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THREE-DIMENSIONAL CIRCUIT LAYOUTS

1. INTRODUCTION

Recent advances in fabrication technology [4—8,10-12.17-19,22,28] have allowed
~ circuit and system designers to begin using the third dimension in realizing their
designs. Multilayer packages with impressive performance have been fabricated
[8.10,20], and there has been extensive research toward the goal of three-dimensional
chips [8,12,17-19,28]. The rapid rate of progress in VLSI technology suggests that mul-
tilayer chips and packages will be commonplace in the not-distant future. Indeed, the
president of Texas Instruments (quoted in [8]) predicts the production of three-

dimensional chips by the end of the decade.

One expects {at least) three benefits to accrue from the use of the third dimen-
sion in circuit realization. First, wire-routing should become easier and more sys-
tematic. Next, since one can avoid obstacles by using the third dimension, runs of
wire should be shorter, at least in the worst case. Finally, since avoiding obstacles in a
two-dimensional environment can require area-consuming circuitous routing of wires,
one would expect savings in material: the Volume of a three-dimensional realization of
a circuit should be less than the Area of any two-dimensional realization of the circuit.
In order to realize these expected benefits, we must develop effective techniques for
devising and analyzing multilayer circuit layouts. Such is the goal of this paper: we
develop and analyze an algorithmic strategy for laying out VLSI circuits -—- viewed here
as undirected graphs -- in three-dimensional chips -- viewed here as three-
dimensional grids.

Our notion of the layout of a circuit follows the two-dimensional framework of
[2,13,14,16,26,27], as adapted for the third dimension in [23,24]: circuits are
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undirected graphs whose vertices correspond to active devices (transistors, gates,
etc.) and whose edges correspond to wires connecting these devices. The media in
which the circuits are to be realized are {two- or three-dimensional) rectangular
grids. A circuit layout is an edge-disjoint embedding of the circuit-graph in the grid.
Two models have been proposed for studying three-dimensional VLSI [23,24]. The first,
one-active-layer, model requires that all active devices be placed on a designated
layer of the chip. The second, unrestricted, many-active-layer, model allows devices
to be placed arbitrarily throughout the chip. It is clear how these two possibilities
manifest themselves in our formal setting. Although the many-active-layer model
affords one more flexibility when laying out one’s circuits, it places significantly more
stringent demands on the fabrication technology; cf. [24]. There is thus a tradeoff
between the cost of fabricating a chip with multiple layers of devices and the savings
(in terms of Volume and maximum wire run) resulting from the increased layout flexi-
bility. One of our more surprising results here is that, at least within our abstract
framework, many-active-layer laycuts are little or no more efficient than one-active-
layer layouts when the number of layers is relatively small: either mode of using the
third dimension affords one appreciable savings over any two-dimensiconal layout.
Additionally, we show that multiple layers are effective in reducing Volume and max-
imum wire run only up to a certain point, after which they are wasteful. Although
these results are definitive only for the theoretical model our analysis is based on,
they suggest strongly that VLSI chips that have a higher {and costlier) degree of
sophistication {in terms of number of layers and placement of devices) may not be

more efficient for many applications than significantly more modest chips.

Although there has been a substantial amount of work on the two-dimensional
version of the layout problem, related work on the three-dimensional problem has
largely been confined to one of:

* the study of routing in the presence of a few extra layers [3,9,2 1}
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* the study of optimal multilayer layouts for a few special networks [20,23,29];
* the study of optimal multilayer layouts for the class of "hardest-to-realize”
networks [23,24].
Notable among the results in these papers, for our purposes, is the use in [23,24] of
optimal three-dimensional layouts of the N-input Benes permutation network [1] to

prove:

Every small-degree N-vertex graph can be laid out in a three-dimensional

grid with Volume O(N%/2) and wire-length O(N!/?).

(There exist graphs that do not admit any more compact layout; for such graphs,
these bounds contrast with the lower bounds of Area (}N®) and wire-length DQ{N)
[12,26] in the two-dimensional case. In effect, the contribution of the present paper is
to generalize the specialized three-dimensional results of Rosenberg and Preparata
(among others) to a level of generality comparable to the two-dimensional work of
Bhatt, Leighton, Leiserson, Thompson, and Valiant {among others). Perhaps the most
important contribution of this paper is an algorithm that transforms a two-
dimensional circuit layout of Area A and maximum wire run L into a three-dimensional
layout of the circuit that is within logarithmic factors of Volume A/H and maximum
wire run L/H, for moderate values of H. The layouts produced are close to optimal in
the sense that using H layers rather than just one layer (which is how the two-
dimensional case is viewed in our formal framework) can never improve Area or wire-
length by a smaller factor than 1/H. Certain special situations wherein the loga-
rithmic factors can be avoided are described in [15], wherein is also a special case of

our algorithm.

The remainder of the paper is divided into four sections. In Section 2 we review
basic definitions and cite work on two-dimensional layouts that is relevant to our
study. Sections 3 and 4 are devoted to the development and analysis of our three-
dimensional layout strategy, with particular attention paid to issues of Volume and
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maximum wire run. We conclude in Section 5 with some remarks on the implications

of our work.

