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1. Introduction

The asynchronous algorithms are in many cases substantially inferior in
terms of their complexity to corresponding synchronous algorithms, and
their design and analysis are much more complicated. Thus, it makes sense
to develop a general simulation techniqﬁe, referred to as "Synchronizer”,
which will allow the user to write his algorithm as if it is run in a synchronous
network. Subh technique is proposed in this paper. Essentially, this is a new,
simple methodology for designing efficient distributed algorithms in asyn-
chronous networks. No such methodology was previously proposed in the
literature for our model; some of the related works are mentioned in the

summary.

- We also prove existence of certain trade-off between communication and
time requirements of any Synchronizer. It turns out that our Synchronizer

achieves this lower bound within a constant factor.

For probieﬁls for which there are good synchronous algorithms, our Syn-
chronizer allows simple construction of low complexity algorithms. We demon-
strate its power on the distributed Maximum Flow and
Breadth —First —Search (BFS) algorithms. These are very fundamental
graph-theoretic problems. Both of them can be solved by fairly simple and
clegant algorithms in a synchronous parallel computation model (PRAM), as
shown in [SV-82] and [EC-77]. Thesc algorithms have bcen casily modified in
[A-83] for operation in a distributed synchronous network. The complexities
of the resulting algorithms are summarized in Table 1. For precise definition
of complexity measures u.scd, see Section 2. Applying our Synchronizer to
the algorithms of Table 1 yields new asynchronous algorithms, which improve
the best existing ones both in terms of communication and time. Our
improvements are summarized in Table 2. In the rest of the paper we
procecd as follows. In Section 2 we describe the two models we are dealing

with, namely the asynchronous and the synchronous networks, define pre-
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cisely the complexity measures for the above models, and state precisely the

problem of synchronization. In Section 3, the solution (the Synchronizer) is

presented. It is also shown that in order to implement cfficiently this Syn-

chronizer, one should solve a certain combinatorial graph problem, referred

to as partition problem . An algorithmic solution to this problem is given in

Section 4. In Section 5, we present the lower bound on complexity of syn-

chronization. Finally, in Section 6, we summarize our results and compare

them with the existing ones.




2. The problem : ‘

2.1, The Model

In this paper, we are dealing with distr_ibuted algorithms in two nctworlg
models. The asynchronous network is a point-to-point (store-and-forward)
communication network, described by an undirected commuf;icazion graph_
(V.E) where the set of nodes ¥ represents processors of the network and the
sct of links F represents bidirectional non-interfering communication chan-
nels operating between them. No common memory is shared by the node’s
processors and each node has a distinct identity. Each node processes mes-
sages received from its neighbors, performs local computations, and sends
messages to its neighbors. All these actions are assumed to be performed in
zero iimé. All the messages have a fixed length, and may carry only a
bounded amount of information. Each message sent by a node to its neighbor
arrives to it within some finite but unpredictable time. This model appears

also in [S-82],[S-83],[G-82], etc.

In the synchronous network, messages are allowed to be sent only at
" integer times, or pulses, of a global clock. Each node has an access to this

clock. At most one message can be sent over a given link at a certain pulse.

The delay of each link is at most one time unit of the global clock.3

The following complexity measures are used to evaluate performances of
algorithms operating in the two network models above. The Communication
Complexity, Cis the total number of messages sent during the algorithm. The
Time Complexity, T of a synchronous algorithm is the number of pulses,
passcd since its starting time until its termination. The Time Complexity, T
of an asynchronous algorithin is the worst-case number of time units from

start to the completion of the algorithm, assuming that the propagation

3 it can be casily seen that the network where all delays are exactly exacily 1 is as powerful as
the one where delays are af most 1.



delay* and the inter-message delay® of each link is af mosf one time unit.
This assumption is introduced only for the purpose of performance evalua-

tion; the algorithm must operate correctly with arbitrary delays.

Atypical phenomena in communication networks is the trade-off between

communication and time.

2.2. The Goal

Our main goal is to-design an cfficient Synchronizer which enables any
synchronous algorithm to run in any asynchronous network. For that pur-
pose, the Synchronizer generates sequences of "clock-pulses” at cach node of
the network, satisfying the following property: a ncw pulse is generated at a
node only after it receives all the messages of the synchronous algorithm,
sent to that node by its neighbors at the previous pulses. This property
ensures that the network behaves as a synchronous one from the point of

view of the particular synchronous algorithm.

