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1. Introduction. Despite wide-spread though by no means unanimous acceptance of denotational
semantics, the numerous papers developing logical systems for proving assertions about programs
in the style of [Hoare, 1969] consistently deviate from a purely denotational approach (cf. [Apt,
1981]). In every case, this ideal approach has been deemed inconvenient and has been compromised
in favor of operational formulations, notably in explaining inference rules for calls of recursive
procedures and for declarations of local variables.. We now realize that at least one reason for past
deviations from a denotational approach is that the denotational semantics of local storage for
blocks has never, until now, adequately been worked out. _

This paper gives an overview of our development of a denotational basis for proof systems
concerning ALGOL-like programs. We believe our work demonstrates that the denotational ideal
is achievable without excessive complication and with signiﬁcant bencfits, notably, a satisfactory
treatment of free (global) variables in commands and formulas, and a semantically sound proof
system in which the usual substitution rules naturally hold.

In particular, we have developed a denotational semantics and Hoare-like axiom system for
partial correciness assertions about an ALGOL-like language we call PROG. PROG is a structured
language exhibiting a number of nontrivial features including blocks with local variables, nested
declarations of recursive procedures, procedure parameters, call-by-name, -value, and -reference

parameters, and sharing (aliasing) among identifiers.

2. ALGOL-like Languages. Our focus in this paper is on the family of ALGOL-like languages,
since these languages are rich in expressive power, yet are also sufficiently structured to yield a
rich algebra and proof theory. Following [Reynolds, 1981], we formulate several of the principles

which characterize this class of languages:

(1) There is a consistent distinction between commands (or programs) which alter the store but
do not return values, and ezpressions which return values but have no side-effects on the

store.

(2) The only explicit calling mechanism is by-name. (Other mechanisms such as by-udlue or

by-reference are available by simulation (syntactic sugaring).)

(3) The language is fully typed. Higher-order procedures of all finite types (in ALGOL jargon,

modes) are allowed. There is a clear distinction between locations and storable values.

(4) The stack discipline is an explicit aspect of the semantics. Note that this discipline should be
understood as a language design principle encouraging modularity in program construction
rather than as an implementation technique for efficient storage management. It is better

called the local storage discipline to avoid misunderstanding, and we do so henceforth.

As it happens, ALGOL-60 is not ALGOL-like in our terminology, nor are numerous features of
ALGOL-68; Pascal and ALGOL-W come closest to being ALGOL-like.
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Some comprehensive structural restrictions on ALGOL-like languages are implied by these
principles. In particular, a consequence of local storage discipline is that neither locations nor
procedures can be freely storable, since otherwise locations allocated inside a block might be

accessible after exit from the block via the stored objects.

Types in PROG. We have tried to arrange a syntax for PROG reflecting familiar programming
languages, but one place where our denotational perspective persuades us to violate common
practice Is in maintaining an ezplicit type distinction between locations and storable values (also
called “left” and “right” values of expressions), because we feel that using the same syntax both
for expressions denoting locations and expressions denoting values is an unnecessary source of
confusion. So we consistently distinguish locations from their contents, using the token econt for
explicit dereferencing. These two basic types - storable values and locations - will be called int and
loc, respectively. Thus, cont(z'°¢) denotes the element of type int which is the contents of z, and
assignment commands take the form LocE := IntE where LocE is a location-valued expression
and IntE is an int-valued expression. Equality tests in PROG can only be between elements of
basic type.

The other primitive types are prog, intexp, and locexp. The domain prog is the domain of
program meanings, namely, mappings from stores to sets of stores. (PROG has a nondeterministic
choice construct. For the partial correctness theory we develop, as opposed to termination theory,
nondeterminism creates no problems in the semantics or proof theory.) The last two “expression”
types provide the semantical domains for expressions whose evaluation yields basic values, viz.,
the elements of intexp (locexp) are functions from stores to int (loc). (Elements of type intexp or
intexp are called “thunks” in ALGOL jargon).

In order to avoid some complications in the partial correctness theory of PROG, we impose
two extra un-ALGOL-like restrictions. (None of the semantical properties discussed in §3-5 below
depend on these restrictions.)

(5) Declarations of functional procedures which return basic values are disallowed.

(6) Expressions of type intexp and locexp are forbidden as parameters in calls.

A consequence of (6) is that the value of an actual parameter is independent of the store.
However, note that while the meaning of a procedure term is a mapping involving stores, which
mapping the term denotes is independent of the store. Thus we do allow arbitrary terms of
procedure type in calls, e.g., the procedure term z := cont(z) + 1 appears as an actual parameter
in a call of the procedure tterate2 of Example 1 below.

Hence, we define the allowable procedure types by the grammar

Procedure types:

Proctype ::= prog | Paramtype — Proctype



Parameter types:

Paramtype ::= Proctype | lo¢ | int

Blocks and Binding in PROG. Procedure identifiers are bound in PROG via procedure declarations

occurring at the head of a procedure block, e.g.,
proc p(z) & DeclBody do BlockBody end .

Identifiers of basic type are bound by either let-declarations or new-declarations at the head of

basic blocks of the form
let z be BasE in Crmd tel,

c

new 4'°¢ in Cmd wen

where z is a variable of basic type and BasE is an expression of the same type.
Call-by-value is available implicitly through let-declarations. A call-by-value of the form
p(BasE) can be simulated by the basic block

let n be BasE in p(n) tel .

The let-declaration causes the evaluation of the expression BasE in the declaration-time store and
causes identifier n to denote the result of the evaluation. Call-by-reference is likewise available by
simulation since it is merely call-by-value using location-valued expressions.

There is a fundamental difference between basic and procedure blocks. Namely, which basic
values are bound to identifiers by basic declarations depends on the store “at declaration time”,
whereas which procedures are bound to identifiers by procedure declarations is store-independent.

Moreover, basic declarations are not recursive, while procedure declarations are. A reflection
of this fact is that bound and free occurrences of identifiers are defined differently for basic and
procedure blocks. In particular, in procedure declarations, the declared procedure identifiers bind
occurrences of these identifiers in the declaration bodies and in the block bodies, while in basic
declarations, the occurrences of the declared basic identifier are bound only in the block body
(which must be a command). (This is made explicit by their contrasting translations to M-calculus
in the next section: procedure blocks are translated using the letrec binding mechanism, whereas
basic blocks are translated using M-abstraction and appropriate constants.)

