MIT/LCS/TM-247

PROBABILISTIC SEARCHING
IN SORTED LINKED LISTS

Tom Leighton
Margaret Lepley

November 1983

Probabilistic Searchingin Sorted Linked Lists

Tom Leighton & Margaret Lepley

Department of Mathematics & Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract: Janko [2] and Bentley, Stanat, and Steele [1] have described probabilistic
procedures for data manipulation in sorted linked lists. Their procedures are based on an
algorithm which performs a Member search operation using 2N7/2 4 O(7) expected steps
where N is the number of elements in the list. In addition, Bentley, Stanat and Steele have
shown that every Member search algorithm requires (2N)"7? + (7) expected steps. In this
paper, we improve the lower bound result in order to prove that the known algorithm for
Member search is optimal.

Keywords: data structure, probabilistic algorithm, searching, sorted linked list

Tom Leighton was supported in part by a Bantrell Fellowship and Margaret Lepley was
supported in part by an MIT Applied Math Fellowship. A preliminary version of this paper
was presented at the 20th Annual Allerton Conference on Communication, Control and
Computing.

1. Introduction

In a sorted linked list, the operations Predecessor, Successor, Insert, Delete, and Last
element can all be performed using an operator which searches for a specific element in the
list. We call this operation Member search. Since traversal of an N-element linked list
requires N steps, it is not difficult to see that any deterministic algorithm for Member search
requires N steps in the worst case. By considering probabilistic procedures, however, Janko
[2] showed that the expected number of steps necessary to perform a Member search
operation is substantially less than that required in the worst case.

In [1], Bentley, Stanat and Steele formalize Janko's arguments and describe a
probabilistic algorithm for Member search which requires only 2N™"2 + O(7) expected
steps. As the existence of a better procedure seemed unlikely, Bentley, Stanat and Steele
conjectured that their algorithm for Member search was optimal. In support of this
conjecture, they showed that every probabilistic Member search algorithm requires
(2N)'7? + Q(1) expected steps. In this paper, we improve the lower bound in order to prove
that the Bentley-Stanat-Steele algorithm for Member search is optimal.

The remainder of the paper is divided into three sections. In Section 2, we describe the
data structure and probabilistic algorithms in greater detail. In Section 3, we prove the
optimality of the Bentley-Stanat-Steele algorithm. We conclude with some remarks and
related results in Section 4.

2. Preliminaries

2a) Data structure

The data structure used to represent an N-element sorted linked list consists of two
arrays, Link[0...N] and Value[7...N], where Link[0] points to the first element of the list, and
Link[J] points to the element which follows Value[J]. The end of the list is denoted by an
element whose Link field contains - 7. Since the array is required to be dense, every cell in
Value[1..N] must contain an element of the list. Since the list is sorted, we have

Value[J] < Value[Link[J]]

when Link[J] is not — 7. The following figure illustrates the array representation of the sorted
linked. list 2.1, 3.5, 6.2, 7.4, 7.9, 9.6>.

J 0 AR R { 6
Value[J] 354 62 dios L oip oy [
Link[J] 4 2 =y T ‘ 3

2b) Probabilistic algorithms

An element of the list is accessed via an index key which can be chosen in several ways.
The index may be given as the link from the predecessor, a predetermined integer, or a
randomly selected integer. Access via a predetermined integer is of use only when access
to the beginning of the list is needed. By combining probabilistic access with access by

predecessor link, however, a wide range of algorithms can be considered. For example, the
following pseudo-Pascal program searches for the element £, using the order of operations
specified by the array Step. When Step[J] is zero, a random sample occurs. Otherwise the
program follows the next link in the list. Note that when a random sample is chosen, the
position in the list is updated only if the random position is closer to (but not at or beyond)
the location of E. This strategy insures that the updated positions in the list never worsen
and that when E is eventually found, its predecessor will also have been found (since E will
have been reached via a link). (This particular code assumes that Value[0] is - and
Value[- 7] is o.)

P:=0

J:= 0

do until exit
J=d+1

if Step[/]=0 then do
R: = Random(7,N)
if Value[RKE and Value[R]>Value[P] then P:=R
else do
if Value[Link[P]]= £ then exit (*E is at Link[P]*)
if Value[Link[P]]>E then exit (*E is not in the list*)
if Value[Link[P]KE then P: = Link[P]

It is easy to modify the preceding algorithm for Member search to perform Predecessor,
Successor and Last element. In addition, the algorithm can be modified to perform Insert
and Delete. For example, if £ does not appear in the list, then the search will end when the
position it ought to occupy in the list has been found. The element can then be inserted by
placing it at index N+ 1 and changing the links. A Delete is more complex. First the
element to be deleted is found and removed from the list. There is now an index in the array
which contains no element of the list. To remedy this situation the element at index N is
moved into the open spot. This of course requires another search operation to find the
Predecessor of the element at index N. Therefore a Delete requires two Member searches if
the arrays are to remain dense.

