MIT/LCS/TM-255

HOW TO ASSEMBLE TREE MACHINES

Sandeep N. Bhatt

Charles E. Leiserson

L]
i -i'
A
DM

March 1984

How to Assemble Tree MaChines

Sandeep N. Bhatt
Charles E. Leiserson

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusctis 02139

Abstract—Many rescarchers have proposed that ensembles of processing elements be organized
as trees. This paper explores how large tree machines can be assembled efficiently from smaller
components. A principal constraint considered is the limited number of external connections
from an integrated circuit chip. We also explore the emerging capability of restructurable VLSI
which allows a chip to be customized after fabrication.

We give a lincar-area chip of m processors and only four ofl-chip connections which can be
used as the sole building block to construct an arbitrarily large complete binary tree. We also
present a restructurable linear-area layout of m processors with O(lg m) pins that can realize
an arbitrary binary tree of any size. This layout is based on a solution to the graph-theoretic
problem: Given a tree in which each vertex is either black or white, determine how many edges
need be cut in order to bisect the tree into equal-size components, each containing exactly half
the black and half the white vertices.

These ideas extend to more general graphs using separator theorems or bifurcators.

This rescarch was supported by DARPA Grant N00014-80- C-0622.

1

1. Introduction

A tree may not be the best multiprocessor organization, but it has been-propesed by many re-
searchers for a variety of reasons. For example, a complete binary tree of proeessing clements can
be the major component of a priority qucue resource [15] and of a smart-tmemory. raster graphics
system [10]. A complete binary tree can also serve as a hardware structure for searching [2], for
databases [29], or for direct exceution of applicative programming languages [21]. Browning [6]
proposes a complele binary tree for general-purpose multiprocessing.

Attention is also directed to binary trees which are not complete. Floyd and Ullman [8] show
that strings described by a regular expression can be recognized by processing elements organized
as the parse tree of the regular expression. Foster and Kung [9] have a similar scheme based on
the simple conligurable layout of Section 3 (first presented in [17]). There arc other proposals,
for example [27], of machine organizations which, though not trees, are nevertheless tree-like.

We shall not debate the merits of the various tree machine architectures here, but shall
confine oursclves to understanding their physical organization. In this regard, one attraction of
trees is that they can be laid out efficiently. Figure 1 shows the familiar 1i-tree layout originally
proposed by Mead and Rem [22]. This layout of a complete binary tree requires linear area, as
opposed to the O(nlgn) area standard layout shown in Figure 2. Leiserson [16] and Valiant [30]
independently discovered that arbitrary binary trees could be laid out in linear area. In lact,
Valiant proved that no crossovers were necessary in a linear-area layout. Based on ideas from
Paterson, Ruzzo, and Snyder [23] and Bhatt and Leiserson [4], planar embeddings of arbitrary
trees that minimize the maximum edge length were given by Ruzzo and Snyder [26].

Herctofore, the theoretical work on layouts has assumed that the entire tree fits on a chip.
But the tree machines discussed above might be much larger. Whenever any system is larger than
a single chip, it becomes necessary to partition it among separate chips which can be assembled
at the circuit board (or chip carrier) level. What is the most effective way to partition a large
tree among chips?

This question is pressing because although integrated circuit technology has been advancing
at a breathtaking pace, one sector of that technology has been crawling in comparison. The
technology for packaging chips severely limits the number of external connections to an integrated
circuit, and whereas some enthusiastic technologists project an eye-opening 108 components per
chip, two hundred pins per chip seems a large number to most. A chip that requires many more
is unlikely to be realizable for quite some time.

Most of the theoretical work on tree layout has also implicitly assumed that a given tree, after
masks have been made of the layout, will be replicated many times. This assumption is implieit
because of the economics of integrated cireuit fabrication technology: it is expensive to make one
chip, but cheap to make many copies. For this economic reason, manufacturers of custom chips
have been encouraged to make configurable designs such as gate-arrays, ROM'’s, and PLA’s. The
entire chip is manufactured except for one mask. The customer to whom the chip will be sold
specifies a configuration of the chip, and the final layer of metalization conncets up the circuitry
in that particular way. Thus most of the design and fabricalion costs are factored over many
custom chips. Nevertheless, many copies must be made of the same custom chip for it to be
economical.

