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Efficient Demand-driven Evaluation (II)

1 Introduction

In Part 1 of this paper, we presented a simple but powerful stream processing language
called L and described a scheme for transforming L programs whereby a data-driven
evaluation of the transformed program will perform precisely the same computation as a
demand-driven evaluation of the original program. The essential idea behind the scheme
was to model demands for elements of a stream by associating a demand stream with that
stream and permitting the compiler to introduce demand propagation operators into the
dataflow program. The algorithm that the compiler used to propagate demands was the
same as the one followed by a demand-driven interpreter at run-time - Le., the compiler
propagated demands through each operator in the dataflow graph separately, without
attempting optimizations of any kind. Let us call this the microscopic approach to demand
propagation. For brevity, we will refer to programs resulting from such a transformation as

lazy programs.

Definition 1: A lazy LD program (or simply a lazy program) is one that is
derived by transforming an L program using the Microscopic Demand
Propagation Algorithm described in Part 1 of this paper.

Lazy programs have some very intuitively appealing properties (ie., properties P1 to P4
given in [3]), which are invariant under composition of two lazy programs. These
properties formally characterize that aspect of demand-driven evaluation of programs
which says that such evaluation schemes perform no useless computation, that is, all
computation done by a lazy program is needed to produce the output. Thus a lazy program
computes minimum histories on all data lines to produce the required histories on output
lines. However, a practical notion of minimal computation should also include the
overhead of demand propagation. In this paper we present a transformation which trades
complexity of demand propagation for a bounded amount of extra computation on some
data lines. Though no theoretical measure is offered to show that the new transformation
presented in this paper does actually improve the over all efficiency of transformed

programs, it should be clear that the new transformations will drastically reduce the



overhead of demand propagation. Without more quantitative measures, the judgment
whether our technique can be characterized as an optimization for a class of machines
(parallel or sequential) must await further theoretical analysis and post implementation

evaluation of the technique.,

The transformations described in this paper, like the Microscopic Demand Propagation
Algorithm from Part 1, are not source-to-source transformations - rather, they transform L
programs into programs in a language which is a super-set of L and which we call language
LD. This language is defined in section 2 and should be already familiar to the readers of
Part 1 of this paper. The set of programs that can be expressed in LD includes not only L
programs and lazy programs but also programs that may be best characterized as partially
demand-driven programs. In particular, the language LD allows us to define programs
which are input-output equivalent of lazy programs but which do not necessarily compute
minimum histories on internal lines. Since lazy programs perform the smallest amount of
computation required to produce the output of the program, one way to formalize the
notion of “extra computation" performed by LD programs that are not lazy is to define a
lazy program that “corresponds” to an LD program and compare the computation

performed by each program. This idea is explored in detail in section 2.

The main motivation for the work described in here arose from our research into efficient
implementation of dataflow languages with streams [1]. Stream languages permit
programming with infinite data objects. Therefore, a straight forward data-driven
implementation of such languages will produce only partial results. Even if one is not
interested in demand-driven evaluation to minimize computation, we need to ensure that
outputs that can be computed without an infinite amount of computation are produced by
the implementation. Otherwise, the implementation cannot be called correct. One way 1o
ensure that all outputs that can be produced are produced is by introducing the notion of
Jair scheduling of function applications (enabled computational activities in dataflow jargon)
in the machine architecture or the interpreter. For various architectural reasons, this turns

out to be unsatisfactory, Therefore, data-driven implementations of stream languages can



be permitted to perform some additional computation over what would be performed by a
demand-driven interpreter, but they must avoid performing an infinite amount of extra
computation. We define a class of LD programs called safe programs for which this is true
- Le., a data-driven interpreter, when executing safe programs, will perform at most a
bounded amount of extra computation over what a demand-driven interpreter would. It is
natural, therefore, to wonder if any L program can be transformed into a safe LD program
that is more efficient than the lazy program that is generated from L. Unfortunately, the
concept of safety is of limited utility since safe programs are not closed under composition,
that is, the composition of two safe programs does not necessarily produce a safe program.
Therefore, we will introduce the notion of strongly-safe programs which are that subset of
safe programs that are closed under composition. It will be shown that a class of strongly-
safe programs are those safe programs programs which are input-output equivalent of
corresponding lazy programs. Thus, strongly-safe programs will produce the same results as

lazy programs and perform, at most, a bounded amount of extra computation on data lines.

The concept of strongly-safe prﬁgmms will be used in the following way. In section 3, we
will first introduce a subset of L called L., and show how LG fragments of L programs may
be recognized by a compiler. We then present a two step transformation that takes an Ly
fragment and produces a strongly-safe LD program that has the same input-output .
behavior as the lazy program corresponding to the L, fragment. In section 3, the first step
of the transformation, which is a source-to-source transformation of L, (and consequently
of L) programs, is described. Then, in section 4, the second step of the transformation
which propagates demands (globally as opposed to microscopically) through transformed
L, programs is given. The resulting program is shown to be strongly-safe and thus can be
substituted uniformly in place of the lazy program that would have been generated from
the Lﬂ fragment had the Microscopic Algorithm been used. In the last section, we indicate
ways in which the results of this paper can be extended.



2 Language LD and Safe programs

2.1 Language LD

Language LD is a superset of language L which was described in detail in Part 1 of this
paper. Language LD has four data types - JSrobs, frob-streams, d and d-streams.' Frobs
encompass the usual data types like integers, reals, booleans, character strings etc. Frob-
streams are sequences of frobs and are constructed by using a non-strict data constructor
cons described below. d'is an scalar (ie., non-stream) ciata type that is distinguished from all
frobs. d streams are streams of d's. Notice that the elements of a stream must be either all
frobs or all d's. As in Part 1, we will Tepresent streams as {al,lag. ....] where 8 is the scalar
value that is the first element of the stream, a, is the scalar value that is the second element
of the stream etc. The empty stream (Le., the undefined stream) is represented by []. As
mentioned in Part 1 of this paper, it is possible to introduce a special scalar value es (ie.,
end-of-stream) and let an empty stream be the stream containing exactly one scalar value
est. There are no difficulties in extending LD to include such a feature, but we will not do
S0 in this paper.

The functionality of the operators of language LD is summarized below -

=firsi([]) = L (the undefined scalar value)
ﬁfj’fﬁal_ a"’zi 33. ....D = al

-res[]) =[]
rest([a,, 8, 83, ..]) = {az, a3, ]

-cons(L [a,, Bs ) =[]
cons(by, [a,, 2, ay,...]) = [br a),3,, 8y, ...

Note that if the first argument of cons is d, then the second argument must be a d-stream,

while if the first argument is Jfrob, then the second argument must be a frob-stream.

- (X, Y. ....) - T-boxes are one-in-one-out stream operators like +, * etc. that
Operate “point-wise" on their inputs. Inputs 10 a T-box can be a combination of

1 :
We have used the names frob-streams and d-streams mstead of dara stream and demand Stream 10 avoid
contusion between the names of the duta types and other connotations of the words data and demand.
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d-streams and frob-streams - of course, the output must be either a frob stream
or a d stream. LD also has t-boxes which are like T-boxes, except that they
operate on scalar values rather than streams, We will restrict t-boxes to be roral
functions.

- true-gate(B, X) - B is a stream of booleans, X(1) is output if B(i) is rrue:
otherwise, it is absorbed. In other words. the ™ element of the output stream is
X(i) if B(i) is true and the number of true values between B(1) and B(i) is j.

- Jalse-gate(B, X) - Its behavior is exactly like that of a true-gate, except that
X(i) is output if B(i) is false.

- merge(BX,Y) - B is a stream of booleans. The i token on the output stream
is X(j) if B(i) is true and the number of true tokens between B(1) and B(i) is j, and
Y(k) if B(i) is fa/se and the number of Jalse tokens between B(1) and B(i) is
k. Note that X and Y must either both be d-streams or both be frob-streams,

- D-union(X, Y) - X and Y must be d-streams, The output of this operator is a
d-stream whose length is equal to the larger of the lengths of X and Y. The
operator d-union is scalar version of D-union.

An LD program is a set of recursive definitions where the left hand side (LHS) of each
definition consists either of a frob variable, a frob-stream variable, a d variable or a d-
stream variable. The right hand side (R HS) of a definition consists of a function application
where the function is one of the operators described above and the arguments are variables,
Definitions must be type consistent - for example, the definition of a frob stream variable
cannot be the application of a D-union operator.

As before, we will find it convenient to consider an LD program as a dataflow graph. The
dataflow graph correspondi ng to an LD program can be generated by drawing a box for
each equation in the program, labeling the box with the function on the RHS of the
equation, labeling the output of the box by the variable on the LHS of the definition and
connecting the output of the box to the appropriate inputs of all boxes where it is needed.
Since the output of a box may be connected to the inputs of several boxes, there is an

implicit fork operator at the output of any box that is connected to several boxes. It is



convenient to think of a scalar variable as a single token and a stream variable as a sequence
of tokens flowing down the arc with the label of that variableZ. Each out-going arc of a fork
receives a copy of a token at the in-coming arc. Thus, there is a direct correspondence
between the Aistory of a line X in the dataflow graph and stream X in the LD program. In
the discussion below, we will drop the distinction between the LD program and its dataflow
graph, as well as the distinction between stream X in the LD program and the history of the
line labeled X in the dataflow graph, and use these terms interchangeably.

