations must deal with a minimum of three
asynchronous events: characters from the user. packets from the network, and
retransmission timer time-outs. Because a different protocol layer handles each of these, all
modular implementations of Telnet. TCP, and Internet must have at least three threads of
control: a thread with a Telnet procedure as the top level procedure that processes
characters from the user. a thread with a TCP procedure as the top level procedure that runs
when the retransmission timer goes off. and a thread with an Internet procedure as the top

level procedure that processes incoming packets.
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Ihe protocol implementor may desire to create other asynchronous events as well.
Section 3.3 showed that the part of TCP that acknowledges data by sending a packet with an
updated acknowledgment number should wait until the part of Telnet that handles data
from the user has run. Delaying data acknowledgment effectively causes it to become an
asynchronous event because no procedure can naturally call the TCP procedure that
acknowledges data. The part of TCP that processes the incoming packet can not call it--this
part of TCP gives up control to give Telnet an opportunity to run, If Telnet has data to send
from the user. it will call TCP again. but Telnet should not have to call a TCP procedure if
the user does not type any characters. Thus procedures in the TCP layer must handle two
asynchronous events: the retransmission timer and data acknowledament. If each event
were processed by a separate procedure. two threads of control would be needed by the
TCP layer. one to retransmit packets and one to send packets acknowledging incoming data.
To avoid multiple threads of control in the TCP layer. we used a single procedure sent
packets in response to both events. In fact we made a further simplification and had a single
procedure send all outgoing TCP packets. Because there is only one output packet. (see

Section 3.2). writing a procedure that handles all output packets was casy.

Placing the TCP procedure that sends packets in its own thread of control also provides a
convenient way of sharing the asynchronous action overhead that results when Telnet
responds to a foreign negotiation request. Telnet calls TCP with some data to send, but TCP
does not send it immediately. Instead TCP places it in the same packet as the updated
acknowledgment number (that acknowledges the characters which formed the foreign
negotiation request), and allows the part of Telnet which handles characters from the user to
run,

4.1.4 The Special Needs of Real Time Events

A characteristic of asynchronous events is that they may occur at almost the same time. This
can be a problem if the events have a lifetime, If the routine responsible for processing an
event can nol do so within the event's lifetime, then the routine will lose the event

Examples of events with lifetimes are the signal produced when the user presses a kev on
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the keyboard and a byte coming in over the serial line. Unfortunately the amount of time
needed by the personal computer protocols to completely process such cvents is much
longer than their lifetimes. 1f two events occur at almost the same time. the second will cease
lo exist before the protocols completely process the first. To avoid this problem, the
personal computer protocols use interrupt driven code to buffer realtime events. and code
not driven by interrupts can then process the buffered events at its convenience. Interrupt
driven code runs when the user presses a keyboard key. when a byte comes in off the serial

line. and in response to a timer interrupt.

4.2 Implementing Multiple Threads of Control

Figure 4-1 summarizes the natural order of data processing described in the previous
section.  Broken lines indicate layer boundaries. Dots surround interrupt driven code.
Blocks indicate procedures inside of layers. Data is first processed by a procedure from
which an arrow points and then by the procedure to which the arrow points. This section
describes three ways of structuring the multiple threads of control that will process data in
the natural order,

4.2.1 Layers as Processes

The traditional way of constructing multiple threads of control is to make each layer a
separate process. Because processes can run in any arbitrary order. thev can also run in the
natural order. Each layer has the potential 10 be the first to process a piece of asynchronous
data. For outgoing packets. the user’s keystroke awakens the Telnet process which in turn
awakens the TCP process which in turn awakens the Internet process. An incoming packet
awakens Internct which awakens TCP which in wrn awakens Telnet. A retransmission
time-out awakens TCP without awakening Telnet.

In practice, however. scheduling processes in the natural order can be extremely difficult, A
simple scheduling system where processes run in the order in which they arc awakened does

not work well.  For example, if an incoming packet arrives over the net and awakens
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Figure 4-1:The Natural Order of Data Processing
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Internet between the time Telnet gets a character from the user and the time that it awakens
TCP 1w send the character. then Internet will run after Telnet but before TCP. (The low
level protocol processes puckets coming off the net at interrupt level.) Running Internet
between Telnet and TCP can result in unnecessary delay in sending the data that the user
Lypes.

An unpredictable order of data processing can cause more serious problems than delaying
information. It can make sharing certain data between lavers impaossible. If the protocols
follow the natural order of data processing. Telnet. TCP. and Internet can all use the same
outgoing packet. But with an unpredictable order. Telnet could run between TCP and
Internet. Telnet could then modify the packet after TCP put a checksum on it. causing the
forcign host 10 reject the packel. Multi-process systems that allow processes 1o run in an

arbitrary order are also difficult to debug,

A more complicated scheduler involving some sort of prioritics would produce the natural
order, but using it would increase the overhead of scheduling. Incressing the overhead of
scheduling is detrimental to performance when sending or receiving Telnet data requires
three layers to run. and thus that three processes be awakened. scheduled. and run, In
addition. priorities are not modular because 1o choose the appropriate priority for a
particular purpose, a process must have implicit knowledge of how all the other processes
will use priorities.

4.2.2 A Procedure-hased Scheduler

An alternative scheme would be to make a scheduler the top level procedure and implement
layers as a collection of procedures. The scheduler would monitor the asynchronous events.
and ‘it would call a procedure in the appropriate layer when an event occurred. The
scheduler would effectively acLas a switching station between asynchronous events and the
procedures that need to process such events, cffectively establishing different threads of
control for each é:uch procedure. When the user typed information. the scheduler would

call Telnet. I necessary, Telnet could then call TCP which in turm could call Internet
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When information arrived over the network, the scheduler would call Internet, and if
necessary, Internet could call TCP which in wm could call Telnel. When the retransmission
limer went off. the scheduler would call TCP which in turn would call Internet. Thus

control would follow the natural order of data processing.

The advantage of this implementation lies in its efficiency. The procedure-hased scheduler
passes control from itself to a layer and from one layer o another via procedure calls rather
than by scheduling and running a new process. Running the layers to process an incoming
or outgoing packet requires three procedure calls. For example. when a packet comes in off

the net. the scheduler calls Interet. Internet calls TCP. and TCP calls Telnet.

The scheduler. as we described it. is verv unmodular. It must know about the net it must
know about the user. it must know about the retransmission timer. and it must know about
pracedures in all the layers. We could. however. construct a simpler scheduler which is not
as unmodular. It would manage a circular list. Each clement of the list would have an event
flag and a pointer to a procedure. The scheduler would look at each element of the list in
round robin fashion. (Round robin scheduling allows the protocol lavers to share packets
produced by asynchronous action. See Section 3.3.) When the scheduler finds an element
with its event flag set. it reset the Mag and calls the associated procedure. bach layer that
needs to run a procedure in response 1o an event would give the scheduler a procedure
pointer. and would get an event flag pointer after the scheduler added a new element to the
list. The layer could then give the flag pointer to the code that handled the event. When the
event occurred. the code that handled the event would set the flag. The scheduler would
thus have no particular knowledge of either events or the nature of the procedures that
respond o events,

We seriously considered the procedure-based scheduler as an implementation strategy for
the personal computer protocols; however, we chose to use the tasking package described in
the next section. Section 4.2.4 describes the reasons we chose tasking over the procedure-
based scheduler.
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4.2.3 Tasking

Instead of having a procedure-based scheduler call the top level procedure of the
appropriate thread of control in response 10 an asynchronous event. we could place each
such procedure in a separate process. Each process would have its own stack. and the top
level procedure in cach thread would be at the top (base) of a stack. The interrupt driven
code that runs in response to an asvnchronous event would awaken the process as well as
bulfer the event. When the process ran. the top level procedure would handle the event, and

it could then call procedures in other layers if necessary.

The remote login implementation needs three processes to make such a system work--one
for cach thread of control, The variables of the top level procedure of the thread of control
sit on top of the process™ stack. One process handles characters from the user, and has a
Telnet procedure at the top of its stack: one process handles outgoing packets. and has a
TCP procedure at the top of its stack: and the final process handles incoming packets from
the network, and has an Internet procedure at the top of its stack. As a matter of
convenience we will respectively refer to the three processes as the user process, the send

process. and the network process.

In this mixed procedure and process system. a protocol luyer consists of a collection of
procedures which can run in various processes. To hide the constitution of one layer from
another. layers may use only procedure calls for interlayer communication. Interprocess
communication occurs inside of layers, For example. suppose that the user lyping a
character causes a Telnet procedure to run in the user process. and that Telnet would like to
send this character across the network. Telnet cannot awaken the send process directly, since
the top level procedure in this process is a TCP procedure. Instead. Telnet must call a TCP
procedure in the user process. This TCP procedure will place the character in the output
packet. and awaken the send task. Because a TCP procedure awakens the process that has a

TCP procedure as its top level procedure. the interprocess communication occurs within a
single layer.

A procedure may run in more than one process. For example. the TCP procedure that
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awakens the send process and runs in the user process when Telnet wishes to send data from
the user also runs in the network process when Telnet calls it to send characters in response

10 a foreign network virtal terminal negotiation request.

We will call this particular way of combining procedures and processes fasking. A rtask is a
combination of a process and the procedures that run in the process. A tasking module
contains all the routines that manage tasking, in particular. the routines which allow tasks to
2o blocked and to awaken other tasks. The tasking module manages a circular list of task
control blocks. Each task control block has a flag and a pointer to a task stack. One task
could awaken another task by setting the flag associated with its task control block. When a
task blocks by calling a tasking module blocking routine. the tasking module will look at
each task control block in a round robin fashion. If the flag of a task control block is set. the
tasking module will next run the process that uses the sssociated stack. A task resu mes
control from the point where it became blocked.