Restructurable integrated circuits provide a means for the interconnections on a chip to be

2

Figure 1: The lincar area “H-tree” layout of a complete binary tree.

| &
Figure 2: An O(nlgn) layout of a complete binary tree.

configured after fabrication. The most common example is a PROM (programmable read-only
memory) in which diodes, which normally pass current, can be busted so that a connection is
no Jonger made. More recent and exciting is the work on restructurable VLSI at IBM [20] and
MIT Lincoln Laboratory [24]. Connections between two metal layers are produced rcliably and
efficiently by laser welding. Connections can also be broken by using the laser to cut wires in the
circuit. Figure 3 shows a scanning electron microscope photograph of laser welds and cuts on a
chip at MIT Lincoln Laboratory.

Restructurable VLSI chips have the advantage that the cost of quantity-of-one designs can still
be factored over many chips, but some propose systems that included dynamically restructurable
interconnections. For example, the proposed CHiP project at Purdue (Snyder [28]) is 2 dynami-

3

Figure 3: Laser welds and cuts on a restructurable integrated circuit
chip (courtesy of MIT Lincoln Laboratory).

cally restructurable multiprocessor. It has not yet been demonstrated that large scale dynami-
cally restructurable interconnections are economically feasible due to overheads in reliability,
area, performance, and labrication sophistication, but our results do indeed apply to dynamically
restructurable layouts.

The rest of this paper addresses packaging constrainis and restructurable VLSI with regard
to tree layouts. Section 2 gives a chip with four pins that can be used as the sole building block
for arbitrarily large, complete binary trees. A simple, but nonoptimal, restructurable layout that
can implement any binary tree is given in Section 3. Section 4 proves a two-color bisector theorem
for trees which is the main technical tool for producing the restructurable chip given in Section
5. This chip of M vertices has linear area and O(lg M) pins, and it can be used in quantity to
assemble any binary tree of any size. Section 6 contains extensions and conclusions.

2. Packaging a complete binary tree

This section studies the problem of packaging complete binary trees, and presents the design of
a single chip with four pins that can be used to bulid arbitrarily large complete binary trees. This
chip, originally proposed in [17], has since been used (at the circuit board level) in tree-machine
projects at Caltech and Bell laboratories [7].

We begin, however, by examining the inefficient partitioning of a complete binary tree proposed
in [15] and elsewhere (for example, [6]). Each of the squares in Figure 4 is a Type A chip and is
packed as full as possible with processors in the H-tree layout of Figure 1. The rectangle above is
a Type B chip which contains the standard O(n logn) area layout of Figure 2, but with each leafl
connected off-chip. The Type B chip can be used repeatedly to combine several smaller complete
binary trees into a larger one.

Figure 4: An incffictent partitioning of a complete binary tree into Type
A and Type B chips.

Theorem 1. Suppose Type A chips each contain P = 2P — | vertices, and Type B chips
each contain Q = 29 — 1 vertices. Then a complete binary tree with at least N = 2" — 1

vertices can be assembled from

. ?;TI]I Type A chips and

° ”Q‘%Iﬁ%" Type B chips.
Proof. The complete binary tree can be assembled using the scheme from Figure 4.3

We can do better, however. Figure 5 shows a Type C chip with only four ofl-chip connections.
Arbitrarily large complete binary trees can be assembled from this one kind of chip. Each chip
contains one internal node of the tree, and the remainder of the chip is packed as full as possible
with an H-tree layout. The internal node requires three ofl-chip connections (denoted F, R, and
L in the figure) for its father, right son, and left son. The H-tree requires only one off-chip
connection (denoted T) to its father.

Theorem 2. Suppose Type C chips each contain M = 2™ vertices. Then a complete binary
tree with at least N = 2™ — 1 vertices can be assembled from (N +1)/M Type C chips.

Proof. We show how arbitrarily large complete binary trees can be built up. To interconnect
two chips, the unconnected internal node of one of the two chips is selected as the father of the
two H-trees. In Figure 6 the internal node on the left has been chosen for this purpose. The R
pin on this chip is conneeted to its own T pin, and the L pin is connected to the T pin on the
other chip. Considered as a unit, the combined two chips now have the same structure as a single
chip—three connections to an internal nodc and one to the root of a complete binary tree. The
pair of chips can be similarly combined with another pair to produce a quadruple of chips, which
can in turn be combined, and so forth inductively, as is shown in Figure 7.8

- - =

o
9
I
ted
-~
=
s
I
E
S
L&)
Cl
w
(=9
=]
-2
o
3
Q.
& .
. E
]
TLFR) w _ llllll T1ft--—-"-- =
o >
(%) _ i .m
e
wy
-8 B
T £
: e _ pm--- N
' | [| w
' |
| ! w B ' 5 _
H) 8 ! [
| ! [! T
") 1 'g _
IIIIIIIIIIIIIIIIII m " N2
o 1 "M.
= e
& N |
S =
s)
[
t
J -
- &0
= u =
I
-

Figure 7: A large complete binary tree assembled from many Type C

chips.