Following Kahn [2], the semantics of LI_J programs can be given as follows. If D is some
set, let D® be the set of finite and denumerably infinite sequences of elements of D. In D%,
we include the empty sequence. Let V be the set containing the denotations of all frobs,
and let Dem be the set containing the denotation of d. Consider the set I containing all
elements of V¥ and Dem®. Elements of this set can be ordered by the prefix ordering on
sequences. It is easy to show that under this ordering, all the Dper:imrs of LD are
monotonic and continuous functions from sequences to sequences. For each equation of an
LD program, we can write down a semantic equation that describes the relation between its
inputs and outputs. The meaning of the LD program is the least fix point of this set of

semantic equations.

2.2 Safe LD Programs

Definition 2: The L program corresponding to an LD program is defined to be
the L program that is obtained by deleting all demand lines and all operators
with demand inputs from the LD program.

Definition 3: The lazy program corresponding to an LD program is defined to
be the LD program that is obtained by applying the Microscopic Demand
Propagation Algorithm to the L program that corresponds to the LD program.

We now introduce some notation. If FD is an LD program, we will let F be the L
program that corresponds to FD, and let FL be the lazy program that corresponds to FD. If
X is some line in FD, we will let #X stand for the "final” history of line X in program FD

- (ie., the history of line X that is determined by the least fix-point of the set of equations of

1 ¥
“We assume unbounded buffering along each are.



program FD) when that program is given some input. Note that if X is a data line in FD,
then there will be a data line in both F and FL corresponding to it. It is convenient to let X
denote these lines as well, We let %X and £X denote the final history of line X in programs
F and FL respectively.

In general, an LD program has both data lines and demand lines. In LD programs that
are generated from L programs by the compiler, we may associate a demand line with a
data line and assert that no token is ever produced on the data line unless there is a 4 token
for it on the demand line. If X is such a data line, we will let DX denote the corresponding
demand line. Let FX and FDX denote the histories of lines X and DX at any point in the

computation. If A is any history, we let |H] denote the length of the history.

Definition 4: A data line X in an LD program is said to be demand-driven by
line DX (or simply demand-driven) if and only if [FX] is always less than or equal
to [FDX].

We now want to characterize LD programs that may perform more computation than
their corresponding lazy programs but do not diverge "unnecessarily” - ie., they do not
diverge if the corresponding lazy programs do not diverge. Since lazy programs do not
perform any unnecessary computation, this gives us a way of characterizing programs that
perform a bounded amount of computation more than what is strictly required to produce
the output of the program. We will assume that if an input data line of an LD program is
demand-driven, then inputs on that line are fed on demand - a concept which has been
explained in page 19 of Part 1 of the paper. Let FD be an LD program and let FL denote
the corresponding lazy program. Let ND-In represent that subset of input data lines of FD

which are not demand-driven.We define a safe program as follows:

Definition 5: A safe LD program diverges if and only if either there is infinite
input on an input line not driven by a demand-line, or the corresponding lazy
program also diverges. Formally,

AreNppllFll # o] =
(3 X[X € Lines of FD A |[gX] = %] = 3 Y[Y € Lines of FL A ILY] = o0])

Note that if a user supplied infinite input on some input line that is not demand-driven,



then an infinite computation would result in a safe program. However, since inputs to the
corresponding lazy program are fed on demand, it is possible that no infinite computation
would result in the lazy program. If we did not have the finiteness constraint on inputs,

then a large class of programs would be unsafe.

The reader can verify that any acyclic L program is safe. Similarly, any lazy program is
safe. An L program that is not safe is shown below in Figure 1(ii).

Coris ons

()A Safe Program (i)An Unsafe Program
Figure 1: A Problem with Safe Programs

Although the concept of safe programs is interesting, the major problem with it is that
this property is not closed under iteration. In other words, a program that results from
iterating a safe program is not necessarily safe, For example, consider the LD program
consisting of a single cons operator shown in F igure 1(i). Since it is an acyclic LD program,
it is safe. However, the program in Figure 1(ii) that results from iterating the cons is not.
Therefore, the concept of safety is of limited use if we want to freely substitute safe

programs or use them in constructing other large programs.

2.3 Input-output Equivalent Lazy Programs
It is easy to see that the main reason why safe programs are not closed under iteration is
that not all input and output data lines may be demand-driven. We now want to consider

those LD programs in which all input and output data lines are demand-driven,

Definition 6: An LD program FD is said to be input-output equivalent to its
lazy program FL if and only if -

L there is a one-to-one correspondence between

a. the set of input data lines of FD and the set of input data lines of
FL.



b. the set of output data lines of FD and the set of output data lines of
PL;

c. the set of input demand lines of FD and the set of input demand
lines of FL,

d. the set of output demand lines of FD and the set of output demand
lines of FL, and

2. the histories produced on output lines of FD are the same as the histories
produced on the output lines of FL. when both programs are given the
same inputs.

We would like to point out that for a.general LD program, it may not be possible to
determine whether it is input-output equivalent of its lazy program. The utility of this
definition arises from the fact that LD programs are generated by the compiler from L
programs - hence, this definition can act as a constraint for the compiler when it generates
LD programs. We would like to note in passing that programs that are input-output
equivalent to their lazy programs satisfy four properties named P1” to P4" which are very
much like the properties P1 to P4 given in Part 1 of the paper. The difference between
these two sets of properties is that P1” to P4" deal only with input and output lines of LD
programs.

Let I be the set of input data lines and O be the set of output data lines of FD. Let 10 be
the union of the sets [ and O,
Pl - Nxe 0] [7X € 1X]
P2 - Ax e 0] [I#X] < |#DX]]
P3 - Aix e 0] [IX] <|gDX| = [X| = |5X]]
Note that,unlike P1 to P4, P1" 1o P4" do not guarantee safety. This is because an LD
Program can be input-output equivalent to its lazy program, but there may still be an

unbounded amount of computation performed on internal lines even if the corresponding

lazy program performs a bounded amount of computation.
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2.4 Strongly-safe Programs

Definition 7: The set of sirongly-safe LD programs is that subset of safe LD
programs that is closed under composition,

The reader may find the following "Venn diagram" useful in understanding the
relationship between lazy, safe and strongly-safe programs.

LD Programs

Safe Programs

Strongly safe

Safe Programs
170 equivalent
to lazy programs

Figure 2: Lazy, Safe and Strongly-safe Programs

Theorem 8: Any safe LD program that is input-output equivalent to its
corresponding lazy program is strongly-safe,

Proof: We show that the set of safe LD programs that are input-output
equivalent to their corresponding lazy programs is closed under Jjuxtaposition
and iteration,

If FD and GD are two safe LD programs that are input-output equivalent to
their corresponding lazy programs, it is easy to see that the Jjuxtaposition of FD
and GD is a safe LD program that is also input-output equivalent to its
corresponding lazy program,

We now show that the set is closed under iteration. Let HD be the program
that results from the iteration of some line X in program FD. as shown in Figure
3. Let FL be the lazy program that corresponds to FD and let HL be the lazy
program that corresponds to HD. Consider programs HD and HL when both are
given the same inputs. We first show that the histories of lines X and DX in both
programs HD and HL must be the same. It is casy to see that the histories of
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Figure 3: Iteration of a Safe Program

input and output lines of HD at any fix-point of HD must be the histories of the
input and output lines of HL at a fix-point of HL and vice versa. Therefore, it
follows that the histories of lines X and DX in both programs must be the same.
Since the functionality of FD and FL are the same, it now follows that HD is
input-output equivalent to HL. The safety of HD now follows from the the
inductive assumption about the safety of FD and the fact that the histories of X
and DX are the same in HD and HL.

3 A Source-to-Source Transformation of L programs

In this section, we first define a subset of L called L, and show how Lﬂ fragments of L
programs can be identified. We show that the compiler can take an L, fragment and
transform it into a safe program that is input-output equivalent to its corresponding lazy
program. This transformation is done in two steps - we present in this section the first step
which is a source-to-source transformation that converts any Lﬂ1 fragment into a canonical

form which has a simple loop (iterative) structure.

3.1 The Language L

An L, program is a deadlock-free L program in which no merge, true-gate or Jalse-gate
operators are present. The deadlock-free property (often referred to as /iveness in Petri net
literature) can be tested by some kind of a eyele-sum test such as that of Wadge [4]. For
example, we can assign a 0 to every T-box. 1 to every cons, and -1 to every firsr and rest.
For an Lﬂ program to be deadlock-free, the sum of the integers in every cyclic

interconnection of operators must be greater than Zero.
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We will also assume that L, programs have been converted into a canonical form in
which

- there is no cons box whose output is directly connected to a rest or a Jirst box
- every circular interconnection of boxes has at least one T-box in it
- every output is the output of a T-box.

L, programs that do not meet these criteria can be converted into the canonical form by

repeated use of the following transformations -

- any occurrence of firsi(cons(a, B)) is replaced by a

- any occurrence of resi(cons(a, B)) is replaced by B?