2. PRELIMINARIES

tain

Underlying Assumptions. The formal framework of our study carries with it cer-

implicit assumptions:

Our associating circuits with graphs limits our study to circuits with two-point

nets.
Our associating chips with grids limits our circuits to having small vertex-degrees.

Our adherence to the models of VLSI layout theory renders the vertices of our

circuits as unit-side squares or cubes.

Our method of extending the two-dimensional mode! assumes isometry in all

dimensions: a unit of height is egivalent to a unit of width.

It is worthwhile placing these assumptions in perspective.

1.

and

The restriction to two-point nets is a significant one: although extending our
results to circuits with three- or four-point nets is not difficult, extending the

results to circuits with arbitrary multipoint nets remains an inviting challenge.

Technigues that are now standard can be used to generalize our results to
include circuits with high vertex-degrees, but the associated analysis is techni-

cally somewhat more complicated.

Restricting attention to unit-side devices is a purely clerical device; extending the
analysis to any uniform-size devices should present no problem [2,13].

Aside from clerical simplification, the isometry assumplion acknowledges the
potential problem of cross-talk between parallel runs of wire [24]

The Formal Framework. An undirected graph comprises a finite set V of vertices
a set of two-element subsets of V, called edges. We say that the edge {u,vi is
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incident to vertices u and v. The degree of the vertex v is the number of edges

incident to v; the degree D{G) of G is the largest degree of any of its vertices.

The WxL planar grid is the graph whose vertex-set is the set of pairs [W}x[L] and
whose edges connect vertices <a,b> and <c,d> just when |a-c| + |b-d] = 1. {Here and
throughout, [n] denotes the set [n] = {1, 2, ..., n}.) The HxWxL solid grid is the graph
whose veriex-set is the set of triples [H]x[W]x[L] and whose edges connect vertices
<a,b,c> and <d,e,f> just when |a-d| + |b-e! + |e-f] = 1.

An embedding or layout of the graph G in the grid " {solid or planar) is a one-to-
one association of the vertices of G with vertices of T, together with a one-to-one asso-
ciation o of the edges of G with edge-disjoint paths in I. An embedding in a solid grid T’
of dimensions HxWxL is a one-active-layer embedding if it associates all vertices of G

with vertices of I of the form <ig, j, k> for some fixed layer ig in [E].

We gauge the cost of an embedding of a graph in a grid in terms of the amount of
material consumed by the embedding {Area in the two-dimensional case and Volume in
the three-dimensional case), and in terms of the maximum length of any run of wire

that does not encounter a device.

The Volume (resp., Area) of an embedding of the graph G in a solid (resp.,
planar) grid I' is the product of the dimensions of I The Volume (resp.,
Area ) of the graph G, VOL{G) (resp., AREA(G)), is the minimum Volume {resp., Area) of
any embedding of G in a solid (resp., planar) grid. The one-active-layer Volume of the
graph G, VOL,_4;(G), is the minimum Volume of any one-active-layer embedding of G in
a solid grid. When we relativize either VOL{G) or VOL,_,;{G) with the integer parameter
H, as in VOL{G;H) or VOL,_,;(G:H), it is to be understood that the volume minimization
is done over all H-layer embeddings {of the appropriate kind).

Say that we are considering an embedding of the graph G in 2 grid, with the
(graph edge)-{grid-path) association a. The wire-length of the embedding is the max-
irnum length of any path a{e) over all edges e of G. This corresponds informally to the
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length of the longest run of wire that does not encounter a device. The solid {resp.,
planar) wire —length of the graph G, Wig(G) (resp. Wlg(G)), is the minimum wire-
length of any embedding of G in a solid {resp., planar) grid. The one-uctive-layer
wire-length of the graph G, WL;_,;(G), is the minimum wire-length of any one-active-
layer embedding of G in a solid grid. As before, relativization of these measures with
the integer parameter H, as in WLg{G;E) or WL,_,;{G:H), restricts the indicated minimi-

zation to H-layer embeddings of the appropriate kind.

Leiserson [18] and Valiant [27] showed that the "decomposition structure" of a
graph could be exploited in order to find an efficient two-dimensional layout of the
graph. Leighton [14] and Thompson [26] proved that the Leiserson-Valiant strategy
could not be improved in general, though it often produced layouts that could be
dramatically improved. Bhatt and Leighton [2,13] significantly improved the layout
strategy by recasting its framework. Specifically, they reformulated the underlying
notion of the "decomposition structure"” of a graph to one in which the Leiserson-
Valiant strategy yielded layouts that were provably good, in the sense of being within
logarithmic factors of optimal, for any graph. One of the central ideas in the Bhatt-
Leighton framework is that of a decomposition free for a graph. The graph G has an
(Fo.F;.....F;)—decomposition free if G can be decomposed into two subgraphs Gp and G,
by removing at most Fy edges from G; each of Gy and G; can be decomposed into two
subgraphs by removing at most F, edges from each; and so on, until each subgraph

produced by the decomposition is either empty or an isolated vertex. See Fig. 1.