The onc-chip method has many advantages over the two-chip method. Most obviously, the
onc-chip method uses only one kind ol ehip. Why manulacture two kinds when one will do?
Second, only four data paths go off chip. Third, the Type C ehip-is packed Full swhile the Type B
chip is almost emptly because i is pin bound. Finally, the aree of-1he assembly fon a circuit board
for example) is linear in the number Type C chips used. The twa-chip solution gives an O(n logn)
area cireuit layoutl. Although the case is not particularly strong for asymplotic analysis of eircuit
layout, the constant facters give a clear preference to the more regular, linear area layout. If
circumstlances permit, the wires conneeting the chips can in fact be routed underneath the chips
themselves, thereby requiring no more area on the circuit board than the chips themselves.

3. A restructurable chip for packaging arbitrary trees

This section presents a simple (but suboptimal) scheme for packaging arbitrary trees using a
single restructurable chip. The solution is suggested by a technique of Bentley and Leiscrson [17]
for producing collinear layouts for arbitrary trees. The strategy for producing collinear layouts
is, in turn, based on the observation that trees have a small separator theorem. This scetion
defines scparator theorems, deseribes the strategy for producing collinear layouts, and proposes
a simple packaging scheme. Although the solution is asymtotically suboptimal, the results are
crucial to the optimal scheme presented in the next section.

Separator theorems [19] have been applied to solve a variety of graph-theoretic problems
including graph layout (for example, [3, 14, 16, 17, 30]). Formally, let ¥ be a family of graphs
closed under the subgraph relation, and let @ < 1/2 and B be positive constants. If every graph
on n vertices in ¥ can be separated into two disconnected components, each having at least |an|
vertices, by removing no more than 8f(n) edges, then ¥ has an f(n)-separator theorem.

By removing a single edge, any n-vertex binary tree can be separated into two components,
each with no more than [£N| + 1 vertices [18]. (The worst-case occurs for the four-vertex tree
in which one vertex is adjacent to three others.) Either of the two components may be a forest,
but since the same result applies to forests, the binary tree can be split recursively. Since each
of the recursively generated subgraphs can be split by removing a single edge, the class of binary
trees has a one-separator theorem.

Bentley and Leiserson [16] used the one-separator theorem for trees to produce collinear
layouts for binary trees. In a collinear layout all the vertices are placed along a common baseline,
and tree edges are routed along horizontal and vertical tracks on one side of the baseline, as seen
in Figure 8. The height of a collinear layout is defined as the number of distinct horizontal tracks
used for routing the edges. As shown in the following theorem, efficient collinear layouts can be
produced using the one-separator theorem for binary trees. (In fact, Yannakakis [31] has shown
that a minimum height layout can be obtained for a given N-vertex trce in O(N Ig N) time.)

Lemma 3. Every N-vertez binary tree has a collinear layout with height no greater than
g N.

Proof. Using the one-separator theorem, first separate the tree. If either component contains
more than N /2 vertices, scparate it into two smaller components using the one-separator theorem
again. Next, recursively construct collinear layouts for each subforest, and place these layouts

7

h(N)

J |peeovsdeoe s0DOOOOOSO e OO OO
- T _J \——-——-\\l——-__.) \——-\%,—.——)
|

— N !
XY, 2 £ |N2]

Figure 8: The construction of a collinear layout.

side-by-side along the bascline. Finally, as shown in Figure 8, connect the two (or three) subforests
by routiing the separator edges on distinet vertical tracks and along a common horizontal track.
(For two components this is trivial since only edge is routed; for three components, place the
subforest connected to both other subforests in the middle as shown.) For each node there are
three vertical tracks to accomodate edges incident to that node. '

The height of the layout is determined by a simple recurrence relation. Let h(N) be the height
of the layout, so that A(1) = 0, and in general,

A(N) < A(IN/2)) +1.
A straightforward. calculation yields h(N) < IgN.

Corollary 4. Any binary tree with N vertices can be bisected into components of sizes
N/2} and [N /2] by removing at most Ig N edges.