- one identity T-box is introduced into every cycle that does not have any T-box.
The scalar function associated with the identity T-box is the identity function
on atomic values

- introduce one identity T-box at each output that is not the output of a T-box.

Given an L program, we can identify all Lﬁ fragments in it by deleting all true-gates,
false-gates and merge operators from the program. Each connected program graph that

remains is an L, fragment.

3.2 Transforming L Programs into Strongly-Safe Programs

Figure 4 is an example of an L, program. Consider the elements of stream O in the
program of Figure 4 (This example program is contrived and fairly complex. However it is
useful for illustrating many different aspects of our technique, and will be used throughout
this section). The basic source of complexity (or lack of structure) in an L, program has to
do with the computation of the first few elements of the output stream. In the program of
Figure 4, the first element depends upon A(1) and al, while the second element depends
upon C(1) and D(3) (it is easier to make these observations in the graph version). After the
second element the pattern is obvious: the k™ element of O will depend upon C(k-1) and
D(k+1). Intuitively we can say that the program reaches a "steady-state" after computing
the first few elements of the output stream. We will show that every L program can be

I'his transformation is not valid if there is a possibility that @ may be undefined.
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Figure 4: An LD Program
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transformed into an L; program which consists of three acyclic graphs called adjustments,
prelude and steady-state connected according to the schema shown in Figure 5. In the
prelude, only those elements of the output stream which do not conforr: to the general
computing pattern are computed. The adjustments is an acyclic interconnection of first and
rest operators, and is used to select those elements of input streams which are needed by
the prelude and the steady-state parts. The steady-state acyclic graph has the one-in-one-
out property - that is, one set of input values will produce one output value on each line.,
After giving a definition of stead)-state, we will prove that every L, program does reach a
steady-state after computing a finite number of output elements and give an algorithm for

transforming any L, program into the schema of Figure 5.

Once L, programs have been transformed into the schema of Figure §, it is easy to
introduce gates and demand propagation code into the program in order to make it
strongly-safe. By introducing gates into the steady-state graph as shown in Figure 6, we can
ensure that an iteration of the steady-state graph will be executed only when there is a
demand for some output. In this way, the Lransfonned program is made safe. We then
propagate demands for the outputs to demands for the inputs, thereby ensuring that the
input-output behavior of the transformed program is the same as that of the corresponding
lazy program. This demand propagation is done by a global algorithm (as opposed to a
microscopic algorithm like Algorithm-MDP of Part 1). By Theorem 8, the program that

results from these transformations is strongly-safe.

We will now describe how the transformation for L, programs that was outlined above
can be used to make L programs strongly-safe. The algorithm given below essentially
identifies L, fragments of L programs and transforms them into programs that correspond
to the strongly-safe schema of Figure 6. Demand propagation through true-gates,
Jfalse-gares and merges is done as specified by Algorithm-MDP. Since the composition of
strongly-safe programs is another strongly-safe program, the result of the transformation is

a strongly-safe LD program.
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Algorithm-TLSS : An algorithm for transforming L programs into strongly-safe
LD programs.

1. Delete all true-gates, false-gates and merges from the L program and declare all
inputs to these operators as outputs of the remaining program. Each connected
graph in the resulting graph is an L, program.

2. Transform each L, fragment into the schema of Figure 5 by using Algorithm-
SST (see section ).

3. Replace each L; component in the original graph with the corresponding
transformed component. Since a transformed component has exactly the same
inputs and outputs as the untransformed component, this operation is well-
defined.

4. Introduce demand propagation code and gates into each transformed L
fragment by using Algorithm-IOE and Algorithm-GDP (see section ) thereby
producing programs that correspond to Figure 6. Introduce demand
propagation code for true-gates, false-gates and merges using Algorithm-MDP.

O

Figure 7 illustrates this algorithm for the case when the L program has a true-gate and a
merge operator, and one L, fragment.

3.3 Dependency Matrices and Predecessor Paths

The algorithm for transforming L, programs into the schema of Figure 5 examines the
data dependencies of elements of output streams. A convenient data structure to record the
data dependencies of elements of streams in a program is a data dependency matrix that has
a row for every t-box and T-box in the program. If stream X is the output of a T-box T,
we will record the data dependencies of stream element X(i) in the i™ column of the row
for X. A row for a t-box will have entries only in its first column since the output of a t-box
is an scalar value. Depending on the context. we will use X(n) to mean either the n
element of stream X (as was done above) or the n® column of the row for stream X in the
dependency matrix. If an L, program has only one output stream, we will name that
stream Q. If the program has more than one output stream, we will assume that the streams

are named O1, 02, .... We will refer to the sct of all output streams as {04},
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Figure 7: Transformation of L Programs

We now introduce the notion of a predecessor path in order to make entries in the data
dependency matrix.

Definition 9: A predecessor path in an L, program is a path obtained by tracing
backwards (i.e., in a direction opposite to the flow of data) in the graph from the
input of a t-box or a T-box with the following rules :

1. When the output of a first or a rest is encountered, the tracing is resumed

from the input of the operator. We shall say that the first or the rest lies
on the predecessor path.

2. When the output of a cons is encountered. one of the Inputs to the cons, is

arbitrarily chosen and the tracing is resumed. As before, we shall say that
the cons lies on the predecessor path.
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3. The trace terminates when the output of a t-box or a T-box, a stream
input or an scalar input is encountered.

Lemma 10: For programs in L, all traces terminate.
Proof: Straight-forward, from the fact that every cycle has a T-box in it.
O

Notice that a finite ordered sequence of arcs is a predecessor path if and only if the path
connects the input of a t-box or the input of a T-box to either the output of a t-box, the
output of a T-box, or an scalar input or a stream input, and intermediate operators in the

path are only cons's, firsi’s and rest's.

Lemma 11: Any predecessor path in a graph must be of one of the five types
shown in Figure 8.

Proof: The proof is a straight-forward induction on the length of a predecessor
path. A predecessor path of length n has one more JSirst, rest or conson it than a
predecessor path of length (n-1). Assume that all predecessor paths of length n-1
are of one of the five types shown in Figure 8. It is easy to show that inserting
another first,rest or cons anywhere on a path of length n-1 would result in either
an illegal interconnection or in a predecessor path of length n that is of one of the
five types shown in Figure 8.

|

The dependency matrix of a program contains an entry for every predecessor path in the
program. The entries are made according to the rules given in Figure 8. The dependency
matrix for the program in Figure 4 is shown in Figure 9. Note that the starred entries are a
short-hand to represent an infinite number of entries in a row. For example, if X(n]'
occurs in the Y(k) position, it means that Y(k) depends on X(n), Y(k+1) depends upon
X(n+1) etc. Furthermore, by replacing X(n)” in the Y(k) position with X(n) and making
an additional entry X(n+1)" in the Y(k+1) position, (an operation which from now on will
be referred as unrolling) we get the dependency matrix of an equivalent L, program.

Definition 12: If Y(j)" occurs in the i column of row X in the dependency
matrix, then the dependencies of X(i) on Y(j), X(i+1) on Y(j+1), ... are said to
be starred dependencies.

For example, the dependency of B(3) on C(2) is a starred dependency while the
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Figure 8: Predecessor Paths and the Corresponding Matrix Entries
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Y(n+1)
Case 4

in
t(1)
Case 5

dependency of O(1) on A(1) in nor a starred dependency. For the first argument to T-box
T, the starred dependencies are O(2) on C(1), O(3) on C(2) .... The reader can test his
understanding of the dependency matrix by checking that O(3) depends on { 2y, 23, 8y, 8,
a6, 45, g, B(1), B(2), B(3), C(1), C(2), D(1), D(2), D(3) and D(4)}.

Lemma 13: For any stream X in an

L, program and any integer k, the number

of elements in the transitive closure of the data dependencies of X(k) (written as
(X (k))) is finite?,

Proof: Construct a tree that corresponds to the transitive closure of the data

4?\'1_111: that X(k) is not a member of 9{X(k))
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1 2 3

A I(D)CQ

B ala8 a6,C(1)" D)’
C aa3 B(1)".D(3)"
D adas B(1)", D(1)
0 A(l)al C(1)".DE)"

Figure 9: The Dependency Matrix for the Program in Figure 4

dependencies of X(k). By Konig's lemma, the number of nodes in a tree that has
finite out-degree at every node is infinite if and only if there exists an infinite
branch in the tree. Consequently, if the number of elements in g(X(k)) is
infinite, there must be an infinite branch in the tree. Fach node in the tree is
labeled by a stream element. Since the number of T-boxes in the program is
finite, there must be at least one T-box whose elements occur infinitely often in
the infinite branch. Let that T-box be Y. It must be the case then, that some
element Y(j) must depend on at least one element of the form Y(n) where n >
j. This can happen only if there is some cycle in the program that fails the cycle-
sum test. Since such cycles are ruled out in Lﬂ, it follows that the number of
elements in 9(X(k)) for any X(k) must be finite.

