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Abstract j' /

It is shown that LEBPP iff (x€L — 3 yVzP(x,y.2)) A(xGEL—-» Vy3,,27P(x,y,z)) for a polynomial
time predicate P and for [y],|z] <poly(|x]), where 3§ d (v) means that Pr{{y] 2(v)}) >1/2+¢ for a fixed
e. Note that even the weaker conditions 3yVzP(x,y,z) and Yy3z—P(x,y,z) contradict each other and thus
decide whether x€L. Some of the consequences of the above are that various probabilistic polynomial time
hicrarchies collapse as well as that probabilistic oracles for algorithms as low as c.g. E‘.ZP do not add anything

: . : N NP
to the computing power of the corresponding classes; i.e. NP* = NP1
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1. Introduction

Many arguments in the theory of cryptography-make use of probabilistic algorithms. The goal is to
construct, if possible, (secure) schemes, which cannot be broken by probabilistic algorithms. The assumption
is that problems solvable by probabilistic algorithms are easy or tractable; supposedly well below NP-
complete problems. But in reality little is known about the power of such probabilistic ¢.g. BPP-algorithms.
Thus a strong motivation for the following considerations is to understand BPP and to classify it as well as
possible among other polynomial time complexity classes. Diagram 1 depicts pictorially some of the known

inclusion relations among polynomial time complexity classes. For detailed descriptions of the classes we refer
to [HU, GI, G, Z].
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Diagram 1

In the following we are going to make use of some abbreviating notations:

1. In formulas, describing x€L or x€L, quantifiers are restricted to range over quantities with length
at most a polynomial of the length of x. Thus for example

xEL & IyVzP(x,y,z)

for a polynomial time predicate P, is an alternate characterization of NP™F (NP with oracle from
NP) ; see [St, W].

2. 3,,yP(x,y) denotes that there is an >0 so that for all (inputs) x: Pr({y| P(x,y)})>1/2 + &.

Using these notations let us review definitions of some of the above complexity classes:



LEP: x€EL « P(x)
for some polynomial time predicate P.

LENP: x€L « 3yP(x,y)
for some polynomial time predicate P.

LER: (x€L — 3 yP(x.y)) A (x€L — Vy 1P(x,y))
for some polynomial time predicate P.

A = NP M co-NP
ZPP = RN co-R

LEBPP: (x€L — 3 yP(x,y)) A (x¢L — 3_y—P(x,y))
for some polynomial time predicate P.

Note that the above definition of R is decisive in the sense that yP(x,y) is enough to decide that x€EL,

whereas for BPP this is not the case, because 3yP(x,y) and Iy—P(x,y) do not contradict each other.

LEPP: x€L <« Pr({y| P(x,y)})>1/2
for some polynomial time predicate P.

For definitions of PH, AP=PSPACE, RH see [HU, CS, Z2].

It is helpful to have an algorithmic model for the above complexity classes in order to intuitively grasp
properties of them. Nondeterministic Turing machines running in polynomial time represent the most widely
spread computing model. For precise definitions see e.g. [HU, GJ]. For example in case of P all possible
computation paths give the correct answer; in case of ZPP many paths give the correct answer, whereas the
remaining paths give no answer at all (Las Vegas); in case of A there is at least one path that answers correctly,
whereas the remaining paths give no answer at all; in case of BPP many paths give the correct answer, whereas
the few remaining ones may give a wrong answer (Monte Carlo). Similarly computation trees for NP, R, PP

have the known obvious structure.

A nondeterministic Turing machine can be augmented by a query tape and an oracle that can answer
queries about some decision problem A without extra|time costs. Thus for example NpSAT represents the
class of problems that can be solved by a nondeterministic Turing machine with NP behavior that can query
an oracle for SAT. We can generalize this by allowing| the oracle o be any one of some complexity class:
Clc2 = {C,Y| A€C,}. It turns out that some oracle classes collapse: PP=P, ZPP™ = 7pp, BPPEIP = BpP,
AA:A, PZPP:ZPP, PBPP=BPP, NPA:NP, etc. For| others it is known that cnc query to the oracle is
enough to yicld the whole power of the class: NPT =NpNP ANP:ANPD], RR:RR[H, ZPPR:ZPPR[H,



NpBPP = NpBPPL]

NPNP = NPNP s essential for the alternate characterization of NPNT, i.e. x€L <> 3yVzP(x.y.2).

For all known inclusions the relativized inclusions are also valid: e.g. AR (@ NpR c NPNP,

o~

| o NP NP NP
Oracle querying is associative: e.g. (NP* =NpNPENP ) _ Np(NP ) - NpNP

To persuade

yourself of the above use your favorite model for NpP computations using oracles.