Figure 4-2 shows the task boundaries in the personal computer remote login protocol. The
interrupt driven code that runs in response to an incoming packet calls an Internet routine
which awakens the network task. When this task runs. Internet is the top level procedure,
and can call TCP. TCP in wim can call Telnet. and it can produce an acknowledgment and
awaken the send task. When the user task runs in response 1o a keystroke. Telnet is the top
level procedure. If Telnet wishes to send data it calls a TCP routine that awakens the send
task. The TCP procedure that is the top level procedure in the send wsk cin then call
Internet. The Telnet routine that responds to foreign network virtual terminal negotiation
requests and the interrupt driven code that runs in response o a clock interrupt can also call
TCP routines in order to awaken the send task.

4.2.4 Procedure-based Scheduling Versus Tasking

Either the procedure-based scheduler or tasking could have formed the basis of an efficient

remote login protocol. This section presents the reasons we chose Lusking.

A simple procedure-bused scheduler would have been somewhat more efficient than the
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Figure 4-2:Tusk Boundaries
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tasking package that we actually used. We wrote a simple procedure-bused scheduler like
the one described in Section 4.2.2. and used it to run some vacuous procedures. (procedures
that merely set the event (lag of the next procedure to run before they returned.) Swapping
control from one vacuous procedure to another in a different thread of control ook about
70 microseconds. (Swapping control involved setting an event fliag. returning to the
scheduler. deciding which procedure to run next, and calling it) With tasking. swapping
control between vacuous procedures in different processes takes about 135 microseconds.
(Swapping control with wsking involves setting an event flag, calling 4 block routine in the
tasking module. deciding which task should run next and running it.) Thus the decision to
use tasking added 65 microseconds to the cost of processing an incoming packet and 200
microseconds to the cost of processing an ontgoing packet. (With tasking both the user task

and the send task need to run in order to send an output packet with data from the user.)

An additional advantage o the procedure-based scheduler is that its implementation does

not require any assembly language programming.

The primary advantage to tasking is that it is more flexible than the procedure-based
scheduler in that it conveniently allows procedures to block at any point and to later
continue execution in exactly the same place and with exactly the same state. This is not the
case with the procedure-based scheduler which requires that the top level procedure in one
thread of control retumn before the scheduler can call a procedure in a different thread of
control.

For example. assume that in the send task, Intemet finds that it is missing a resource that it
needs to send a packet. It can arrange for the resource’s manager to awaken an Internet
procedure when the resource becomes available, and then it can block. Internet in a
procedure-based scheduler system. however, would have 1o return to TCP which would
have to return 1o the scheduler before a procedure in a different thread of control could run.
Further, re-invoking Internet when the resource becomes available is not s struightforward
as with tasking. TCP should not be called in response to an event which concemns Internet.
yet TCP may wish to run after Internet has successfully sent the packet. Resource processing

miay thus need its own thread of control.
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The three threads of control in the personal computer protocols generally run to completion
in response to asynchronous events. and do not have to block waiting for resources. Thus
the ability of the tasking package to siop threads of control in multiple places is not an
advantage in the personal computer remote login environment. Telnet. TCP. and Internet
would run slighily quicker if implemented with a procedure-based scheduler than if
implemented with tasking, but this difference would probably not be noticeable to the user.
We chose to use tasking rather than the procedure-based scheduler for two reasons: 1) many
other protocol implementations that our group supports use tasking. and putting tasking on
the personal computer protocols preserves some consistency among the implementations,
and 2) the added flexibility of tasking might come in handy when implementing future

protocols on the personal computers such as the Simple Mail Transfer Protocol [8].
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Chapter Five

Implementation Details

This chapter presents the details of the IBM personal computer remote login protocols.

5.1 Signals

Signals provide a modular interface between interrupt driven code and the tusking package.
The signal routines written for the IBM Personal Computer are loosely modeled on the
Unix signal package. A program can call the signal manager with an event code and a
procedure pointer as arguments. The signal manager arranges things so that when an
asynchronous event occurs. the interrupt driven code that handles the event calls the
procedure. The personal computer protocols use two signals: a signal that the low level
protocol has received a packet from the net. and the retransmission timer signal. They did
not use a signal for the keyboard because the interrupt driven code that buffers characters
from the keyboard is a part of the 1BM Basic 170 System, and writing such code would have
involved changing BIOS. Instead, a procedure in the user task polls a buffer for characters
from the user.

Since interrupt driven routines call procedures passed to the signal manager, these
procedures run while interrupts are tumed off, and they thus must be short. For example,
TCP asks the signal manager to arrange 1o have the interrupt driven retransmission timer
routine call a TCP procedure when a particular amount of time has passed. This TCP
procedure merely awakens the send task--a very quick operation. Notice that this meets the
restriction that interprocess communication should occur within a single layer. The send

task has TCP code at its top level, and the procedure that awakens this task is a TCP
procedure.
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5.2 Tasking

Tasking is a way of organizing procedures and processes o form protocol layers that both
preserves luyer modularity and efficiently processes the asynchronous data of the layers, A
tush. is a process and a collection of procedures that run in the process. The procedures are
often from different protocol layers. Tasks cannot preempt one another although tasks can
be preempted by routines which are interrupt driven. A task stops running when it calls a
blocking routine in the asking module, Tasks execute in series. Tasking is not a way of

simulating parallel processing.

Disciplined task programming requires that one task may awaken another only if the two
tasks share state. i.e.. internal 10 a protocol layer. For example. one task must at least know
about the task control block of another task in order to awaken the other. To hide the
constitution of one layer from another. only procedure calls may be used to pass control
from one layer to another.

Figure 3-1 shows the memory organization of the IBM Personal Computer when a typical
program runs. The IBM Disk Operating System reserves the first 100 bytes (hex) of the
code segment for itself. The program code resides immediately above this. The data
segment starts alter the program code. At the bottom of the data segment is space for the
global and static variables. At the top of the data scement is the program stack which grows
downward. Between the stack and the global variables is a free area in which programs can

dynamically allocate storage.

Figure 5-2 shows memory organization when tasking runs. It is exactly the same as Figure 3-
1 except that there are additional objects in the dynamically allocated storage arca, namely
task stacks and task control blocks (TCBs). Each task stack is organized like the original

program stuck. A task control block contains a task's stack pointer. an event flag, and a next
TCB pointer,

Task control blocks form a circular list chained by next TCB pointers. An initialization

routine in the tasking module creates a task control block with a stack pointer pointing to
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Figure 5-1:Memory Organization on the 1BM Personal Computer
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the original program stack and a next TCB pointer pointing back to the newly created TCB

itself. The initialization routine returns a pointer to this task control block.

Another routine in the tasking module creates additional task control blocks and task stacks.
This routine takes a pointer 10 a task control block and 2 pointer to a procedure as
arguments, and returns a pointer to a new task control block. It places the new task control
block in the circular task control block list after the TCB specified by its argument, and
initinlizes the new task control block so that it points to the newly created stack. It also
initializes the stack so that when the task runs for the first time. the task starts executing the
procedure passed in as an argument, The maximum stack size for a task stack is fixed at the

time this routine creates the stack,
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Figure 5-2:Memory Organization with Tasking
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Although the tasking module allowed us to create and free task
structures dynamically. in opractice we only 2llocated tasks in the
initialization routines and never recycled them. Thus in use. task control
blocks and stacks were more static than dynamic.
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A task blocks by calling a routing in the tsking module. This routine examines succeeding
clements of the list of TCBs, starting with the TCB pointed to by the next TCB pointer of
the current task, until it finds a TCB with its event flag set. The task with this TCB is the
neat task o run. The routine resets the task’s event flag. and pushes onto the stack the local
variables pointer and a pointer to the line of code immediately after the blocking routine
call. This line of code would normally be the next line to execute when the blocking routine
returns, but the blocking routine loads the stack pointer of the new task into the stack
pointer register of the 8088, On the return. the 8088 loads the program counter with the
code pointer on the stack. but since the stack pointer has been changed to point to the stack
of the new task. the program counter points to a line of code in the new task. Thus execution

in the new task starts with the piece of code following the blocking routine call that caused
the new task to block.

The procedure in the tasking module that awakens tasks, when called with a pointer to a
task control block as an argument. sets the event flag of the task control block. The routine
that blocks tasks resets this flag before it manipulates stacks, A task can awaken itself by
calling the routine that awakens tasks with a pointer to its own task control block. thus

assuring that it will run again.

The tasking routines are short as well as efficient. They take up about three pages of C code

and an additional page of 8088 assembly language routines.

5.3 The Local Network Protocol

The local network protocol between the personal computers and the packet concentrator is
called LLP, short for low level protocol. It defines four special characters: REQ--request to
send a packet, ACK--request acknowledged, END--end of packet, and ESC--an escape

character used to send the ASCII characters displaced by the special characters,

LLP is bidirectional. I one machine wishes to send a packet to the other. it sends a REQ.

The other machine responds with an ACK when it is ready to receive the packet. The first



machine then sends the packet followed by an END. If the other machine is sending a
packet when the first machine sends a REQ, the ACK can be embedded in the packet: the

first machine must remove it

Il the wait between REQ and ACK or the wait between any two data characters is too long,
LLP assumes that the other machine has crashed. The receipt of a REQ in a data packet
indicates that the end of the previous packet has been lost, and LLP discards the packet.
LLP also discards unexpected characters.