3.4 Steady-State of L, Programs

Consider an L program with one output stream O. In order to compute O(k) (for any k
2 1), it is necessary to compute all the elements in the transitive closure of the data-
dependencies of O(k) - ie., all the elements of 9{O(k)). However, since our semantics for
streams dictates that O(1), .. O(k-1) must have been computed before O(k) can be
computed, the only "new" elements that must be computed are those in 9(O(k)) and which
were not required for the computation of O(1), O(2), ... . O(k-1). If a program fragment
corresponding to the source program can be identified whose repeated evaluation will
produce "new-elements”" at kg+1, ky+2, ... for some integer k, then the source program

can be said to be in a "steady-state" afler Ky We formalize this concept of steady-state by
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first defining the set new-elements(0,k) as shown below. In L, programs with more than
one output stream, we will be interested in the set of "new" elements required to compute
all elements O1(k), O2(k) ..., assuming that 01(1), ..., O1(k-1), 02(1), ..., O2(k-1), ... have all

been computed.

For any output stream O4, the set new-elements(Oi k) is defined as follows:

new-elements(0Oi,1) = 9(0i(1)) U {Oi(1)}
new-elements(Oi,k) = 9(0i(k)) U {Oi(k)} —
{new-elements(0i,1) U..U new-elements(Oi k-1)}.

where "U" and " —" represent the set union and difference operations respectively.

We define the set new-elements(k) as follows:

new-elements(l) = new-elements(01,1) U new-elements(02,1) ...
new-elements(k) = new-elements(01,k) U new-elements(02,k) ...
—{new-elements(1) U ... U new-elements(k-1)}

It should be clear that for Ln programs with only one output, the set new-elements(k) is

equal to the set new-elements(O,k).

The sets new-elements(1), ..., new-elements(5) for the program in Figure 4 are shown

below :
new-elements(1) -{a f::1 s,8,87,8,
)

1(1J A(1),B(1), 5{2] C(l) C(2).D(1),D(2).D(3),0(1)}
new-elements(2) = {O(2)}
new-elements(3) = {B(3),D(4),0(3)}
new-elements(4) = {B(4),C(3),D(5),0(4)}
new-elements(3) = {B(5),C(4),.D(6),0(5)}

The program for computing new-elements(1), ..., new-elements(5) can be derived by

following data dependencies in the dependency matrix, and is shown below -
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D(1) = TD{34~35]:

C(1) = tc'::ﬂz-aj):

B(1) = tp(a7,a8);

D(2) = t5(B(1),D());

B(2) = t;3(a6,C(1));

D(3) = 1,y(BQ).DQR)):

CQ) = t(B1).DA));

A(l) = t,(1(1),CQ2));

O(1) = t5(A(1),al); !end of program to compute O(1) !
0(2) = 15(C(1),D(3)); ! end of program to compute O(2) !
B(3) = t3(D(2).C(2));

D(4) = t(B(3).D(3));

O(3) = 15(C(2).D(4)); ! end of program to compute O(3) !
C(3) = t(B(2),D(4));

B(4) = 15(D(3).C(3));

D(5) = t;5(B(4),D(4));

O(4) = 15(C(3).D(5)); ! end of program to compute O(4) !
C(4) = t(B(3).D(5));

B(5) = 13(D(4).C(4));

D(6) = t5(B(5).D(5)); .

O(5) = 15(C(4),D(6)); ! end of program to compute O(5) !

The pattern after k=4 appears to be fixed, that is, to compute O(k) we need to compute
only B(k), C(k-1), and D(k+1). But interestingly enough if we are willing to compute a
few elements more than once, the computation of O(2) and O(3) can be fitted in the same
pattern (O(3) requires recomputation of C(2) while O(2) requires recomputation of B(2),
C(1) and D(3)). As we shall show later, recomputation of a few elements may actually
reduce the size of the transformed program because there are fewer special cases to be dealt
with in the prelude part.

We now define sready-state.
Definition 14: A program is said to have reached steady-state at ko if

1. no scalar input or output of a t-box is in new-elements(k) for k > kg, and

2.foralli>0, X(ky) belongs to new-eierﬂems{k(}) if and only if }({kx-l-i)
belongs to ncw-elements[ku +1).
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Definition 14 is not an algorithmic definition of steady-state since it involves the
computation of new-elements(j) for all j. We now give an operational definition of steady-
state which will enable us to compute the value of k at which an L, program reaches
steady-state. Our new definition of steady-state involves checking that new-elements(k)

satisfies three conditions.

Condition 1: All dependencies between members of new-elements(k) are
starred dependencies.

Condition 2: If X(ky) is a member of new-elements(k), then X(ky+1),
X(ky +2), ... do not belong to new-elements(1) U ... U new-elements(k).

Before presenting the third condition, which is rather complex, we motivate its need.
Lemma 16 shows what Conditions 1 and 2 guarantee. The proof of Lemma 16 requires the

following property of the set new-elements(k).

Lemma 15: If X(ky) is in new-elements(k) and is not of the form Oi(k), then
there must be some Oi(k) in new-elements(k) such that in the dependence graph
of Oi(k), there is a path from Qi(k) to X(ky) in which all intermediate nodes (if
any) are in new-elements(k).

Proof: From the definition of new-elements(k), X{kxj must be in at least one
set new-elements(Oi, k), which implies that it is in 9{Oi(k)). Since X(ky) is in
new-elements(k), Oi(k) and any intermediate nodes in the path from Oi(k) to
X(ky) in the dependence graph of Oi(k) must be in new-elements(k) - otherwise,
some node Y(j) in this path, and all elements in 9(Y(j)) (which includes X(ky))
will be in new-elements(1) U ... U new-elements(k-1). This will contradict the
definition of new-elements(k).

- Lemma 16: If Conditions 1 and 2 are true at some k and X(ky) belongs to
new-elements(k).then X(ky +1) belongs to new-elements(k + 1).

Proof: From Lemma 15, there must be some O(k) in new-elements(k) such
that X(ky) is in 9(0(k)) and all intermediate nodes (if any) on the path from O(k)
to X(ky ) in the dependence graph of O(k) are in new-elements(k). By Condition
1, all dependencies between members of new-elements(k) are starred - hence,
X(kx+1} is in 9(O(k +1)). Condition 2 now guarantees that X(kx+]) is in new-
elements(k + 1).

O

Unfortunately, Conditions 1 and 2 are nor strong enough to guarantee that these will be
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the only elements in new-elements(k+1). The point is best illustrated by means of the
following example:

O = Ty(cons(a,cons(a,cons(b.l))), I)
The reader can verify that new-elements(2) = {O(2).I(2)} and that Condition 1 and
Condition 2 are satisfied at k = 2. As expected, O(3) and 1(3) are members of new-
elements(3) - however, so is b. To rule out such occurrences in the steady-state, we need to
look for patterns in the inputs required to compute new-elements(k). We will use the

following definition to define the required input elements for computing new-elements(k).

Definition 17: The set minimal-inputs(1) is defined to be the empty set. For
k>1, minimal-inputs(k) is defined to be the union of the subset of new-
elements(1) U ... U new-elements(k-1) whose members are in in the immediate
data dependencies of elements of new-elements(k), together with the set of all
elements Oi(k) that are not in new-elements(k).

This definition deserves further explanation. For one output L, programs, minimal-
inputs(k) is simply the set of previously computed elements which are in the immediate
data dependencies of elements in new-elements(k). The sets minimal-inputs(1), ...,
minimal-inputs(5) for the program whose dependency matrix is shown in Figure 9 are
given below -

minimal-inputs(1) = {}
minimal-inputs(2) = {C(1), D(3)}
minimal-inputs(3) = {C(2), D(2), D(3)}
minimal-inputs(4) = {B(2), D(3), D(4)}
minimal-inputs(5) = {B(3), D(4), D(5)}

For multiple output L, programs, the situation is a little more complicated. As in the one
output case, minimal-inputs(k) contains all previously computed elements which are in the
immediate data dependencies of elements in new-elements(k). In addition, it will contain
those elements of {Oik)} that are not in new-elements(k). Consider the dependency
matrix of Figure 9. Suppose both O and D were output streams. Since D(2) has been
computed by the first stage, it is not in new-elements(2). Our definition of minimal-inputs
requires, then, that D(2) be an element of minimal-inputs(2). This distinction may seem
very minute but its importance will become evident when we generate code for the

transformed ., program.
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For the example we have been considering, the pattern of minimal inputs does not seem
to change after k>4. We ask the reader 10 take it on faith that the pattern of new elements
and minimal inputs needed to compute O(k) does not change after k=4 in the example
under consideration. Later in this section, we will prove that this is indeed the case. The
reader is warned that in general, a program can reach steady-state at some kq. even if the
pattern of minimal-inputs is not fixed for k > Kq- In what follows, we will actually motivate
and define a weaker but unfortunately, more complicated condition to detect steady-state.
This weaker condition, known as Condition 3, also yields k = 4 as the value of k at which
the program reaches steady-state - this example was chosen so that we could make a point
about steady-state without giving the complicated condition straight-away. Condition 3 can
be motivated best by considering the code to be generated for the steady-state part.

If the pattern of inputs indeed, does not change after k=4 then in order to compute O(k)
for k > 4, we will need to compute B(k), C(k-1) and D(k+1), and get elements B(k-2),

D(k-1), and D(k) from previous stages as shown below.