The problem arising' with Synchfonizer design is that a node cannot know
which messages were sent .to it by its neighbors and there are no bounds on
link delays. Thus, the above property cannot be achieved simply by waiting
"enough time"” before generating the next pulse, as it might be possible in a
network with bounded delays. However, it may be achieved if additional mes-

sages arc sent for the purpose of synchronization.

The total complexity of the resulting algorithm depends on the overhcad
introduced by the Synchronizer. Let us denote the communication and time
requirements added by a Synchronizer v per each pulse of the synchronous
algorithm by C(v) and T(v), respectively. Synchronizers may need an initiali-
zation phase, which must be taken into account in case that the algorithm is
performed only once. Let us denote by Ci;(v), Tini(v), the complexities of

the initialization phase of the Synchronizer »v. In summary, the complexities

4 difference between arrival time and transmission time

S difference between transmission times of two consccutive messages on the same link
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of an original synchronous algorithm § and the asynchronous algorithm A4
resulting from the combination of S with the Synchronizer, are related as:

Cy=Cq +TS-C(U)+C,-,,,-,(U> and T4=Tg T(v)+Tn;; (v), where Cy T4 and Cs Ts are
the communication and time complexities of algorithms 4 and S, respec-
tively. A Synchronizer v is “efficient" if all the parameters
C(v), T(v), Cjpy(v), Tini(v) are "small enough”. The first two parameters are

much more important since they represent the overhead per pulse.
3. The Solution

3.1. Outline of a number of Synchronizers

The main result of this Section is denoted as Synchronizer y. It is a com-
bination of two simple Synchronizers, denoted as Synchronizer « and Syn-
chronizer B, which are, in fact, generalizations of the techniques of [G-82].
Synchronizer a« is cfficient in terms of time but wasteful in communication
while Synchronizer g8 is efficient in communication but wasteful in time. How-
ever, we manage to combine these Synchronizers in such a way that the
resulting Synchronizer is efficient both in time and communication. Before

describing these Synchronizers, we introduce the concept of safety.

A node is said to be safe w.r.t. a certain pulse if each message of the
synchronous algorithm sent by that node at that pulse has already arrived to
its destination. (Remember that messages are sent only to ncighbors.) After
execution of a certain pulse, cach node eventually becomes safe (w.r.t. that
pulse). If we require that an acknowledgement is sent back whencver a mes-
sage of the algorithm is received from a neighbor, then each node may detect
that it is safe whenever all its messages have been acknowledged. Observe
that the acknowledgements do not increase the asymptotic communication
complexity, and each node learns that it is safe a constant time after it

entercd the new pulse.



A new pulsec may be generated at a node whenever it is guaranteed that
no message scnt at the previous pulses of the synchronous algorithm may
arrive at that node in the future. Certainly, this is the case whenever all the
neighbors of that node arc known to be safe w.r.t. the previous pulse. It only
remains to find a way to deliver this information to each node with small com-
munication and time costs. We present now the Synchronizers «, 8 and vy

mentioned above.

Synchronizer a: Using the acknowledgement mechanism described
above, cach node detects eventuaily that it is safe, and then reports this fact
to all its neighbors. Whenever a node learns that all its neighbors are safe, a

new pulse is generated.

Complexities of Synchronizer « in communication and time are

C(a)=0(|E )=0(]V]|?) and T(a«)=0(1), respectively, since one (additional)

message is sent over each link in each direction, and all the communication

is performed between neighbors.

Synchronizer B: This Synchronizer needs an initialization phase, in which
a leader s is chosen in the network and a spanning trec of the network,
rooted at s, is constructed. The Synchronizer itsclf operates as follows. After
cxccution of a certain pulse, the leader will eventually learn thét all the
nodes in the network are safe; at that time it broadcasts a certain message
along the tree, notifying all the nodes that they may generate a new pulse.
The above time is detected by means of a cgrtain communication pattern,
referred to in future as convergecast, which is started at the lcaves of the
free and terminates at the root. Namely, whenever a node learns that it is
safe and all its descendants in the tree are safe, it reports this fact to its

father.

Complexities of Synchronizer B are C(B)=0(|V]) and T(B)=0(|V]),
because all the process is performed along the spanning trec. Actually, the

time is proportional only to the height of this tree which may rcach |V|-1 in



the worst case.