2¢) Mathematical model

The lower bound for finding the largest element is also a general lower bound since a
random element might be maximum in the list. So in studying the random algorithm
presented above, we will assume that we are searching for the largest element in the list.
The program is then a black box which must be told the order of random and deterministic
operations. This behavior can be modelled by the following probabilistic game due to
Bentley, Stanat, and Steele [1].

Definition: The probabilistic game G-D involves two integers, i and N. The value of N
remains fixed throughout the game, and the value of j is originally N. The goal of the player
is to reduce the value of /i to zero in the minimum expected number of steps. A step
consists of performing one of the following two operations -

*D(for Decrement): If >0, then replace i by i-1.

*G(for Guess): Choose j to be an integer uniform from 7..N and replace i by j if j&i.
The value of / is unknown to the player, except at the beginning of the game when i = N, and
at the end when he is notified that i has reached zero. (In this game the value i represents
the distance from the current element in the list - denoted by P in the code above - to the
end of the list)

A strategy or sequence of operations will be denoted by a character string o, composed
of G's and D's, to be performed in order from left to right. A sequence is said to be
complete if it contains at least N D's. Note that operations written after the first N D's are
superfluous and need not appear. For convenience, however, we will often end complete
sequences with DV,

A compiete sequence will always reach i= 0 and terminate the game after some number
of steps t. The expected termination point for a complete sequence ¢ is denoted by

o0 o
= 2iPit=i] = 20/(0)
where Q(= Pr[t>j] . The object is to minimize E(cr) over all complete sequences . We
denote the minimum by S(N).

2d) Previous results

Janko first investigated the effects of random sampling in a sorted linked list. He
restricted his analysis to the class of strategies of the form G*DM, for some k. Within this
restricted class he discovered the optimal value for k.

Theorem 1: For any integer k>0, E(G'DV) < E(G*DY) where r=N""2-1-1/(24N"2) 4
O(1/N).

Proof: From the definition,
k+ A

E@G'DY) = 2 QG'oM).
J=0
Since the first k operations are Guesses the game cannot end there, so O(G“DN)-T for
j=0,....k. The probability of not terminating during the first d Decrements is (N - d)*N*, since

all the Guesses must be larger than d. Therefore

-1
E(GDM) = k + 1 + D(N-a)N*
d=1
N-1
=k+1 + NKkDgk
d=7

=k+1 + N/(k+1) = 172 + k/(12N) + O(K2/N?)

The minimum occurs when
1-N/(k+1)2 + 1/(12N) + OG*/N?) = 0

and thus when
k = N72-1-1/(24N"2) + O(I/N). O

Theorem 1 provides an upper bound of S(N) < 2N2-1/2+1/(12N2) + O(1/N)

expected operations for the G-D game. Recently, Bentley, Stanat, and Steele found a lower
bound for the game. In particular, they showed that if the player was allowed to know the
value of i at all times, then the optimal strategy requires ~(2N)"/2 expected steps. Hence,
S(N) = O(N'/2) where the constant is between 272 and 2. We will now show that the lower
bound for the general G-D game can be improved to ~2N'2, which is tight.

3. General Lower Bound

When a sequence w is not complete, the value of i after the operations in w have been
performed may remain undetermined. Instead of knowing the exact value of i we define a
probability vector P(w) so that

Pf(w) = Pr[i>j after executing the sequence w] .

We can see from the definition that Pj(w)?_PH?(m). Moreover the vector can be computed
for any sequence w.

Lemma 1: For any sequence w=G#'DP..G%:Db%, with b = by+..+bsand a=a, +..+ ag

(N=j=b)*1(N=j-b+b,)%. . .(N-j-b)3N3 forj<N-b
Plw) =
0] for j(>N-b
Proof. During each block of Guesses, G2, the value i must remain above j plus the
number of D’'s which are still to be performed, bt e The probability that all the
Guesses in the block are between j+ bm+...+bs+1 and N is (N—j—bm—...—bs)N‘am. O

These probabilities are important in determining the optimal strategy. The foliowing
lemma states one of the most useful properties of this vector.