C(k-1) = t(B(k-2).D(K);
B(k) = t,(C(k-1),D(k-1)):
D(k+1) = t,,(B(k).D(K));
O(k) = t5(C(k-1),D(k+1)):

An L, program that computes O(4) is shown in Figure 10(i). An L, program that computes
O(k) for k > 3 is shown in Figure 10(ii). The reader can verify that if [B(2),B(3)....],
[D(#).D(5)....] and [D(3),D(4)....] are input to this graph it will produce [0(4),0(3),...].

How should the input streams for the program in Figure 10(ii) be generated ? Notice
that, in Figure 10(ii) the output of the Ty-box is [B(4).B(5)....] while the output of the
Tybox is [D(5),D(6).... ]. By providing "feed-back" paths in the graph, we can take
elements of the B and D streams generated during the computation of O(k), and feed them
back into th inputs to be used for computation of more elements of O, A program to
accomplish this is shown in Figure 11. Hence, given B(2), B(3), D(3) and D(4), the graph
of Figure 11 will produce [O(4), O(5), ... ]. The next question is, can the input elements for

the steady-state part be identified easily. It is easy to see that minimal-inputs for the stage
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Figure 10: The Acyclic Steady-State Graph for the Program of Figure 4

when the program enters steady-state (k=4, for this example) must be needed for the
steady-state part of the graph. To understand why inputs other than the minimal-inputs
are needed, consider B(3) which does not belong to minimal-inputs(4). B(3) is nor required
for computing O(4) but is needed to compute O(5)! Its value must be generated in the
prelude since the T-box in the Figure 11 generates only B(4),B(5),... .

We require that the value of B(3) be available even during the computation of O(4) for
the reasons of simplifying code generation. If this requirement was not made, then even
after the program reaches steady-state, the computation of elements of the output stream
will involve computation in both the steady-state and the prelude parts of the graph -- nota
desirable situation for code generation. Elements such as B(3), as shown below. are
precisely the elements of the form X(m) where X(i) belongs to minimal-inputs(k), X(n)

belongs to new-elements(k) and i ¢ m < n.
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Figure 12: A Portion of a Dependency Matrix

Figure 4
SR - o1 50 sesns |t |WYE+Dol seces Y(k ‘13 i
Ky S

The portion of a dependency matrix shown in Figure 12 can help further in motivating

Condition 3. Let X and Y be two T-boxes, and let Y(j)" be the starred entry in X(s). This

entry has been unrolled in Figure 12. Let I\'{kxj and Y(ky) be in new-elements(k) at some
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k at which Conditions 1 and 2 are satisfied. We would like to assert that if the program
reaches steady-state at k, then X[Rx}, X{kx-:-l} .. will be computed in the steady-state
program. From the dependency matrix of Figure 12, this means that [a, b, =., Y(j), Y(j+1),
v Y(ky), Y(ky 1), .....] must be input into Ty the T-box that computes [X(ky), X(ky+1)
...] in the steady-state program. Now, the stream [Y(ky), Y(ky+1), ..] is generated in the
steady-state code. Consequently, the values of a, b,..., Y(j). Y(+1).....Y(ky-1) must be
generated in the prelude. Once the program reaches steady-state, we do not want
computation to take place in both the prelude and the steady-state program - hence, we
require that a,b,..., Y(j), Y(j+1)...., Y(ky-1) must be computed before the program reaches
steady-state. As we have seen in a small example earlier Conditions 1 and 2 are not
adequate to ensure this. We therefore impose Condition 3, which we will check only if new-

elements(k) satisfies Conditions 1 and 2.

Condition 3: For each element « in minimal-inputs(k), perform the following
checks -

L if @ is an element of the form Oi(k), check that some j > k, element Oi(j) is in
new-elements(k), and that all elements Oi(k+ 1), Oi(k+2), ..., Qi(j-1) are in
new-elements(1) U ... U new-elements(k-1).

2. for each element X(ky) in new-elements(k) that depends directly on a, perform
the following check -

a. if this dependency is starred, then a is of the form Y(i) where Y is some
stream input or the output of a T-box. Check that for some j > i, Y(j) is in
new-elements(k), and that Y(i+1), ..., Y(j-1) are in new-elements(1) U ...
U new-elements(k-1).

b. If the dependency is not starred, let « be the p® argument to the function
Lhat computes X(k,) and let s be the smallest integer > ky such that the
pth argument af}{{s} 1s starred and is, say, Y(j). Check Lhat for some k., >
J. Y(ky) is in new-elements(k), and that the elements in the immediate
data dependenﬂies of X(ky+1), ..., X(s-1), as well as Y(),YG+1), ...,
Y(ky-1) belong to new-elements(1) U ... U new-elements(k-1).

Theorem 18: For an L, program, if Conditions 1 to 3 are true at some k, then
the program is in steady-state at k.

Proof: (By induction on k). From Lemma 16, all members of new-elements(k)
are of the form X{kx} and, in addition, X{ka] must be in new-
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elements(k+1). To prove that the program reaches steady-state at k, we must
show that new-elements(k +1) cannot have a scalar input or the output of a t-box
or any element of the form Y(j+1) (where Y can be a stream input, or the output
of a T-box) if Y(j) is not in new-elements(k). Let us refer to such an"element in
new-elements(k + 1) as an off~bear element.

Suppose a is an off-beat element in new-elements(k+1). From Proposition
15, there must be some Om(k+1) in new-elements(k+1) such that all
intermediate nodes on the path from Om(k+1) to « in the dependence graph of
Om(k+1) are in new-elements(k+1). Moreover, Om(k + 1) cannot be an off-
beat element - if Om(k) is in minimal-inputs(k), then Condition 3 (1) ensures
that Om(k + 1) must be either in new-elements(1) U ... U new-elements(k-1) or in
new-elements(k) - either way, if Om(k) is in minimal-inputs(k), then Om(k+1)
cannot be in new-elements(k+1). Therefore, on the path from Om(k+1) to a,
there must be some element Y(ky+1) (which can be Om(k+1) itself) which is
not an off-beat element and which depends directly on an off-beat element B
(which could be a itself). Condition 3 (2) now assures us that 8 must have been
in new-elements(1) U ... U new-elements(k), and hence, it cannot be in new-
elements(k +1). Consequently, no off-beat element can be a member of new-
elements(k +1).

To complete the proof, we must show that Conditions 1 to 3 hold at (k+1).
Given the result that no off-beat element can be a member of new-
elements(k + 1), the proofis trivial and is left to the interested reader.

m}

We now describe an algorithm that will use Conditions 1 to 3 in order to compute the
value of k at which an L, program reaches steady-state. It also generates the transformed
program.,

3.5 Algorithm-SST

Algorithm-SST : An algorithm to transform Ly Programs into the Schema of
Figure 5.

1. SetktoO.

2.Setktok+1 and compute new-elements(k) and minimal-inputs(k). Generate
code for new-elements(k).

3. If Condition 1 holds for new-elements(k) then continue else go to 2.
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4. If Condition 2 holds for new-elements(k) then continue else go to 2.
5. If Condition 3 holds for minimal-inputs(k) then continue else goto 2.

6. Set k,, to k. The code generated for new-elements(1)...., new-elements(k-1) and
generate code for the steady-state part in the following way. Replace each t-box
in the code for new-elemenm{kﬂ] with the corresponding T-box and label the
output stream of Tvaax as XS. We will refer to this code as the acyclic steady-
state program,

7. For each element a in minimal-inputs(k,) which is of the form Oi(k,), there
must be some Ko; 2 kg such that Oi(ky,) is in new-elements(k,). Connect
fkoi'ku} cons boxes in a cascade and connect Oi(kg), ... Di{km-lj from the
prelude as shown in Figure 13.

8. For each pair of elements (X(ky).a) such that X(ky) is in new-elernents(ko), ain
minimal-inputs(ku), and X(ky) directly depends on a, do the following:

Let a be the p™ argument of the function that computes X(ky). In the
dependency matrix, let the starred entry for the p¥ argument of Ty, be YG)',
and let it occur in X(s). Let Y{kY) be the element of Y in new-eIemEan{kU}.
There are 4 different cases for code generation depending upon whether Y is an
input stream or not, and whether s is larger or smaller than ky.

a. Y is an input stream and s<ky : Feed Y through ky-s+j-1 rest boxes and
connect the output to Ty,-box as shown in Figure 14(i).

b. Y is not an input stream and s < ky : Connect s—kx +kyj cons boxes in a
cascade as shown in Figure 14(ii).

¢. Y is an input stream and s7ky : Feed Y first through j-1 rest boxes and
then through s*ky cons boxes as shown in Figure 14(iii). The scalar
inputs for cons boxes are specified by entries in X(ky) to X(s-1) locations
of the dependency matrix, and must be available from the prelude.

d. Y is not an input stream and s > ky : Let Y(ky) be the element of Y in
new-elemcnts(kﬂ) {T{Y 2 j). Connect s=kx - k,[.-j cons boxes in a cascade as
shown in Figure 14(iv).

We will refer to the code generated in step 8 as the steady-siate program.