Proof. Consider the vertical line that passes midway through the collinear layout. It bisects
the N vertices and the number of edges it cutls is no more than lg N, the height of the layout.§

The collinear layout can also be used to make a configurable chip of N vertices which can
realize any N-vertex binary tree. The chip consists of N collinear vertices, with three vertical
wires connected to each vertex, and lg N contacts along each vertical wire. Every N-vertex
binary tree can be configured on this chip by specifying one extra custom layer. The custom
layer consists of the portions of the wires in the collincar layout that run horizontally. The
horizontal wires run between the rows of contacts, and spurs to the contacts make connections.

An unattractive feature of the configurable chip is that a different mask must be designed for
each tree. Not surprisingly, the same idea can be used to design a restructurable chip for trees,
where the chip is customized (for example, by laser) after fabrication. Once again, the collincar
layoul serves as the basis for the design. The restructurable chip consists of vertical wires running
the height of the layout on one layer, and horizontal wires running the width of the layout on

8

_——— e o ——— e —— o e o o — = = ———

0

Figure 9: A Type D restructurable chip which can be used to assemble

large binary trees by making and breaking connections.

another. By using laser welds to connect various horizontal wires o appropriate vertical wires,
and laser trimming to break horizontal wires, any tree can be realized in accordance with its
collinear layout. The number of connections made or broken is O(N).

This restructurable layout also suggests a method of packaging arbitrary binary trees using a
single Type D restructurable chip, which is shown in Figure 9. From each of the collinear vertices,
three vertical wires are run. At every intersection of a horizontal and veriical wire is a weld point
which can be programmed after fabrication. Each horizontal wire is connected to pins at either
end.

Theorem 5. Suppose Type D chips each contain M vertices and n horizontal wires. Then
any binary tree with N = 2" vertices can be realized with [N /M) Type D chips.

Proof. Take the [N/M] chips and place them side by side in the natural way hooking up
adjacent pins. Following Lemma 3, draw a collinear layout of height at most g N for the N-vertex
tree. Map the layout onto the assembly in the obvious manner. Make and break connections on
each chip to realize the layout.j§

Unfortunately, if a tree with more than 2™ vertices were required, this chip might not be
able to configure it. In the next section a better packaging scheme is developed whereby one
restructurable chip containing M vertices in linear arca and O(lg M) pins, can be used to package
arbitrarily large binary trees.

Some restructurable technologies do not allow connections to be broken, and thus the scheme
of Theorem 5 will not work. A naive alternative is to break every horizontal wire into M unit
length segments. Each segment can be connected to vertical wires and to its neighboring segments
on the same horizontal track. Unfortunately, programming the interconnect requires a large
number of welds to be made on an edge connecting two vertices. The scheme from Theorem 5
requires only two welds for each edge.

Figure 10 shows a Type E restructurable chip which can realize any tree by making, but not
breaking, connections such that only two welds are required per edge. The chip has M = 2™

9

.,tm.[

2
2
1

EFslals) sl e

Figure 10: A Type E restructurable chip which can be used to assemble

large binary trees without breaking connections.

vertices and n horizontal tracks which are divided into groups. The first group contains one
horizontal track which consists of M /2 unit length wire segments. The second group contains
two horizontal tracks, each with M /4 wire segments of length 2. In general, for 1 = 1,2, ... ,m,
the 7th group contains 7 tracks, each with M /2* wire segments of length 2¢. The remainder of the
horizontal tracks are in group m + 1. Each of these tracks has one wire of length M connected
off chip.

Theorem 6. Suppose Type E chips each contatn M = 2™ vertices and n horizontal tracks.
Then any binary tree with N = c2V2" vertices can be realized with [N/M] Type E chips,
where ¢ is a constant (c ~ 1/v/2).

Proof. Lay the [N/M] chips side by side, and connect the pins to continue the on-chip
grouping scheme such that for 7 =1,2,...,1g N, group ¢ contains ¢ tracks, each with N /2% wire
segments of length 2¢. The total number of horizontal tracks is

A(N)=1+2+---+IgN

g N(gN +1)

< %(lgc+\/ﬁ)(lgc+\/2_n+1)
i

8

for ¢ = 1/V/2, and thus n tracks are sufficient.

Observe that this assembly without its top group of lg N horizontal wires forms two smaller
versions of itsell. To realize a given tree, remove the lg N bisector edges as in Corollary 4,
and recursively lay out the equal size components within the two smaller layouts. Combine the
sublayouts by routing the bisector edges along the top group of wires that run across the layout.
Since two connections are formed for each tree edge, the total number of welds is 2N — 2.3

10

A

12345167516 9 © h Ay 12 13

Figure 11: At some point, a window of size n/2 slid along the base of
the two-color collinear layout must contain half the white and half the black

vertices.