Most LLP routines are interrupt driven. On an incoming character, these routines check
their state to find the character’s context. REQ causes LLP 1o get a packet from the packet
manager routine (described in the next section). If LLP can not get a packet or is otherwise
unable to process u packet, it will not send an ACK. An END causes LLP 1o hand a packet
10 the packet manager as good. A REQ causes LLP o give the packet to the packet
manager to be recycled,

One routine in the Low Level Protocol that sends packets is not interrupt driven. Internet
calls this routine when it wishes to send a packet over the net. This routine adds a four byte
local header 1o the packet. causes the interrupt driven routine that sent characters to send a
REQ. and waits for an ACK. If the ACK does not come within two seconds. the routine
reports failure to the Internet laver. If the ACK comes. it causes the interrupt driven
routines to send the rest of the packet and returns to Internet reporting success. This
routine waits for the interrupt driven routines Lo finish sending the outgoing packet before it
rewrns to Intemet by running a loop that waits on a flag which the interrupt driven routines
set when they have finished sending the packet. The interrupt driven routines that send
puckets preempt this wait loop. LLP does not return control to Internet sooner, because to
do so might allow a higher level protocol to modify the output packet, and cause the packet
to have an incorrect checksum.
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5.4 The Network Initialization and Packet Manager Routines

The network initialization routine creates two packet queucs called the used gueue and the
free queue. and thirty-two maximum-sized empty packet bufTers which it initially places in
the free queue. When a routine needs an empty packet buffer. the packet manager provides
one from the free queue. The used queue contains incoming packets which LLP has
received but the higher level protocols have not yet processed. LLP calls the packet manager
to place good packets on the used queue. The Internet procedure that runs in the network
task. calls the packet manager to pick up packets from the used queue. When the network
task finishes processing a packet it gives the packet back 1o the packet manager which places
it back on the free queue. Packets need not be on either queue. For example. the incoming
packet currently being processed by the network task and the output packet are on neither
queue.

The network initialization routine also sends a special address request packet to the packet
concentrator. The packet concentrator responds with the Internet address of the personal
computer making the request. The network initialization routine places this address in a
global variable in the 1/0 library where that all layers can access it. For example, both TCP
and Internet need to know the personal computer’s address 10 correctly process the

checksums of incoming packets.

5.5 Internet

The actual Internet implementation differs significantly from the model presented in earlier
chapters. The implementation ignores Internet’s optional fields. it does not do
fragmentation or reassembly, nor does it act as the top level of the network task. Instead,

TCP acts as the top level. and calls Internet on an incoming packet signal.

The Internet implementation was originally written to support the User Datagram Protocol
[9] and the Trivial File Transfer Protocol (TFTP)[10]. TFTP flow control is simple enough
not to require tasking. Reassembly, etc.. were lefl out 1o gel TFTP running as quickly as

possible to facilitate downloading programs (o the personal computers from the PDP 11 on
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which they were compiled. To facilitute debugging, we used the same copies of Internet and

LLP for both TFTP and Telnet

An Internet open connection request takes as arguments g protocol number (in this case
TCP's number). and a foreign host address. It returns a connection ID. To send packets,
TCP calls Internet with the connection 1D. a pointer o the packet it wants sent, and the
length of the packetl. Internet sends the packet to the correct foreign address with the
appropriate protocol number, On an incoming packet signal. TCP calls another Intemet
routing with a connection 1D as an argument. and this routine returns a packet if the
incoming packet had a good Internet header checksum, if it was from the correct foreign
host. und if it was for the TCP protocol. For the purposes of modularity. Intemet also
provides routines that allocate and free packets. which pass the requests through to the
packel manager.

While the Internet implementation is limited. it is complete enough to support connections
t all hosts on the M.LT. networks which support Telnet. It also provides 4 complete layer
interface which effectively hides low level details from TCP. Nevertheless the Internet
implementation is incomplete and upgrading it is high on the list of improvements

suggested m the final chapier of this thesis.

5.6 TCP

TCP provides an initialization routine that. when called by the Telnet routine that initialized
tasking, sets up the send task and the network task. (I Internet had been the top level
program in the network task. TCP would have called un Internet initialization routine which
would have set up the network task.) The order of tasks in the list of task control blocks is

thus the user task, followed by the send task. followed by the network task.

TCP also provides Telnet with routines which will open or close TCP connections, a routine
which puts duta in the output packet. a push function. a routine to send urgent data, and a

routine that prints connection status statistics. These routines run in the user task. The open
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routine. close routine. push function . and urgent duta routine awaken the send task. The

wrgent data routine sets the urgent pointer to the data,

A TCP routine is the top level procedure in the send task. It always sends a packet when it
runs. and it assumes that the TCP routine that awakened it has appropriately modified the
output packet. It calls an Internet routine to send packets. and it calls a Telnet routine if the
foreign host does not respond to a request to open a connection within a certain period of
time or when the foreign host wants to close the connection. It also passes a pointer 1o its
task control block to the signal handler so that it will be awakened when the retransmission
timer goes off. TCP does not have to worry about which packet 1o send or retransmit as
there is only one. All ougoing information is kept in a single output packet. TCP always
sends the entire output packet unless the foreign window is smaller than the amount of data
in the packet. a situation that never occurs in a normal Telnet connection because the user
types so slowly. If it did occur, TCP would call the Internet routine that sends packets with a
shortened packet length field as an argument. and the Internet routine would only send as
much of the packet as the length field implied currently contained information.
(Fortunately, data comes at the end of a packet. This scheme would not have worked if
header came at the end of a packet. and Internet truncated part of the header rather than
data.) TCP would try w send the data again when the retransmission timer timed out. which

would hopefully be afier the foreign host had enlarged the foreign window,

The top level TCP routine in the send task is also responsible for munaging the window. It
upgrades the window only after the window is at least half used up. and it always updates it
to the maximum window size. This prevents silly window syndrome. the phenomenon
whereby the foreign host sends its data in small packets because the local host enlarges the
window by only a small amount [11]. The maximum size of the window is a tilored
parameter. (See Section 3.2.) We based its value on the observation that the largest amount
of data that the foreign side will normally want to send is a screenful of data. The goal is o
arrange things so that the foreign side can send an entire sereenful of data, namely 2000
bytes. without having to wail for a window update which will increase the time it takes to

send a screenful of data. To prevent silly window we must update the window in large
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increments. 1 we never update the window by less than 500 bytes, a reasonably large packet

size, then the maximum window size needs to be at least 2500 bytes.

Because the personal computer Internct layer does not use tasking for reasons discussed in
the previous section. a TCP routine is also the top level procedure in the network process.
This routine passes 1o the signal handler a pointer o the network task control block so that
the network task will awaken when a packet comes in from the network. TCP uses this
signal as a hint to run and poll Internet for a packet. Internet does not always produce a
usable packet: for example if the incoming packet has a bad Internet header checksum,

Internet will not return a packet.

The first thing TCP will do when it receives a packet is checksum the packet and make sure
that the received checksum agrees with the computed checksum. IT the packet acknowledges
data. TCP will adjust the output packet. If the incoming packet acknowledges all the
outgoing data. then TCP sets the output packet data length 1o zero and turns off the
retransmission timer. If the incoming packet acknowledges only part of the data. then TCP
copies the unacknowledged data 10 the beginning of the packet data area. The amount of
data that TCP copies is usually just a few bytes. TCP never hus to explicitly remove old data
since new data will be copied over the old data. and because TCP passes the size of the
packet to Internet which sends only the front of the packet which is new, and not the end of
the packet which might be old.

IF' the incoming packet has duta. TCP will check to make sure that it is within its advertised
window: otherwise. it is discarded. If it is out of sequence. TCP will put it in the out-of-
sequence packet buffer described below. Otherwise, it will awaken the send task to send an
acknowledgment, and call Telnet. passing it the new data and any data from the out-of-

sequence data bulTer that follows the new data in sequence.

To help make sure that the personal computer does not run out of packet buffers, TCP does
not acknowledge data or update the window until it has processed all incoming packets in

the used queue. Unforwnately, this feature turned out to cause lock step when a foreign
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host quickly sent enough data w 1111 the local TCP window, Because the interrupt driven
routings can receive packets faster than the high level protocols can process them, if the
forcign host sends a window full of data quickly. then TCP will not acknowledge any of the
data or update the window until it has received the entire window full. {ussuming that no
data is lost.) Meanwhile. the foreign TCP can not send any more data until it receives an
updated window advertisement. Thus the connection effectively becomes half-duplex for a
short period of time. This problem is not too serious because with our window strategy it
only oceurs when the foreign host sends more than a screenful of data: however. it did affect
some performance tests described in Chapter 6. Section 7.1 discusses some ways of
climinating this problem.

The size of the out-of-sequence data buffer is related to the advertised window size. Because
the window is the maximum amount of data that the foreign TCP can have outstanding, it is
also the maximum amount of duta that might arrive out of sequence. Thus the out-of-
sequence buffer must be at least 2500 bytes long. the smallest maximum window size that

will always allow a screenful of data to arrive uninterrupted by window updates.

TCP creates two arrays o store out-of-sequence data. One is a character array and one is a
sequence number array. TCP stores bytes of data in the character array clement indexed by
low order bits of the byte’s sequence number. TCP stores the byte’s sequence number itself
in the corresponding element of the sequence number array. The test to check if TCP is
storing a particular byte of data in the character array is to see if the sequence number array
element indexed by the low order bits of the wanted byte’s sequence number is the wanted

byte’s sequence number itself. If it is. then the wanted byte is in the corresponding character
array element.

This scheme has the properties:
1. The test to sce if the next byte of data needed by Telnet is buffered. which has to
be done every time an incoming packet is received. is quick. It consists of a

subroutine call, a logical AND operation. indexing an array, and a comparison
of two long numbers.
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L Storing or retrieving a single byte of data is only slightly more complicated.
Since most packets in a Telnet connection contain only a single byte of data.
most stores and retrieves are fast.

3. Storing or retrieving larger amounts of data is not unacceptably slow,

4. Nothing has to be done to the arravs at any other time.

This scheme is rather space intensive. The character array is 4098 bytes long. the power of
two greater than the 2500 bytes needed 1o prevent delays in sending screenfuls of data
Each sequence number is four bytes long so the sequence number array is 16.394 bytes long.
However. speed turned out to be a problem on the IBM Personal Computers while plenty

of memory space was available so we felt this trade-off of space for speed was worthwhile.