VExample 1 illustrates recursion in procedure declarations, procedures of arbitrarily high
finite type, simultaneous procedure declarations (nested declarations are also allowed), and com-
plex expressions as actual parameters in calls, including a procedure abstraction of the form
lam p. body mal. The example assumes that the underlying domain int is actually integer arith-
metic and uses primitive recursion at higher types to define a program which sets the variable z to
A(m), where A is a function which grows more rapidly than any function on the integers definable
by ordinary (ﬁrst—order) pi‘imitive recursion.



It is convenient to apply higher-order procedure identifiers to varying numbers of actual
parameters in calls. In Example 1, procedure iteratel is declared with four formal parameters of
respective types int, 8, o, prog, but is understood to be of “Curried” type int — 8 — a — prog —
prog rather than (int X 8 X a X prog) — prog. It is called first with three actual parameters
corresponding to a call of type prog — prog, and is called a second time with one actual parameter

in a call of type § — o — prog — prog.

Example 1. Let prog denote the objects of type program, and let a = prog — prog, § = a —

o, 7y = [ — [ denote successively higher procedure types.

proc repeat(q®, pP™°%) &= q(q(p)) ,
iteratel(n'™, 7P, ¢®, pP™8) <= if n = 0 then p else r(iteratel(n — 1,r,q),p) fi,
iterate2(n'™, s7, 7", g%, pP™°8) = if n = 0 then p else s(iterate2(n — 1,s,7),q,p) fi,
A(z'°%) & let nbe cont(z) in
iterate2(n, iteratel(n), repeat,lam pP™8 (p; p) mal, (z := cont(z) + 1))
tel
do z:= m; A(z) end

Sharing in PROG. Sharing of locations between identifiers arises naturally from procedure calls.

Explicit sharing can also be imposed by a basic block like
let z'°¢ be y'°¢ in Cmd tel.

Example 2 is contrived to illustrate the sharing features of PROG. It includes 2 declaration of a
procedure that swaps the contents of two locations unless they are equal. It also illustrates the new
declaration for allocating storage local to a block. The simple idea which underlies local variables
in ALGOL-like languages is the local storage discipline: execution of a block new z in body wen
causes allocation of a “new” storage location denoted by the identifier z which is used in the body
of the block and then de-allocated upon exit from the block.

Example 2.

proc swap(z Il“, a:l_,"‘) & if z; = z; then 4 := error

else new z in
z ;= cont{z,);
T1 1= cont(z,);
Ty 1= cont(z) wen fl
do if f(a) = f(cont(y)) then y else z fi := null;
swap(y, z) end.

Note that we are allowing explicit equality testing between locations (“z;y = z3”) in addition

to the usual test of equality between storable values (“f(a) = f(cont(y))”). Expressions which
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evaluate to locations are allowed, as in the “conditional variable” expression to the left of the final
assignment command in the example.

In addition to declarations of purely functional procedures which return basic values, other
significant language features compatible with ALGOL-like principles but omiited from PROG in-
clude exit control, arrays and user-defined data-types, own-variables, polymorphism, implicit coer-

cion (overloading) and concurrency. These will have to be the subject of future studies.

2. Semantics via Syntax-Preserving Translation to \-Calculus. The main issue in reasoning about
imperative programming languages is that the computer memory or store altered by program
execution is never mentioned explicitly in programs. A denotational explanatién of programs
requires that the role of the store be made explicit. This is usually done by, in effect, translating
programs into ordinary mathematical expressions which mention stores. Our approach is to

formalize the assignment of semantics to programs in two steps:
(1) a purely syntactic translation from PROG to a fully-typed A-calculus enriched with a letree-
construct corresponding to procedure declarations, and
(2) assignment of semantics to the A-calculus in the standard way. Programs simply inherit
their semantics directly from the \-terms into which they translate.

This two step process has also been utilized by [Damm and Fehr, 1980; Damm, 1982]. Our
approach refines theirs in that the A-calculus into which programs are translated is chosen so
that its types are the same as those of the programming language and its constants correspond
to program constructors. (It follows that stores do not appear as one of the types of the target
language, although they do appear within the definitions of the domains of meaning of various
program phrases; in particular there is no A-abstraction over stores.) In this way, the abstract
syntax, viz., parse tree, of the translation of a program is actually identical to that of the program;
the translation serves mainly to make the variable binding conventions of PROG explicit.

In addition to the binding of free variables, the translation T mapping PROG to A-calculus
makes explicit an implicit coercion (the only one) which takes place in PROG. Namely, a store-
independent term T of basic type can always be treated as an expression (Mkexp T) denoting the
constant function of the store identically equal to the value of T. More generally, any function f
taking basic values as arguments can also be coerced straightforwardly into 2 mapping Mkezp(f)
taking as arguments functions from stores to basic values. (There is a different constant Mkexp for
every first-order type, but we usually omit mention of the types of Mkexp and similar constants
such as Ifexp below.) The term (Mkexp f) corresponding to Mkezp(f) is abbreviated as f.

Procedure blocks are translated using letrec, so for example,
Tr(proc p(z) <= DeclBody do BlockBody end) =4, ; letrecp = Az.Tr(DeclBody)in Tr(BlockBody).
For a basic block with a let-declaration of type int,

Tr(let 2™ be IntE in Cmd tel) =4 Dint (\z.Tr(Cmd)) (Tr(IntE))
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where Dint is a constant of type (int — prog) — intexp — prog. For any clement d; of type

int — prog), d2 of type intexp, and store s, the interpretation [Dint] satisfies
A

[Dint]d; dy s = {éﬂ’l (da(s))(s)  if da(s) # Lint,

otherwise.

Note that the binding cffect of the block on z'™ is reflected in the binding effect of Az on Tr(Cmd),
namely, the declaration binds z in Cmd, but does not bind z in IntE.