4. Two-color bisector theorems

Although the Type D restructurable chip with M vertices and 2n pin connections provides
one way to package large trees, it suffers two disadvantages. First, it cannot be used to assemble
trees with more than 2" vertices. Second, and more important, the chip is wasteful in area. In
fact, although every N-vertex tree can be laid out in O(N) area [16, 30], a collinear layout for the
complete binary tree requires at least (N g N) area [5, 16]. Thus we are led to ask: Does there
ezist a restructurable chip with M vertices, occupying O(M) area, and having few pins which can
realize every binary iree, no matter how large?

In the next section we answer this question affirmatively. The question is fairly subtle,
however, and does not follow as a straightforward application of the separator theorem. While we
can effectively use the separator theorem to recursively bisect a tree into equal size components (as
in Theorem 6), there is nothing to bound the number of ezternal edges that connect a component
to the rest of the tree. Thus for example, suppose we designed a chip with M vertices and P pins
for packaging arbitrarily large trees. How can we guarantee that every tree can be decomposed
into subgraphs of size at most M such that each component has no more than P external edges?

In this section we introduce the notion of two-color bisector theorems which can be used to
recursively bisect a graph while also bounding the number of external edges into each component.
Moreover, trees have small two-color bisector theorems, so that the number of external edges into
a component is also small. These results use arguments from the previous section. In the next
section, we apply two-color bisector theorems to design an optimal packaging scheme for binary
trees.

Definition. Suppose that an N-vertez graph G has b black vertices and w white vertices. A
two-color bisector for G is a set of edges whose removal bisects G into two subgraphs each of
size at least | N /2], and such that each contains at least |b/2] black end |w/2] white vertices.

11

gé‘(zn):z{

g (2"‘) E Im D
E -K(Zm):z{““

Figure 12: To keep the number of external connections to all subcom-

ponents small when a component is bisected, the external connections must

be evenly divided between the subcomponents.

Theorem 7. Every N-weriez forest of binary trees has a two-color bisector of size 2lg N.

Proof. TFollowing Lemma 3, construct a collinear layout of height at most Ig N. Suppose
there are b black vertices and N — b white vertices. Consider a “window” which overlaps [N /2]
consecutive vertices, and place it over the leftmost |N/2| vertices. If more than [5/2] black
vertices fall within the window, slide the window one position to the right. Observe that by
sliding the window one position, the number of black vertices within the window changes by at
most one. Furthermore, by sliding the window all the way to the right, less than |b/2] black
vertices would fall within the window. Consequently, there must be an intermediate placement
of the window (see Figure 11) in which at least |b/2] black vertices and at least [(N —b)/2] white
vertices are contained within the window. (Such a placement can be obtained in linear time.)

Draw vertical lines through the endpoints of the window in the position obtained above. The
edges of the forest intersecting these lines form a two-color bisector of the forest. The size of this
two-color bisector is no more than twice the height of the layout. Thus the size of the two-color
biscctor is'no more than 21g N.J

For our purposes the following variant of two-color bisectors is more suitable. Suppose each
vertex of an N-vertex forest is assigned a weight from a bounded set {1,2,...,k} of weights. We
wish to bisect the forest into two subforests, each of size at least | N/2|, whose total weights
differ by at most k. How many edges need be cut? Adapting the argument for two-color bisectors
to this variant in a straightforward manner shows.again that 21g N cuts suffice.

Having obtained bounds on the size of two-color bisectors for forests, we wish to use them
for partitioning an arbitrarily large binary tree into subforests of size at most M so that every
subforest has few edges connected to vertices in other subforests. This result is established in
the following theorem.

Theorem 8. Every N-vertez binary tree can be partitioned into [N /M subforests, each of
size at most M, such that no subforest has more than 4lgM + 8 edges connected to vertices
in other subforests.