9. For each output stream O, introduce kq-1 cons cells connected in a cascade.
Connect O(1) to the scalar input of the first cons cell, O(2) to the scalar input of
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the next cons cell and so forth. IfO{kﬂ] is in new-elements(k,) then connect the
output of the T-box T in the steady-state program to the stream input of the
last cons cell, otherwise connect the output of the cons cell whose scalar input is
D{ku] to the stream input of the last cons cell. (The values of O(1) © (}{kﬂ-l}
must have been generated in the prelude part).

Conses

|
v Tai| :

|E0i{k o+

Figure 13: Generating Code for the Steady-State Part Related to an Output Stream

The behavior of Algorithm-SST when the algorithm is applied to the program of Figure

4 is summarized below.

k  Steps executed

1 23 non-starred dependencies in new-elements(1)

2 2345 nothing beyond C(1) or D(3) in new-elements(2)
3 2345 nothing beyond C(2) in new-elements(3)

4 23456789 steady-state

For the program of Figure 4, Step 8 of Algorithm-SST will examine the dependencies
between C(3) and B(2), C(3) and D(4), and B(4) and D(3). The code generated by Step 8
will look like the code shown in Figure 11 with one minor difference - the fork shown at the
output of the cons box with D(4) as an input will not exist. Instead, Step 8 will generate a
third chain of cons boxes in which there is only one cons box: the scalar input to this cons
box will come from D(4) while the stream input will be connected to T}. The output of this
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cons box will be connected to the inputs ofTC and T},. It is not hard to modify Step 8 of
Algorithm-SST so that it generates exactly the code shown in Figure 11; however, it is a lot

easier to understand Algorithm-SST as it stands, and hence, the modified step is omitted.
The graph for the code generated for this example is shown in Figure 15.

Suppose in the program of Figure 4 we also declare B to be an output stream._The reader
can verify that no change in new-elements will occur. In fact the only change will be in the
value of minimal-inputs(2) where element B(2) will be included to be passed on as output
at stage k=2 of the prelude. Consequently the behavior of Algorithm-SST does not change
except for code generation at k=2. However, if O and C are designated as output streams

then new-elements also change as shown below :

k new-elements(O.k) new-elements(C.k)

2 {0(2)} {}

3 {O(3).D(4),B(3)} {C(3).D(4)}

4 {0(4).C(3),D(5),B(4)} {C(4),D(5),B(4)}

k new-elements(k) minimal-inputs(k)

2 {02)} {C(1).C(2),D(3)}

3 {0(3).D(4),B(3),C(3)} {B(2).C(2).D(2),.D(3)}
4 {0(4),D(5).B(4).C(4)} {B(3).C(3).D(3),D(4)}

Algorithm-SST will still find the value of kg to be 4 but the code for steady-state part will
change as shown in Figure 16.

We now prove the termination of Algorithm-SST. This proof is a little involved, and the
reader can skip the rest of this section without loss of continuity. The difficulty in proving
termination arises from the fact that Conditions 1, 2 and 3 are related in the sense that if
Conditions 1 and 2 hold at some k. then Condition 3 must also hold at ky in order for
Conditions 1 and 2 to hold for all k > kg- An example which shows this connection is given
in the appendix. Hence, we follow an entirely different proof strategy in which we first
define two steady-state patterns - one for new-elements and the other for minimal-inputs.
We then show that for sufficiently large k, new-elements(k) and minimal-inputs(k) of every

L, program conform to these patterns. This will enable us to determine an upper bound for
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the value of kq. It is possible that the termination of Algorithm-SST can be proved in a
more direct manner - however, we feel that the proof strategy given here is interesting in its
own right. In order to define the steady-state patterns described above, we construct a
weighted, directed graph for a data dependency matrix as follows.

Definition 19: Construct the weighted graph of a dependency matrix as follows:

1. For each stream input and T-box in the program, create a node and label
it with the name of the input stream or T-box.

2.1 B(j]' is a starred entry in position A(i) then create an arc from A to B
and give it a weight of (j-i). Notice that, since for a large enough k, A(k)
must be a starred element, it will depend upon B(k +j-i).

3. From the directed graph delete all nodes inaccessible from {04}, as well
as any edges to and from these nodes.

The weighted graph for the program in Figure 4 is shown in Figure 17,

Lemma 20: If there is a path of weight w from some node A to some node B in
the weighted graph. then, for sufficiently large k. A(k) depends on B(k+ w).
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Figure 17: The Weighted Graph for the Program of Figure 4

Proof: This follows very simply from step (2) of the construction of the
weighted graph. If the length of the path is 1, then for all k such that A(k) is a
starred element, A(k) will depend on B(k +w). Suppose this is true for all paths
of length n. A path of length n+1 between A and B will have some node C such
that there is a path of length n from A to C and an arc from C to B. Let the
weight of the path from A to C be w1 and the weight of the arc from C to B be
w2. Since the path from A to C is of length n, A(k) will depend on C(k+ w1) for
all k greater than or equal to some kn. If C(kn+w1) is a starred element, then
C(k+wl) (and hence, A(k)) will depend on B(k+wl+w2) for all k > kn. If
C(kn+w1) is not a starred element, then suppose C(k) is a starred element for all
k > ke where ke must be greater than kn+wl. Then, A(k) will depend on
B(k+wl+w2) for all k > ke-wl. Either way, since wl+w2 is the weight of the
path from A to B, we have proved the required result.

O

For any output stream Oi, let the weight of the (trivial) path of length zero from Oi to
itself be of weight zero. Let us now consider all possible paths from each element of {0/} to
any node X, where X itself can be an element of {O:}. In general, a weighted graph will
have cycles.(We do not consider the trivial path of length zero from Oi to itself to be a
cycle.) However, the weight of a cycle (ie., the sum of the weights of all the arcs in the
cycle) must be strictly less than 0. Otherwise, from the previous lemma, for some stream X
and a sufficiéntly large value of j, X(j) will depend upon X(j+w) where w>0, which will
represent a deadlock. Since no cycle has a positive weight, and there are only finitely many
output streams, there must be a path (from some output Oi to X) such that no other path

from any output Oj to X has a weight larger than the weight of this path.
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Definition 21: A maximal path to X is a path from some Qi to X such that no
other path from any Qj to X has a larger weight.

In general, there can be more than one maximal path to X - for instance, if there is some
path from Oi to X that is a maximal path, and there is a path of weight zero from Qj to Oi,
then the path O;...01..X is a maximal path to X that is, clearly, distinct from the path
0i...X. In our argument, we can use any maximal path to X.

The significance of maximal paths can be appreciated by looking at Figure 17. The
maximal path from O to C has a weight of -1. In addition, there is a path O-C-B-C whose
weight is -3. From Lemma 20, it follows that for a large enough k, O(k) will depend on
C(k-1) and C(k-3). For a large enough k, C(k-3) is required for the computation of O(k-2),
and hence it cannot be in new-elements(k). We will now formally prove this connection

between maximal paths and new-elements.

The following definitions extract patterns from a weighted graph. We will subsequently

relate these patterns to the steady-state of the program,

Definition 22: The set pattern-elemenis(k) is the set of elements of the form
X(k+wy) where X is a node in the weighted graph, and Wy, is the weight of the
maximal path to X.

Definition 23: The set pattern-inputs(k) is the union of the set of all elements
X(j+w) such that Y(j) is in pattern-elements(k) and there is an arc of weight w
from Y to X , and X(j+w) is not in pattern-elements(k), with the set of all
elements Qi(k) that are not in pattern-elements(k).

We encourage the reader to compare this definition to the definition of minimal-
inputs(k).

Definition 24: The integer gap is the largest integer such that for some element
X(k+ W) in pattern-elements(k), X(k+ Wy~2ap) is in pattern-inputs(k),

For the weighted graph of Figure 17, pattern-elements(k) is {O(k), B(k), C(k-1),
D(k+1)} and pattern-inputs(k) is {B(k-2), D(k-1), D(k)}. These should be compared with
new-eit:mems{kﬂ} and minimal-inputs(ky) computed by Algorithm-SST. Gap for this
graph is 2 since D(k +1) is in pattern-elements(k) and D(k-1) is in pattern-inputs(k).
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The reader may first want to read the next two lemmas and the theorem that follows
them (without reading proofs) , in order to understand the line of argument for the proof of

termination.
Lemma 25: There exists a k, such that, for all k>k,,

L. pattern-elements(k) is a subset of new-elements(k), and

2. if all elements in pattern-inputs(k) are available, then new-elements(k) =
pattern-elements(k).

Prool: We first compute the value of k, as follows:

Let us define a siarred element 1o be an element all of whose immediate data
dependencies are starred. Compute the set transient elements which is, the union
of the transitive closures of the data-dependencies of all non-starred elements in
the program. From Lemma 13, it follows that we can find a vector of integers j,
jps - 50 that A(j ), B(j ph - are transient elements but AGy +1), B(jg+1), ... are
not. Let us refer to this vector as the Transient Elements Vector or TEV. 1-:1 is,
then, the minimum value of k such that for every node X in the weighted graph,
k+w, > TEV[X].

1. We first show that, for all k > k;. every X{k+wx] in pattern-elements(k)
must be in 9(Oi(k)) for some Oi. Let Oi be an output from which there is a
maximal path to X, and consider a maximal path from Oi to X in the weighted
graph. If A is an intermediate node on this path, then the path from Oi to A
must be a maximal path to A. By the above definition of kp, A(k+ w,) bea
starred element for all k > kl. Since this holds for any node A in between Qi and
X, Oi(k) must depend on X{k+wx}.