Synchronizer y: This Synchronizer needs an initialization phase, in which
the network is partitioned into c/usters. The partition is defined by any span-
ning forest of the communication graph (¥,£) of the network. Each tree of
the forest defines a cluster of nodes, and will be referred to as an intra-
cluster tree. Between each two neighboring clusters, one preferred link is
chosen, which will serve for communication between these clusters. Inside
cach cluster, a leader is chosen which will coordinate the operations of the
cluster via the intra-cluster tree. We say that a cluster is safe if all its nodes

are known to be safe.

Synchronizer y is performed in two phases. In the first phase, Synchron-
izer B is applied scparately in each cluster along the intra-cluster trees.
Whenever the leader of a cluster learns that its cluster is safe, it reports this
fact to all the nodes in the cluster as well as to all the leaders of the neigh-
boring clusters. Now, the nodes of the ciustcr enter the sccond phase, in
which they wait until all the neighboring clusters are known to be safe and

then gencrate the next pulse (as if Synchronizer a is applied among clusters).

Let us, however, give a more detailed description of this Synchronizer. In
order to start a new pulse, a cluster leader broadcasts along the tree a
PULSE message, which triggers the nodes which receive it to enter the new
pulsc. After terminating its part in the algorithm, a node enters the first
phase of the Synchronizer, in which SAFE messages are convergecasted along
each intra-cluster tree, like in Synchronizer B. This process is started by the
leaves which send SAFE message to fathers whenever they detect that they
are safc. Whenever a non-leaf node detects that it is safe and the above mes-
sage SAFE has been received from cach of its sons, then, in case it is not the
leader, it scnds SAFE to its father. Otherwise, if it is the leader, it learns

that its cluster is safe and reports this fact to all neighboring clusters by

starting the broadcast of the CLUSTER =S AFE message. Fach node forwards



this message it to all its sons and along all incident preferred links.

Now, the nodes of the cluster enter the second phase. In order to deter-
mine the time, when all the neighboring clusters are known to be safe, a stan-
dard convergecast process is performed. Namely, a node sends READY mes-
sage to its father whenever all the clusters neighboring with it or with any of
its descendants are known to be safe. This situation isr detected by a node

whenever it reccives READY messages from all its sons and CLUSTER —S AFE

messages from all the incident preferred links and from its fatherﬁ..

This process is started at the leaves and is finished whenever the above
conditions are satisfied at the leader of the cluster. At that time, the leader
of the cluster knows that all the neighboring clusters as well as its own clus-
ter, are safe. Now, it informs the nodes of its cluster that they can generate
the next pulse by starting the broadcast of the PULSE message. The precise

algorithm performed by each node is given in the next sub-section.

Complexities of the Synchronizer y: Let us denote by I, the set of all the
tree links and all the preferred links in a partition P. Also, denote by H, the
maximum height of a tree in the forest of P. It is easy to see that at most 4
messages of the Synchronizer are sent over cach link of E,; thus
C{y)=0(lE, |). It requires O(H,) time for each cluster to verify that it is
safe and additional O(H,) time to verify that all the neighboring clusters are
safe; thus T(y)=0(H,). This observation motivates the following combina-
torial Partition Problem:

Find a partition P with both E, and H, being small.

Observe that the above parameters depend only on the structure of the
forest. It does not really matter how the preferred links are chosen in the
partition, since their total number cquals to the total number of pairs of

neighboring trees.

6 Message from father is needed to ensure that the cluster, to which the node belongs, is safe




Solution of the above problem turns out-to be a non-trivial task even for a
centralized algorithm. We may mention that it is relatively easy to find parti-
tions with one of the parameters being small. Say, if each node forms a clus-
ter, then H, =0 and E,=|E|. Also, by taking the whole graph to be a sing-le
cluster, whose intra-cluster tree is a BFS tree w.r.t. some node, we achieve
E,=|V| and H, =6(D), where D is the diamecter of the nctwork; in the worst-
case D=|V|~-1. With these partitions, we actually obtain the aforementioned

Synchronizers a and 8, respectively.
Using the partition algorithm of the next section, we achieve E, <k |V|

1 Vi
and 1, <1821Vl

= og,k Here, k is a parameter of the partition algorithm, may be
2

chosen arbitrarily in the range 2 <k < |V|. By increasing k in the range

1
from 2 to | V|1, C(y) increases from O(|V]) to O(¥'1) while T(y) decreases

from O(log,|¥|) to O(10). The particular choice of k¥ is up to the user,
depending on relative importance of saving in communication and time in a
particular network. This choice may also depend on the topology of the net-
work, since, in fact, no matter which partition is used, C(y) <O(|E|) and
also T(y) <0O(D), provided that each intra-cluster tree is a BFS tree w.r.t.
some node. For example, in a sparse network, where |E IA:()(l V), we choose
k=|V|, while in a full network, where D =1, we choose k =2. This is because

in a sparse (full) network communication (time) is small anyway.