The principal consequence of this syntax-preserving translation is that the basic properties of
procedure declarations in ALGOL-like languages - such as renaming rules associated with “static
scope” for declared identifiers, declaration denesting rules, and expansions of recursive declarations
- can be recognized as direct consequences of corresponding properties of the purely functional
A-calculus.

For example, let E be a system of procedure declarations, and let Cmdy,Cmd, be any com-
mands. The following equivalence holds in all models for A-calculus, viz., all Cartesian-closed
models [Barendregt, 1980; Meyer, 1982].

Declaration Distributivity:
proc £do Cmdy;Cmdyaend = proc E do Cmd; end; proc E do Cmd, end .

In particular, this equivalence follows solely from the binding properties of procedure declara-
tions independently of whether declarations are recursive, and also independently of the meaning
of constants like the sequencing operation ; . (On the other hand, its validity depends crucially on
the fact that procedure declarations, in contrast to let-declarations, have the same binding effect
no matter what the declaration-time store.)

The translation for blocks with new declarations, is
Tr(new z in Cmd wen) =g4.5 New (\z.Tr(Cmd))

where New is a special constant of type (loc — prog) — prog. The effect of the translation will
be that Cmd runs using a2 “new” location in place of z. The contents of this new location are
initialized to some standard value denoted by the constant ag at the beginning of the computation
of C'md and restored to its original value at the end.

In defining the semantics of new declarations, we imagine an ability to generate “new” locations
via a Select operation mapping any a procedure of type loc — prog into a new location. We can
then define the meaning of [New]d!*~P™8 a5 follows:

[Tr(let z™™ be cont(y) in y := ag; p(y); v := z tel)]e,

where ¢ is an environment such that e(y) = Select(d) and e(p) = d.
We illustrate the full translation process with
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Example 3. Translation of Example 2.

letrec swap =
kzl°° !°° fexp %,
(A351gn I €rror)
(New \z.Seq
(Assign Z(Cont Z,))( Seq
(Assign Z,(Cont Z,))
(Assign Z,(Contz))))
n (Seq (Assign
(Ifexp (Mkexp (f a)) (f(Cont 7)) 7 2)
null)
(swepy z))

Constants like Assign, Ifexp, Seq, ..., in \-terms correspond to the tokens :=, if...then...
else.. fi, ;, ..., of PROG and must be appropriately interpreted.
Note that we have kept our promise that the translation preserves the true syntax of commands:

Cmd and Tr(Cmd) have the same abstract syntax.

3. Levels of Understanding. A denotational approach has led us to identify a half dozen levels
of abstraction at which aspects of ALGOL-like languages can be understood. The highest level
abstracts away all properties except for variable binding; these properties hold in all models of

A-calculus. For example, the fundamental rule:
Procedure-Context Replacement:

C'md1 = Cmdg
proc E do Cmd; end = proc E do Cmd; end

is obvious from a denotational viewpoint, and like the distributing rule, actually holds in all \-
calculus models.
The next level reveals that procedure declarations are recursive; the corresponding proof theory
is simply the equational theory of the fixed-point combinator and similar expansion rules for letree.
Properties connecting different fixed-points require the further hypothesis that fixed-points in
distinct domains be chosen harmoniously. This is usually captured by imposing an order structure
on domains, keeping to order-respecting (monotone) functions on the domains, and choosing least

fixed points as solutions to recursive equations. At this “monotone” level, we can justify:

Declaration Denesting:

proc (p(z) = proc E do bodyend),E'do Cmdend = proc(p(z) = body), E, E' do Cmd end
8



providing none of the identifiers declared in E occurs in E’ or Cmd, p is not declared in E or E’,
and z is not {ree in E. _

At the fourth level of abstraction we entirely account for the procedure mechanism of ALGOL-
like languages. Here, the familiar continuous models of A-calculus based on complete partial orders
(cpo’s) [Scott, 1982; Milne and Strachey, 1976; Stoy, 1977] provide an adequate semantical basis.
We refer to properties which are valid for all continuous models as continuity properties. The most
fundamental continuity property is that every command can be understood as a limit of finite
procedure-declaration-free commands.

The original ALGOL 60 report [Naur, et. al., 1963] gave a copy-rule semantics for the language.
The equivalence of fixed-point and copy-rule semantics verifies that our choice of denotational
“fixed-point” semantics is consistent with the prior operational understanding based on the copy-

rule. We give a simplified proof of:

Theorem. In every continuous model, fixed-point and copy-rule semantics assign the same

semantics to commands (which may contain global procedures) in PROG.

Still further refined levels are needed to explain the store-dependent aspects of programs,
1.e., their side-effects. In particular, continuous models are not adequate to explain local storage

allocation, and we must introduce a new class of store models discussed in §5.

4. Fixed-point versus Copy-rule Semantics. Copy-rule semantics for ALGOL-like languages have
historical precedence over denotational semantics, and are widely regarded as more intuitive for
computationally oriented students (cf. [Blikle, 1983]). It seems obvious to us, however, that
the tricky and otherwise arbitrary-seeming renaming rules which are part of the definition of
the copy-rule, and which are crucial in determining the properties of declarations, spring from
a mathematical intuition with an even earlier historical claim. But arguments from intuition are
always questionable; putting such arguments aside, we can identify the place where the denotational
approach is clearer and more general than an operational approach to be the handling of “global”
procedures, i.e., free procedure identifiers.

Reasoning about commands with calls to global procedures is essential in theory and in practice.
The need for reasoning about commands containing globals arises, for example, when global pro-
cedures denote library procedures. Given assertions about the behavior of the library procedures,
one should be able to reason about the behavior of commands incorporating these procedures,
without necessarily being given the declarations of the procedures. After all, the code of these
library procedures is typically unavailable or written in machine language, and in any case is not
what one wants to see. Unfortunately, nearly all the operationally based proof systems apply only
to programs without globals, viz., programs in which all procedures are declared.

One can give an operational-style explanation of the range of globals, namely, that global
procedures range over textual objects such as “closures”. This explanation is clearly unsatisfactory

when library procedures are written in another language. Another difficulty with this explanation
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is that any enrichment of the language enlarges the range of the global procedures, so that all the
axioms and rules involving globals must be reexamined for soundness. In contrast, a denotational
approach in which environments map free identifiers to meanings over a domain of functional
objects, smoothly handles commands containing global procedures.