12

Proof. We prove the theorem for the ease when N = 2* A1, The general ease may be proved

similarly, but we omit the tedious details of the analysis. As in Theorem 6, biseet, the tree into two
sublorests, each of size at least [N /2], by cutting no more than Ig N edges. Split each subforest,
recursively as follows. For each vertex in a recursively split component of size m assign a weight
equal to the number of edges incident to that vertex and which were cut at a previous level. Since
the degree of a vertex is at most three, the weight assigned to a vertex is at most 2. From the
argument following Theorem 7, there is a weighted bisector of size no greater than 2lgm for the
component. This weighted bisector divides the number of external connections almost equally
(the difference is at most two) between the subcomponents of sizes [rn/2] and [m/2]. As scen in
Figure 12, the number of external connections into cither of the new subcomponents is no more
than the size of the weighted bisector plus one-half the number of external connections into the
component just split (plus two). This recursive decomposition terminates when cach component
has size at most. M. Letting £(m) be the number of external connections into any component of
size m, we have £(N) = 0, and

£(m) < 1€(2m) + 21g(2m) + 2.
A little calculation shows that £(m) < 41gm+8. This means that every subforest of size m in the

- recursive decomposition has at most 4lgm + 8 external edges to other subforests. Substituting
M for m, the result follows. J

13

I
a

v bW

—T
¢

£

(ST T I

5 &

Figure 13: A k-by-k restructurable permuter can realize any set of one-

to-one connections between the terminals on the two sides.

5. An optimal packaging scheme

The recursive decomposition of Theorem 8 lcads directly to the design of an efficient restruc-
turable chip which can be used in quantity to assemble any tree. This Type F restructurable
chip has M vertices, O(lg M) pins, and an O(M) area layout. This packaging scheme is the best
possible when all vertices on the chips are utilized.

The design of the Type F chip uses restructurable permuters. A permuter Py has k terminals
on each side of a rectangle and can realize any one-to-one connection between the terminals. The
switch shown in Figure 13 implements a permuter. It has dimensions 2k X k, with the terminals
along the longer sides.

The construction of the Type F restructurable chip is recursive and follows the recursive
decomposition of Theorem 8. We shall use R,, to denote a level of the recursive layout with m
vertices, and let Rys denote the restructurable Type F chip of M vertices itself. Figure 14 shows
how the Type F chip Ry is constructed from four copies of Rpgy4, four copies of Pyjg p, and
two copies of Pyig ar44. Letting S(M) be the length of the side of the layout, we have S(1) = 1
and,

S(M) < 25(M/4) + O(lg M),
which yields S(M) = O(V'M), so that the area is linear in M. The number of pins on Ry is
4lg M + 8. We now show that every large tree can be assembled using Rpy.

Theorem 9. Suppose Type F chips each contain M vertices. Then any N-vertez binary
tree can be assembled using [N/M| Type F chips, the minimum possible.

Proof. As before, we assume that N = 2'M, although the result extends in a straightforward
manner to the general case. Following Theorem 8, decompose the tree into [N /M7 components,
each of size at most M and having no more than 41g M + 8 cxternal edges to other components.
Each of the [N/M] components can be realized on a single Type F chip Ras. To see this, use

14

Figure 14: The Type F restructurable chip I2as which can be used to

assemble arbitrarily large binary trees.

Theorem 8 to recursively decompose each component into single vertices. In this decomposition
each subforest of size m has at most 41gm + 8 external edges. This decomposilion may now
be mapped directly onto the chip, using the permuters to route edges between different subcom-
ponents. Since the number of external edges at any level is no greater than the size of the
permuters at that level, the permuters can realize the desired routing. Vertices of the tree are
embedded at fixed positions in the lowest level permuters F;. Finally, each chip has enough pin
connections so that the assembly can be completed off-chip by connecting the chips together as
required by the original decomposition. (Permuters are not needed off chip because wires can be
routed directly.)g

The constant factors on area can be improved if one uses the smaller restructurable permuter
Py with dimensions (k+O(Vk)) X (k+ O(VE)) that follows from the channel routing algorithm of
[1]. Whereas the simpler permuter from Figure 13 requires only two welds to make a connection,
the more dense layout might require as many as k welds for each connection. Although the total
number of welds required by either scheme is O(M), the number per wire is O(lg M) if the simpler
switch is used and O(lg® M) if the channel-routing permuter is used.

In related work, Rosenberg [25] has also considered permuters to obtain a degree of configu-
rability in layouts.

6. Extensions and conclusions

All the layout techniques presented here extend to more general classes of graphs. In par-
ticular, the techniques extend to classes of graphs not closed under the subgraph relation by
extending the definition of separator theorems as in 16 or 14 to apply recursively to graphs
gencrated by the scparator. For example, graphs with n®-separator theorems have lincar-area
restructurable layouts if @ < 1/2. When a = 1/2, the arca is O(nlg* n), and if « > 1/2, the area
is O(n2®). These arca bounds match the layout areas of 16 and 30 while requiring the layouts to

15

be restructurable. In each case the number of pins on a chip is O(n®) if @ > 0, and O(ign) if
a=0.