The distributed implementation of the partition algorithm requires

log, | V|

Cinie (V) =0(k | V%) and Ty, (y)=0(| V] P ). Applying Synchronizer y to

the synchronous BFS and Maximum Flow algorithms of Table 1 yields new
eificient asynchronous algorithms whose complexities are mentioned in Table

2; they include the overhead of the above distributed partition algorithm.



3.2. Formal description of the Synchronizer y

Here, we give a formal algorithm performed by each node i of the net-

work. The algorithm specifies the actions taken by node i in response to

messages arriving to it from its neighbors. Say, "For PULSE from g do.....

means: "After receipt of PULSE message from neighbor g, perform™.
Messages of the algorithm - '

ACK = acknowlcdgement, sent in response to the message of the,
synchronous algorithm.

PULSE = the message, which triggers the *clock-pulse’.

SAFE = message sent by a node to its father when all the descen-

dants are known to be safe.

CLUSTER —SAFE =message sent by a node to its sons and over preferred
links whenever its cluster is known to be safe.

READY = message, sent by a node to its father whenever all the
clusters connected by preferred links to descendants of
the node are known to be safe.

Variables kept at node i
The variables provided by the partition algorithm:

Neighbors (i) = The set of neighbors of node i.

Father(i) = The father of i in the intra-cluster spanning tree. For the
leader of the cluster, Father (i) =1i.

Sons(i) = The sons of i in the intra-cluster spanning tree.

Preferred(i) =  Set of pointers to preferred links incident to i. For each

such link (i —j), node j is included in Preferred(i). For
convenience, we assume that Father(i)€EPreferred(i).

Variables used in the algorithm:

Safeli,gq) = A binary flag, kept for all g€Sons which cquals 1 if the
SAFE message from g was received in the present pulse.
(Safe(i,g)=0,1).

Ready(i,q) = A binary flag, kept for all g€Sons(i) which equals 1 if the

READY message from ¢ was received at the present
pulse. (Ready(i,q)=0,1).

Dif (i,j) = The counter, kept for each jENeighbors(i). It shows the
difference between the number of messages of the syn-
chronous algorithm sent from i to j and the number of
acknowledgements ACK received from j at i. At the begin-
ning of a pulse, Dif (i,j)=0.(Dif (i,j)=0,1,2...)

cluster —safe(i,j) =

A binary flag, kept for cach j€Sons(i)UFather (i), which
equals 1 if the CLUSTER —-SAFE message was received
from j at the present pulse.(cluster —safe(i,j)=0,1).

Procedures used in the algorithm

Safe—Propagation: Procedure which convergecasts the SAFE messages.

Ready —Propagation : Procedure which convergecasts the READY messages.

The algerithm for node i

For PULSE message do :
Trigger exccution of the next pulse of the synchronized protocol P

-10-



for all q € Sons(i) do
safe (i,q) « 0 /* wait for SAFE from q */
send PULSE to q
end
for all j € Neighbors(i), set Dif(i,k) « 0
for all k € Preferred(i), set cluster-safe(i,k) « 0
end

For message of the synchronized algorithm § sent from ito j do
Dif(i,j) +« Dif(i,j) +1
end

For message of the protocol P arriving at i from j do
send ACK to j
end

For ACK from j do
Dif(i,j) « Dif(i,j) - 1
Call Safe-Propagation
end

Whenever the actions performed at a certain pulse have been completed, do
Call Safe-Propagation
end

Safe-Propagation: Procedure
/* This procedure is called whenever there is a chance that node i as well as all its
descendants are safe. In this case, SAFE message is sent to father */
if Dif(i,j) =0 for all j € Neighbors(i) and safe(i,q) =1 for all q € Sons (i)
then do
if Leader(i) # ithen send SAFE to Father(i)
else send CLUSTER-SAFE to itself _
/* cluster leader i learned that its cluster is safe and starts broadcast
of CLUSTER —S AFFE message */
end
end