The desire to reason by induction on the structure of programs — which motivates the design of
structured programming languages in the first place — also naturally requires reasoning about global
procedures, since the procedure identifiers declared in a block inevitably have free occurrences in
the body of the block. Fized-point induction is an important instance of a structural inference rule
in which free procedure identifiers are essential. The following special case illustrates the essence
of the rule when applied to partial correctness assertions of the form P{Cmd }Q where P and @

are first-order formulas. (The precise semantics of such assertions is given in §6.)

Fixed-Point Induction: Let p be an identifier and ProcE an expression, both of the same procedure
type, such that none of the free first-order variables in ProcE are free in P or Q.
P{[diverge/p|Cmd }Q,
P{Cmd }@Q—P{[ProcE/p|Cmd}Q
P{proc p <= ProcE do Cmd end }Q

where [Exzpr/p] denotes syntactic substitution (with renaming to avoid capture of free variables)

of Ezpr for free occurrences of the procedure identifier 2.

The soundness of fixed-point induction is an easily proved continuity property.

[Clarke, 1979], extending [Gorelick, 1975], introduced another proof rule for partial correctness
of higher-order procedure calls closely resembling the fixed-point induction rule but justified using
the copy-rule. Subsequent work [Langmaack and Olderog, 1980; Olderog, 1981, 1983a, 1983b; Apt,
1981] has followed this approach. Our axiom system in §6 includes a version of Clarke’s rule called
copy-rule induction.

[Langmaack and Olderog, 1980] have defended the use of copy-rule induction:

“In soundness and completeness proofs a semantics definition should be employed which yields
shortest proofs. The question of equivalence of partly operational and purely denotational seman-
tics should be considered separately.”

We remain uncomfortable with this view. It is a useful technical insight that inductive proofs
about calls in ALGOL-like languages can be based on copy-rule semantics. Yet this fact seems
too coincidental to serve as a justification for postponing denotational arguments. For example, it
seems fortuitous that the usual axioms for partial correctness happen not to require the procedure-
context replacement rule above. The rule is obvious denotationally, but we know of no justification
for it using copy-rule semantics which is any simpler than the proof that copy-rule and denotational
semantics are equivalent. We expect that outside the special case of partial correctness proofs, and
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perhaps even there, it will be disadvantageous to develop proof systems using copy-rule semantics
alone.

Of course, whenever there is a nontrivial equivalence between two definitions, there are bound
to be facts which are obvious starting from one definition and not from the other, and it should
be expected that some important facts about program behavior, possibly such as Clarke’s rule,
would be seen more easily in terms of the copy-rule. If it were merely the case that the semantical
soundness proof was more easily carried out using one of two equivalent definitions instead of the
other, we would not be concerned. However, in contrast to the fixed-point induction rule, copy-rule
induction is not sound in the usual logical sense, although only valid assertions are provable using
it.

Namely, copy-rule induction, like fixed-point induction', is formulated in natural deduction style
where the provability of one assertion from another serves as the antecedent for application of the
rule. Because of the reference to the proof system in the antecedent, the meaning of such rules
technically changes if we alter the proof system in any way, for example by adding further sound
inference rules. This reference to the proof system will be harmless as long as soundness of the
rule follows from soundness of the rest of the proof system - as opposed to facts about the detailed
structure of proofs. This is what is meant by semantical soundness of a natural deduction style
rule (cf. §6). Fixed-point induction is semantically sound in this sense, but copy-rule induction
is not because it depends crucially on structural properties of proofs. In fact, we can show that
a price to be paid for using copy-rule induction is that adding very simple, obviously sound rules
makes the proof systems inconsistent! ([Olderog, 1981] claims to avoid this problem, but he does
so by adopting a definition of validity which is not referentially transparent, so that substituting
one equivalent command for another cannot be added as 2 rule in his system without yielding an
inconsistency.)

We have not yet worked out as strong a completeness theorem using the fixed-point induction
rule or other sound rule in place of Clarke’s rule, although we have an idea how to do so. Meanwhile,
as a temporary expediency we have included copy-rule induction in our own proof system. Insofar
as the remarks of Olderog and Langmaack and others supporting operational semantics for proof
systems are intended as a defense of copy-rule induction despite its unsoundness, we disagree with
their view. We see no theoretical obstacle to discovering a denotationally sound alternative to

copy-rule induction, and we regard developing such a rule as an interesting research problem.

5. Store Models. Although the local storage discipline seerﬁs intuitively simple, it raises a number
of both practical and theoretical problems.

A well-known practical consequence of the mixture of blocks and recursive procedures is that
run-time storage allocation is necessary: a block may appear within a recursive procedure which is
itself called within the body of the block, so the number of different locations which must be simul-

taneously allocated for nested activations of the block during execution may grow unboundedly,
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ruling out static (“compile time”) allocation.

On the other hand, program schemes with neither free procedure identifiers nor recursive
procedure declarations require only a bounded number of locations to be allocated — independent
of the interpretation of the scheme - and static allocation is not difficult. The fact that static
allocation is possible in this case can be formulated as the theorem that every such program
scheme is equivalent to an effectively constructible scheme without blocks but with various constants
denoting fixed locations. Since copy-rule semantics reduces the meaning of general programs to
procedure-declaration-free programs, it follows that the semantics of block storage allocation in the
absence of free procedure identifiers is easy to explain with the copy-rule. Free procedure identifiers
raise problems which have not been dealt with using operational semantics.

From a theoretical viewpoint, the problem is to explain what is meant by a “new” location.
Operationally, the “old” locations for a command correspond to the values of the free location
variables in it. This is sometimes modeled denotationally by enriching the notion of stores to
include with each location an indication of whether the location is “active”. Execution of a new
block on a store involves selecting the first inactive location as the one to be allocated. The
problem with this approach is that the locations designated as inactive by the store may already
be accessible to the body of the block, and so the first inactive location may not in fact be “new”.