Decomposition trees for w-hich the F; decrease at a uniform rate are of particular
importance to us. A graph that has an (F, F/p, F/p? ... 1)-decomposition tree for
some real p > 1 is said to have an (F, p)—bifurcator or, equivalently, a p-bifurcator of
size F. Since the decomposition tree of an N-vertex graph must have at least log N lev-
els, it is clear that F = N®2? (Unless otherwise indicated, all logarithms are to the
base 2.) For convenience, we shall also assume that F < N/2 for all graphs.
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Returning to the issue of efficient two-dimensional layouts, Bhatt and Leighton
proved that finding a small 2!/%-bifurcator for the graph to be laid out was the entire

story, in the sense of the following result.

Theorem 2.1. [2,13] Let F be the size of the smallest 2/2-bifurcator of the N-vertex
graph G. Then
F? < AREA(G) < (const)F2iog?(N /F).
and
(const)F?/N < WL,(G) < (const)F log{N/F)/loglog(N/F).
A key step in the proof of these bounds is the demonstration that an arbitrary
decomposition tree can be fully balanced at little or no cost, in the sense that
(1) each graph G; in the tree is split into two equal-size subgraphs, G;; and Gy;;
and
(2) the number of edges of G having precisely one end in the (arbitrary) tree-
vertex/subgraph G,, of G is at most a small fixed multiple of the number of edges
leaving G;, to go to its brother subgraph Gz
The notion "fully balanced"” applies to p-bifurcators in the obvious way. DBhatt and
Leighton prove the following basic result, via a pelynomial-time algorithm for con-

structing a fully balanced bifurcator from a given arbitrary one.

letnma 2.2 [2,13] There is a fixed constant ¢>0 such that, if the graph G has a p-

bifurcator of size F, then it has a fully balanced p-bifurcator of size cF.

Lemma 2.2 guarantees that any graph with an {F, p)-bifurcator has a decomposi-
tion tree in which any subgraph G, on level i of the tree is incident to at most cF/p
edges of G that are not wholly contained within Gy Lacking the Lemma, we would
know only that at most F/p' edges of G linked Gy to its brother in the decompesition

tree {as opposed to any other subgraph at level i of the tree).
A second technical lemma is crucial to our layout strategy. A multigraph

comprises a set V of vertices and a multiset M of doubleton subsets of V, called edges.
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Thus a multigraph can be viewed as a graph in which each pair of vertices can be con-
nected by several edges. The notions of "incidence", "degree of a vertex", and ""degree
of a multigraph" derive immediately from the corresponding notions for graphs. An
edge-coloring of a multigraph is a labelling of the edges of the multigraph with "colors”
in such a way that edges incident to the same vertex get labelled with distinct colors.
Shannon [25] showed, via an efficient algorithm for edge-coloring multigraphs, that

one needs never use a lot of colors to edge-color a small-degree multigraph.

Lemma 2.3 [25] Any multigraph G can be edge-colored using at most | 3D(G)/2 |

colors. Moreover, this bound is existentially tight.
3. EFFICIENT THREE-DIMENSIONAL LAYOUTS

3.1. One-Active-Layer Layouts

We consider first the problem of embedding a graph in a three-dimensional grid in
accordance with the one-active layer model, ie,, so that all of the graph’s vertices
reside on a single layer of the layout. We assume that we have in hand a minimal-size
(F, 2/2)-bifurcator for the graph to be laid out, as well as an associated recursive

decomposition of G.

Theorem 3.1: THE ONE-ACTIVE-LAYER LAYOUT THEOREM
let G be an N-vertex graph, and let F be the size of its minimum 2 2-bifurcator.
Height-H Layout.

There is a constant h>0 such that, for any height H in the range

. F .
1=sH<h E log{N/F),
the height-H one-active-layer layouts of G satisfy

max[FNVQ, F—l_:;} < VOL,;_4;(G;H) < (const) -!-I:i—logz(N/ F)

] < WLy _g(G:H) < (const) — log(N/F).
_9...
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Unrestricted-Height Layout.
The minimum-resource one-active-layer layout of G satisfies
FNY2 < VOL,_4;(G) < (const)FN'/Zlog(N/F);

and
(const) }% < WL,_u(G) < (const)NV2

moreover, the number of layers (H) that minimizes VOL,_, is at most

F -
(const) NVE log(N/F).

Given F and an associated recursive decomposition of G, the embeddings yielding the

upper bounds can be found in time polynomial in N.
Proof. Let G and F be as in the statement of the Theorem.
The Lower Bounds.
We present two proofs that expose different aspects of the situation.

Progf 1. Consider an arbitrary one-active-layer layout of G, having Volume V,
height ¥, and base area B. Let us recursively bisect this "box" across the smaller of its
base dimensions, in such a way that the base area is halved with each bisection. The
boxes we bisect at stage i of this recursion {we start at stage 0) have height E and
base area B/2!. When we bisect each of these boxes, we are severing nc more than
(B/ 2))Y2H edges of G, since the area of the cutting plane is no greater than this, and
wires have unit cross-sections. This means that G has a (BY?H, 2Y2}-bifurcator.
Since F is the size of G's smallest 2'/2-bifurcator, it is immediate that F < BY?H so
F2 < BH? = VH, which yields immediately that

F2

V= ?.

Since, moreover, B= N (since all the vertices of G lie on one layer), we conclude that

whence
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Figure 2. The two-dimensional projection of the 3-layer 4x4 grid.
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V= FNV2
Since we have been looking at an arbitrary height-E one-active-layer layout of G, the

lower bounds on Volume follow.
Proof 2. Our second, indirect, proof yields a lower bound on wire-length also.