Another property, that we will be frequently using, is the robustness property of the 3, quantifier
(consequently of R, ZPP, BPP ). The following requirements on a polynomial time predicate P are
cquivalent:

for a polynomial q and for all x: Pr{{y| P(x,y)})>1/2 + 1/q(|x])
for a fixed € and for all x: Pr({y| P’(x.y)})>1/2 + ¢
for a polynomial q and for all x: Pr({y| P"(x.y)})>1 - 1729,

Notice that 3.,y guarantees an overwhelming majority of witnesses.

2. BPP is Contained in the Polynomial Hierarchy

It seems very improbable that NP is contained in BPPf Evidence for this are the following facts:

1. BPP problems can be solved in practice with arbitriary small error probability, whereas this is not
known to be the case for all NP problems. '

2. Using random oracles, BPP collapses to P with probability one, whereas NP#P with probability
one [BG].

3. If we assume NPCBPP, we can deduce R=NP and PH CBPP and PH collapses at the second
level, neither of which corresponds to our intuition [K,Z2].

Thus trying to prove BPPCNP or BPPC Ekp for some k>1, seems to be a more reasonable project. As a

matter of fact Sipser showed BPPC Z4P and Gacs and Lautemann improved this to BPPC Zzp[S,L]. We give

here a simplified proof of this fact, which is the start of several improvements that we are going to prove in the
next section; in addition our proof shows that a poly-size circuit argument [A] is basically enough to show
BPPQNPNP. In order to demonstrate this we formulate nhe concept of a comb with polynomially many teeth

and then we prove a lemma about combs which we are goﬁng to use throughoeut the paper.
I

Def.: C, a comb of size n is a collection of binary ntimbers (teeth of the comb), such that for all z€Q,
|z}<n and card(C,)<n. |



Remark: C, can be encoded into one number of [polynomial length and decoded from it in time

polynomial in n.

Lemma 1: If VX ¢, 30V} < P(xY) then 3C, Vx[for some tooth yEC: O(x,y)]

Eroct: .
Consider the matrix M[x,y] = ®(x,y), 0<x,y<2"1. Thus VxPr({y| M[x,y]=true}) > 1/2+¢ (all rows contain
many "true") and therefore Pr({(x.y)| M[x,y]:tmc})j > 172+¢ (M contains many "true") and 3Jy;:
Pr({x[M[x,y;]=true}) > 1/2 +¢ (some column contains many "true"). Remove from matrix M all rows x
where M[x,y;]=true, remove column y; and call the new matrix M. M’ has at most half as many rows as
M. M’ similarly contains many "true" and thus there is a éolumn Yy, in M’ that contains many "true”. Proceed
analogously to obtain {y,,...y,} halving the number of? rows cach time and thus covering all rows of the
original M with {yy,...y,}=C,. |

q.e.d.

Roughly speaking, Lemma 1 says that we can interchaiflge the quantifiers ¥x and 3y provided that for all x

there are many y.

Remark: If P(x,y,z)is a polynomial time predicate, then P'(x,C | ) =V P(x,y,z) is also.
T |7 e 2€Ch(x))

Theorem 1: (Sipser, Gacs, Lautemann) BPP C I]EJPNP

Proof: '
Let LEBPP i.e. l

(x€L — 3y P(x,y)) A (x¢L —3,,y—P(x,y)) |
Assume w.l.0.g. that g

x€L — Pr({y| P(x.y)}) > 1-1/2
x€L — Pr({y| P(,y)}) < 1-172M

Let p(|x|) be a polynomial bound for the BPP computdtion on x. Take a comb C y and slide it across the

(x|
leaves of the BPP computation tree. Shift-rotating the comb by s corresponds to replacing every tooth y; by

u;=(s+y;)mod 2°(D),

Claim 1: x€L — 3Cyy))Vshifts s [for a tooth u of thc s-shifted comb:P(x,u)]

Proof:
x€L — [because LEBPP] 3 yP(x,y) — [consider sinfls] Vs _yP(x, (>+y\mod2puxl)) i
[because of lemma 1] EJCP(M )Vs[for a tooth u: P(x,u)]
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Claim 2: 3CP{M)Vshifts s [for a tooth u of the ssl
Proof: by a pigeon hole argument, |

hifted comb:P(x,u)] — x€L

There exists a comb Cpgxppand a 2;€Cpyy)) Such t;hat card{s| P(x,(s+z;) mod 2P(xDy1 » 2p(lx')/p(lx[).

Therefore Pr({s| P(x,(s+2z) mod 2°(*M)}) >1/p(

Thus it is not true that 3,y P(x,y) and therefore

Thus

x€EL & 3ICVsd(x,C;s)
for a polynomial time predicate ®, where d(x,C,s
ie. LENPF,

Corollary: BPP C ANPLI]

Proof:

For NP™F one oracle query is enough and BPP is
complements.