In practice. incoming packets can take more than a second to process. If the local host has a
4000 byte window advertised and the foreign host sends 4000 bytes in medium sized
packets. it might take the local TCP and Telnet a few seconds to process all the incoming
information. Lengthy processing can be a problem if the user types a character just after the
network task starts processing the first packet. If the network task never gives up control
until it processes all incoming packets. then the user’s character can be delaved a few
seconds. This delay will be especially bad if the foreign host for some reason ignores our
window and keeps sending packets preventing the user from typing an abort output or
break command,

The solution is that once the TCP procedure in the network task has processed one
incoming packet. if another is waiting to be processed, TCP should call Telnet and ask it if
the user task needs to run. If so. TCP will leave a message in a variable for the TCP
procedure that runs in the send task telling it not to update the window, and then TCP in
the network task will block. The user task will run next and process all the characters that
the user has typed. The send task will then run, sending the user’s characters. The TCP
procedure in the send task should not update the window until the network task has
finished processing all the incoming packets. Otherwise, the foreign host may send even
more packets. When the send task is done. the TCP routine in the network task can continue

processing right where it stopped.
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3.7 The Heath 19 Terminal Emulator and Other 170 Routines

The IBM BIOS (Basic 170 System) provides interrupt driven routines for handling
characters typed on the keyboard. It places codes for the keys hit in a buffer. An Heath 19
terminal emulator function will. when Telnet calls it. process these codes as if the user hit

the same Keys on an Heath 19 terminal. It returns ASCII characters.

No signal (see Section 3.1) exists for striking the keyboard because writing such code would
have required changing BIOS. Telnet polls the character code buifer with the Heath 19
function instead. Telnet schedules the user task to run s often as possible. und each time it
runs it polls the character code buffer. The character code buffer has space for fifteen codes

which is large enough so that under normal circumstances the user cannot type quickly

cnough to overflow it

Another terminal emulator function uses BIOS to put characters on the screen in a manner
that simulates an Heath 19 terminal.

5.8 Telnet

Ihe user culls the Telnet program with the name or address of a forcign host us an
argument. (Internet sends a packet 10 a name server to resolve a name.) Telnet first
initializes tasking by setting up the user process on the main program stack, and then it calls
the TCP initialization routine which sets up the remaining tasks. Nest. Telnet calls the TCP
function which tries to open a connection to the Telnet server at the specified address, TCP
calls one Telnet routine if the connection opens successfully and another if a time-out
occurs. When the connection opens. Telnet informs the user and uses the Heath 19 function
to check if the user has tvped any characters. Because characters typed by the users do not
cause interrupt driven code 1o awaken the user task, Telnet must awaken iself before it

blocks in order to be able to run again to check if the user hus typed anything,

Telnet provides TCP with a function to call when the connection closes. This does little

morc than print "closed” on the terminal and return 1o command level on the personal
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computer. Telnet also provides a function that will tell TCP if the user task needs 1o run to
process a character. Finally. it provides TCP with a function to call with Telnet data, This
function passes data to the Heath 19 terminal emulator which puts it on the screen, and it

ulso responds to Network Virtual Terminal negotiation requests.

Telnet can negotiate remote echo. It also provides the user with the ability to send a Telnet
break command in TCP urgent mode. and the Telnet are you there command. Telnet allows
the user to chose 1o send data after every character, in which case Telnet calls the TCP push
function after every character: or every carriage return, in which case only calls the push
function after every carriage return.  Finally, Telnet provides the user with a command
which prints Telnet connection status information on the screen. and asks TCP to print its

status.
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Chapter Six

Perfermance Testing and Evaluation

This chapter describes a series of experiments used 1o evaluate the performance of the

personal computer remote login protocol.

0.1 Some Method Notes

This chapter describes two types of tests: tests between two personal computers connected
by un RS-232 line. and 1ests between a personal computer and a foreign host via the packet
concentrator and a network. Tests between two personal computers provided us with a
comtrolled environment in which 1 conduet performance testing. Of the two types of tests,
those between two personal computers had fewer variables affecting performance. and we
found it 10 be the easier environment in which to measure the limits of performance. We

used tests across the network to measure performance under conditions of actual use.

One additional set of tests--those between two personal computers conneeted by the packet
concentrator--would also have been useful. These tests would have enabled us to isolate
and identify the performance constraints imposed by the packet concentrator,
Unlortunately, at the time we tested the protocols, the packet concentrator did not support

simultaneous connections to multiple personal computers.

Whenever we needed an arbitrary transfer rate for tests between two IBM Personal
Computers, we chose 9600 bits per second.This was originally the fastest rate at which the
packet concentrator could run, and we thus thought that it would be the most useful rate in

practice. 9600 bits per second is also the fastest rate at which 1BM suggests running the
serial line.

In the experiments described below, we timed events by finding the difference between the
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value of a clock variable at the start of an event and its value at the end of an event. The
IBM personal computer provided a clock routine that ran once every 53 milliseconds (at
182 Hertz) 1o which we added a piece of code that updated the clock variable,
Unfortunately. this clock was too-coarse grained to accurately measure many interesting
events. An example will illustrate this problem. (In this example. when we sav that the
clock ricked. we mean that the clock routine updated the value of the clock variable. We will

also refer to the value of the clock variable as the value of the clock.)

Imagine that event A is three-fourths of the clock’s period in length. If A occurs within a
quarter period after the clock ticks. then the value of the clock after A is over will be the
same as it was before A started.  Alternatively. if A occurs between one-quarter and one
clock periods after the clock ticks. then the value of the clock when A is over will be one
period greater than its value just before A started. If the clock and A are independent, then
one-fourth of the time. A should occur within one quarter period of a clock tick. while
three-fourths of the time. A should occur between one-quarter and four-quarter clock
periods after the clock ticks. Thus we have a .25 probability of measuring A as taking zero
clock periods. while we have a .75 probability of measuring A as wking one clock period,

although neither of these values are particularly close to the true value of A,

We can use two technigues 10 more accurately measure events that are fast relative to the
clock such as event A. With one technigue we run fast events many times, one after another,
and find the time for a single event by dividing the time for the series by the number of
events in the series. An alternative technique is to sum the experimental times of many
individual independent events and divide the sum by the number of events o obtain an
average time. We used the first technique when possible, because it deterministically
bounds the inaccuracy of the experiment due to the clock. while the second only
probabilistically bounds the inaccuracy. The second technique was useful when an event
was not repeatable. as when the event sometimes occurred unsuccessfully and an
unsuccessful event had a value which was uninteresting, but differed greatly from the value
of a successful event. In this case the deterministic technique would produce an average
vilue which was skewed by the inclusion of the times for unsuccessful events. while we

could selectively ignore unsuccessful events with the probabilistic approach.
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6.2 Tests ina Controlled Environment

We performed the experiments in this section with two 1BM personal computers connected
by an RS5-232 wire that was slightly less than a meter in length. These tests isolated the
performance of the IBM Personal Computer software and hardware from the effects of an

external network.

6.2.1 Detailed Performance Measurements

We designed the first set of experiments to find out how and where the protocols spent
time. We did this by sending packets of various sizes from one personal computer to

another and back. and then noting the time these transfers took. This time included:
- the time the first personal computer needed to get the packet ready to send.
- the time this packet spent on the serial line,
- the time the second personal computer needed to process the incoming packet,

- the time the second personal computer needed to format a packet containing the
same data incoming packet,

= the time this new packet wok to get back 1o the first personal computer,

-and finally the time the first personal computer needed to process this new
packet.

In summary, the time included the protocol overhead of sending two packets and receiving

two packets, and the time two packets spent on the serial line.

Because the time to do all this was only a few clock periods, the clock was 0o coarse 1o
measure it accurately. Thus we ran one hundred of these operations one after another, and
divided the resultant total time by one hundred to get the time for a single transfer. Because
we sent the same data one hundred times, the protocols needed to copy the data into an

autput packet only once in each direction.

Figure 6-1 presents the results of such timing measurements. It shows the packet size in bits
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Figure 6-1:Packet Transfer Times Between Two Personal Computers
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plotted along the horizontal axis and the transfer time plotted on the vertical axis. Instead of
plotting the size of two packets versus the time 1o send two packets, the time 1o receive two
packets, and the time two packets were on the net. we divided the number of bits and the
transfer time by two to get the time spent processing a single packet. Each point in Figure
6-1 is the average of three timings, With these points. we used linear regressions to calculate

the lines in Figure 6-1.

In addition to data. each packet had twenty bytes of TCP header. twenty bytes of Internet
header. four bytes of local net header, a READY byte, and ACK byte and an END byte.
The minimum size packet. the size of a packet with no data, was 47 bytes long. On the
personal computer. each byte was eight bits long, but LLP added a start and stop bit to each

byte sent over the serial line. Thus sending a 47 byte packet meant sending 470 bits.

Line CR of Figure 6-1 shows the results where the packet data contained one carriage return
after every cighty printable characters. Carriage retumns turned out to be much more

expensive to process than printable characters because they involved scrolling lines on the
screen.

Line PC of Figure 6-1 shows the results of transfers similar to the first set except that we
replaced each carriage return with two printable characters. (To distinguish a carriage return
that acts as a newline from a carriage return that is really a carriage return, Telnet represents
the former as a carriage return followed by a linefeed and the latter as a carriage retumn
followed by a null.)

A third set of transfers dispensed with printing characters on the screen altogether. This set
was similar to the second set except that we patched out the call to the terminal emulator
routine that wrote characters on the screen. Line OP in Figure 6-1 shows he results of these

transfers. (OP stands for Other Protocol overhead.)