The key step here is to transform an H-layer layout of the graph G with Volume V
= BH (B being the area of the base of the layout) into a two-dimensional layout with
Area BE® We shall then be able to conclude that

AREA{G) = BE? = VE,
so that

A
V> —.
EH

Since {as befare) B > N, we shall alsc be able to conclude that

, Ve Ve
.2 = — —
AREA(G) < BH B < N
so that
V> (AN}”E.

By Theorem 2.1 we know that AREA{G) > F?, and thus

V> max[FN“a, E—:—]

The desired transformation is obtained by projecting the H-layer grid onto the
plane, as illustrated in Fig. 2. Ignoring for the moment that the projection produces
diagonal edges, it converts an HxXWxL solid grid into an HWxHL planar grid. We remove
the diagonal edges by rerouting the wire segments they contain. These segments are
precisely the ones that run between adjacent layers of the original multilayer layout.
By the rules of our model, at most one wire can pass through an intersection point
that contains a wire that changes layers. Hence a wire that runs in a diagonal edge
can simply be rerouted in the neighboring "right angle”. {Any wire that already
resides in a segment of that right angle must be electrically equivalent to the wire

being rerouted.) The area of the resulting two-dimensional layout is
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WLH® = BY?,

as was claimed.

The same transformat'mn yields the lowerl pound oOn wire-length: the projection
maps unit—length vertical and norizontal segments into 1ength-l‘§ segments. Unit-
length segments that run between layers are transformed into segments of length 2 (<
) when rerouted. Thus a Wire of length Ls in the H-12yeTl Jayout is ‘Lransformed into @

wire of length 12 = Hlg in tbe two—d‘lmensional layout. We can DOV apply Theorem 2.1

to conclude that

FE
1= (const} NE

Since all of the vertices lie on a single 1layer» we know also that Lg = H/2, which cOTY”

bines with the previous inequality to show that
¥
1s= (const) W'
as was claimed.

Although W€ did not do s° here, W€ could also show that the aueTage E-layer wire-

jength for any N-veriex graph is at least

F B
(const)max\ﬁuz, H'\\

The Upper Bounds.

The upper pounds are substantially more intricate to establish. Qur task is
ﬁghtened, though. by the fact that we can establisb both the restricted—height and
unrestrictad-height upper pounds via 8 single construction, the latter pound following
from tbe former BY assigning to H its maximum allowed value We shall, therefore,
prove only the restricted—beight upper pound, assuming that & legiﬁmate target
peight H has beel speciﬁed; this H is fixed nencefortb. We establisb the bound by
means of 2 const.ruction that recurs'wety produces an embedding with the desired
Volume for 2 subgrapb G, of G on jevel i of G's decomposition 1ree, given the appropri—
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ate embeddings of the four subgraphs comprising G;, which occur on level i+2 of the
tree. Qur main task will be to route wires for those edges that have precisely one end-
point in a subgraph. Our strategy will be to route wires for such edges in a bottom-up
manner, and to connect up these edges only when we process the level of the decom-
position tree where these edges were removed. To aid the reader in following this pro-

cedure, we include Figs. 3 and 4.

Let us concentrate on one graph G; at level i of G's decomposition tree, and on the
four subgraphs comprising G, at level i+2 of the tree. Assume inductively that we have
at hand one-active-layer layouts for these four subgraphs, each layout having height
H;,z and a square base of side

Siz aey b L3 10gH§N/ F) 5-tivz)s2

(h being the constant in the statement of the theorem). [Since S;,, > (N/ 21*?)1/2 when
H is in the indicated range, the base of the layout is indeed big enough to accommo-
date one-fourth of G;'s vertices.] Assume further that each edge of G that has pre-
cisely one end in one of the subgraphs, is represented by a wire routed from the
appropriate vertex of that subgraph to the top layer of the layout. Finally, assume
that each one of these "dangling” edges terminates at a port at the top of the layout
and that these ports are evenly distributed across the top layer of the layout. (By a
pori here we mean an end of a wire that can be extended upwards if additional layers
are added to the top of the embedding; our assumption about even distribution means
that the ports are spaced uniformly, as suggested in Fig. 3.) We show now how to con-
struct from the layouts of these level-{i+2) subgraphs of G; an inductively consistent
layout of G;, having height

_ H
}E-Hm""m"

for some suitably large constant d.

We begin by merging the layouts of the four subgraphs into a single "box"” having
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Sz'+z \TJ

Figure 3. The given one-active-layer layouts of the four subgmaphs of G;
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Figure 4. Coalescing the one-active-layer layouts of the subgraphs of G,
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height Hy,; and having a square base of side

h F IDgSN/FEvag-
H

S; “dsf
We then add H/{d log{N/F)) new {empty) layers to the top of the box, thereby building
it up to height H;; see Fig. 4. Next we establish the ports at the top of the new box,
that will be needed to extend this construction to a yet-higher level of G's decomposi-
tion tree. By Lemma 2.2, no more than bF/2¥2 edges of G have precisely one end in
G;. for some specified constant b; hence we need create at most this many ports Vat the
top of the new box. We create these ports, spaced evenly throughout the top layer.
Finally, we ére ready to turn to the task of routing the wires incident to the ports of
the original boxes (in layer H;,;). Some of these wires must get routed to other ports

in the same layer and some to the new ports at the top of the new box.