For example, the block
new z in if z = ythen diverge else skip fi wen

ought intuitively to be equivalent to skip since the “new” z should never equal the “old” y. But
if this block is executed on a store in which (the location denoted by) ¥ happens to be designated
as the first inactive location, then the block will diverge. Validity of the expected properties of
blocks thus hinges on hypotheses about how the locations designated as active by the store relate
to the “old” locations which really are active, and we are in any case still left with the problem of
explaining what a new location is.

The denotational meaning of a program is a mapping from stores to stores, and it is not hard to
give a purely denotational characterization of what it means to say that such a mapping “reads”
or “writes” a set of locations (cf. [Trakhtenbrot, 1979; de Bakker, 1980, Def. 5.9; Meyer and
Mitchell, 1982]). The meaning of the body of a new block is in turn a mapping from locations to
store mappings, and a denotational definition of what locations such a block body “knows about”
can also be given with some care. In general, we define a notion of the set of locations which form
the support of any procedure of finite type. The locations outside the support of a procedure are
the“new” ones for it. The support of a command is thus the denotational concept corresponding
to the syntactic notion of free location variables appearing in the command. This would appear to
provide the desired denotational semantics of block storage allocation.

However, an amusing technical problem arises. Monotonicity is normally required of the

functions defining the semantics of A-terms in order to ensure that the fixed-points necessary to
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explain recursive definitions exist in the domain of meanings. The operation of allocating and later
de-allocating “new” storage turns out not to be monotonic, essentially because of the possibility of
running out of new storage locations!

One apparent way out of this difficulty is to admit a new overflowed error-object which is
maximal in the partial order on programs. This complicates the logic of programs since we now
must explicitly reason about the possibility of running out of storage. For example, we might
expect that

new z in Cmd wen = Cmd

when x does not occur free in Cmd. But this equivalence is only valid providing Cmd denotes a
program whose support does not contain alllocations; if it does, then the left-hand side is equivalent

to overflowed. Similarly, the equivalence
(Cmd; diverge) = diverge

becomes questionable in the case that Cmd denotes overflowed. A more serious problem is
that although an overflowed object circumvents nonmonotonicity, it does not restore continuity.
Namely, a command whose support contains all locations is the limit of a sequence of approximating
commands with smaller support; allocating new storage is therefore possible for the approximations
but yields overflowed for the limit. (The discontinuity of new storage allocation is noted in [Milne
and Strachey, 1976}, with a reference to further discussion in Milne’s thesis.)

In general, objects with “large” support force us to face the discontinuity of storage overflow.
It would be reasonable to rule out such objects, especially in view of the fact that definable objects,
viz., objects which are the denotations of phrases in PROG, can be proved to depend on only finitely
many locations. Unfortunately, the domain of programs with finite support is not complete (closed
under least upper bounds) because the lub of a sequence of programs each with finite support may
have infinite support.

A simple way around this incompleteness would be to use, for each finite set, L, of locations, a
separate domain consisting of those programs with support contained in L. This works as long as
no procedure parameters appear, but the mixture of higher order recursive procedures and block
structure turns out to be explosive. A procedure which takes a program parameter might be called
upon recursively within a new block, and might be applied to programs constructed within the
block, as in:

p(gP™8, n'™) & if n £ O then
new zin p(r(g, z),n — 1) wen
else ¢ fi.
The domain of such a procedure includes programs with unbounded finite support, and we are no
longer able to confine ourselves to the cpo of programs with any particular finite support L.
Difficulties of this sort have led [Reynolds, 1981] and [Oles, 1983] to consider more sophisticated

functor categories as domains of interpretation.
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Store models overcome these difficulties: they are domains of mappings with countably infinite
support. Such domains are not complete, but they are w-complete — closed under countable lubs
- and it is known that w-completeness is sufficient to develop the semantics of recursive programs
[Meseguer, 1978; Plotkin, 1982].

Allowing elements with countably infinite support is merely a mathematical contrivance to
preserve closure under countable directed limits. The countable covering restriction works, despite
some intuitively jarring consequences, the oddest of which is that we must hypothesize an un-
countable number of locations! (But after all, we do not complain about an uncountable set of real
numbers even when we compute only with rationals.)

We outline below the main properties of store models and the support notion.

Primitive Domains: Given a set Loc (of locations) and a set Int (of storable values) we define the
domains
Dloc =def LocUy {J—loc }; Dint —def Int U {—Lint}

to be the flat cpo’s.

For the other primitive domains, we select some subset, Store, of Intlec =g.j the set of all
total functions from Loc to Int. Store must be closed under finite updates and under permutations
p of Loc, i.e., if s € Store, then so u € Store. Then

Di“texP C (Dint)sao": Dlocexp & (Dloc)Stou: DPros C (P(Store))Store-

Here P(Store) denotes the power-set of stores, so elements of Dp,o, correspond to nondeter-

ministic mappings between stores.

Higher Domains: The domains Dp—.y consist of subsets of the w-continuous functions from Dg to

D, and form a Cartesian-closed type-frame with least fixed-points.

Uniformity on Locations: For each type o and permutation u of Loc, the domain D, is closed
under the permutation u, induced by K, eg., if a = f — 9, then

Ha(f) =aes Hy o f°;“,f?1-

We define a covering relation between subsets L C Loc and elements d € D,. Let L be a
subset of Loc. Two stores s,t agree on L, written s = t, if Vi € L.s(l) = t(l). Similarly, two
sets S,T € P(Stores) agree on L if there is a bijection f : § — T such that Vs € S.s = Jike):
Covering has the properties that

(2) if ™ € Dprog, then L covers 7 iff Vs,t € Store.(s = t = n(s) =, 7(t)) A(t € m(s) =

8 =Loc—L t),

(b) L covers | € Dy iff I € LU {Lioc }y

(¢) if L covers d*, then Yu fixing L. pod = d,

(d) if L; covers dy € Dp_.y and Lz covers dy € Dg, then Ly U L, covers (d1 do).
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Countable Covering Restriction: Every element d € Dy, has a countable set covering it.
Interpretability of the Constants: Let
Support(d) =g.5 n{L C Loc | L is countable and covers d }.

