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1. Introduction

Byzantine agreement is the problem of reaching a consensus in a distributed system of n pro-
cessors, at most ¢ of which may fail in arbitrary, even malicious, ways. In a randomized Byzantine
agreement algorithm each processor can use the results of local random coin tosses in the course
of reaching agreément. In this paper we present a synchronous randomized Byzantine agreement
algorithm that terminates in an expected O(t/ log n) rounds and that works for any n > 3t+1. This
contrasts with the lower bound of £+ 1 rounds for deterministic algorithms that was shown by Lynch
and Fischer [LF]. Our algorithimn is of significance because it is simple and efficient enough to be of
practical use, because it performs better than any possible deterministic algorithm, because it op-
erates for practical values of n and ¢, and because it does not require any cryptographic techniques.

Ben-Or [Be], Bracha and Toueg [BT], and Rabin [Ra] each have investigated the randomized
Byzantine agreement problem. Their primarv interest was asvnchronous algorithms. but simple
variants of their algorithms operate in the synchronous case. Because the topic of this paper is
synchronous algorithms, we will discuss only the synchronous variants of their algorithms. A full
comparison of the algorithms appears in Section 11; however, we give some advantages of our
algorithm here. Our algorithm improves on Ben-Or’s in that it operates efficiently for practical
ratios of » and ¢, and it improves on Rabin’s in that it does not require initial distribution of coin
tosses by a trusted, failure-free dealer. In the synchronous case, the algorithm due to Bracha and
Toueg is similar to the one due to Ben-Or. For simplicity, we will only make comparisons with
Ben-Or’s algorithm.

Bracha [Br] has recently devised a new randomized Byzantine agreement algorithm that ter-
minates in an expected O(logn) rounds. His algorithm assumes a model of computation in which
cryptographic techniques may be used to conceal information from malicious faulty processors.

This is different from the model that we assume in this paper.
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In evaluating a Byzantine agreement algorithm, it is often useful to consider the total number of
processors that is required by the system in order to tolerate ¢ processor failures. This motivates us
to define the redundancy of a system of n processors as (n—1)/t. Lamport, Shostak, and Pease [LSP]
have shown that no deterministic non-authenticated algorithm is possible unless the redundancy is
at least 3. An eaéy extension of their proof shows that this same amount of redundancy is required
for randomized algorithms. It is usually desirable to minimize the redundancy in a system in order
to reduce the cost of hardware. It is always possible to increase the redundancy in a system and
maintain correct operation of a Byzantine agreement algorithm; however, some of the algorithms
that we will consider have lower bounds on redundancy that are higher than 8. The basic algorithm
that we will present operates for any redundancy of 3 or more.

If we postulate the existence of a global reliable random coin toss, Byzantine agreement can
be reached in a constant expected number of rounds using techniques developed by Ben-Or and by
Rabin. Unfortunately, such a source of random coin tosses is unlikely to be available in a distributed
system subject to Byzantine faults. A central component of the known randomized Byzantine
agreement algorithms is the simulation of a global reliable coin toss using other methods. Ben-Or
and Rabin each have techniques for producing global random coin tosses. Ben-Or uses a technique
which works well when the redundancy is high but which has a low probability of producing a good
toss when the redundancy is low. In his technique, each processor tosses a coin independently and
broadcasts the result. If one result predominates by a sufficient margin then a coin toss has been
produced; otherwise, no usable coin toss has been produced. A spread of sufficient size is likely only
when the total number of processors is large relativc to the number of faults. As a consequence, his
algorithm either requires a large (exponential) number of rounds or a high amount of redundancy
(equal to t). Rabin produces global coin tosses efficiently; however, he assumes a different, more
powerful model of computation. His coin tosses are precomputed by a trusted dealer who splits

the results of cach coin toss so that ¢ + 1 processors can determine the result, but i processors
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have no information. The distributed, split coin tosses are an expensive resource that is partially
consumed at each execution of the algorithm. In some applications, it may be unrealistic to assume
that a trusted dealer exists. Rabin’s algorithm is a good choice in those applications where his
model seems realistic. The algorithm which we will describe will generate global coin tosses more
efficiently than Ben-Or’s algorithm but uses none of the extra machinery of Rabin’s algorithi.
In particular, no reliable, trusted dealer is required. One way in which our technique is inferior
to theirs is that ours works only in a synchronous system while theirs work in both synchronous
and asynchronous systems. There is something inherent in our technique that does not seem to
generalize to the asynchronous case.