Theorem 2: (Gacs) BPP C RNP
Proof: See [Si).
Corollary: BPP C ZPpNP

3. Classes with Decisive Characterizat

In section 2 we have seen that BPP C zPP™? For re

) >1/25 for sufficiently large x.

x€L.
g.e.d.2
) <> for some z in C: P(x,(s+z)mod 2P(xD);
g.e.d.
closed under
g.e.d.

ion which Contain BPP

lativizations, however, we know that BPPX =PX with

X
probability 1 and P*# NPX with probability 1 [sec BG]. Therefore BPPX C (ZPPNP) with probability 1. This

shows that it will be difficult to prove BPP=ZPP™?, For that reason we try to find a tighter characterization

of BPP (below ZPP‘\‘?). Define a class A of languages by

LEA: (xEl — 3YVzP(x,y,2)) A (x¢L — Vy3z77P(x,y,2)) for some polynomial time predicate P

Proposition: A C RNPIY

Notice that we do not know, whether RN C A. For problems in RN distinct computation paths can

uery the oracle (once) and receive positive Or negative answers, with the use of which then these paths might
g P

lead to0 an accepting answer; whereas in case of A the "paths" only make use|of negative answers .

To prove the next theorem we need a stronger version

of Lemma 1:

Lemma 2: If V Xxi<n ImYyin @(x.y) then 3 C, V Xxj¢alfOF some tooth yEC,: @(x,y)] where k=n+2




Proof:
Pr({C,| 3xlx|<n[for all teeth yECy: =@ (x,v)]}) :-Pr(U|x|<n{Ck| for all teeth y€C;: 7 @(x,y)})
< By Pr{Cy for all teeth yEC,: Oy} < [Byjen(1/2)* = 2°(172) < 1/4< 172 e,

Therefore for most of the Cy - Vxyy ¢, [for some tooth y €Cy: @(x,y)] holds.

g.e.d.
Theorem 3: BPPC A
Proof:
Let LEBPP. We will show LEA.
Claim 1: x€L. — A Cppxp Y shifts s[for a tooth u: B(x,u)]
Proof: As in claim 1 of theorem BPP QNP:\IP replacing 3Cp(|x|)
by 3,,C ;) using Lemma 2 instead of Lemma L.
Claim 2: as in BPP C NP
g.e.d.
Corollary: BPP C ANco-A C ZPpNFI
Define now a class B of languages by
LEB: (x€L — Vy3,zP(x,y,2)) A (x¢L — JyVz—P(x,y,2)) for some polynomial time predicate P.
Proposition: BC A
Proof:
Let LEB. We will show LEA.
x€L — Vy3,7P(x,y,z) — (by Lemma 2) Hme(|x|)?V y[for a tooth uéCpqu: P(x,y,u)]
On the other hand:
Eme(ixi}Vy[for a tooth U€Cp([x|): P(x,y,u)] — EICF (M)Vy[for a tooth uECpGXD: P(x,y,u)]
- VyEle(IXD[for a tooth u€Cp{iXD: P(x,y,u)] = Vy3zP(x,y,z) — (because LEB) x€L.
Thus L satisfies the definition of A for the polynomial time predicate Vu - CP(x,:,r,u).
' g.ed.

Theorem 4: BPP C B




Proof:Let LEBPP.

Claim 1: x€L — VCp(lxl)Bms[for all tecth u:P(x,u))]

Proof:
x€L — (since L €BPP) 3 yP(x,y) — Yu Pr({s|

= VCyyp  Pr({s| for some tooth u in Cyyy)) 7

<Z

U

— VCpyxpyImslfor all teeth u: P(x,u)]

Claim 2: VC,,y3sffor all teeth:P(x,u)] — x€L
Proof of the contraposition x¢L — ...as in claim 1

Corollary: BPP C BN co-B

4. Decisive Characterizations of BPP

We proceed now to define some decisive classes K tg
prove that they coincide with BPP.
LEK: (x€EL — 3, yVzP(x,y.z)) A (x¢L — 3_zV

for some polynomial time predicate P.
LEK,: (x€L — Vy3 7P(x,y,2)) A (x¢L — Vz3
for some polynomial time predicate P.
LEK : (x€L — 3_yVzP(x,y.2)) A (x¢L — Vy3
for some polynomial time predicate P,
LEK,: (x€L — Vy3,7P(x,y,z)) A (x¢L — 3_y¥
for some polynomial time predicate P.