There must be elements in the model giving appropriate interpretations to each of the constants

used in translating PROG, and these elements must have empty support.

We remark that another odd consequence of allowing countable rather than finite covers is that
Support(d) may not cover d if no finite set covers d.

Now it is easy to show that all the constants other than New are continuous and have empty
support. The sole purpose of the covering restriction is to ensure that New is interpretable. In
particular, a function Select : ?(Loc) — Loc will be called a selection function iff Select(L) ¢ L for
all countable sets L C Loc. As long as Loc is uncountable, sclection functions exist, and using any
selection function as Select in the definition of New indicated in §2 yields the same w-continuous
function with empty support. This is the desired denotation for New.

Some typical equivalences about new-declarations are given below. Support properties of store
models are essential to guarantee their validity.

new r in z := b wen = skip,
new z in z:= ap; Cmd wen = new z in Cmd wen,
new znew y in Cmd wen wen = new y new z in Cmd wen wen ,
new rinifz = y then Cmd; else Cmd, fiwen = y := cont(y); Cmds .
More generally, we can define an operational semantics for interpreting basic blocks and prove:
Theorem. In every store model, fixed-point and operational semantics assign the same semantics

to commands (which may contain global procedures) in PROG.

The natural classes of objects to allow in store models are those with finite support, because
PROG-definable programs only read or write a finite number of locations. These objects form a
Cartesian-closed type-frame with least fixed-points, but, as we noted, not a cpo. The construction
outlined above embeds the desired domains of elements with finite support into (w-)epo’s. Hence
all the requisite properties of cpo’s are inherited by the embedded domains, and therefore we are
now justified in restricting ourselves to the objects with finite support. In our proof theory in the
next section, we in fact restrict variables to range over elements with finite support.

(A closer analysis of the role of limits in program semantics reveals that not all directed sets,
but only “algebraic” directed sets L, f(L), f(f(L)),..., where L is the least element in B, ang
f € Dg-.a, must have lub’s [Guessarian, 1982]. These lub’s do exist in the frame of elements with
finite support. The unexpected peculiarities of countable supports would have been avoided had we
developed our semantics using such algebraically closed partial orders instead of cpo’s. However,
we did not want to take the time to reformulate and prove for algebraically closed partial orders
all the well documented properties which make cpo’s suitable as semantical domains, so we have

kept to the better known cpo framework.)
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6. Partial Correctness Theory. Instead of the usual first-order language of storable values, we use
a two-sorted first-order language with sorts int and loc. We also add special atomic formulas for
reasoning about the support of global procedures, namely, for each identifier p of loc or procedure
type and each variable z of type loc, there is an atomic formula Support(z, p) which means that z
is in the support of p. This language has the same constructive properties as ordinary (one-sorted)
first-order language, e.g., the formulas valid in all interpretations are nicely axiomatizable.

We require assertions about support because we are reasoning about commands with global
procedure identifiers. Without global procedure identifiers, one can determine the support of a
command by inspection - namely, the support is contained in the denotations of the free location
variables. This is obviously not possible for command with global procedure identifiers unless we
are told which locations are in the support of the globals.

Any s € Store provides an interpretation for the contents function denoted by the token cont.
Thus, given a store model D, a store s, and an environment e to assign values to variables, first-order
expressions can be interpreted as elements of Dj,; and Dj.. in the usual way.

We let P,Q,... denote first-order formulas. The satisfaction relation between a first-order
formula P and an interpretation D, e, s, written D, e, s = P, is defined as usual.

In defining satisfaction for assertions it is sometimes convenient to ignore the values an environ-

ment assigns to basic variables.

Definition. Two environments e, ¢’ are said to match iff e(z) = €/(z) for all procedure variables

z. An environment e uses finite supports iff Support(e(z)) is finite for each identifier z.

Definition. Let D be a store model. The satisfaction relation f= is extended to partial

correctness assertions as follows:

D,e,s =P{Cmd}Q iff (if D,e,s = P then D,e,t = @ for all t € [Cmd]pes),
where [Cmd] pe € Dyroq is the denotation of Cmd in environment e,
D,e=P{Cmd}Q iff D,e,s = P{Cmd}Q for all ¢ matching e and all s € Store,
DEP{Cmd}Q iff D,el=P{Cmd}Q for all environments e using finite supports,
F=P{Cmd}Q iff D} P{Cmd}Q for all store models D.

This notation is also used for formulas, e.g.,
D,el=Piff D,¢/,s = P for all ¢’ matching e and all s € Store.

It may be helpful to note that by this convention D,e satisfies a first-order formula iff D, e

satisfies the first-order universal closure of the formula. That is,
D,ef=Piff D,e =V27.P

where 7 is int or loe.
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Distinguishing locations and their contents becomes particularly beneficial when making asser-
tions about programs. With two-sorted language, our axiom system is able to deal with sharing
among program variables explicitly and without excessive complication.

An awkward feature of common programming logic systems which do not allow preconditions
to distinguish locations from values is that renaming free variables does not preserve validity. For

example, although .
Ty 7 z2{ 73 1= T3 }1, 7% 13

is valid in such systems, it fails to be valid if we substitute zy for z3, which can be a source
of confusion (cf. [Manna and Waldinger, 1981]). We therefore judge the soundness of arbitrary

renamings, which follows routinely for our system, to be a valuable feature.

Definition. A first-order substitution is a type-respecting mapping, o, from basic identifiers to
first-order terms which do not contain occurrences of the token cont. Let o(P) and ¢(Cmd) denote
the result of simultaneously substituting o(z) for all free occurrences of basic variables z (renaming

bound variables as necessary) in the formula P or command Cmd.

Substitution Lemma: Let ¢ be a first-order substitution. For any first-order model D and
environment e, if D, e = P{Cmd }Q, then D, e = o(P){ o(Cmd) }o(Q).

This justifies the following:

Rule of Substitution: Let ¢ be a first-order substitution.

P{Cmd}Q
o(P){ o(Cmd) }o(Q).