A contribution of this paper is our new technique for generating random coin tosses that (while
they are not perfect) are of sufficient quality to permit our algorithm to make rapid progress. We
now outline our technique for tossing coins. At each round, a small group of g processors is assigned
the task of coin tossing. Each processor in this group tosses its own coin and broadcasts the result.
The coin toss generated by this group is the rﬁajority of individual outcomes. If more than half
the processors are faulty, they can bias the coin toss any way they want or cause some processoré
to see heads and others to see tails. But, if fewer than half are faulty, there is a sufficiently large
probability that all correct coin tossers will have the same outcome (provided g is not too big).
If they all happen to have the same outcome, the majority is determined regardless of what the
faulty processors do. With no more than ¢ faulty processors, there can not be more than 2¢/g
disjoint groups with a majority of faulty processors. After at most that many rounds, a group of
coin tossers with a majority of correct proceésors will be reached. We will show that this leads fo
fast termination of the algorithm.

We now give a brief outline of the remainder of the paper. In Section 2 we define the syn-
chronous randomized Byzantine agrecment problem. In Section 3 we present the basic algorithm. In

Section 4 we analyze the performance of the basic algorithm. In Section 5 we present an alternative



algorithm that doubles the speed of the basic algorithm at the cost of requiring twice the amount of
redundancy. In Section 6 we cxplain how the performance of our algorithm improves if the actual
number of faults is smaller than the bound on the number of faults, . In Section 7 we show that
it is possible to achieve coordinated termination (all processors decide in the same round) with
high probability.‘ In Section 8 we present an alternative analysis of the basic algorithm for the case
where processor failures are assumed to be uniformly randomly distributed. In Section 9 we discuss
the problem of reintegrating repaired processors into the algorithm. In Section 10 we explore an
application of our algorithm—speeding up the distributed lottery agreement protocol of Broder and

Dolev [BD]. In Section 11 we evaluate the basic algorithm by comparing it with the alternatives.

2. The Problem

A synchronous randomized Byzantine agreement algorithm is run by a distributed system of n
processors, at most ¢ of which may fail. The computation proceeds by the sending and receiving of
messages. Message exchange takes place in a series of rounds over a network that is fully connected
and reliable. At each round, a processor can toss coins as part of its computation. These coin
tosses affect message generation and processor state. Correct processors toss fair coins and send
messages according to their programs. Failed processors can send arbitrary messages.

Each processor starts the algorithm with an input value, v, from a fixed set of legal inputs, V.
The goal is that after sending some messages each processor will produce an answer. There are
two requirements on the answer. The agreement condition is that all correct -processors produce
the same answer. The validity condition is that if all correct processors start the algorithm with

the same value, then this value will be the answer produced by the correct processors.

3. The Basic Algorithm

For simplicity of presentation, the algorithm given here is binary (reaches agreement on one

bit). It can easily be extended to be multivalued (reach agreement on arbitrary values) using the



technique of Turpin and Coan [TC].

First, we give an informal description of the algorithm, then we give the code. The algorithm
is organized as a series of epochs of message exchzmgé. Each epoch consists of two rounds. The
round structure is provided automatically by the synchronous communications network. In the
presentation of the algorithm, epoch and round numbers are shown as the first two components
of each message. These should be viewed as implicit. They are shown only to make it easier to
discuss the algorithm.

The algorithm is parameterized by g, the group size; n, the number of processors; and ¢, the
number of faults tolerated. It is assumed that n > 3¢ + 1. The parameter g is used to determine
the number of processors in each group of coin tossers. The processors are divided into a maximal
number of disjoint groups of g processors each. Any processors that are left over belong to no
group. The groups are numbered from 1 to [n/gl.

In each epoch, the processors cooperate to perform a distributed coin toss. In epoch e, the
group whose index is congruent to e modulo |n/g] actively performs the coin toss. All processors
attempt to observe the result. Each processor in the active group tosses a coin and broadcasts the
result. A processor calculates the coin toss of the group as the majority of the coin tosses it receives
from processors in the group. The value that processor P observes for a coin toss is defined to be
this majority value seen by P. If a group contains a large number of faulty processors, then they
can control the outcome of the toss or cause correct processors to observe inconsistent values. We
will, however, show that for suitably selected group size, g, a large enough number of groups will
toss sufficiently random coins for our purposes.