Line SL in Figure 6-1 shows the amount of time that a packet of a particular size had to
spend on the serial line at a transfer rate of 9600 bits per second. (We calculated Jine SL
rather than measured it.) This line represents the theoretical minimum amount of time that

the protocol needed to transfer a packet using the serial line,
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The interrupt driven code that handled characters on the serial line ran faster than 9600 bits
per second. Concurrent with the time that characters were on the line but interrupt driven
code was not running, the processor ran non-interrupt driven code. (the code that the
interrupt driven routines preempied). For outgoing packets. this code was just a wait loop in
the non-interrupt driven part of the low level protocol. (See Section 5.3.) For incoming
packets, any code could run.For example. while the network sent one packet 1o the personal
compulter. the high level protocols could process the previous packet. although interrupt
driven routines would preempt them for a short while each time a new byte came in from
the serial line. The fact that interrupt driven routines and high level protocols ran
concurrently (interspersed) was important in explaining performance figures presented later
in this chapter,

Because the interrupt driven routines that handled the net ran interspersed with high level
code. and because they turned off interrupts including the clock interrupt, we had no
convenient way of directly measuring the amount of time that they used. We indirectly
calculated a conservative estimate of this time by looking up in the 8088 User's Manual. the
number of clock cycles that the interrupt level code that handled the average character used.,
and adding 10 percent to this number. (Special characters such as RDY took much more
time to process than the average character. No characters took less time process. The
8088 User's Manual states, "With typical instruction mixes. the time actually required to
execute a sequence of instructions will typically be within 5-10% of the sum of the
individual timings... Cases can be constructed, however. in which execution time may be
much higher.." [12].) This estimate suggested that the interrupt level routines wok 231
microseconds to process each byte that they received from the serial line, We plotted this
estimate on Figure 6-1 as line INT.

From Figure 6-1 we calculated a number of useful statistics, (The formulas that we used to
calculate them are summarized in Part A of Table 6-1.) The difference between line CR
and line PC is the carriage return overhead (CRO). This was the amount of additional time
that the protocols spent processing carriage returns compared with processing printable

characters. The carriage return overhead depended upon the frequency with which carriage
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Table 617 Breakdown of Packet Transfer Times Between Two Personal Computers

A. Formula Used to Calculate Detailed Times

Carriage Return Overhead. ........coviuuwuneas CRO = CR (size) - PC (size)
Printing Character Overhead...... PR e e PRO = PC (size) - OF (size)
Other Overhead--Fixed......ovvvvvnnnnnnn ...00F = OPF (size = D) - SL (size =0)

Other Overhead--Variable..........c....s +e 0OV
Available Concurrent Procassing Time.,.....ACT

OF (size) - OOF - SL (size)
SL (size) - INT (size)

B. Detailed Times

| statistic | values for various packet data sizes | per byte |
| [imemom 2 =2 o o= mmedleoe W e |  wvalue |
| | O bytes | 1 byte |466 bytes|500 bytes|

| | (sec.) | (sec.) | (sec.) | (sec.) |{usec/byte)|
|=='=========|==z:=====1======:=z||zu:=1:z=:==|====;====I=unzz=====:|
| CRO | 0.0000 | 0.0004 | 0.1825 | 0.1959 | 392 |
[ =iy dmmmmmana e ——— dmsmmmanoo o ———— femmmmsmnna o |
| FCO | -0.0001 | ©.0006 | 0.3285 | 0.3460 | 692 |
[=o st o e—— Fmmmmmmaaa e ——— $mmmmmmaa Frmm - |
| 00F | ©.0100 | | | | |
| === mm———ee fittmmm i P — o e R —— i e |
| oov | 0.0000 | ©.0002 | 0.0357 | 0.0768 | 154 |
e fmmmm et Frmmmmacaa dm e m————— e e s ———— |
| SL{size)* | O0.0480 | 0.0500 | 0.5344 | 0.5698 | 1042 |
[======mm=aa Fom s Smmmmmnaan Fmmmm———— $mmmmmeem T ——————— |
| INT(size)**| 0.0109 | 0.0111 | 0.1185 | 0.1284 | 231 |
e Fmmmmmmman Hmmme s fommmamnas Faci dams e fommmmmemaoa |
| ACT | 0.0381 | 0.038% | 0.4153 | 0.4434 | B11 |

Notes: * This statistic was not measured experimentally. It was

calculated by dividing the total packet size in bits
by 9600 bits/second

** This statistic was based on the estimated amount of time
spent in interrupt driven code. This estimate may be
very inaccurate.

returns appeared in the data steam. In these experiments, we sent one carriage return for
every full line of printable characters, i.e., one for every 80 printable characters. Table 6-1
Part B shows the carriage return overhead for packets of various sizes. If for some packet
size. we divided the carriage retumn overhead by the number of data characters transferred.,
we found that the cost per duta character of having carriage returns as opposed to having
printable characters was 392 microseconds. Since packets contained one carriage return in

every cighty-two bytes of data. the processing cost per carriage return was 32 milliseconds.
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This is apparently the time required 10 move the previous screen contents up one byte

(scrolling).

The difference between line PC and line OP of Figure 6-1 is the amount of time that the

software spent writing printable characters on the screen. This statistic also appears in
Table 6-1.

By subtracting line OP from line SL. we found the protocol overhead of the non-interrupt
driven routines that was not associated with printing things on the screen. We separated this
other protocol overhead into two components: a fixed overhead which was irrespective of
the amount of data that the packet contains and included a lot of header processing. and a
variable overhead which depended on the amount of packet data. The fixed overhead was
the difference between the two lines when the packet contained no data (470 bits). The
variable overhead was the dilference bewween the lines OP and SL at other packet sizes less
the fixed overhead. The fixed overhead was 0.01 seconds. while the variable overhead was
154 microseconds per byte of data,

A problem with these measures of other protocol overhead was that they included the
overhead of both sending and receiving packets. We had no convenient way of determining
how much of this overhead the code that sent packets caused. and how much the code that
received packets caused. We attributed half the overhead to each. Attributing half the cost
to each probably underestimated the amount of time necessary to receive packets. but for
most of the calculations in this chupter. a low estimate of the ume needed to receive a packet

was a conservative estimate.

Another interesting statistic was the amount of time available to non-interrupt driven
routines when a packet came in from the serial line. This statistic measured the time
available for concurrent processing in the protocols. (as explained on page 53). Because of
available concurrent processing time, we did not expect the protocols to take us lone to send
ten packets from one personal computer to another and back. as we did to send one packet

back and forth ten times. In the former case the protocols processed and received packets



concurrently. while in the latter case the protocols completely processed one incoming
packetand sent a packet before they started to receive the next packet. In the latter case the
protocols wasted the available concurrent processing time.  The availuble concurrent
processing time is equal to the difference between the line SL. the amount of time the
packet was on the serial line, and line INT. the amount of time used by the interrupt driven

code that processes incoming characters. and it appears in Table 6-1.

6.2.2 The Maximum Data Transfer Test

We based a number of the statistics in Figure 6-1 and Table 6-1 on estimates as well as
measurements. and we wished to double check the accuracy of these estimates. We devised
an experiment in which one 1BM Personal Computer sent large packets at a second as
quickly as possible for ten minutes. Because the first personal computer could send packets
faster than its counterpart could receive them, (the sender did not have 1o print characters
on the screen). the first personal computer kept the second one busy for the duration of the
test. We counted the number of data packets that the second personal computer received,
and the number of packets acknowledging data that it sent. Using these two numbers and
the information provided by Figure 6-1 and Table 6-1. we predicted the amount of time that
a personal computer needed 1o receive and send these particular numbers of puckets. The
closer this predicted time came to ten minutes. the actual transfer time. the greater the

accuracy of Figure 6-1 and Table 6-1.

The personal computer that received data originally offered a window of 4000 bytes. The
sending personal computer filled this window with eight 500 byte packets, and waited for a
window update before sending more packets. As the first packet of these gight packets
arrived, Telnet, Intemnet and TCP had nothing to do concurrently with the interrupt driven
code that received characters from the serial line. When the second and succeeding six
packets arrived. the higher level protocols had data to process concurrently with the
interrupt driven routines. Because the receiving personal computer did not update the
window or acknowledge duta until it processed all the packets that had arrived. (see Section

3.6). and because the sender could send packets faster than the recciver could process them,
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Table 6-2: Predicted Time of the Maximum Data Transler Test

Packets Sent: 92 Packets Received: 734
81 full groups of eight packets and 1 partial group of 6 packets

First Packet Received in Each Group of Eight:

Carriage Return Qverhead = CRO (300) = 0.1959 seconds
Printable Character Overhead = PCO (500) = 0.3460 seconds
Other Protocol Overhead - Fixed

for incoming packet = 1/2 00OF = 0.0050 seconds

Other Protocol Overhead - Variable
for incoming packet = 172 0OV (590)
Interrupt Driven Code Overhead

0.0384 seconds

for incoming packet = INT (500} = 0.1264 seconds
Available Concurrent Proc. Time = ACT (500) = 0.4434 seconds
Total = 1.1551 seconds

Mext Seven Packets Received in Each Group of Eight:

Carriage Return Overhead & CRD (500) = 0.1959 seconds
Printable Character Overhead = PCO (500) = 0.3460 seconds
Other Protocol Overhead - Fixed

for incoming packast = 1/2 OOF = 0.0050 seconds
Other Protocol Overhead - Variable

for incoming packet = 1/2 0OV (500) = O0.0384 seconds
Interrupt Driven Code Overhead

for incoming packet = INT (500) = 0.1264 seconds
Total = 0.7117 seconds

Packet Acknowledging Data:
Other protocol Uverhead - Fized

for outgoing packet = 172 QOF = 0.0050 seconds
Time Packet was on the Seriazl Line = 5L (0) = 0.04%0 seconds
Total = 0.0540 seconds

Time for the Sanding Personal Computer to Process the Acknowledgment
and Start 3ending Mew Data:
Other Protocol Overhead - Fixed
for incoming ACK packet = 1/2 00F
Other Protocol Overhead - Fixed

0.0050 seconds

for ocutgoing data packet = 1/2 00F = 0.0050 seconds
Other Protocol Overhead - Variabls
for outgoing data packet = 1/2 00V (500) = 0.0384 seconds
Total = 0.0484 seconds
a2 First Packets = 106.3 seconds
(734 - 32) Later packets = 458.9 seconds
a1 Ack. Packets = 4.2 seconds
91 Foreign Overheads = 4.4 seconds
Total = B72.5 seconds = 05% of 600 szconds



the receiver only sent one acknowledgment for every eight packets sent. The packet that
contaned the acknowledgment also offered the sender a new 4000 byte window. and the
process started over again. The receiving personal computer received 734 packets and sent
92 puckets. We would actually only have predicted that it would send 91 packets. one for

cach complete group of eight puckets received. We ignored the extra packet in our figures,

Tuble 6-2 shows the results of this test. We accounted for 572.5 seconds out of the actual 600
second transfer time (95%). which shows that our estimates in Figure 6-1 and Table 6-1 were
fairly accurate. This test also shows the maximum rate at which the personal computer
protocols could handle large amounts of data on a 9600 bit per second line. In ten minutes
the personal computers transferred 734 duta packets. each of which contained 5470 bits of
which 4000 were data bits (500 data bytes) for a total transfer rate of 6770 bits per second

and an effective data transter rate of 4900 bits per second.