These bounds are obtained by recursively using the separator theorem to produce a collinear
layout. and then chopping the layout with twe cuts ta yiekt 2 two—color bisccter. There is one
technical detail in using the extended notions of separater theerems in 16 and 14 to accomplish
the cuts of the collinecar layouts since we must make sure that the two-color bisector theorem
applies recursively to the two halves of the graph. Rather than just cutling the edges incident to
the two vertical lines, one must in addition cut a constant factor more edges in order that cach of
the subgraphs generated by the two-color bisector is the union of disjoint subgraphs generated by
the separator theorem. A more general divide-and-conquer framework for this problem is given
in [3].

The methods for tree assembly considered in this paper have all assumed that the overall
utilization of the chips is 100 percent specifieally, only [N/M] chips are used to assemble
an N-vertex tree with chips that hold M vertices. Not sueprisingly, if the assumption of full
utilization is relaxed, fewer pins are needed. In particular, we can guarantec 50 percent utilization
with six-pin chips using an idea due to Tom Leighton.

The assembly is gencrated recursively as in Section 5. At each step of the divide-and-conquer
construction, there is a subforest A with at most six external connections. This subforest can
always be split into two components, each cohtaining at least one-sixth of the nodes and at most
six external connections. We first use the standard separator theorem to remove one edge that
splits A into two components B and C with at worst a % : % ratio. The only case to worry about
is if all the original external connections are incident to B (or to C) because the newly removed
edge will now give B seven external connections. If this bad split indeed occurs, we split B further
into By and Bj so that the seven conncctions are divided 3:4. (There is no constraint on the
ratio of the size of B; to By.) Finally, we take whichever of B; and Bs is smaller and combine it
with C. Of the two remaining components, neither has more than six external connections, and
each has at least [|A]|[/6 vertices.

The recursion terminates when any subforest has M or fewer vertices, in which case the
subforest is embedded on a Type F chip. Of course, only six of the O(lg M) connections are
actually used. The assembly method will never require more than 2[N/(M + 1)] chips. The
worst case occurs when every branch of the recursion terminates with the splitting of a subforest
of size M + 1. Higher utilization can be attained at the expense of more pins by generalizing this
technique.

Since our discovery of two-color bisectors and their relation to restructurable layouts, they
have been used in other VLSI layout problems. Based on partial knowledge of our work, Leighton
12 showed independently that any graph that has a v/n-separator theorem can be embedded in his
“tree of meshes,” which is similar to the restructurable layout obtained when f(n) = y/n. He and
Rosenberg 13 have also used three-color bisector theorems to obtiain optimal three-dimensional
VLSI layouts.

The use of the collinear layout for obtaining a two-color biscctor theorem from a separator
theorem is combinatorially appealing, and can be recast as a necklace problem. Given a necklace
of black and white pearls, how many cuts are necessary in order to divide the necklace into
two pieces such that each of the pieces has the same (to within one) number of pearls of each

16

color? The obvious extension is to ask how many cuts are necessary Lo divide a necklace of &
colors. Unfortunately, the naive idea of sliding a window across the collinear layout fails to work
il £ > 3. Recently, Goldberg and West 11 at Princeton, hearing of our open problem, developed
an clegant topological argument to show that & cuts suflice, which is tight in that k& cutis are
necessary in some cases. This result implies, for example, that trees with k colors have Olklgn)
k-color bisectors and planar graphs with k colors have O(k+/n) k-color bisectors.

Acknowledgments

Thanks to Tom Leighton of MIT for many helpful comments and his contributions to Section
6. Thanks 1o the RVLSI projeet group at MIT Lincoln Laboratory for Figure 3 and to Peter
Schwarz of Carnegie-Mellon University for his help in preparing Figure 7.

References

[1] B.S. Baker, S. N. Bhatt, and F. T. Leighton, “An approximation algorithm for Manhattan
routing,” Fifteenth Annual ACM Symposium on Theory of Computing (1983).

[2] J. Bentley and H. T. Kung, “A tree machine for searching problems,” Proceedings of the
1979 International Conference on Parallel Processing, IEEE (1979).

[3] S. N. Bhatt and F. T. Leighton, “A framework for solving VLSI graph layout problems,”
JCSS(to appear) (1983).

[4] S. Bhatt and C. Leiserson, “Minimizing the longest edge in a VLSI layout,” M.LT. VLSI
Memo 82-86, (1982).