We describe the algorithm for the processor P. (All processors run the same code.) The
variable CURRENT holds the value that processor P currently favors as the answer of the Byzantine
agreement algorithm. At the start of the algorithm CURRENT is set to processor P’s input value.

In the first round of each epoch, processor P broadcasts currenT. Based on the round 1 messages
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received, processor P changes CURRENT. If it sees at least n—¢ round 1 messages for some particular
value, then it assigns that value to CURRENT; otherwise, it assigns the distinguished value “7” to
CURRENT. In the sccond round of each epoch, processor P broadcasts CURRENT and (if required)
the result of a coin toss. Based on the round 2 messages received, processor P either changes
CURRENT or decides on an answer and exits the algorithm. Let ANs be the most frequent value
(other than “?”) in round 2 messages received by P. Let NUM be the number of such messages.
There are three cases depending on the value of Num. If NUM > n — ¢ then processor P decides
on the value ANs and exits the algorithm. If n — ¢ > NuM > ¢ + 1 then processor P assigns the
value ANS to the variable CURRENT and continues the algorithm. If ¢ + 1 > NUM then processor P
assigns the coin toss it received in the current round to the variable CURRENT. The selected coin
toss is the one broadcast by the processor group whose index number is congruent to the current
epoch number modulo |n/g| , the number of processor groups.
Code for processor P with parameters ¢, n, and £:

procedure BYZANTINE_AGREEMENT(INPUT):

1

2. CURRENT +— INPUT

3. fore« 1toocodo

4, broadcast (e, 1, CURRENT)

5. receive (e, 1, %) messages

6. if for some v there are > n — ¢ messages (e, 1,v)

7. then CURRENT + v

8. else CURRENT + “77

9. if croupP(P) = e(mod |n/g])

10. then TOss «— TOsS_COIN()

11. else TOss + 0

12. broadcast (e, 2, CURRENT, TOSS)

13. receive (e, 2, *, ) messages

14. ANS «— the value v # “?” such that (e, 2, v, *) messages are most frequent
15. NUM < number of occurrences of (e, 2, ANS, ¥) messages

16. if NuM > n — t then decide ANS

17, elseif NUM > £+ 1 then CURRENT «+ ANS _

18. else CURRENT + majority toss from processor group z where z = e (mod |n/g])

We make several remarks about the algorithm. GROUP is a procedure that takes as input a

processor identity and returns the processor’s group number. TOSS_COIN is a procedure that takes
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no argument and returns the result of a random coin toss (0 or 1). In message descriptions, “+” is
a wild-card character that matches anything. In order to allow correct processors to stop sending
after they decide, we adopt the convention that a processor that sends no message is assumed to
vote for the value in the last message that it sent. Therefore, a processor that has decided may
stop sending messages after the first round in which it broadcasts its decided value. This will either
be the round in which it decides or the next following round. Other invalid or missing messages
present no difficulty. A processor that sends such a message is faulty and therefore could have sent
: anything. The recipient of such a message may correctly replace it by any valid message.

Define value as a legal input to the algorithm, either 0 or 1. Specifically, “?” is not a value.
Lemma 1: During each epoch, at most one value is sent in round 2 (step 12) messages by correct
Drocessors.

Proof: Assume at least one value is sent in round 2 of epoch e. Say processor P sends value v.
P has scen at least n — ¢ messages (e,1,v). At least n — 2¢ of them are from correct processors
and are therefore reliably sent to all processoré in the system. All processors have at least n — 2¢
messages (e, 1,v) in a total of n messages. This leaves at most 2t < n — ¢ messages for some other
value. This is not enough to cause a correct processor to send a round 2 message for a value other
than v. a

In Theorem 2 we prove that our algorithm never produces a wrong answer and we prove that
in each epoch there is at least one coin-toss value that will terminate the algorithm. The analysis
of the expected running time of the algorithm follows in Section 4.

Theorem 2: The algorithm has the following three properties.

Validity: If value v is distributed as input to all correct processors, then all correct processors

decide v in round 2 of epoch 1.

Agreement: Let e be the first epoch in which a correct processor decides. If correct processor P

decides v in epoch e then by round 2 of epoch e + 1 all correct processors decide v.
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Termination: In any epoch, e, there is at least one value which (if it is adopted by all processors
executing the assignment in step 18) will cause all correct processors to decide by round 2 of epoch
e+ 1.

Proof: We show that the algorithm satisfies the three conditions.