We eflect the necessary routings by using each of the new layers to route an aver-

age of S;/2 wires to their appropriate row and column (in one of the new layers). Final

connections will then be a simple matter. Since we need tc route at most ib}'*'/ i

wires in all, the allotted number of empty layers {namely, H/(d log{N/F)})) will suffice,
provided that h was chosen sufficiently large. We now describe the details of the rout-
ing.

Layer Assignment. The first phase of the routing assigns each wire to the layer of
the embedding on which it will be routed. To this end, we temporarily superimpose
layers Hj,; and E; of the embedding; and we partition the resulting pseudo-layer into
S,/4 square regions of area 4S; each. Let M denote the multigraph which has one ver-
tex corresponding to each of these square regions and one edge linking vertices R;
and R; of M for each wire that must be run in the embedding to connect a port of the
square region R; with a port of the square region R;. Since the number of ports per

unit area in the pseudo-layer is at most

Fs2v2 _3b ol i 5

M T )
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the maximum vertex-degree of M does not exceed

12b H
h log{N/F)

D=

(= the number of ports per square region). Recall that (by Lemma 2.3) M can be
edge-colored using at most 3D/2 colors. Therefore, provided only that the constant h
is chosen sufficiently large (h > log bd suffices), it is now an easy matter to allocate
wires to layers: we use each layer H;,,+k of the embedding to route all wires that

correspond to edges of M that received the color k.

Intra-layer Routing. The second phase of the routing gets each wire to the
appropriate row and column of its assigned layer. This is a two-dimensional problem
consisting of routing S;/4 wires in a square grid of side 5. In the absence of further
information, this might be an impossible task, since the endpoints of the wires to be
routed might be configured in a way that did not afford enough room to route the
wires. In our case, however, we have distributed the wires’ endpoints sufficiently
sparsely that the routing is guaranteed to be possible: at most four wires terminate in
each square region of area 4S;. We have the luxury, therefore, to assign dedicated
rows and columns to the wires to be routed. We leave to the reader the details of veri-
fying that this phase of the routing can be accomplished. Note that this routing phase
completes the processing of wires that correspond to edges of G;: all connections are

made at one of the levels H;,.+k.

Port Connections. The final phase of the rouling connects those wires that
correspond to edges having an endpoint outside of G; to one of the ports at level H;
This, however, is a triviality, since wires are already in the appropriate row and
column, and there is no contention for the interlayer route that the wire must

traverse.

The Costs of the Layout. It remains to assess the efficiency of our embedding. If
we apply Lemma 2.2 carefully {as do Bhatt and Leighton [2,13] when treating two-
dimensional layouts), we find that we can always force the edges in a Tully balanced
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decomposition tree of 2 graph having an (F, 21/2)-pifurcator 1o stay in the top ©
log(N/F) levels of the tree, for some appropriate constant c. We find thereby that if we
have chosen the constant d in the height—recurrence judiciously (it suffices that d>c),
then the recurrénce for the height He of the final layout solves to Hy=H. Tbe axed of

the base of the layoul never changes throughout the construction: it is always
s¢=[hb %-Mg(N/ R
Since the Volume of the layout 1s just HSg. we have established the claimed upper
bound on VOL, _ar{G:H)-
With regard to Wire-Length, it is straigbtforWard to verify that the longest path an
uninterrupted wire 1s stretched OVET, is proportional to the sum of the linear dimen-

sions of the layout, ie., (const)(Sc-i-Hc), whence the claimed pound.

Finally, we remark that no appreciable further decrease in Volume c¢an be
obtained by further increasing the height: when E assumes its maximal value, the area
of the base of the layout is just some small constant multiple of N. Since all of Gs N
vertices must reside on 2 single layer, this area can not decrease further, so subse-
quent increases in the height can only increase the Volume.

Computation “Time. The only part of the described layout procedure that is not
clearly doable in polynomial time is the generation of an {F. 21/2)-decomposition tree
for G. And, we assume that we are given such a tree as input to the layoul procedure.
As an equally efficient alternative to our being given the decomposition tree, we could
be given 2 two-dimensional layout for G as our starting point. We expand on this
momentarily. 1}

Theorem 3.1 affords us the following strengthened version of Rosenberg’s [24]

results about arbitrary grapbs.

Corollary 3.2. For any N-vertex graph G and any height E< hNV3,
; N
VOLl__‘L{G,H) = (BODST.) -ﬁ-
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and

WL, 4 (G;H) < {const) II:.

At most {const)N'/? layers are needed to minimize VOL, ,;. Constructions achieving

these results can always be found in time polynomial in N.

Proof. The worst case in Theorem 3.1 is when F = N/2, whence the claimed bounds. In

this case, the bifurcator is trivial, and the recursive construction has just one level. [

By judiciously combining two-dimensional layout results with Theorem 3.1, it is
not difficult to derive the following AREA-VOL,_,; tradeoff.
Theorem 3.3: THE ONE-ACTIVE-LAYER ARFA-VOLUME TRADEOFF.
Let G be an N-vertex graph, and let A = AREA{G).
Height- H Layouts.
There is a constant h>0 such that for any height K in the range

A 1/2

1=sHs< h[h—T] log(N?/ A),

max{(NA)Y?, %) < VOL,_4; (G;H) < (const) :—,bga(NZ/ A);

and

AL/E
H

172
i = ] < WL, _4 (G;H) < (const)

. log{NZ/ A).
Ni/210g(N?/A) " HN log?(N2/ A) | e .