[5] R.P.Brent and H. T. Kung, “On the area of binary tree layouts,” IPL No. 11, (1980).

[6] S. Browning, The Tree Machine: A Highly Concurrent Computing Environment, Ph.D.
thesis, Dept. of Computer Science, California Institute of Technology, (1980).

[7] 8. Browning, “private communication,” (April, 1981).

[8] R. Floyd and J. Ullman, “The compilation of regular expressions into integrated circuits,”
Twenty-First Annual Symposium on Foundations of Computer Science (1980).

[0] M. Foster and H. T. Kung, “Recognize regular languages with programmable building-
blocks,” VLSI 81, J. Gray, ed., Academic Press, New York, (1981).

[10] H.Fuchs, J. Poulton, A. Paeth, and A. Bell, “Developing pixel-planes, 2 smart memory-based
raster graphics system,” Proceedings, MIT Conference on Advanced Research in VLSI P.
Penfield, ed.,, (1982). :

[11] C. Goldberg and D. West, “Bisection of circle colorings,” (1983).

[12] F. Leighton, “New lower bound techniques for VLSI,” Twenty-Second Annual Symposium
on Foundations of Computer Science, IEEE (1981).

[13] F. Leighton and A. Rosenberg, “Three-dimensional circuit layouts,” Proceedings of the 1988
IEEE International Conference on Computer Design (1983).

[14] F. Leighton, “A layoutl strategy for VLSI which is provably good,” Fourteenth Annual ACM
Symposium on Theory of Computing (1982).

[15] C. Leiserson, “Systolic priority queues,” Proceedings of the Caltech Conference on Very
Large Scale Integration, C. Seitz, ed., California Institute of Technology, (1979).

i

[16]
[17]

[18]

[21]
[22]
[23]
[24]
[29]

[26]

[27]
[28]
[29]
(30]

[31]

C. Leiserson, “Area-eflicient layouts (for VLSI),” Twenty-First Annual Symposium on Foun-
dations of Computer Science, IEEE (1980).

C. Leiscrson, Area-Efficient VLSI Computation, h.D. thesis, Depl. of Computer Science,
Carnegie-Mellon University, (1981).

P. Lewis, R. Stearns, and J. Hartmanis, “Memory bounds for recognition of context-free and
context-sensitive languages,” IEEE Symposium on Switching Circuit Theory and Logical
Design (1965).

R. Lipton and R. Tarjan, “A separator theorem for planar graphs,” A Conference on
Theoretical Computer Science, University of Waterloo, (1977).

J. Logue, W. Kleinfelder, P. Lowy, J. Moulic, and W. Wuy, “Techniques for improving en-
gineering productivity of VLSI designs,” Proceedings of the IEEE International Conference
on Circuits and Computers (1980).

G. A. Magé, “A network of microprocessors to exccute reduction languages, Parts 1 and 2,”
International Journal of Computer and Information Sciences (December, 1979).

C. Mead and M. Rem, “Cost and performance of VLSI computing structures,” IEEE Journal
of Solid State Circuits, Vol.5C-14, No. 2 (1979).

M. Paterson, W. Ruzzo, and L. Snyder, “Bounds on minimax edge length for complete
binary trees,” Thirteenth Annual ACM Symposium on Theory of Computing (1981).

J. Raffel, “On the use of nonvolatile programmable links for restructurable VLSL” Proceed-
ings of the Caltech Conference on Very Large Scale Integration (1979).

A. Rosenberg, “Routing with permuters: toward reconfigurable and [fault-tolerant net-
works,” Technical Report CS-1981-13, Duke University, (1981).

W. Ruzzo and L. Snyder, “Minimum edge length planar embeddings of trees,” VLSI Systems
and Computations, H. T. Kung, R. Sproull, and G. Steele, eds., Computer Science Press,
(1981).

C. Séquin, A. Despain, and D. Patterson, “Communication in X-tree, a modular multi-
processor system,” ACM 78 Proceedings (1978).

L. Snyder, “Overview of the CHiP computer,” VLSI 81, J. Gray, ed., Academic Press, New
York, (1981).

S. Song, “A highly concurrent tree machine for database applications,” 1980 International
Conjerence on Parallel Processing (1980).

L. Valiant, “Universality considerations in VLSI circuits,” JEEE Transactions on Computers
(February, 1981).

M. Yannakakis, “A polynomial algorithm for the min cut linear arrangement of trees,”
Twenty Fourth Annual IEEE Symposium on Foundations of Computer Science (1983).

18