Valzdity: Assume that value v is distributed as input to all correct processors. All (at least
n — t) correct processors broadcast v in rounds 1 and 2 of epoch 1. All correct processors assign v
to ANS, set NUM to a value at least n — ¢, and therefore decide v in round 2 of epoch 1.

Agreement: For processor P to decide v in epoch e, it must be the case that P has seen at
least n — t messages (e, 2,v,*). At least n — 2¢ > ¢ + 1 of the messages are from correct processors
and are therefore reliably sent to all processors in the system. No correct processor sends round 2
messages for any value other than v (by Lemma 1). Only failed processors send such messages.
Because there are at most ¢ failed processors. there are at most ¢ round 2 messages for any value
v’ # v. All correct processors assign v to ANS, set NUM to a value at least t + 1, and either decide
v in the current epoch or begin the following epoch with the variable CURRENT equal to v. A]l
correct processors will therefore decide v by round 2 of epoch e + 1.

Termination: By Lemma 1, there is at most one value, say v, that is broadcast by correct
processors in round 1 of epbch e. Any correct processor that does not execute the assignment in
step 18 must have ANS = v because it is not possible to get more than ¢ votes for any other value.
The value v (if adopted by all processors executing the assignment in step 18 of epoch e) will cause
all correct processors to decide v by round 2 of epoch e + 1. This is because all correct processors
will start epoch e 4 1 with the value v assigned to the variable CURRENT. a

Based on the termination property shown in Theorem 2, we make the following definitions:
Define a good value in epoch e as one which (if it is adopted by all processors executing the

assignment in step 18) will cause all correct processors to decide by round 2 of epoch e+ 1. Define
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a good coip toss in epoch e as one which distributes in epoch e a good value to all correct processors.
Define a bad value or coin toss as one which is not good.

We are now in a position to explain why randomization is necessary for the correct operation
of our algorithm. The termination part of Theorem 2 guarantees that in any epoch, say e, there
will be at least one good value. This value can, however, be determined by the failed processors
in round 1 of epoch e. If the coin toss were replaced with some predetermined value, then the
faulty processors could always cause the good value to differ from this predetermined value. In our
scheme, this strategy is unavailable to the faulty processors because the coin toss is not performed

until round 2 of epoch e—after the good value has already been fixed.

4. Analysis of the Algorithm

In this section we analyze the computational resources used by the basic algorithm. At the
sysiew level, we calculate the expected number of rounds needed to reach agreement and the
expected number of message bits sent. At the processor level, we calculate the amount of internal
memory, the number of computation steps, and thé expected number of random bits used by
each processor. In particular, we show that the expected number of rounds to reach agreement is
O(t/logn) and the expected number of random bits used by each processor is bounded above by 1.
The analysis is worst case in the sense that it allows faulty processors to behave maliciously and
holds for any distribution of them, as long as the redundancy is at least 3.

We define some terminology and notation. Let g = 2m + 1 denote the number of processors
in each group. (This relation between g and m holds for the rest of the paper.) Let ¢, be the
coin toss generated at epoch e. We say that ¢, is fair if each correct processor observes the same
coin toss and this coin toss is unbiased and independent of previous coin tosses. Denote by p, the

probability that the coin toss c. is good (will cause termination), and let ¢, = 1 — p,.
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If there are at most m faulty processors among the coin tossers of epoch e (a majority of the

coin tossers are correct), then

Zim < Pr(c, fair}.

By Theorem 2 and the definition of good coin toss,
. 1
Pr(ce good | ¢ fair) = 3

So, the conditional probability that ¢, is good given that at most m coin tossers are faulty, is at
least 1/2™+1,

Theorem 3: For group size g = logn, the expected number of rounds to reach agreement, r, is
bounded by

r <

+2\/1_1+0(1):O( t )

logn logn
Proof: By the definition of a good coin toss, agreement is reached by all correct processors at
most one epoch after a good coin toss is achieved. Every epoch consists of two rounds. Therefore,

if Ezp denotes the expected number of epochs until a good coin toss is achieved, then
r=2-Ezp+ 2.

The expected number of epochs to get a good coin toss is
oo
Exp = E e - Pr(c, is the first good coin toss)

e=1

Since fair coin tosses are independent, we get

Pr(c, is the first good coin toss) = q1¢2 -+ ge-1(1 — ge),



S0

Exp=) e qiqz - qe—1(1 - qc)
e=1

oo
=(1-q)+ Y (e quqa g1 — € q1q2-"qe)
e=2

= 1+quqz---qe
e=1

For any specific e, an adversary can block the coin toss generated at epoch e by assigning m + 1
faulty coin tossers, thus making q. = 1. However, with a limited supply of faulty processors, such
blocking can not be repeated indefinitely.