Since X(k+wy) is in 9(0i(k)), for all k > k,, to show that it is in new-
elements(k) we must prove that it could not have been computed during the
computation of new-elements(l), .., new-elements(k-1). If it had been
computed, then let it be in 9(On(j)) (1< j < k-1). Consider the path in the
dependence graph of On(j) from On(j) to X(k+ wy). Either every node on this
path is a starred element, or there is at least one non-starred element on this path,
Since k+wy, > TEV[X], the latter case is impossible. If the former is true, there
must be a path in the weighted graph from On to X with a weight of k+ Wyl
Since k-j > 1, this weight is > Wy + 1. This contradicts the fact that the maximal
path to X is of weight Wy. Hence, X(k+wy ) is in new-elements(k) for all k > Ky
A similar argument shows that J({k+u.'x+l}, X(k+wy+2), ... cannot be in
new-elements(1), ..., new-elements(k).
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2. We now show that for k > k,. if pattern-inputs(k) is available, then new-
elements(k) = pattern-elements(k). If not, there must be some X(j) in new-
elements(k) such that X(j) is not in pattern-element(k). Since we have assumed
that pattern-inputs(k) are available this element can not be in pattern-inputs(k).
Further, by the definition of new-elements, there must be some Qi(k) in new-
elements(k) such that in the dependence graph of Qi(k), all intermediate
elements (if any) between Oi(k) and X(j) must be in new-elements(k). Since
Oi(k) is in pattern-elements(k), let Y(i) be the first element on the path that is
neither in pattern-elements(k) nor in pattern-inputs(k) (of course, Y(i) may be
X(j) itself), and let W(m) be the element on the path that depends on Y(i) (where
W(m) may be Oi(k) itself). From the definition of Y(i), W(m) must be either in
pattern-elements(k) or in pattern-inputs(k). We now have a contradiction - if
W(m) is in pattern-elements(k), then Y(i) is in pattern-elements(k) or in pattern-
inputs(k), while if W(m) is in pattern-inputs(k), then Y(i) cannot be in new-
elements(k). Hence, if pattern-inputs(k) are available, then new-elements(k) =
pattern-elements(k).

Lemma 26: For all k>k, where ky =k, +gap,

1. all elements in pattern-inputs(k) will be available,

2. minimal-inputs(k) = pattern-inputs(k),

Proof: 1. For some k > k,, suppose X(k+ «) is in pattern-inputs(k). By the
definition of pattern-inputs, r.here must be some X(k+ 8) in pattern-elements(k).
Since B-a < gap, k-(8-a) is greater than k,, and hence, X(k+ a) must be in in
the data-dependencies of some Oi(k+ a-8). Therefore, for k > k,, all elements
in pattern-inputs(k) are available,

2. From Lemma 25 and part 1, it follows that for k > k,, new-elements(k) =
pattern-elements(k). The conclusion that pattern-inputs(k) = minimal-inputs(k)
follows trivially from the definitions of pattern-inputs(k) and minimal-inputs(k).

Theorem 27: Algorithm-SST must terminate.

Proof: We have shown that for all k > k,, pattern-elements(k) is equal to new-
elements(k) and pattern-inputs(k) is equal to minimal-inputs(k). We will now
show that the three conditions of Algorithm-SST are true at k,.

Condition 1:We have shown that new-elements(k,) = pattern- elements(k,).
For k > ]-. no transient element can be a member of pattern- elements(k).
Hence, all deendanes between elements of new- elements(k,) must be starred.
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Condition 2: (Proof by contradiction) Let X(ky) be in new-elements(k,) and
assume X(i).for i>ky is in new-elements(1) U ... U new-elements(k,). Hence,
X(i) can not be in new-elements(k2+i-kx}. However, it is in
pattern-elements{kﬁ i‘kx}. This contradicts Lemma 26.

Condition 3: All elements in pattern-inputs(k,) are of the form X(i) where X is
a stream input or the output of a T-box. At k,, all dependencies between
elements of new-elemenrs(kz) and minimal-inputs{kz) are starred. Hence, clause
(2b) of Condition 3 does not apply at k,. We will now show that clauses (1) and
(2a) of Condition 3 are valid at k,.

Suppose some element Oi(k) is in minimal-inputs(k). For each stream Oi,
Oi(k +wy,) is in pattern-elements(k). Since (k, - k) must be less than gap, k must
be > ]-:1, and hence, by Lemma 26, all elements of the form Oi(k+1), Oi(k+2)
« Oi(k,-1) must have been computed. Hence, clause (1) is satisfied.

The proof that clause (2a) of Condition 3 is satisfied at k, is exactly the same
and is omitted. Hence, Algorithm-SST must terminate at some k <k,

O

The proof of correctness of ﬁze code generated by Algorithm-SST is omitted. One
possible way of proving correctness is to show that the dependence set of any element Qi(k)
of an output stream is exactly the same in both the untransformed and transformed
programs. Since the code both in the prelude and in the steady-state program was
generated directly from the dependency matrix of the untransformed Lu program, the
proof is straight-forward.

3.6 Discussion of Algorithm-SST

Condition 2 ensures that no stream element computed by the prelude is ever recomputed
by the steady-state program. The reader can verify that if recomputation of stream elements
is not forbidden, then the program of Figure 4 will reach steady-state at k =2. The
transformed program would compute B(2), C(1), C(2) and D(3) twice - once in the prelude,
and once in the steady-state program. On the other hand, the advantage of doing this is that
the size of the prelude, and hence, of the transformed program, is reduced. Our own
position on this trade-off is that the overhead of recomputation outweighs the benefits of a

smaller program.
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The reader can verify that if Clause (2b) of Condition 3 was omitted, then an L, program,
in general, will reach steady-state at some k > kq. An easy way of seeing this is to draw the
dependency matrix of the transformed program, and apply Algorithm-SST to it. The
reader can verify that if Clause (2b) was not there, the transformed program would get

further transformed by Algorithm-SST. Clearly, this would not be a desirable situation.

We would like to point out that the code for the steady-state program can be derived
directly from the weighted graph. Once maximal paths have been determined in the
weighted graph, we can easily determine pattern-elements and pattern-inputs.
Unfortunately, it is not easy to determine the smallest value of k at which a program
reaches steady-state. (The value of I':2 that was computed in the proof of termination of the
Lt} program is an upper bound for the value of k at which the program reaches steady-
state). Algorithm-SST requires more computation than this approach since we have to
compute new-elements(1), ..., new-alemems{kn}. On the other hand, the value of ky that it
determines will, in general, be smaller than k,. Moreover, we will use new-elements in the

next section to propagate demands in the transformed L, program.,

4 Making Transformed L, Programs Strongly-Safe

In this section, we make transformed L, programs that correspond to the schema of
Figure 5 into strongly-safe programs that correspond to the schema of Figure 6. This is
done in two steps - in the first step, we use a global algorithm for propagating demands for
the outputs of the L, program to demands for the inputs of the program. In the second
step, we introduce gates into the transformed program in order to make it safe. The
resulting program is safe and input-output equivalent to its lazy program, and hence, it is
strongly-safe (see Theorem 8).

4.1 Global Propagation of Demand Streams in L, Programs

Given the analysis of the last section, demand propagation in transformed L, programs is
quite simple, Before giving the algorithm for demand propagation, we illustrate our
technique by means of a simple exam ple.
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Figure 18: Demand Propagation in an L, Program

Consider the program shown in Figure 18. A demand for the first element of O must
generate a demand for the second element of I. Our semantics for streams requires that the
generation of 1(2) be preceded by the generation of 1(1). Consequently, the demand for
O(1) must generate a demand for both I(1) and I(2). Consider now the demand for O(2).
This demand can come only after the demand for O(1) - since the demand for O(1) resulted
in demands for both 1(1) and 1(2), no new demands for the input need be generated. The
program of Figure 18 reaches steady-state at k =3. It should be easy to see that the demand
for O(3) should result in demands for 1(3) and 1(4). After k = 3, the pattern of demands is

fixed - each request for an element of the output stream results in a request for one element
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of the input stream. The reader can.verify that the graph shown in Figure 18 generates
precisely the pattern of demands for the input stream as discussed above. We now give an
algorithm for generating the code for propagation of demands in an L, program. We will
assume that the transformation of the source program has been done by applying
Algorithm-SST.

Let al, a2, ... be scalar inputs to an L, program, and I1, 12, ... be stream inputs to the
program. As before, O1, O2, ... will represent the output streams of the L, program. Let
DO1, DO2, ... represent demand streams for O1, O2, ... respectively. The algorithm first
generates code to convert demand stream for each output stream into separate demands for
scalar and stream inputs. In the next step, demands thus generated for an input are
combined into a single scalar demand or a single demand stream depending upon the type

of input.
Algorithm-GDP: An algorithm for Global Demand Propagation in
Transformed L, Programs.