Lemma 2: For any sequence w, Pl.(mD)/PO(wD) < Pf(w)/Po(m) for 0<j<N.
Proof: Each ratio is a product of terms of the form
[(N=j-b,~..=b)/(N=b;~...=b)J?,

The sequence wD has one more D in the last block than ©, SO by increases by one in wD.
When Py(wD)>0 a comparison of these terms, letting K=N-b;-..-b, reveals that

[(K=j-1)/(K= 1% < [(K-)/K] %

and thus that Pf(wD)/Po(wD) < Pj(w)/Po(w). If P,(wD) =0, we define the ratio to be zero and
the inequality still holds. O

Qur goal in this section is to prove that the optimal strategy has the form G'DV. First we
analyze the effect of minor variations in strategy on the expected number of operations.
Then we will show that if a small variation improves the strategy then a larger change could
mean even more improvement. The two sequences which we will compare first are
o = «DG*DV and ¢* = wGKDM. The only difference between o and o* is the position of
the block G¥. The following lemma gives a method for comparing these two strings.

Lemma 3: E(wDG'DV) < E(wGFDV) if and only if V(w) < 1, where
N-1
P, (w)/P,(w) +d_21P APV -d+ 1k = (V=) JkTNK it P,(@)>0
V (w) =)
0 it Py(w)=0

Proof. Let o and o* be defined as above. We would like to know when E(o)-E(e*) < 0.
The following values for Q,(o) and Q. (c%) can be easily verified.

Q. (c*) it m<|wl
Q,(o)= | P (w) if Jol+7<m<|w|+k+1
P] = k(@Y = m 4] + ke +)N if mw|+k+ 1
Q,,(9) if m<|w]
Q,(c*) = Polw) it Jol+ 1<m<]w| + &
P —] = k()N = m +] + K)RNK it mw|+k
<0
Thus E(g)-E(g*) = [Qm(a)-Qm(cr‘)] < 0 is equivalent to
i Vot
(k+ 1)P(w) - kPy(w) + ZP(w)(N-d+)= (V=) IN* - P () <0,
of={

Rearranging terms slightly gives

V-t
Pi@) + 2P @)N-d+ - (N - INkk" < Pyw). O
d=1{

Combining Lemmas 2 and 3 enables us to extend a minor variation of the string into a
more radical change. Specifically, if the last block of G's is more efficient when it is moved
to the right one place, then it is best to remove the block of Guesses altogether.

Lemma 4: For all w, if E(wDG'DY) < E(wGKDY), then E(wDM) < E(wDG*DM).

Proof: If E(wD/G*DM < E(wD"'G*DVy for some j>1, then V (wD") < 1 by Lemma 3.
By Lemma 2 and the definition of V,(w), we know that V,(wD) < V,(wD""), and thus that

V,(wD)) < 1. Thus, we can conclude by Lemma 3 that E(wD'* 'G*DY) < E(wD/G*DV). The
proof of the lemma is completed by applying this process inductively. O

It is now a simple matter to prove our main result.

Theorem 2: For every starting sequence w, there ex}'sts an integer r>0 such that
E(wG'DY) < E(wo) for every completed sequence we.

Proof: Let ¢ denote the shortest (in length) sequence for which we is complete and
E(wo) = min E(wy). If ¢ is of the form G'DV, then we are done. Otherwise o = w*DGAD,
where G* is the last block of Guesses and j20. By the optimality of o, we know that
E(wo*DG*D) < E(ww*G'D'*?). Thus by Lemma 4, we know that E(ww*D*") <
E(ww*DG*D)) which contradicts the minimality of . O

Thus the best way to finish any initial sequence is by a block of Guesses followed by
Decrements. By letting w be the empty string, we find that the optimal strategy for the game
is G'D". Recalling Theorem 1, we find that the optimal value of ris N2 - 1 - 1/(24N'72)
+ 0O(1/N) and thus

S(N) = 2N"2 — 172 + 1/(12N"?) + O(1/N).

4. Extensions

At first glance, it might appear that our proof technique depends on not being able to
Guess 0. This is not the case. In fact, when Guesses of 0 are allowed, the optimal strategy.
differs from the above strategy by only O(N'/?) Guesses.

In the G-D game the value i in the box can be interpreted as the number of links
between our present position in the list and the position of the element we are searching for.
When searching for the last element we start at i= N. In Member search we are searching
for an element whose position is unknown and randomly distributed. Therefore we should
start at an unknown, random i/, or equivalently start at i = N and do one Guess to randomize i
before counting operations. By Theorem 2 the optimal strategy is then G"'DV as opposed to
G'DV when searching for the last element.