{const)max

Unrestricted- Height Layouls,

(NA)Y2 < VOL, _4; (G) < {const){NA) Zlog(N?/ A)

AVS

NV Ziog(Ney Ay = "hr-42{G) < (constNYE.

{const)

Moreover, the value of H that minimizes VOL,;_,; is at most

A 172
{const)[-ﬁ-] log(NZ/ A).
Finally, given the Area-A layout of G, the embeddings yielding the upper bounds ean be
found in time polynomial in N.
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Proof,
The Lower Bounds,

The lower bounds follow from the lower bound arguments of Theorem 3.1 and the

fact [2,13] that A < F2log®(N/A).
The Upper Bounds.

As in Theorem 3.1, we can establish both the restricted-height and many-active-
layer-height upper bounds simultaneously, since the latter bound follows from the
former by merely plugging in the maximum permissible value for H. We cobtain the

restricted-height upper bound in stages. First we recall from Theorem 3.1 that

VOL,; 4 {G:E) < (const) 1':,E-logz(]'\f/ F).

WL, _4;(G:H) < {const) g—log{N/F).

We next note from Theorem 2.1 that
Fe<A
Finally, we claim that 1/F < N/A so that
log(N/F) < log(N%/4),
which completes the proof of the upper bound. This final claim is the culmination of
the following sequence of inequalities, each following from its predecessors and/or

Theorem 2.1.

For x>1, x < 2% hence, log(N/F) < N/F, so F log{N/F) < N. By Theorem 2.1,

then, A < FN, whence the claim.

The efficiency of actually computing the embeddings that yield the upper bounds
follows as in Theorem 3.1, once one performs a recursive decomposition of G by cut-
ting the two-dimensional layout recursively along the lines of the proof of the lower
bound in Theorem 3.1. []
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It is worth nbting that the upper bounds in Theorem 3.1 are everywhere existen-
tially tight {(within constant multiples) for every value of N, F, and H; i.e., the factors of
log{N/F) cannot be avoided. To verify this, one needs recall that Leighton [13] proved
that the upper bounds in Theorem 2.1 are everywhere existentially tight:

For all N and F, there exist N-vertex graphs G whose smallest 2/ 2-bifurcators
have size F such that
c;[F log(N/ F)J? < AREA(G) < c3[F log{N/F)]2
For any one of these maximal-AREA graphs G, the lower bounds of Theorem 3.3 assure

us that VOL,_,; (G;H) is no smaller than some constant multiple of
J1/2 J F2 20N
max({N'/2F log{N/ F), -H—log (N/F)).

This information combines with the upper bounds of Theorem 3.1 to establish the
claimed tightness. We do not know that the upper bounds of Theorem 3.3 are similarly

tight, and, indeed, we conjecture that they are not.

Conjecture 3.4: THE ONE-ACTIVE-LAYER AREA-VOLUME TRADEOFF
Let G be an N-vertex graph, and let A = AREA{G). There is a constant h>0 such that,
for any height H in the range
1< H < h{AN)V?,
we have

VOL,_,;{G:H) = {const) é—_

For larger H, no additional decrease in volume can be obtained.

3.2. Unrestricted layouts.

We turn now to the task of proving analogs of Theorems 3.1 and 3.3 for many-
active-layer three-dimensional layouts. We shall be less thorough in our pursuit of the

analogs, for the following reasons.
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1. The major ideas required to obtain compact three-dimensional -embeddings

appear already in the one-active-layer case, which we have looked at in great

detail.

2.  While the one-active-layer case can already be considered to have been realized
(say, in IBM’s TCM [10,22]), it is not yet clear thal many-active-layer three-
dimensional layouts will ever be more thana theoretical construct.

3. - fhke many-active-layer results that we develop suggest that only relatively minor
gains are achieved by abjuring the one-active-layer restriction.

4. The technical details of obtaining height«restricted many-active-layer layouts are

substantial and may not be worth the gains over the one-active-layer case.

The major change in layout strategy in the many-active-layer model is that we must
use 2% %-bifurcators in order to obtain compact layouts. Indeed, the feature that
renders restricted-height layouts prohibitively complicated with the many-active-
layer model is that one must play off 5172 pifurcators against 22/3_pifurcators. We
satisfy ourselves, therefore, with the following many-active-layer resulis.

Theorem 3.5: THE UNRESTRICTED THREE- DIMENSI ONAL LAYOUT THEOREM

Let G be an N-vertex graph, let F be the size of its minirnum 22/3_pifurcator, and let A

= AREA(G). The many—active»layer three- dimensional layouts of G satisfy

F/2 < VOL(G) < (const)[F log(N/ Y i

/2
-y V1172
{const) Fiog V(N F) < Wig(G) = {(const)[F log(N/ F)1V°.
Proof. We establish the lower and upper bounds in turn.

fhe Lower Bounds.