For SAFE from q do

safe (i,q) « 1

Call Safe-Propagation
end

For CLUSTER-SAFE message from j do
if j € Preferred(i) then cluster-safe (i,j) «1
/* The cluster to which j belongs is safe */
if j € Father(i) then do
/* The cluster to which i itself belongs is safe */
for all q € Sons (i) do
send CLUSTER-SAFE to q
ready (i,q) « 0
/* wait for READY from q */
end
for all k € Preferred(i), sent CLUSTER-SAFE to k
/* inform the neighboring cluster that your cluster is safe */
end ,
Call Ready-Propagation
end

For READY from q do

=5 By e



end

ready (i,q) « 1
Call Ready-Propagation

Ready-Propagation: Procedure :
/* This proccdurc.is called whenever there is a chance that all the clusters neigh-
boring with node i and all its descendants are safe */

end

if cluster-safe(i,j)=1 for all j € Preferrcd(i) and ready (i,q) =1

for all g € Sons (i) then do
if Leader (i)#ithen send READY to Father (i)
/*1is not a leader */
else send PULSE to itself
/*iis a leader and it has learned that its own cluster as well as all the
neighboring clusters are safe. Thus, it triggers the execution of the
next pulse of the synchronous algorithm in its cluster */

end

4. The Partition Algorithm

4.1. The Outline

Intuitively, the idea of the following algorithm is to choose each cluster
as a maximal subset of nodes whose diameter does not exceed the logarithm
of its cardinality. This guarantees that the total number of the necighboring
cluster pairs is linear and the maximum cluster diameter is logarithmic in

the number of network nodes.

The algorithm proceeds, constructing the clusters one by one.
Throughout the algorithm, the "remaining graph" denotes the sub-network
induced by the nodes which were not yet joined to clusters. The basic stage
of the algorithm is a follows: a node in the remaining graph is choscn as a new
cluster leader and then a cluster is formed around this node. This stage is

repeated until there are no more nodes in the remaining graph.

A number of procedures are used in the algorithm. The Cluster-Creation
procedure creates a cluster in the remaining graph around a given leader
node. The Search-for-Leader procedure ‘scarchcs the remaining graph aad
chooses a new cluster leader in case that the remaining graph is not empty.
The Preferred-Link-Election procedure chooses the preferred links outgoing

from a cluster. Now, we describe ecach of the the procedures above with more

-12-



details and finally give the code of the whole partition algorithm.

4.2, Cluster-Creation Procedure

This procedurc is the heart of the partition algerithm. Basically, it
operates as follows. A node chosen as a new cluster leader triggers execution
of the BFS algorithm w.r.t. itself in the remaining graph. Each new BFS layer
joins the cluster until the number of nodes in a certain layer is less than & —1
times the total number _of nodes contained in al/l the previous layers; at that
time the procedure terminates, and the Search-for-Leader procedure is

called.

The set of all the nodes in the above layer (the first one which was not
joined to the cluster) is called the rejected layer of that cluster. The intra-

cluster tree of the resulting cluster is the BFS tree w.r.t. the leader.

Theorem 1: Suppose that the clusters are constructed as described above.

Then, the parameters E,, H, of the resulting partition satisfy:

log, | V|

}1}7 Slng|V|= logzk

and £, <k|V].

Proof : Clearly, H, equals to the maximum number of layers joined to a clus-
ter. The bound on H, follows immediately by observing that the total number
of nodes contained in a cluster must be multiplied by 4 —1 at least with cach
additional layer. It remains to prove the second bound on E,. Observe that
whenever creation of a cluster containing g nodes is completed, the.numbcr
of nodes in its rejected layer cannot exceed (k—1)g (otherwise, the rejected
layer should have been joined to the cluster). Thus, the number of preferred
links connecting that cluster to clusters which are created later is at most
(k-1)g. For cach preferred link, connecting two clusters, lctl us charge the
cluster which was created earlier. Summing the charge over all the clusters,
it follows that the total number of preferred links is at most (k-1)|V].