Sometimes the jth element in the list is needed. When j is small it is easy to follow links
and when j=N we can use the G-D strategy. Between these two extremes the strategies
used thus far are not necessarily optimal since the value of the jth eiement is unknown. But
if we know the value as well as the position of the element for which we are searching, then
we can apply the above techniques to find an optimal G-D search time. Searching for an
element at position j; means starting the G-D game at j=j. This is equivalent to starting at
i=N and doing N-j Decrements. By Theorem 2 the best way to continue from this point is
G*DV for some k. Thus it is only necessary to compute the optimal number of Guesses,
k=r(j). By modifying Theorem 1 it can be shown that r(j)=c())N""2 where

0 if j < (2N)172
cl) =

1-0O(N172) if j > QN2

v

The value of c(j) can be determined numerically when j is between (2N)™/2 and Q(N'72), but
it cannot be written in closed form. Figure 1 shows the behavior of c(f) in this region.

SNVA

JZ j/‘/ﬁ

Figure 1: Graph of c(j) and S(N.j)/N'/2 where
S(N,j) = optimal expected number of operations when searching for the j-th element.

The G-D game can be modified in other ways. One particularly interesting modification
allows the player to use the information about when a random sample is successful (i.e.,
closer to the target). For example, suppose the black box containing i is connected to a
light which turns on every time i is decreased. At first glance, it appears as though such
information could be quite useful in planning when to stop Guessing and start Decrementing.
(For instance, if the light flashed on for a series of early Guesses, then the player might be
led to believe that the early Guesses were very good and thus that /i had become very small.
Hence, the player might think it wise to start Decrementing early.) This is not the case,
however, since if all the Guesses are required to be distinct, then it can be shown that the
light does not add any useful information at all. It is worth remarking that the likelihood of
two Guesses being identical is small and thus the constraint that all the Guesses be different
has a negligible effect on the final result.

Such a counter-intuitive result requires some justification. First notice that when all the
Guesses are distinct, the sequence of guesses is just a permutation of a subset R of
{1....N}. Every sequence of guesses produces a unique light sequence, B, but one light
sequence can be produced by many different guess sequences. In particular,

Lemma 5: For every light sequence B of length k there exists an integer m, such that
for any set of guesses R C {1,...,N} of size k there are exactly m permutations of R which
have light sequence 8.

Proof: Let K={1,...k} and set m to be the number of permutations of K which produce
the light sequence 8. Now consider any other subset R of length k. There is a 7-7 order-
preserving mapping between K and R, so there is also a 7-17 mapping between the
permutations of the two sets which preserves light sequences. This means that there are
also m permutations of R which fit 8. O

We can now prove

Theorem 3: When all the Guesses in the G-D game are distinct, then the light
sequence adds no extra information about the value of i after a sequence of guesses.

Proof: 1t is sufficient to show that the probability Pr[i=j | B], that i=j after k guesses
given_ a light sequence B, is the same as the probability Pr[i = j] that i = j after k guesses (with
no knowledge of the light sequence). From the definitions and Lemma 5,

Prli=j]B] =(# of sequences of guesses that fit 8 for which i=j)/(# of sequences of
guesses that fit B)
=(# of R for which i=j)m/(# of R)m
=(# of R for which i=jk!/(# of Rk
=(# of sequences of guesses for which i=j)/(# of sequences of guesses)
=Prfi=j]. O

The G-D game might also be played with two different operations 0, and O,. It would be
interesting to know what properties of O, and O, give an optimal sequence of the form

O,kozm, for some k and m. In addition to operators which act directly upon i, we might also
consider comparison operations which compare i to a given input, n, and answer the

question, "i<n?" If the compare operation i<(2N)'/? is added to G-D, then the optimal
strategy is O(N'¥) Guesses followed by a Compare, repeated until i<(2N)?2, ending with
Decrements. This strategy uses (2N)"/2+O(N'%) expected steps.

Acknowledgements

We would like to thank Gary Miller, Ron Rivest, Jim Saxe, and Mike Sipser for helpful
discussions. A special thanks to Jon Bentley for bringing this problem to our attention.

References

[1] J. L. Bentley, D. F. Stanat, J. M. Steele, "Analysis of a randomized data structure for
representing ordered sets," Proceedings Nineteenth Annual Allerton Conference on
Communication, Control, and Computing, pp. 364-372.

[2] W. Janko, "An insertion sort for keys with arbitrary key distribution," ACM
Transactions on Mathematical Software, Vol.2, No.2, June 1976, pp. 143-153.