1. For each output stream O in {Oi} and each scalar input a, the code for
generating the demand for a from the demand for O is produced as follows. 1f a
does not occur in the sets new-elements(0.1), ..., new-elements(O,k o) then there
is no code to be generated for this pair of output stream and mput Otherwise,
let j be the smallest integer such that a is an element of new- ElemEHES[DJ}
]mmmel} this means that a is not required for the computation of O(1), ..
O(-1), but will be required for the computation of O(j). The code for this ease
is shown in Figure 19(i).

2. For each output stream O and each input stream I, do the following two steps:

a. Examine new-elements(0,1), ... new-elements(O, kg1) in increasing
order of k, and form the sequence of pairs (I(i1),k1), {I(ﬂ} k2), ... such
that 1(i/) occurs in new-elements(k;). Delete any pair (I(ij).k/) from this
sequence if it is preceded by some pair (I(i).k) such that i>ij. In the
remaining sequence {(I(i/).k)}, the integers il, i2, ... will form an
increasing order. Let im be the largest integer in this sequence. The code
to be generated is, then shown in Figure 19(ii).

b. If no element of | occurs in new-elements(D.kU). there is no code to be
generated. Otherwise, let n be the largest integer such that I(n) is in
new-elements(O.k J}}. If n > im then the code to be generated is shown in
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Figure 19(iii). Otherwise n < im and the code should be generated
according to Figure 19(iv).

3. For every scalar input, use a d-union to combine all the demands foi" its value.
For every stream input, use a D-union to combine the demands propagated to it
from the various outputs.

O

As before, Algorithm-GDP can be improved to yield better code - once again, we have
not bothered to do this because we are interested in presenting our method in a simple way.

The final step in making a transformed L, program into a program that is input-output
equivalent to its corresponding lazy program is to introduce gates at the outputs of the
program. Consider the program shown in Figure 15. A demand for O(1) will cause the
values of I(1) and al, a2, ..., a8 to be fed into the program. Once these values are available,
O(1) will be computed in the prelude, but so will the values of the O(2) and O(3).
Moreover, this will also start the computation of O(4), O(3), ... in the steady state part of
the program. In other words, a demand for O(1) will result in the production of all the
elements of O. To ensure that the input-output behavior of the transformed program is the
same as that of the corresponding lazy program, we must put a gate at every output of the

transformed program by using the following algorithm -
Algorithm-IOE: Introducing Gates to Ensure Input-output Equivalence with
Lazy programs,

For each output O, introduce a gate on the line that produces the stream Of
and feed the demand stream for O/ into the control input of that gate.

O

Lemma 28: The transformed LD program that results from applying
Algorithm-IOE has the same input-output behavior as the corresponding lazy
program.

Proof: Omitted.
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4.2 Introducing Gates to make L, Programs Safe

The final step in the transformation is to ensure that the transformed program will always
perform at most a bounded amount of computation more than that performed by the
corresponding lazy program. A program that results from applying Algorithm-IOE does
not necessarily satisfy this requirement for the following reason. Since adjustments and
prelude portions of the transformed program are acyclic interconnections of first, rest, cons
and t-boxes, there cannot be an arbitrary amount of computation performed there if no
input has an arbitrary number of tokens in it. Since inputs are fed in on demand, an input
stream can have an arbitrarily large number of tokens in it if and only if the demand stream
for some output has an arbitrarily large number of tokens in it. However, in that case, the
corresponding lazy program will also perform an arbitrarily large amount of computation.
On the other hand, the steady state program is, in general, a cyclic interconnection of
operators. Therefore, operators in the steady state program can be enabled arbitrarily often
even if there is no arbitrarily large demand for any output stream, as in the program shown
in Figure 15. To ensure safety, we must, therefore, introduce gates into the steady state

program. One way to do this is given in Algorithm-Safe.
Algorithm-Safe: Introducing Gates into the Steady-state portion of
Transformed L, Programs.

1. Introduce a gate at the output of every cons chain that is generated by steps 8(b)
and 8(d) of Algorithm-SST.

2. Use D-union operators to combine the demand streams [DO1(ky), DOl{ku+ 1),
« J, [DO2(ky), DO2(ky+1), ... ] etc. and feed the output of the D-union
operator to the control input of each gate introduced in Step 1.

Theorem 29: The resulting program after Algorithm-Safe is safe.

Proof: To complete the proof of safety, we must show that no operator in the
steady state program can be enabled arbitrarily often unless there is unbounded
demand for some output stream. If there is no unbounded demand for any
output stream, then no gate operator in the transformed program can be enabled
an arbitrarily large number of times. Hence, no stream input or the output of
any gate in the steady state program can have an unbounded number of tokens in
it. Therefore, no operator in the acyclic steady state program can be enabled
arbitrarily often. Therefore, the program that results from Algorithm-Safe is safe.
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Algorithm-Safe introduces one gate for each cons chain (in the steady state program)
whose stream input is connected to the output of some T-box in the acyclic steady state
program. In many programs, the number of gates can be decreased still further by using the
connectivity of the acyclic steady state program. For example, the transformed program in
Figure 15 can be made safe by the introduction of only one gate, as shown in Figure 20. In
Figure 20, box Tj, in the acyclic steady state program cannot be enabled arbitrarily often
(unless there is unbounded demand). This guarantees that there cannot be unbounded
input to box T which makes it unnecessary to have a gate at the input of box Te.
Unfortunately, it can be shown that the problem of determining the smallest number of
gates that must be introduced into an L, program in order to make it safe is equivalent to
the vertex covering problem in graph theory - this problem is known to be NP-complete.
Of course, in any practical problem, the number of inputs to the acyclic steady state
program is likely to be quite small, and hence, enumeration of all possibilities for the

introduction of gates may be quite acceptable,

Algorithm-Safe takes advantage of the fact that T-boxes are total functions in order to
reduce the overhead of demand propagation. Notice that the control for gates permits one
token to flow down each input line of the acyclic steady state program each time some
element of an output stream is demanded. This is done even if the computation of that
element of the output stream does not require a value on each input line. To look at it
another way, a data-driven evaluation of the program resulting from Algorithm-Safe may
perform a little more computation than a strict demand-driven evaluator would. However,
this causes no problems with termination because, as we said bef‘orre, T-boxes are total
functions, The advantage of doing this is that the overhead of demand propagation has
been lowered considerably.,

Figure 20 shows a safe version of the program of Figure 4.
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50

5 Summary and Further Work

In this paper and the companion paper, we defined a powerful stream processing
language L and a super-set of L called LD which was the target language of
transformations performed by the compiler. In paper 1, we gave a simple algorithm for
transforming any L program into a program in LD (called the lazy LD program
corresponding to the L program) which had the property that a data-driven evaluation of
the lazy program performed precisely the same computation on data lines as a demand-
driven evaluation of the original L program. This was proved by showing that lazy
programs satisfied four properties named P1 to P4,

In this paper, we showed that a lazy program can be associated with any LD program and
explored the concept of safe LD programs which were LD programs that performed a
bounded amount of extra computation over that performed by their corresponding lazy
programs. Since the set of safe programs is not closed under composition, we defined
strongly-safe programs as being that subset of safe programs which is closed under
composition, A class of strongi:;-ﬁafe programs is the set of all LD programs that are safe
and input-output equivalent to their corresponding lazy programs.

We then defined a subset of L called L, and gave three algorithms for transforming any
L, fragment of an L program into a strongly-safe program. This transformation was used
to transform any L program into a strongly-safe program.

The work described here can be extended in many ways. The language L does not
permit user-defined function calls. The transformational scheme in this paper can be
applied without change to a language that has been augmented to permit user-defined
function calls. An interesting observation is that many user-defined functions may behave
like T-boxes in the sense that they have the one-in-one-oul property. By treating such
functions as T-boxes, it is possible 10 expand the scope of the transformational scheme to

include such function calls in language LD‘

An interesting problem is to investigate how this work applies to languages with
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generalized streams - fe., streams whose elements could be streams themselves, We feel
that the view of a stream as a sequence of elements flowing down an arc in a dataflow graph

must be abandoned in this case.

We have not supplied any performance measures that could determine if the advantage
of reduced complexity of demand propagation is neutralized by the disadvantage of extra
computation on data lines. Implementing the algorithms described in this paper could
provide a clue,

We feel that efficient implementations of applicative languages are essential if such
languages are to compete with imperative languages on sequential processors. The
transformation described in this paper is only a beginning.

Acknowledgments: An earlier draft of this paper (without section 2 and under a different
title) was submitted to TOPLAS. We are indebted to referee B for reading that version
thoroughly and providing us with encouragement and detailed constructive criticism,
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B(3)."

B(5)*
a | b | ¢ |
d | e [AD | B®)
) |co |[ce | as’
X - 3 5

Dependency Matrix for Example

new-elements(k)

{0(1),C(1),d}
{0(2).C(2),¢}
{0(3).C(3).A(1),B(3),B(5).c}

{O(4).C(5).B(4)}
10(5).C(6)}
{0(6).C(7),B(6)}

{O0(7).C(8).B(7),.C(4)}

{0(8),C(9).B(8)}

minimal-inputs(k) Test failed
{} 2
{ .
{C(2)} 2
{C(} 3
{B(5)} 4
{CO)} 5
{B(3)} 3
{C(5)} steady state

Figure I-1: An Lﬂ Program in which Conditions 1 and 2 are Related
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