Clearly, the total number of tree links cannot exceed |¥]. Thus E, <kl|V].O

ol s




Now, we describe a distributed implementation of the algorithm above.
Basically, it is just the distributed Breadth-First-Search (BFS) algorithm in
the remaining graph. It constructs the BFS tree layer after layer. This algos
rithm is derived from a synchronous one by means of a synchronization pro-
cess, which is very similar to the Synchronizer B. The only difference is that
synchronization is performed on the part of the BFS tree, constructed by the

algorithm until now. This is essentially the "Algorithm DI" of [G-82].

At the beginning of a pulse number P,P -1 layers of the BFS tree are
already constructed. The purpose of puise number P is to join layer P to the
tree, or to reject it and to terminate the process of cluster creation. The
final decision about joining of layer P to the cluster depends on the total
number of nodes at this layer, joining to the cluster at this pulse together
with j. and it will be made whenever the above number will be known. The ini-

tial assumption is that the last layer is joined to the cluster.

In order to trigger the execution of thc next pulse, the leader / of the
cluster broadcasts a PULSE message over the existing tree. Each internal
node at layer P’ <P -1 propagates the PULSE message received from its
father to all its sons, until it reachs nodes of the last layer P-1. Upon
receipt of this message, node i at last layer P —1 propagates the message
LAYER{P —1,1} to all ncighbors informing them that it belongs to layer

number P —1 of the cluster, governed by /.

Upon receipt of such message, a neighbor j which was not yet joined to
any cluster joins the layer P of the cluster of /, and chooses i as its father in
the intra-cluster tree. In any case, acknowledgement ACK{bit} is sent by j
back to i, carrying bit =1 in case thatri was choscn as father of j and bir =0

otherwise.

To compute the number of ncw nodes and to ensure that all the nodes at
layer P were counted, a convergecast process is performed. Each node waits

until the number of its descendants at layer P is known and then reports this

il



number to its father, inserting it into COUNT{*} message. A node at layer
P —1 does it whenever ACK messages have becn collected from all neighbors,
and an internal node at layer P'< P -1 does it whenever the above reports
have been received from cach of its sons. The process terminates when the
leader node knows the total number of ﬁodes at layer P. If this number is
high enough, i.e. at least kX —1 times greater than the present number of
nodes in the cluster, then the next pulse P+l is started, and by this, the
nodes of the last layer P are assured that they are finally joined to the clus-
ter. Otherwise, the leader / broadcasts along the existing tree é REJECT
message which notifies nodes of layer P that they are rejected from the clus-
ter. This message also means that the "father-son" relation, tentatively esta-

blished between nodes of layers P —1,P is now canceled.

Here, the Cluster-Creation procedure terminates, and the Scarch-for-
Leader procedure is called. Observe that at this stage, each node knows
about itself and each of its neighbors, whether they were already joined to
some cluster, and if so, what is its leader identity. (The ncighbors which were
not yet joined to clusters arc those neighbors from which LAYER message was
not yet received.) Nodes joined to clusters know their father and sons in the
tree. Alsro, no control message of the procedure is in transient in the net-

work.

4.3. Search-for-Leader Procedure

Basically, this p_roccdurc operates as follows. After a certain cluster C is
formed, its rejected layer is examined. Ifit is not empty, then a node in this
layer is chosen as a new leader. In case that the rejected layer of C is empty,
the center of activity backtracks to the cluster from which C itself was
discovered and the above procedure is repeated there. An easy way to con-
ceive the Scarch-for-leader procedure is to consider an auxiliary directed
graph, whose nodes are thc'clustcrs and a link ( i —j) means that cluster j

was discovercd from cluster i. It is easy to scc that this graph is a Depth-

=15-




First-Scarch tree [E-79] and the search process corresponds to a number of

backward steps on that tree followed by onc forward step.

This procedure is initiated at some cluster leader /, which starts execu-
tion of a ce'rtain Cluster-Search Subroutine. It determines whether the
rejected layer of the cluster is non-emﬁty. In order to trigger the subroutine,
the leader node / broadcasts a TEST message along the intra-cluster tree.
The clection is performed by means of a convergecast process which is very
similar to the process of counting of the nodes in the last layer, used in the
Cluster-Creation Procedure. A node i at the last layer examines the set of its
neighbors belonging to the remaining graph. In case that this set is non-
empty the node with minimum identity in this set is chosen to be the local
candidate at tﬁat node. Otherwise, the local candidate is chosen to be nil.
Then a CANDIDATE {*} message is sent to father, containing the value of local
candidate. An intcrna.l node sets its local candidate to the minimum value,
contained in CANDIDATE messages received from sons, considering nil to be
higher than any node’s identity. Whenever these messageé have been
reccived from all the sons, a node reports the value of its candidate to its
father. Upon termination of this subroutine the local candidate at the lcader
is nil if the rejected layer is empty. Otherwise it equals tﬁe minimum-identity

node in that layer.