Let G be laid out in an ExWxL grid, where with no loss of generality. H<W<L.

We establish the lower bound on Volume by recursively bisecting the layout of G,

much as we did in the lower-bound proof of Theorem 3.1. We slice fhe HxWxL grid
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holding the layout into two HxWx(L/2) grids, purposely choosing to bisect the biggest
of the dimensions. We then recursively continue this bisecting, each time halving the
biggest dimension of the grid being sliced. Now, at stage i of this bisecting, we are slic-
ing boxes of volume HWL/2! (we started at stage 0). When slicing each such box, the
plane of the slice has area at most {HWL/ 2')2/% -- the longest dimension is at least
(HWL/ 21)1/3, leaving only the indicated area for the plane. Since wires have all
unitcross-sections, each slice cuts no more than {(HWL/ 2'}?/3 wires. Since G can be so
bisected recursively, and since we have been looking at an arbitrary three-
dimensional layout of G, it follows that G has a 2% 5-bifurcator of size {VOL{G))*3.
Since this bifurcator is at least as big as G’'s minimum such bifurcator F, we have thus
shown that

FY¥2 < VOL(G).

The lower bound on wire-length depends on the fact that any graph with a 21/2-
bifurcator of size F has a 22/3-bifurcator of size
F < N/3F=/8
To verify this, we need only check that

_‘&_ F E Nl/SF-’E/S
23’ 21/2 Py 22:'./3

min{
for all i. {Recall that at most min{N/ 2, F/ 2V/2) edges are cut in any i-th level partition

of a 2/ 2-bifurcator.) This inequality is easily verified since

. NVSF/S
LB il gk

25 225./3
= J1/ 3
for i> 2 log(N/F), and 252 < 2‘2&33

for i < 2log{N/F).

By inverting the preceding inequality, one can show that the smallest 2V/2-

bifurcator F of any N-vertex graph G is at least
F3/2

NUE




where F is the size of the graph’s smallest 2%/3-bifurcator. We can now invoke the

arguments of Theorem 3.1 to conclude that

WLy(G)

¥o(G) = ooy s

e
N(VOL(G))"/

FE
N?[F log{N/ F)]V/?

P6/2
N2log3(N/F)’

> {const)

> (const)

= {const)
which is the claimed lower bound.
The Upper Bounds.

As in Theorem 3.1, the upper bounds here are significantly more complicated to
establish than the lower bounds. Once again, our proof is via an explicit inductive
construction. In this case, the construction will lay out a subgraph G; of G that resides
at level i of a {2%/3-)decomposition tree of G, by combining the layouts of the eight

subgraphs of G; that reside at level i+3 of the tree.

Let us assume: (1) that we are given layouts of the eight level-(i+3) subgraphs, in
"boxes" of dimensions H;,gxW;,3xL;,s each, (2) that the boxes are all similarly oriented
in space {so we can talk about their fronts and tops, etc.), and (3) that each of the

boxes has on its front face a connection grill which is a set of

b Fi+3
Hi.s

length-H;;s columns, spread evenly across the width-W;,4 front face, collectively
comprising the
F

F. S

i+3 =dsj (22/ 3),'+3
ports through which we shall wire these subgraphs to each other and to the remainder

of G. See Fig. 5.

As the first step in laying out G;, we place our eight boxes in a big box of dimen-
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Fgure 5. Coalescing the many-active-layer layouts of the subhgraphs of G;.
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sions H;xW;x1;, where
H; = 2Hjus

Fius

W, =2W,,s +2b
1 i+3 Hi+3

F; F;
B T L Al
SRan e amiaan

for appropriately chosen constants b,e. We place the small boxes as fellows. Four of
the boxes are placed at the four corners of the back of the big box. In front of these
boxes we place bFj,s/ Hj;s emptly layers that will be used for wire-routing. In front of
these empty layers, we place the four remaining small boxes, in the corners. In front
of these boxes we place 3bF, g3/ Hj,3 + cF;,3/ W, empty layers for wire-routing. We com-
plete the placement by placing 2bF;,3/ H;;3 empty layers between the left and right
tiers of small boxes. Finally, on the front face of the big box, we uniformly spread out
a new connection grill with bF;/ H; columns of K, ports each, containing the bF; ports

that are guaranteed to be sufficient to wire G; up to the rest of G. See Fig. 5.

Now we turn to the task of routing the wires that leave the level-(i+3) graphs
{through their connection grills), both among each other and to the new connection
grill. As the first step of this rouling, we use the b5/ E,,5 empty layers in front of
the four rear boxes to route the wires from these bexes’ connection grills into one big
[Hx2(bF;,3/ Ej.s)] rectangular connection patch in between and in front of the four
rear boxes {a grill is spread out, while a patch is compressed); this can be accom-
plished by having the innermost columns of the grills move in on one layer to meet one
another, the next-to-innermost move in on the next layer to be adjacent to the inner-
most ones, and so on; see Fig. 6. The next step is to run the connection patch, which
occupies the 2bF;, g/ H,,5 routing layers between the left and right tiers of boxes, to
the empty layers that we have placed front of all the boxes {also depicted in Fig. B).
Now we take the big connection patch we have just run from the back of the layout,
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and the small connection grills on the front tier of small boxes, and we use 2bFj3/ Hi,g
of the empty layers at the front of the box to distribute these columns of ports so that
they are evenly spaced across the front of the layout, i.e., so that they become a con-
nection grill. (There are 4bF;;3/ H;;5 columns to be distr:lbuted across a face of width