We start by analyzing the first |n/g]| coin tosses, which are performed by disjoint groups of
processors. To do this we calculate an upper bound on Eiz/fj qiqz -+ Qe If g; < g;+1 for some 1,
then the sum can be strictly increased by exchanging ¢; and ¢; ;. Therefore, we assume that the
sequence of g¢;’s is non-increasing. There can be at most |¢t/(m + 1)] groups with a majority of
faulty processors. These groups are blocked (the probability of getting a bad coin toss is 1). After
the blocked groups, all groups must have at least m + 1 good processors and therefore at most

1 — 1/2m+! probability of producing a bad toss. We permit the adversary an infinite number of

such groups and calculate
[n/g]

i
aies <
5_ q192 qe__m_i_l

After |n/g| groups, we cycle back through the coin tossers, and so

ln/g] _
Zq”? ( E 7142 ) (1 + 102" Qlnsg) + (91927 Qlng))* + - )
t it :
S\mr E‘h@'“qtnm)

With ¢ faulty processors, at most |¢/(m + 1) | groups of coin tossers can be blocked. Therefore

_ 1 [n/g]—[¢/(m-+1)]
9192 qin/g) < (1 o 2m-3-1)

1\ (/g
< (l o 27n-|—1)
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Using the bound ¢ < n/3, we have

1 n/3g
9192 din/g] < (1 - 2_m+_1) :

Because ¢ = logn and m < %log n, we get (e = 2.718+ in the next two equations)

1 n/3g 1 n/3logn 1 vn/3logn
P - 2l < .
(-gm) <=7 <()

The last bound implies

oo ) 1 Vvn/3logn
2 (a2 gy} < 2 (E) ’
i=1

and therefore

m-+1

i m-+ = [
(_“ ) S (@102 qims))* = o(1)-
=1

Combining all these bounds together, we get

Exp<i+\/ﬁ+o(1):o( : )

logn logn

The expected number of rounds is therefore bounded above by 4¢/logn + 2\/n + o(1).

We remark that by setting m = (1 — ¢) log n, we have

¢ £ 2m+1 i t + nl—e

m+1 (1—¢€)logn

bl

so the constant 1 in the O(t/logn) expression for the expected number of epochs can be achieved

asymptotically. Our analysis is somewhat loose in that the adversary can reuse faulty processors.

For explicit values of n, ¢, and g the exact value of Ezp can be found by direct computation. In

Table 1 we list some values of Exp for small, practical systems.

We calculate the expected number of message bits sent by the basic algorithm. Individual

messages have a constant size. In each round there are O(n?) messages sent. By Theorem 3, the

expected number of rounds is O(¢/ logn). Therefore, over the course of the algorithm, an expected

O(n%t/log n) message bits are sent.
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Expected Number of Tries to Produce a Good Coin Toss
Processors Faults Group Size | E(Tosses) Processors TFaults Group Size | E(Tosses)

4 1 1 3.2 55 18 5 8.4

7 2 3 4.0 58 19 5 8.8
10 3 3 4.4 61 20 5 9.0
13 4 3 4.7 64 21 5 9.4
16 5 3 5.1 67 22 7 8.9
19 6 5 8.0 70 23 7 8.6
22 7 5 6.2 73 24 7 9.0
25 8 5 5.7 76 25 7 9.5
28 9 5 6.6 79 26 7 9.3
31 10 5 6.3 82 27 7 9.7
34 11 5 7.1 85 28 7 9.7
37 12 5 6.8 88 29 7 10.0
40 13 5 6.9 91 30 7 10.0
43 14 5 7.5 94 31 7 10.4
46 15 5 7.5 97 32 7 10.7
49 16 5 8.0 100 33 7 10.8
52 17 5 8.1 103 34 7 11.1