£.2.3 Performance Limitation Predictions

We used Figure 6-1 and Table 6-1 to predict the minimum amount of time that the protocol
software needed to handle a screenful of data. The screen held 24 cighty character lines
separated by 23 carriage returns, A sereenful of data required 1966 data bytes which we
assumed would be sent in three packets with 300 data bytes. and one packet with 466. We
further assumed that the serial line speed was perfectly adjusted to the software speed so
that there was no available concurrent processing time. i.e.. that lines SL and INT in Figure
6.1 overlapped. From these assumptions we concluded that the protocol software needed
about 2.8 seconds to receive a screenful of data. (Table 6-3 gives the details of this
calculation.) This implied that for a screenful of data. the protocols have 4 maximum total
transfer rate (data and header) of 7700 bits per second. and a maximum effective data
transfer rate of 3600 bits per second.

We can also break down the overhead for a screenful of data into its components. When we
do this we find that the speed at which the terminal emulator routines write data on the

screen s the factor which most limits the handling time for a screenful of data. They need



Fable 6-3: Minimum Time Needed 1o Handle a Sereenful of Data

1966 characters/screenful (1920 printable and 23 carriage returns)
3 packets of 500 bytes. 1 packet of 466 bytes.

Minimum Overhead for Incoming Packets with 500 Data Bytes:
Carriage Return Overhead CRO (500) = 0.1959 seconds
Printzble Character Overhead PCO (500) = O0.3460 seconds
Other Protocol Overhead - Fixed 1/2 OOF = 0.0050 seconds
Other Protocol Overhead - Variable 1/2 00V (500) = 0.03B4 seconds
Interrupt Driven Code Overhsad INT (500) = 0.1264 seconds

Total = 0.7117 seconds

Womwm oBHooWwaw

Minimum Overhead for Incoming Packets with 466 Data Bytes:
Carriage Return Overhead CRO (488) = 0.1825 seconds

Printable Character Overhead = PCO (488) = 0.3225 seconds

Other Protocol QOverhead - Fixed = 1/2 OOF = 0.0050 seconds

Other Protocol Overhead - Variable = 1/2 0OV (466) = 0.0357 seconds

Interrupt Driven Code Overhead = INT (466) = 0.11B5 seconds

Total = (.E642 seconds
3 Packets with 500 Data Bytes = 2.1351 seconds

1 Packet with 466 Data Bytes = G642 seconds

Total = Z2.7993 seconds

2.13 seconds 1o write 1966 bytes on the screen. (This figure is the carriage return overhead
and printable character overhead of three 500 data byte packets and one 466 data byte
packet. We double checked this figure with a simple program that printed a 1966 byte
character array on the screen one element at a time.) Thus no matter how fist we make the
rest of the code. the 170 routines will prevent the remote login protocol from handling a

screenful of data at a speed faster than 7400 bits per second.

The terminal emulator and 1/0 code for the personal computer is well written. Improving
them enough 1o make a significant change in the handling time for a screenful of data would
be difficult. We should mostly attribute the 7400 bps figure to the limitations of the of the
personal computer’s microprocessor.

Another interesting statistic is the maximum transfer rate that we would expect if we
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replaced the serial line and interrupt driven code with a faster network connection, We can
find an upper bound on this figure by adding the carringe return overhead and printable
character overhead to half of the fixed and variable protocol overheuds for three 500 data
byte packets and one 466 data byte packet. The total overhead comes to 2.30 seconds,

implyving a maximum transfer rate of about 6800 bits per second.

From our estimates of the speed at which the interrupt driven routines that fetch bytes from
the serial line run, we can predict the maximum rate at which the interrupt driven routines
can receive packets. Since the average byte takes 231 microseconds to process. we expect
the interrupt driven routines to drop bytes if the bytes came in over the serial line at a rate
faster than 43.000 bits per second. In fact. we expect the interrupt driven routines to drop
bytes at rates substantially below this because some bytes take longer 1o process than 231
microseconds. In practice the interrupt driven routines did not receive any packets correctly
at 43.000 bps. and they received only half of the packets correctly at 38,400 bits per second,
4 speed which provides 260 microseconds to process each byie. They did not correctly
receive 3% of the packets at 28.800 bits per second. which supported the conclusion that a
few bytes took longer than 347 microseconds 1o process. (Incorrectly received packets are

packets whose checksum field does not match the computed checksum.)

6.2.4 Character Echoing Time

Section 3.1 showed that the amount of time a remote login implementation takes to echo a
character is an important measure of its performance. Between two 1BM personal
computers, the echoing time is the amount of time necessary for a pucket with a single data
byte to go from one personal computer to another. and back to the first. The character is
printed on the screens of both personal computers. Table 6-4 shows the character echoing
lime at various serial line speeds.

The columns of Table 6-4 labeled "Predicted Times" show predicted character echo times
derived from Figure 6-1 while the columns marked "Experimental Times” show the results

of a special test in which 1000 character cchoes were run one after another, and the result
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Table 6-4: Character Echoing Time between Two Personal Computers

Overhead Not Dependent on Line Speed - One Way
(One Packet with a Single Data Character):

Printable Character Overhead
Other Protocol Overhead - Fixed
both incoming and outgoing
Other Protocol Overhead - Variable
both incoming and outgoing

Overhead Not Dependent on Lins Speed - Round Trip:

= PCO (1) = O0.0006 seconds

= QOF = 0.0100 seconds

= 0OV (1) = 0.0002 seconds

= [0.0108 seconds

2 * One Way Overhead = 0.0216 seconds

One Packet with a Single Data Character has 480 bits.

One Way Line Time
Round Trip Line Time
Total Round Trip Time

480 bits / Line Speed
2 * One Way Line Time
Round Trip Line Time

+ Round Trip Overhead Not Dependent on Line Speed

Predicted Times

I

Experimental Times

I I |
| Line || Line Time | Total Time || Total Time | Total Time Minus |
| Speed || Round Trip | Round Trip || Round Trip | Predicted Line Time |
| (bps) || (seconds) | (seconds) Il (seconds) | (seconds) |
j:::n::==| |===========—.= ===========zlF======1=====I:::::!===-.-..===.===:n::==l=|
| 4,800 || 0.2000 0.2216 I g.z2222 | 0.0222 |
[Enriana e L R R e [
| 9.600 Il 0.1000 0.12186 | ] 0.1219 | 0.0219 |
jrrinmms [Ireros=somreafenamensnmns e S e !
| 19,200 || ©0.0500 0.0716 || 0.0718 | 0.0218 |
e R [ [rmmeme e Jommmmme ek g |
| 23,040 || 0.0416 0.0632 | 0.0638 | g.p222 |

was divided by 1.000. Notice that the predicted and experimental values in the columns

labeled "Total Time Round Trip” are quite close.

Table 6-4 shows that most of the character echoing time is due to serial line overhead. The

protocols spend only about 20 milliseconds processing the packets exclusive of processing

related to the serial line. 1f we could replace the serial line with a faster network connection

we might improve performance by up to a factor of three compired with the current

performance at a serial line speed of 23.040 bits per second.
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6.2.5 Handling Time for a Screenful of Data

Scction 3.1 also mentioned the importance of a screenful of data 1o a Telnet connection.
Table 6-3 shows predicted and experimental values of the handling time for a screenful of
data transferred between two personal computers. The times shown in Table 6-3 measure
from the instant just before the protocols print the first character of the screenful on the
screen, 10 the instant just after they print the last character on the screen. These
measurements do not include the time the first packet in the screenful spent on the serial
line. or the time the protocols spent processing the first packet before thev printed the first
character on the screen. We chose to measure the handling time for a screenful of data in
this way because we were interested in measuring the performance of the personal computer
protocol code rather than the performance of the foreign hosts or the performance of the
interconnecting networks.

To predict the handling time for a screenful of data used a different method at serial line
speeds of 9600 bits per second and greater. from that used at 4800 bits per second. Section
6.2.3 showed that at speeds greater than 7700 bps. the software overhead limits
performance. At these speeds. the protocol software does not have 1o wait for data because
the available concurrent processing time is less time than the protocols need to process the
incoming data. We calculated the predicted overhead at these speeds from the amount of
time the protocols need to process the packets containing a screenful of data. At a serial line
speed of 4500 bps. the time that the protocol software takes to process a packet is less than
the time that the packet is on the serial line. so some available concurrent processing time
goes unused. and the time a packet is on the serial line affects performance. At 4800 bps, the
screenful handling time is found by adding the time that the packets are on the serial line to

the time needed to process the last packet. (The protocols process each of the other packets
while its successor is on the serial line.)