Remark: K3 = co-Ky, K; = co-Ky, K; = co-K,
Lemma: X; CK; CK,, K;CK,CK,

Proof:
Trivial. Note that 3,,,yVz®(y,z) implies Vz3_ y®(y

Lemma 3: If V¢, 37y ¢ P(x¥) then 3,C, VCy [for m

Proof:
We will first show
31, Cy Yy ¢plfor most teeth yEC,: O(x,y)]

»

—P(x,(s+u)mod 2PXPy3y ¢ 1721
P(x,(s+u)mod ZPGX]))}) <

1728 = p(jxp)/2® < 172 -¢
€ Gy

of BPP C NPYP

g.ed.

K, which will first turn out to be all equal. Then we

yP(x,y,2))

yP(x,y,2))

z7P(x,y,2))

z—P(x,y,2))

N

)

g.e.d.
ost teeth yEC,, and x€C,: ®(x.y)], where k=2n+4




Then the claim of the lemma follows immediately.
Pr({Ck]EixlxKn[for most teeth yEC,: m1@(x)]}) = Pr(U g ¢n{Cylfor most teeth yECy: 79(x,y)})

< 3 a{Cylfor most teeth yEC,: 0(xy)}) < Bppen(1/28% = 2°(1/2)" 2 = 1/4< 172 -e.
g.e.d.
Theorem 3: K, C K,

Proof:
Let LEK,

x€L — Vy3_zP(x,y,z) — (Lemma 3) 3, CVC'[for most zEC and yEC”: P(x,y,z)]
x€L — Vz3_y—P(x,y,z) — (lemma 3) 3_C VC[for most zEC and yEC: —1P(x,y,2)]
— 3, CVC—[for most zEC and yEC’: P(x,y,2)]
Therefore LEK;
g.e.d.

Corollary: K; = K, = K3 =K, =:K

Proposition: K C B

Proof: K4 C B is obvious

g.ed.
Theorem 6: BPP C K

Proof:

Let LEBPP.

Similarly as in claim 1 of BPP C B and claim 1 of BPP C A we can show that
XEL — VCpy, I mslfor all teeth u=(z+s)mod 20, 2€C,: Pw)]

and x¢€L — 3,C,yy V] for some tooth u: —1P(xyu)]
g.e.d.

Proposition: K C BPP



Prooft

Let L€K2

x€EL — 3 <y, P(x<y,2>)
x¢L — 3_<y,z>: TP(x<y,2>)
Therefore LEBPP.

g.e.d.

From the above then follows our:

MAIN THEOREM: K = BPP

5. Various Consequences

Note that any of the Ky, K5, K3, K, characterizations of BPP are decisive, that is, even if we replace 3
quantifiers by 3, the simplified clauses for x€L and x€¢1. contradict each other and thus they allow us to
decide whether x€L.

Another interesting fact is that possible probabilistic hierarchies built by 3,V (resp. V3,) quantifier

repetitions collapse.,

e.g.

LEBPP iff there is some polynomial time predicate P such that
(x€L — 3% VX3 X3V X P(X1,X5,X3,X4))
A (X@L = VX13szVX33mX4_1P(X1,X2,X3,X4)) . | elc.

Our hope was to show BPP= ZPPR, but as we discuss below this does not seem to be an easy problem.

JECR::
(x€L — 3 yVzP(x,y,z))

A (x€L — Vy3_ 7P(x,y.2))
A Yxy(3z7P(xy,z) — 3,27P(x,y.2))
for some polynomial time predicate P.
Proposition: R; CK; C BPP
Proposition: RR = RRI = R,
Proof:

PNP

First note that as in the case of N the base R-machine can itself generate answers of the oracle R, proceed

accordingly and at the end verify only those queries for which it assumed a negative answer. Thus for LERR
the first two clauses of the definition of R; are true. The third clause is|necessary to ensure that the oracle
machine has R behavior even if its answers do not contribute to the base machines result. On the other hand

R; C RR s clear.

g.ed.
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Thus the reason we could not show BPP QRR is that we could not characterize an LEBPP in such a way
that the third condition for R would be satisfied. Note that similarly NPR C co-B.

The insight we obtained about BPP looking at thesé proofs, as well as the final characterization BPP = K
led us to the following result.
-»BPP
Theorem 7: NPYF = NPV
NpEPP \.P[I]BPP[I] )
Sketch of a proof: Let LENP = NP . Note that only one query per path and only with the
same answer for all paths is enough for the BPP (as well|as the NP) oracle,

€L e 3){1 VXzamX3VX4P(X,X1,X2,X3,X4)
Using lemma 1: x€L. < EI(xl,Cchxz\/K3 ¢ CVx4P(x,xl,x2,x3,x4)

Therefore L € NP

g.ed.

This last theorem shows that using a BPP oracle does not add any computing power to classes as low as

>3 R 14
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