Table 1: Coin Tossing Efficiency

In randomized algorithms, the number of random bits used by each processor is important.
Current physical devices for producing random bits are rather slow. If a large number of random
bits are required, then pscudo-random number generators are often used. Plumstead [P] showed
that the fast, linear congruence generators are not secure. After seeing a few outcomes, an adversary
can predict the remaining tosses (thus allowing the faulty processors to block all future coin tosses).
Secure pseudo-random number generators, based on cryptographic techniques, are known to exist
under certain intractability assumptions (see [BM] and [ACGS]). However, they require a lot. of
computation, so we are better off if we can avoid using them altogether. A surprising result is the
number of random bits used by our algorithm. The expected number of times we cycle through
all groups of coin tossers is bounded above by 1. At each cycle one random bit is used by each
processor. Therefore, the expected number of coins tossed by each processor is bounded above by 1.
Slow physical generators are good enough then, and it is not necessary to resort to pscudo-random

number generators.
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The complexity of the internal computation is that of counting small numbers. The amount

of internal space required by our algorithm is small. Only log n memory bits for counting NUM are
required. Reintegration of faulty processors is easy because no long histories need be stored (see

Section 9).

5. An Altérnative Algorithm

Our basic algorithm is resilient to ¢t < n/3 faults and uses two rounds per epoch. If the number
of faulty processors, ¢, is bound by ¢ < n/6, then one round per epoch suffices. Thus the expected
number of rounds is cut by a factor of 2. The code for this case uses two thresholds to which NUM,
the number of supporters for the current majority value, are compared. This two-threshold scheme
is an adaptation of one by Rabin [Ra]. If NuMm falls between the two thresholds, the coin toss is
used to determine the value of the variable CURRENT in the next round. With the two thresholds
furiier than ¢ apart, one of the two possibie outcomes of the coin toss is good. The generation
of coin tosses is done in the same way as in our basic algorithm. This makes the analysis of the
expected number of coin tosses needed to get a good one identical to the analysis in Section 4. .

Code for processor P with parameters g, n, and ¢:

1. procedure BYZANTINE_AGREEMENT(INPUT):

2. CURRENT + INPUT

3. for e+ 1tocodo

4 if GrouP(P) = e (mod |n/g])

5. then TOss « T0ss_coIn()

6 else Toss « 0

7 broadcast (e, CURRENT, TOSS)

8
9

receive (e, #, *) messages
ANS < the value v such that (e, v, *) messages are most frequent

10. NUM « number of occurrences of (e, ANS, *) messages

11. if NUM > n — ¢t then decide ANS

12. elseif NUM > n — 2¢{ then CURRENT + ANS

13. elseif NUM < n — 3t then CURRENT + (

14. else

15. COIN +— majority toss from processor group z where z = e (mod|n/g])
16. if coIN = 0 then CURRENT « ()

17. elseif coiNn = 1 then CURRENT « ANS
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6. Early Stopping
Our algorithm is resilient to ¢ faults, but the actual number of faulty processors, f, might be
smaller than the upper bound ¢. A desirable property of any Byzantine agreement algorithm is that
agreement be reached early in this case. Dolev, Rieschuck, and Strong [DRS] have studied early
termination for deterministic Byzantine agreement algorithms. From the analysis in Section 4, it
follows that the expected number of rounds to reach agreement in the presence of f faults is bounded
above by 4f/logn + 2y/n + o(1). Thus early stopping is automatically achieved. Furthermore, for

the range /nlogn < f < n/3, agreement is reached in O(f/logn) rounds.

7. Coordinated Termination

Oune disadvantage of our algorithm is that even though all processors start the algorithm in
exactly the same round, they might be off by one epoch when they terminate. In this section we
siiow thiat a minor modification of the algorithm yields an almost certain coordinated termination,
namely all correct processors halt at exactly the same round with overwhelming probability. This
is done without violating the agreement, validity, and termination requirements, which will still be
achieved with probability 1. The expected running time is changed only by a small multiplicative
constant.

The modification is quite simple. We know that the expected number of epochs to reach
agrecement in the basic algorithm is at most 2¢/ log n+/n+o0(1) and that the tail probability for the
number of epochs converges rapidly. For example, the probability that more than 3¢/log n epochs
will be needed is no greater than (1/ e)ﬁ/ 1o€™ 1n the modified algorithm, each correct processor
will just delay the transition to a “halt” state until epoch 3t/logn (in case it made its decision
before that epoch) and behave as before otherwise. This guarantees coordinated termination by
epoch ,3t/ logn with probability at least 1 — (I/e)ﬁ/ leg” - Greater confidence of coordinated

termination can be achieved at the cost of more rounds.
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It remains to be secen whether Byzantine agreement in O (¢/logn) expected time and proba-
bility 1 of coordinated termination can be achieved. The deterministic lower bound implies only

t + 1 worst case lower bound for any such algorithm.