W,. so the columns are spaced with

Wiliss
4bFj,s

empty columns intervening between full columns.) As the next-to-final step, we assign
the ports of this new connection grill to the layers on which they will be routed to
their appropriate rows and columns. This éssignment is done using the same device as
in Theorem 3.1. We partition the face with the ports into rectangles of height c;Fy/ ¥,
and width (W;H;,q)/ (4bFy,s). By design, each of these rectangles contains no more
than c,F;/ W; ports. Hence, when we follow our ploy from Theorem 3.1 and form the
multigraph M from the partition, and edge-color M, we are assured by Lemma 2.3 thal
we need use no more than {3/2)c,Fy/ W, colors. Eence, when we assign wires to layers
by their colors, as in Theorem 3.1, we need use no more than {3/2)c,F,/ W, layers. As
in Theorem 3.1, it is an easy matter from this point, to complete the routing using the
as-yet-unused reserved routing layers, once having assigned layers. ¥We leave details

to the reader.

It remains to assess the efficiency of the layouts produced by the preceding con-
struction. If we arbitrarily set
H = Hy = hfF log(N/ F)]V/2,

which is acceptable providing that the constant h is chosen judiciously, then we find
that the recurrences for length and width solve to

W = W, = (const)[F log{N/F)]V?,
and

L = Ly = {const)[F log{X/ F)]V2.
(In solving these recurrences, one must keep in mind that F is the size of G’s smalfest

...29-



2%/3.bifurcator.) The claimed upper bound on Volume follows by just multiplying these
linear dimensions; the upper bound on Wire-Length follows by summing them, for our
layout scheme requires a wire to traverse each linear dimension only a small number

of times. []

The bounds of Theorem 3.5 can be shown to be existentially tight via inheritance
from the bounds of [13].

As with one-active-layer embeddings, we can derive from our general layout
theorem an Area-Volume tradeoff.
Theorem 3.6: THE GENERAL AREA- VOLUME TRADEOFF.
Let G be an N-vertex graph, and let A = AREA(G). The many-active-layer three-

dimensicnal layouts of G satisfy

max(N, A¥*) < VOL{G) < {const){AN)1/2,

Wis(G) < (const){AN)V/S.
Prosf.
The Lowsr Bounds,

The lower bounds follow by previously enunciated principles: the vertices of G
alone, ignoring wires, consume volume N; and any ExLxW layout of G {where H < L W)
can be transformed into an LHXWH two-dimensional layout for G, whence AREA(G)
= VOL{G)¥3.

The Upper Bounds.

The upper bounds follow from the construction of Theorem 3.5 and the fact that
any graph admitting an Area-A layout has a 2/2-bifurcator of size AY?, hence a 2%/3-
bifurcator of size {NA)YS -- ¢f. the proof of Theorem 3.5. If we plug this 2%/3-
bifurcator into the upper bound of Theorem 3.5, we find that

VOL{G) < {const){NA)/ Zlog3/3(N2/ A)
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Wig(G) < {const){NA)!/Ciog/3(NZ/ A)

A careful analysis of the layout of G hidden in this upper bound indicates that we

are really cutting more edges of G at each step than a smaller 2%/ 3-bifurcator of G

would force us to {since our bound on F is very conservative). Hence, when we calcu-

late in detail the dimensions of the layout produced with this big bifurcator, we find

that we actually avoid the logarithmic factor, and we obtain the bounds of the

Theorem. []

4. CONCLUSIONS.

The work in this paper leaves the reader with a number of messages, which we

now encapsulate.

™

Three-dimensional layouts can be appreciably more conservative of resources,

both material and wire-length, than can two-dimensicnal layouts.

Three-dimensional layouts are not appreciably harder to "compute” than are
two-dimensional layouts; in fact the former can be produced from the latier 2igo-
rithmically.

For many classes of graphs, one-active-layer three-dimensional layouts are as
efficient as many-active-layer layouts. In general the best bounds that can be
proved in terms of A {optimal two-dimensional Area) and N {number of vertices)
for the two classes of layouts differ by at most a logarithmic factor. Thus no gen-
eral layout procedure is uniformly better than our one-active-layer layout pro-
cedure. If this phenomenon occurs also in practice, then the value of fabricating

transistors on multiple levels is limited.

Even in the one-active-layer model, only a limited numbers of layers are helpful

Roughly speaking, only {A/N)2 or F/NY?2 layers lead to increased efficency of

multilayer layouts: additional layers cannot further decrease Volume. It is worth
_ [N



noting that the guantity {(A/N)V2 is closely related to the complexity of two-
dimensional placement and routing: this is the average channel width in a two-
dimensional layout of the circuit. Although we did not prove it in this paper, we
suspect that additional layers are also not useful in decreasing wire-length. We

know this to be the case for many families of graphs.

Although we have not paid attention to issues like the size of constants here, it
seems likely that the method of layer assignment that we employed in the upper-
bound proof of Theorem 3.1 can be adapted to produced computationally efficient

assignments in practical situations.
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