Another standard source of confusion as a result of sharing occurs in axiomatizing simple
assignments. Clearly, no matter what the initial conditions are, after setting z'°¢ to some constant

a, the contents of z will equal a, namely,
true{ z := a }cont(z) = a

is a valid partial correctness assertion. But the naive generalization of this example to the case
in which z is replaced by some expression whose evaluation yields a location is not valid. For

example, let LocEy be the location-valued conditional expression
if cont(z) = a then y else z fi.
Setting LocEy, rather than z, to a, makes the following assertion valid

(cont(z) = a A cont(y) 5 a){ LocEy := a }cont(LocEy) 5 a.
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The problem here is that the meaning of LocEy depends on the store; LocEy has different meanings
before and after the assignment. ,
To deal with assignment, we construct for any formula P, a first-order formula [LocE — IntE|P

such that for each D, e,s, if I, d are the interpretations of LocE, IntE in D, e, s, then
D,e,s = [LocE «— IntE|P iff D,e,s' = P

where s’ =,._¢;} s and §'([) = d. Now the assertion that after executing the assignment some

first-order formula @ holds, is equivalent to asserting that the formula
[LocE := IntE|Q =gaes (LocE = LV IntE = L V [LocE « IntE|Q)

holds in the initial store. (The L clauses handle the case that the evaluation of either of the

expressions diverges.) Difficulties with assignments are thus completely handled by the:

Assignment axiom:
(ILocE := IntE]Q){ LocE := IntE}Q.

Our axiom system AXp is defined as usual relative to an underlying model D. However, it is
worth noting that we do not need support predicates in the axioms about D. That is, we only
include in AXp the set Th(D) of all first-order formulas without support predicates which are valid
in D.

Axioms and rules for the programming constructs diverge, sequencing, conditionals, choice, as
well as “logical” rules for consequence, conjunction and quantification, along with substitution and

assignment above, are as usual, Also familiar is the:

Rule of let-Declarations: If z is a variable of basic type, BasE is an expression of the same type,
and y a variable of the same type which is not free in P, Q, BasE or Cmd, then

(P A (y = BasE) A(y # L)){[y/z]Cmd }Q
P{let zbe BasE in Cmd tel }Q.

A command Cmd is distributed iff the block body of every procedure block which occurs in Cmd
consists solely of a procedure call. Using rules like declaration distributivity (§2), one can easily
transform any command Cmd into another distributed command DIST(Cmd) which is equivalent
to C'md in all M-calculus models. To ensure applicability of the preceding rules to procedure blocks,

we include the:

Distributing Rule: If Cmd = DIST(Cmd'), then

P{Cmd}Q
P{Cmd Q.
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We now enumerate the rules which rely on properties of support.

The usual rules of predicate calculus are applicable to first-order formulas with support predi-
cates, treating Support(z, p) as a monadic first-order predicate in z for each variable p. We also
use the axiom Support(z,y) = (z =y Ay % L) when y is of type loc.

Rule of new declaration: Let y'°¢, zi™ be variables not free in P, @, or Cmd.

((lv 2= #1P) A (Apeviomay—q =y ~Support(y, p)) A (cont(y) = a)){ [y/z]Cmd }([y := ]Q)
P{new z in Cmd wen }Q

where V(Cmd) is the set of free variables of procedure and location type in Cmd. (Recall that ag

is the constant used for initialization.)

The two-sorted assertion language also yields descriptions of invariance (noninterference) among
programs and properties. For example, if P implies that the truth of @ is invariant under changes
to the contents of any of the locations in the support of Cmd, then @ holds before execution of
Cmd iff it holds afterward. This gives the:

Rule of invariance:

P= Vy’“[\jpe,y,wmd} Support(y, p) = Invariant(Q, y)))
(PAQ)Y{Cmd}Q.

Here the assertion Invariant(Q, y) is an abbreviation for the first-order formula

V2"(Q = [y + £]Q)

where z is not free in @. This means that @ is invariant under changes to the contents of Y.
We remark that invariance is the only rule whose soundness actually depends on the fact that
environments use finite, as opposed to countable, supports.

Given a set of (mutual) procedure declarations E, let

(i) He be the first-order formula which asserts that any location which is in the support of
one of the procedure identifiers declared in £ is also in the support of one of identifiers of
procedure or location type which is free in E,

(ii) Delg(Cmd) =45 the result of replacing in Cmd all occurrences of identifiers declared in E
by the constant diverge denoting the divergent procedure,

(ili) CpyEzpp(Cmd) =def the result of expanding in Cmd all outermost calls of identifiers
declared in E by the bodies declared for them as usual according to the copy-rule. In
addition, actual parameters of outermost calls to global procedures not declared in E are

also expanded.
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Copy-Rule Induction:
(He, A P;){ Delg,(Cmd;) }Q, for j =1,...,n,
(HE, A P){ Cmd; }Q; |:=, = (Hs; A BN CpyEzpg,(Cmd,) }Q; |
Pi{ProcE, doCmd, end }Q, for j =1,...,n.

n

i=1

Theorem. For store models D, only D-valid assertions can be proved with AXp.

In fact, we prove that except for copy-rule induction, the system AXp is semantically sound in
the usual logical sense. Namely, an axiom A is sound iff it is valid, and an ordinary inference rule
is sound iff, for any store model D and environment e using finite supports, the D, e-validity of its
antecedents implies the D, e-validity of its consequent.

Natural deduction style rules of the form

A1, A-A3
Ag

are semantically sound for D iff

if D, e |= A; for an environment e using finite supports,
and Ve’ using finite supports (D, ¢’ = A, implies D, ¢/ = Az),
then D,e = A,.

We can show that copy-rule induction is not sound in this sense. (It is sound providing there are no
procedure parameters.) We justify the rule instead, following [Olderog, 1981], by showing that if
the antecedents are true facts about provability in the particular system AXp, then the consequent
is valid, using special “syntax-directed” properties of AXp.

It is impossible to find a sound and relatively complete axiomatization for partial correctness
assertions about a language as powerful as PROG [Clarke, 1979]. Hence, in our full paper we define
PROG' - a fragment of PROG for which our axiom system is complete in the sense of [Cook, 1978].
Intuitively, this fragment captures commands which generate only a finite number of distinct calls
(up to a renaming of first-order variables) when we expand them by replacing a call by its associated
body, as in [Clarke, 1979; Olderog, 1981]. We give a direct syntactic condition sufficient to ensure
that a program is in PROG’, and demonstrate that our axiom system is complete for as large a

class of commands as any other systems in the current literature.
Theorem. AXp; is relatively complete (in the sense of Cook) for PROG'.