8. Uniformly Distributed Processor Failures

In the previous analysis we have assumed that an adversary controls both the selection of
which processors fail and the behavior of the failed processors. It does this in the way which will
cause our algorithm the most difficulty. An alternative assumption is that the faulty processors are
randomly distributed.

In the analysis in this section we assume that the distribution of processor faults is uniform.
That is, each of the (’t‘) ways of distributing ¢ faults among the n processors is equally likely. We
retain the assumption that failed processors are under the control of the adversary and therefore
beliave lu a way which will cause our algoritiun the most difficuity. In Theorem 4 we show that
for g = 1 and uniform processor faults our algoﬁthm terminates in a constant expected number of
rounds. Because g = 1, each group of coin tossers consists of a single processor.

Theorem 4: If g = 1 and processor faults are uniformly distributed, then the expected number of
rounds until the last correct processor decides is at most 8.

Proof: The expected number of rounds is 2¢ + 2 where ¢ is the expected number of coin tosses to
get a good toss. We show that the expected number of coin tosses is at most 3. The probability
that the coin toss of a correct processor is good is at least % (by Theorem 2 and the fairness of the
coin toss). The probability that processor P is correct is at least % because n > 3t + 1. Therefore,
the probability that the coin toss of processor P is good is at least % The conditional probabilit}y

that the coin toss of processor P is good given that previous coin tosses have been bad is at least

as great as the unconditional probability (at least %) because the previous bad coin tosses increase
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the conditional likelihood that processor P is a correct processor. Therefore, the expected number
of coin tosses is at most the mean of a geometric random variable with parameter % This is 3. O

We calculate the expected number of message bits sent by the algorithm. Individual messages
have a constant size. On each round, there arc O(n?) messages sent. By Theorem 4, the expected
number of rounds is 8. Therefore, over the course of the algorithm, an expected O(n?) message
bits are sent.

Termination in a constant expected number of rounds is an attractive feature of the algorithm;
however, this feature is not unique to randomized algorithms. Under the same assumption of
uniform randomly distributed processor failures, a deterministic algorithm due to Reischuk [Re]

also terminates in a constant expected number of rounds.

9. Reintegration of Failed Processors

1L 1s possible for a processor that fails and is subsequently repaired to rejoin our Byzantine
agrecment algorithm. We assume that such a processor loses its local memory and that it runs
special recovery code after it is repaired. In order to rejoin the algorithm a processor needs-to
replace its lost state information. This is easy with our algorithm because the amount of state
information is small. It is also important that correct processors do not record the identities of
known faulty processors. Reintegrating failed processors permits the algorithm to tolerate a larger
number of failures as long as at most ¢ occur simultaneously. In this section we describe how a
repaired processor rejoins the algorithm.

During an epoch, there are several times at which a repaired processor can rejoin the algorithm.
We describe one. The repaired processor simply begins the epoch with step 13, receiving round 2
messages. A processor that fails and is subsequently repaired is counted as a failed processor only
from the epoch in which it fails until two epochs after it recovers. After that it is considered to be

a correct processor. The constraint is that at any time there are no more than ¢ failed processors.
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A processor that attempts to rejoin the algorithm after the correct processors have decided
or as they are deciding may not see enough messages in order to decide. To solve this problem,
we adopt the rule that a processor that sees t + 1 or more silent processors in the epoch after it
attempts to rejoin the algorithm will conclude that a decision has been reached. It then broadcasts
a query and decides on any value that it receives from at least ¢ + 1 processors. It is easy to see
that a processor that rejoins the algorithm as a decision is being reached can not be tricked into
making a wrong decision. There will not be enough votes for any incorrect value because only

faulty processors will cast such votes after a correct processor has decided.

10. Distributed Lottery Agreement

The goal of a distributed lottery agreement protocol is to produce an unbiased coin toss on
which all correct processors agree. The a prior: probabilities of both outcomes should be equal,
regardiess ol the behavior of the fauity processors.. Broder and Dolev [BD] present a cryptographic
distributed lottery agreement protocol which is resilient to ¢ < n/2 faults and takes 3t + 3 rounds.
They also show a t + 1 worst case lower bound for any distributed lottery agreement algorithm.
In this section we show that for ¢ < n/3, our Byzantine agreement algorithm can be used to speed
up the Broder and Dolev distributed lottery agrecment protocol, resulting in O(¢/logn) expected
time for agreeing on the value of the coin toss.