The difference between the predicted and experimental values of Table 6-5 can be only
partly explained by clock inaccuracy. At speeds of 9600 bps and above. the two sets of
alues differ by between two and three clock periods. We appear to have overlooked some

factor in calculating the predicted values. The large difference between the predicted and
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Table 6-5: Time Needed 1w Handle o Screenful of Data Between Two PCs

A. Predicted Overhead at Speeds Where Protocol Overhead is the Bottleneck

Time spent processing firsti packet after first character gets

printed:
Carriage Return Overhead = CRO (500) = 0.1959 seconds
Printable Character Overhead = PCO (500) = 0.3460 seconds

Other Prolocol Overhead - Variable 1/2 00V (500) 0.0384 seconds

Total = (,.5803 seconds

Overhead not Dependent on Line Speed for Remaining Incoming
Packets with 500 Data Bytes:

{See Table B6.3) = 0.7117 seconds

Overhead not Dependent on Line Speed for Final Packet With
466 Data Bytes:
(S2e Table 6.3) = 0.BB42 seconds

Total Overhead at Speeds Where Protocol Qverhead is the Bottleneck
1 first 500 data byte packst 0.5803 seconds
2 remaining packets with 500 data bytes = 1.4234 seconds
1 final packet with 466 data bytes = [.6642 seconds

Total = 2.66879 seconds

B. Predicted Overhead at Speeds Where the Serizl Line is the Bottleneck
Total Time Spent on the Serial Line = Packet Size / Line Speed
500 data byte packet (5470 total bits) at 4800 bps = 1.1396 seconds
466 data byte packet (5130 total bits) at 4800 bps = 1.0688 seconds

Time to process a 466 data byte packet exclusive of Serial Line Tima:

Carriage Return Overhead = CRO (468) = 0.1825 seconds
Printable Character Overhead = PCO (4G66) = 0.3225 seconds
Other Protocol Overhead - Fixed = 1/2 00OF = 0.0050 seconds
Other Protocol Overhead - Variable = 1/2 00V (466) = 0.0357 seconds
Total = 0.5457 seconds

Total Overhead at 4800 bits per second:
Time second packet is on the serial line 1
Time third packet is on the serial line 1.1396 seconds
Time final packet is on the serial lins 1.0688 seconds
Time to process the final packet 0.5457 seconds

Total = 3.8937 seconds

.1396 seconds
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Table 6-5 (Cont)
C. Comparison of Predicted and Experimental Values

| Line Speed | Predicted Value | Experimental Value |
| (bits per second) | (seconds) | (seconds) |
BT s ez .'
NN
T B
T Y i e ,'

the experimental value at 4800 bps has an alternative explanation. At this speed. the low
level protocol had some bugs that caused the recei ving personal computer 1o be
unsuccessful in sending packets that acknowledged data. Typically, time-outs would occur
in four out of five tests at this speed. and while Table 6-5 shows the results of tests that did

not time out. they probably came close 1o doing so.

6.3 Tests Across a Network

The tests in this section illustrate the performance of the remote login protocol while it
communicated with machines on various local networks. These are the machines with which

the protocol will be used in practice.

A characteristic of network communication is that its performance can fluctuate
significantly from one moment to the next. A network may experience a particularly heavy
load in one instant. thereby delaying or losing packets. and work perfectly well the next
instant. A foreign host may process a request for information slowly when three of its users
simultaneously try to compile large programs, but will respond much more quickly when
they finish. The statistics in this section will tend to show best case rather than average case
performance. because we wish to illustrate how well the personal computer protocols can
work rather than how poorly the network or foreign hosts can respond. We generally used
the averaging technique with probabilistic accuracy rather than the technique with
deterministic accuracy (sce Section 6.1) because this approach allowed us to ignore non-
optimal data.
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Figure 6-2:Churacter Echoing Performance with CSR
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6.3.1 CSR: A Sample Foreign Host

At this point we shall describe measurements on a connection with one particular foreign

host. CSR. to illustrate the sorts of problems that we faced in interpreting data from

connections with foreign hosts. CSR is a PDP-11/45 with a Unix operating system that

belongs 1o what was once the Computer Systems Research Group. CSR attaches to a

10 Mbit ringnet which in a gateway in trn connects to the 1 Mbit ringnet of which the

packel concentrator is a member.

Figure 6-2 shows the results of 100 individually timed character echo tests on a connection

between an 1BM Personal Computer and CSR. We used the events that ook three or four
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clock periods at 9600 bps or two or three periods at 19.200 bps to calculate the best case
times. We assumed that the other events non-optimal conditions delaved the other events,

and we ignored them.

Figure 6-3:Hand1ing Time for a Screenful of Data from CSR

Serial Line Speed = 9600 bits per second
ten events total:; each X is one event

X X XK X XEXX
e ———————— e dmmmmm - o s mmee time

2.0 4.0 6.0 B.0 10.0 12.0 (seconds)

Serial Line Speed = 18,200 bits per second
ten events total: each X is one event

2.0 3.0 4.0 5.0 6.0 7.0 8.0
time (seconds)

Figure 6-3 shows the results of ten individually timed tests for measuring the handling time
of a screenful of data. The number of retransmissions that were necessary 10 get the data
from CSR to the personal computer explains the clumping within the data. Tests which
took about three seconds experienced no retransmissions, test which ook about seven
scconds experienced one retransmission, and tests which ook uabout cleven seconds
experienced two retransmissions. Various loads on the network and CSR probably caused
the differences between tests within clumps. We found the best case times for this type of

test by taking the event with the lowest time at each serial line speed.

The large number of retransmissions was due to a bug in the packet concentrator. Whenever
multiple packets came into the packet concentrator in quick succession from a foreign host,
the packet concentrator often dropped packets other than the first, Increasing the number
of packets in the succession or decreasing the serial line speed increased the chances that the
concentrator would drop a packet. This was not a problem for the churacter echoing test,
since it sent packets one at a time.
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Fable 6-6: Character Echoing Performance With Various Foreign Hosts

| Foreign Host | 9600 bps | 19,200 bps | difference |
CSECEZCDCECEEEECSESES |SSSSESsSEaEEEmE ZI==========|======'=====.;",I
I IBM PC * | 0.122 sec. f 0.072 sec, | 0.050 sec.
Jrestm e e e Fmmmmmm e m e e R |
| CSR | 0.175 sec. | 0.128 sec. | 0.047 sec. |
Rttt b e ——— e o - |
| Comet | 0.196 sec. | 0.136 sec. | 0.060 sec. |
e T e Frmmr e —— fmmmmmmmeaaaa |
| XX | 0.212 sec | 0.161 sec. | 0.051 sec. |
e Tt L o —— i o Fom e ——— |
| Multics | 0.382 sec | 0.325 sec | 0.057 sec. |

* = The packet concentrator was not used between the
two IBM Perscnal Computers.

0.3.2 Character Echoing Performance with Various Foreign Hosts

Table 6-6 shows the character echoing performance with various foreign hosts.’
Significantly. the echo time with many hosts was under 0.25 seconds. and in one case was
under 0.15 seconds. a level of performance that most users would find reasonable, We

included a connection between two 1BM Personal Computers for reference purposes.

Although we did not expect to be able to predict the exact character echo times for the
foreign hosts. we did expect that for the same foreign host. the difference between the times
of tests at different serial line rates would be approximately constant. The amount of time
saved by speeding up the serial line interface should be independent of the foreign host
Tuble 6-6 confirmed this expectation.

E&mmﬂsuﬂ@hdEﬁxfﬁﬂnmnmgUnm XX is a Digital DEC System-20 running Tops-20. Multics is a
Himeywell Information Systems 68750 manning Multics, und which we accessed via the ARPANET.
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Table 6-7: Handling Time for a Sereenful of Data from Various Foreign Hosts

| Foreign Host | predicted | 9800 bps | 19,200 bps |
|====:::|:|::l::u:====== SEssszss=ssssss|sssasasmesezn |sxxe e neEm .

| IBM PC = : 2.67 ssc f 2.82 sec. f 2.83 sec. E
R B R e L L LT fmm e m———— |
| CSR | 2.67 sec. | 2.80 sec. | 2.91 sec. |
R e prmm e ———— e et $rmmmronean—— |
| A | 2.77 sec. | | 3.19 sec |

* = The packet concentrator was not used between the
two IBM Personal Computers.

6.3.3 Handling Time for a Screenful of Data From Various Foreign losts

Table 6-7 shows predicted and actual handling times for a screenful of data from various
foreign hosts. We assumed that the foreign hosts could send packets faster than the
personal computer could process incoming packets, i.e.. that the foreign hosts could send
packets at a rate faster than 7700 bits per second (see Section 6.2.3). and expected that the
personal computer software overhead would limit screenful handling performance just as
was the case with transfers between two personal computers, We thus used the same figures
o predict performance between a personal computer and a foreign hosts that we used

predict performance between two personal computers.

CSR sent a screenful of data in four puckets. exactly the same number of packets as one
personal computer sent 1o the other in the tests between two personal computers. Thus we
expected the handling time for a screenful of data between CSR and a personal computer to
be very close to the handling time between two personal computers, Table 6-7 confirmed
this expectation.

Foreign hosts other than CSR sent each screenful of data in more than four packets. XX and
Multics sent a screenful of data in about eight packets. while Comet used more than twenty.
These large numbers of packels reacted unfavorably with the bug in the packet

concentrator, and prevented us from receiving a screenful of data from most of these hosts
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without retransmissions, The only additional host from which we could obtain figures was
AN when the serial line speed was 19,200 bps. XX sent a sereenful of data in cight packets.
We therefore expected a personal computer to take somewhat longer to handle a screenful
of data from XX than from CSR or another personal computer, Table 6-7 also confirmed

this expectation.

The number of packets that a host uses 1o send a sereenful of data is important for reasons
other than its interactions with the packet concentrator bug. Because foreign hosts send data
1o the packet concentrator faster than the packet concentrator sends packets to the personal
computer. the packet concentrator may run out of space and drop packets if the foreign
hosts sends the packet concentrator too many packets. Dropping packets would force the
foreign host to retransmit the packets which would slow down communication. This
problem is not just idle speculation, Comet uses more than twenty packets to send a
screenful of data. Because Comet sends these packets to the packet concentrator much faster
than the packet concentrator sends them to the personal computer, packets back up at the
puacket concentrator. Twenty packets is a large enough number to cause the packet
concentrator to run out of packet buffers. and throw away some packets in the screenful
thus forcing Comet to retransmit the packets. (even if it did not have to retransmit them due

to the bug in the packet concentrator.)