7. History. The thesis that A-calculus underlies programming languages was first extensively
argued in [Landin, 1965]. The general denotational approach to semantics which we pursue was
developed by Strachey and Scott (cf. [Milne and Strachey, 1976; Scott, 1982]). [Reynolds, 1981a]
emphasized the role of typed A-calculus in explaining the procedure mechanism of ALGOL-like
languages. [Damm and Fehr, 1980] and [Damm, 1982] were the first to use explicit translation to
typed A-calculus to analyze ALGOL procedures.
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Our proof of equivalence of copy-rule and fixed-point semantics made use of denesting trans-
formations, and seems easier than the corresponding proof in [Apt, 1978], which was for a simpler
language (without procedure parameters). [Langmaack, 1973] has used transformations similar
to our explicit parameterization and declaration denesting rules to show that a class of ALGOL-
like programs can be denested under copy-rule semantics. [Damm, 1982} also contains a proof
of the equivalence of copy-rule and fixed-point semantics for denested programs without global

procedures.

A comprehensive survey of research on partial correctness of programs is given in [Apt, 1981]
to which we refer the reader for a description of the pioneering work of Floyd, Hoare, Cook
and Dijkstra. A thorough development of partial correctness for recursive programs with basic
parameters only is given in [De Bakker, 1980]. De Bakker comes close to achieving the purely
denotational approach we propose, though even he compromises in defining the semantics of
recursive procedures syntactically. He handles free procedure variables and proves completeness
using a fixed-point induction rule. [Harel, Pnueli and Stavi, 1977] keep to a pure denotational
approach. However, neither De Bakker nor Harel, et. al. treats sharing (De Bakker requires that
his environments be injections from identifiers to locations) or procedure parameters, and Harel,
et. al. do not even treat blocks; these of course are the source of most of the problems considered

in this paper.

Programs with higher-order procedures have been studied in [Langmaack and Olderog, 1980;
Olderog, 1981] and more recently in [Damm and Josko, 1982]. Langmaack and Olderog consider an
untyped programming language with a copy-rule semantics and independently obtain essentially
the same completeness results we described above, restricting themselves to programs without
global procedures. (This paper was written well after, and has benefited from, those of Langmaack
and Olderog, as well as Damm and Fehr; however, the same ideas were discovered independently
by the first author in Novosibirsk.) [German, Clarke, and Halpern, 1983] extend the operational
approach to handle globals via closures. Damm and Josko give an axiomatization for a similar
typed language with procedure parameters but without basic parameters, local storage, or sharing.
They prove a completeness result, but only relative to a higher-order assertion language of uncertain
power. Halpern has recently obtained such completeness results for PROG [Halpern, 1983].

[Olderog, 1981] handles sharing using equivalence classes of identifiers. Our approach distin-
guishing locations and storable values seems technically smoother and more intuitive. [Janssen
and van Emde Boas, 1977] also advocate distinguishing locations and their contents, and develop
assignment axioms similar to ours. [Schwartz, 1979] also makes the distinction and suggests some
axioms for reasoning about sharing; however, he does not justify soundness nor examine complete- -
ness of his proposed axioms. Another approach to dealing with sharing is presented in [Cartwright
and Oppen, 1981], but their programming language does not allow procedure parameters and

places other restrictions on variables appearing in procedures; their assertion language also contains
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higher-order features such as quantification over sequences.

8. Conclusions. By explicitly translating ALGOL-like programs to expressions in typed X\-caleulus
with letrec, we have clarified the source of a rich mathematical structure of ALGOL-like programs
which guides reasoning, both informally and with formal axiom systems, about side-effects.

The denotational approach identifies a half dozen different levels at which successive features
of ALGOL-like languages can be explained. It will be interesting to see whether this mathematical
classification serves as a useful guide for teaching such languages.

Although the main texts on denotational semantics gave the impression that the local storage
discipline had been assigned a denotational semantics, we discovered none of them gave a “correct”
semantics capturing the properties desired for the local storage discipline. Indeed, we argued that
correct semantics for the local storage discipline could not be constructed using standard continuous
models, but we indicated how to construct satisfactory w-continuous store models for this discipline.

The one place where we have failed to keep to a purely denotational approach is in our use of

copy-rule induction. We believe that this failing can be avoided.

Conjecture: Copy-rule induction can be replaced by fixed-point induction supplemented with
a few additional semantically sound rules to yield a semantically sound proof system for partial

correctness which is complete for at least as large a fragment of PROG as the current AXp.

We see two natural next steps building on the work we have presented. The most apparent one
Is to axiomatize side-effect-free function procedures returning storable values, thereby eliminating
the need for the two un-ALGOL-like restrictions imposed on PROG. (See [De Bakker, Klop, Meyer,
1982] for a careful development of functional procedures returning storable values in a language
without blocks.) The other, more important step in our view, is to develop the partial correctness
theory of commands with global procedure identifiers given partial correctness assertions about the
globals.

If partial correctness assertions about arbitrary commands are allowed as hypotheses, then the
distinction between partial and total correctness blurs. For example, if C'md has no free variables,
then it is total iff true{ C'md }false implies false. No completeness theory (in the sense of Cook) of
total correctness has been developed, and it appears that total completeness can only be proved
relative to higher-order theories, e.g., weak second-order. However, it still seems possible to prove
(relative) completeness if the assertions allowed as hypotheses are about “pure” procedure calls
whose actual parameters contain neither blocks nor commands, and this would be quite interesting
(cf. [Meyer and Mitchell, 1982]).

We mention one further open problem of particular interest to us. Note that the obstacles
to axiomatizing partial correctness for all of PROG noted by [Clarke, 1979] do not apply if new

declarations are forbidden.

Open problem: Can PROG - { new } be axiomatized (cf. [Damm and Josko, 1982])?
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