The protocol of Broder and Dolev is semi-deterministic in the sense that there is only an initial
randomized stage (in which each processor tosses its own local coin, and picks a key for a public-
key cryptosystem). After this initial stage, there are three phases. In each phase, every processor
sends one value, and n deterministic Byzantine agreements on each of these values are processed
concurrently. At the end of the third phase, the value of the coin toss is known to all processors.
A critil(:al requirement is that the second (resp. third) phase not start before the results of all n

Byzantine agreements from the first (resp. second) phase are determined. Both encryption (in a
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way which is crucial to the algorithm) and authentication are used. Authentication is needed only
for reaching Byzantine agreement in the case that n/3 < ¢. If ¢ < n/3, then authentication is not
necessary. |

Replacing deterministic Byzantine agreement by our probabilistic algorithm, we get a faster
method for distributed lottery agreement. A property of our algorithm is that if any correct
processor has decided on some value, this value is determined and will be agreed upon by all
correct processors no later then the next epoch. To use our algorithm in the distributed lottery
agreement, the following rule is imposed: After a processor decides on all n values of the current
phase, it waits one epoch and only then sends its value for the next phase. By waiting one epoch,
it is guaranteed that when one correct processor tries to start the new phase, all correct processors
have already decided on all values of the last phase. If a processor does not receive any value
from some sender one round after the processor has sent its own value, the processor assumes that
sender is faulty, and uses some default value as its initial value in the agreement on that sender’s
value. The epoch counting is continued from th;a first epoch, so that all processor refer to the same
group of coin tossers throughout the three phases. We have shown that our Byzantine agreement
algorithm can be used as a subroutine in the Broder and Dolev protocol. To see that we really
speed things up, use the rapid convergence of the tail probabilities. One can show that the expected
time for finishing n concurrent Byzantine agreements is no greater than twice the expected time
for one Byzantine agreement. Hence we get
Theorem 5: Distributed lottery agreement can be done in expected time O (t/logn) for t < n/3.

Theorem 5 shows that the worst case lo;}\rer bound of Broder and Dolev can not be extended

to the average case.

11. Evaluation

In this section we evaluate the extent to which our algorithm is of practical importance. We
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do this by comparing our algorithm with three alternatives: Ben-Or’s randomized synchronous
algorithm, Rabin’s randomized synchronous algorithm, and a good deterministic algorithm.

When the redundancy, r, of a system of processors is 2(¢), Ben-Or’s algorithm terminates in
a constant expected number of rounds. For practical systems, however, it is desirable to operate
at a lower rcduﬁdancy in order to minimize the cost of computer hardware. The ideal value is
r = 3. Unfortunately, for any r that is O(1), Ben-Or’s algorithm requires an exponential number
of rounds. Compared to Ben-Or’s algorithm, ours is more efficient for practical amounts of system
redundancy.

Rabin’s algorithm terminates in a constant expected number of rounds; however, it requires
more resources than our algorithm. In particular, it requires a trusted dealer that distributes
random coin tosses before the start of the algorithm. The underlying mechanism is authentication
and Shamir’s [S] shared secret. If this cost scems small, then Rabin’s algorithm would be the choice.
On the other hand, if the cost seems high, then our algorithm would be the choice. We believe that
in practical systems, it is often unrealistic to assume the existence of a trusted dealer.

The most practical deterministic algorithm is due to Lynch, Fischer, and Fowler [LFF]. There
are trade-offs between their algorithm and ours. The principal advantages of the deterministic
algorithm arc that it uses a fixed nmumber of rounds and that all processors decide at the same
round. The principal advantages of our algorithm are that the expected number of rounds is
small, that the expected number of message bits is small, and that only two rounds are required
if the input to all processors is the same. Qur algorithm can not ensure synchronous termination;
however, using the techniques of Section 7, this property can be achieved with high probability.

We conclude that for a practical algorithm, one would choose either the deterministic algorithm
of Lynch, Fischer, and Fowler or our randomized algorithm. The deterministic algorithm would be
chosen if the extra synchronization that it provides were important to the particular application.

Otherwise, our randomized algorithm would be chosen. If it seems realistic to assume that processor
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faults are uniformly distributed, then the randomized algorithm is especially attractive because its

expected running time is constant.
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