This problem of dropped packets highlights two fundamental problem with the TCP. First,
the TCP flow control mechanism allows implementations 1o specify only roughly the
maximum amount of information that they can handle. A local TCP implementation
specifies its window in data bytes, but if the foreign host sends data in small packets. then
the amount of data that the local low level routines must handle may be significantly greater
than the amount advertised by the local TCP window. For instance. if a foreign host sent
each byte of TCP data 1o the personal computer in a separate packet. the low level protocol
on the personal computer will handle forty-eight bytes for every byte of TCP data
Forwnately. reasonably intclligent TCP implementations that try to send data in packets

that are as large as possible can minimize this problem.
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A second problem with TCP is that it provides no mechanism for congestion control. Even
if the machines on both ends of a connection can keep up with the flow of duta. the flow
may still overtax some intermediate machine. and cause it to perform poorly. Comet
overtaxes the packet concentrator in exactly this way. The link between Comet and the
packet concentrator is much faster than the serial line between the packet concentrator and
the personal computer, The packet concentrator can not get rid of packets as fast as it

receives them. and it sometime runs out of packet buffers and drops packets.

If we make the personal computer’s window sufficiently small. the packet concentrator will
not run out of buffers. Comet sends packets with about eighty bytes of data, If the personal
computer TCP advertises a 240 byte window. then Comet will only send four packets at
once. just like CSR. Unfortunately. a 240 byte window implies that the window must be
updated eight or nine times for the personal computer to receive a screenful of data, Eight
or nine window updates increase the time needed to receive a screenful of data, although
not by as much as waiting for retransmission timeouts. Making the TCP window size
dependent on the foreign host is very unmodular. Why should the window size of the

personal computer TCP depend on the number of buffers in the packet concentrator?

Congestion control is a well known and difficult problem in the field of internetwork
communication [13] [14]. A way to prevent congestion at the junction of low speed and high

speed networks is of particular importance to us and is a opic for future research.

6.3.4 Memory Size and Code Length

In the Introduction of this paper, we suggested that the limited memory size of desktop
personal computers might affect the performance of an internet remote login protocol. In
fuct, the memory size did not affect performance. The memory of the [BM Personal
Computer was sufficiently large that we never had 1o worry about space in the
implementation. In some cases our implementation was actually space intensive. Qur

buffering strategy for out-of-sequence TCP data is an example.

Tuble 6-8 shows the code length of various modules used in the personal computer
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Table 6-8: Code Length of Various Modules

Module Code Length (bytes)
Telnet = 3,156
TCP = 5,396
Internet = 1,112
LLP and Packet Manager = 4, B68
THSk'ing = 432

C Standard I/0 Library and

Heath 19 Terminal Emulator = 9,068
C Runtime System* = 282
Operating System Area = 256

Hote: * The C runtime system starts C programs running on the IBM Persona)l
Computer and initializes the Standard I/0 Library.

protocols. The code for the entire remote login implementation occupied under 25 KB of
memory. The "Global and Static Variables” portion of the data segment (see Figure 5-2)
was 49.384 bytes long. Of this. the TCP out-of-sequence data buffers took up 20.480 bytes,
and thirty-two 704 byte packet buffers used 22.528 bytes of space. Task control blocks, task
stacks, and the main program stack used additional memory, Thus the entire remote login

package needed about 80 KB of memory, and it could have fit in a 96 KB or 128 KB system.
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Chapter Seven

Conclusion

7.1 Suggestions for Improvement

The first improvement we would make to the implementation described by this thesis would
be to rewrite Internet so that it used tasking and ran as the top level procedure in the
network task. Such a modification would make it casy for Internet 1o demultiplex packets
among various client protocols and to handle fragmented packets and Internet options.
With the current system, if two protocols tan on top of Internet. both would have to poll
Internet on an incoming packet signal. Only one client protocol would actually get a packet,
or perhaps none would if the incoming packet were a fragment. Unsuccessful polling wastes
time. If Internet were at the top of the network task. it could cull the appropriate client
protocol. and all its other clients would not have to run. If only a fragment came in, Internet

could put it into a fragment buffer and would not call a client at all.

It Internet could eIl TCP the number of puckets that are waiting in the used gueue for the
network task to process them, TCP could update the window when the the protocols had
one incoming packet left to process rather than zero packets. Updating the window earlier
would allow the foreign TCP to send more packets before the personal computer protocol
actually ran out of packets to process. This would increase the amount of concurrent
processing within the remote login implementation. It would also solve the TCP lock step
problem described in Section 5.6.

The tasking package also has room for improvement. To block, a procedure must call a
blocking routine in the tasking package in order to give up control and allow a new process
to run. We wrote this blocking routine in C. and it is five lines fong. It calls a routine written
in assembly language to actually swap the old and new stack pointers. Swapping tasks thus

requires two procedure calls. If we write the blocking routine entirely in assembly linguage.
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the code 10 swap tasks could be combined into a single procedure. a process that would

substantially reduce the overhead of swapping tasks.

Another tasking improvement would be to allow the part of TCP that sends packelts to run
in more than one task. Telnet would call it as a procedure in the user tusk when the user
types a character. but it would run in the send task when the retransmission timer went off,
Only one task would have to run for many outgoing packets rather than two. These two
improvements would eliminate most of the very small efficiency advantage that the

procedure-based scheduling has over tasking,

From the user’s standpoint. the ideas presented so far in this section would have only a
minor effect on protocol performance. Are there any changes that we can make to

substantially improve performance?

One idea is to replace the personal computer serial line interface. which takes one interrupt
for cach byte that traverses the serial line. with an Ethernet® or other high performance
network interface that takes a single interrupt per packet. Table 6-4 suggests that character
ecchoing time between two personal computers is mostly serial line time. A high
performance interface could improve the character echo times between two personal
computers by as much as a factor of two or three. The relative improvement would be
somewhat less with character echoing from foreign hosis, since proportionately less of
foreign host echoing overhead is serial line overhead, However. improvements with foreign

hosts will be in the range in which the user most notices perlormance improvements.

A high performance network interface would not greatly improve the handling time for a
screenful of data. Section 6.2.3 shows that replacing the serial line with a perfect network
interface would decrease the handling time for a screenful of data from 2.8 seconds to 2.3
seconds. Making the protocols more efficient also seems o be a hard way to improve the
handling time for a screenful of data since the protocol layers accounted for less than
0.2 seconds of the total 2.8 second handling time.

5’1'I-Zuu:rn=:r. is a trademark of the Xerox Comporation,
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Greatly improving handling time for a sereenful of dat probably is not possible. The 170
routines can only print data at a rate of 7400 bits per sccond. (Again, sce Section 6.2.3.) The
170 routines seem to be reasonably efficient. The personal computer’s processor speed

appears 10 be the factor limiting the handling time for a screenful of data.

7.2 Topics for Further Rescarch

The previous section suggests a number of areas for further research. Will the addition of
an Ethernet card to the IBM Personal computer improve character echoing performance but
not the handling time for a screenful of data? Is the speed with which a personal computer
can perform terminal 1/0 an important criterion for choosing a personal computer for a
remote login implementation? Our research suggests affirmative answers 10 both of these

questions, but these answers should be confirmed,

We spent a lot of time in this thesis discussing the relative merits of tasking and procedure-
bused scheduling. Building a remote login implementation using a procedure-based

scheduler would be the best way to find out all the details of how such a system works.

The most difficult question posed by this thesis is how 1o control congestion so that a high
speed network does not swamp a machine connecting it to a low speed network. This
question is a part of the generally unsolved problem of controlling congestion in and

between computer networks.

7.3 Summary of Results

The performance measurements of the IBM Personal Computer Telnet implementation
presenied in Chapter Six show that a deskiop personal computer can su pport an efficient

internet remote login implementation with the same protocols used by large mainframes.

The speed with which programs run on small computers often determines the programs’

utility. We therefore built the remote login protocols 1o run as quickly as possible. We
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followed a number of strategies wward this end. The TCP implementation was tailored to
the specific needs of the Telnet remote login protocol. This enabled us to simplify the
complicited TCP protocol in a number of ways that allowed its implementation to run more
quickly. The various protocol layers shared the overhcad of asynchronous action. In this
way, the layers were ofien able to share packets and send one packet instead of two. The

layers shared data as much as possible 10 prevent the overhead of excess copying.

A factor particularly important to the speed with which the implementation ran was the
mechanism used to pass control between the protocol layer modules. A multi-layer remote
login protocol that handles asynchronous events in more than one layer needs multiple
threads of control 10 efficiently and modularly process data. We proposed two methods of
structuring control that allowed multiple threads. One of these methods.tasking, employed
a combination of procedures and processes 1o structure control while the other method,
procedure-based scheduling. used a top level scheduling module that employed procedure
calls exclusively. Both methods could have formed the basis of an efficient implementation.
The procedure-based scheduler would have run marginally faster. Tasking was the more
flexible option. but the remote login protocol did not need the added flexibility. We chose
tasking for the demonstration implementation to preserve consistency between the personal
computer protocol and a number ol other local implementations. and because its added
flexibility might be handy for implementing other protocols on the personal computer in
the future. The demonstration implementation showed that a tasking package could run on
a personal computer,

Overall, we were pleased with the performance of the demonstration personal computer
remote login protocol implementation. On a Telnet connection between two 1BM personal
computers connected by a wire. the round trip delay time for a single character was 0.072
seconds at a serial line speed of 19.200 bits per second while the handling time for a
screenful of data could was under three seconds for an effective data transfer rate of over
3000 bps. The character echoing times to other local computers were as low as 0.128

seconds. while screenfuls of data could be transferred in us little as 2.91 seconds.
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The speed of the serial line interface was the performance botleneck for echoing characters.
A morc efficient network interface might improve the character echoing time by us much as
a factor of two or three. The speed with which the processor could perform 1/0 limited

performance when the protocols processed large amounts of data.

The personal computer protocol implementation used about SOKB of memory. The 194 KB
memory size of the IBM Personal Computer was sufficiently large that it did not pose any

constraints on our implementation.
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