After termination of the subroutine, the center of activity of the search
moves to another cluster, depending on the result of the search in the
prescnt cluster. In casc that the rejected léyer of present cluster is not
e'mpty, the node k¥ with minimal identity number in this layer is notified that
it bec.omcs a new cluster leader. For that purpose, NEW—LEADER {k} mes-
sage is broadcasted along the tree, until it reachs the node k itself. Upon
receipt of this message, the new leader X remembers the node, from which it
has arrived as its Cluster —Father and then starts the creating its own clus-
ter. Otherwise, if the rejected layer is empty, the center of activity back-

tracks to the cluster from which the present cluster was discovered, in case
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that such cluster exists. For that purpose, a RETREAT message is sent from
I to its Cluster —Father. This message is furtﬁer propagated by each node to
its father until it reaches the cluster leader and the scarch procedure is
repeated from th_at cluster. In case that the present cluster has no cluster-
father, i.e. it was the very first cluster to be created, the whole Search-for-

Leader Procedure terminates since the remaining graph must be empty.

4.4, Preferred-Link-Flection Procedure

Basically, this procedure operates as follows. First, distinct weights are
assigned to all the links. The weight of a link (i,j) is the pair
(min(i,j),max(i,j)) and these pairs are ordered lexicographically. Then, the
preferred link between two neighboring clusters is chosen as the minimum-
weight link whose endpoints belong to these clusters. This election rule
enables each cluster to choose separately the preferred links incident to it,
since it guarantees that a link connecting two clusters is chosen cither at
both or at none of these clusters. The clection inside a certain cluster is per-
formed whenever the center of activity backtracks from that cluster in the
above Scarch-for-Leader Procedure. Observe that at that time, all the nodes

in the neighborhood have already been joined to clusters.

The procedure is triggered by an ELECTION message, which is broad-
casted by the leader along the trec. Election of the preferred edges is per-
formed by means of a standard convergecast process. Each node transfers to
its father the ’election list” LIST{*} prepared by it together with all its des-
cendants in the intra-cluster tree. This list specifies, for each cluster neigh-
boring with one of the above nodes, the minimal-weight link outgoing to it.

Note that this list has a variable length.

The leaves of the intra-cluster tree start the process by sending their
local lists to their fathers. An internal node merges its own list with the lists
received from sons, while deleting redundant entries, resulting from this

merging (i.c. two links outgoing to the same cluster). Whenever the above
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lists were received from all the sons, an internal node sends its own list to its
father. This process terminates whenever the list at the leader is merged
with lists of all its soné. Now, the lcader broadcasts the final list along the
intra-cluster tree. For a node receiving the above final list, the initialization
phasc has terminated and it may start ex.ecution of the first pulse of the syn;

chronous algerithm right away.

4.5. The complexity of the Partition Algorithm

In order to initialize the above partition algorithm, we must choose the
leader of the first cluster. For that purpose, an arbitrary node must be
elected as a leader of the network. The algorithm of [GHS-83] can perform
this task and its complexities are Cygy=0(|E |+|V|log,|V])=0(]V]?) and
Tyust =0(|V]log, | V]).

Let us denote by Csrs (Tsrs) Cpps (Tprs) and Crrzc (Tgipe) the overall
communication (time) requirements of the Cluster-Creation, Search-for-
leader, and the Preferred-Link- Election procedures. Clearly,
Cinie (Y) =Crsr +Cprs +Cors +Crrec and Ty (¥) =Tysy +Tpps +Tpps +Terpc. We now
srhow that:

(1) Cprs =O(IE |+ V[logx |V]) Tars =0(|V]).

(2) Cpps =0V |Y) Tpps :O(IV“ng.IV”-

(3) Crrac =0(k | 'Viz) Trree =0(|V|loge | V]).

10gzIVl)

These equations imply that Ciy (v)=0(k | V| and Ty, (v) =0(| V!“l_ogT
2

4.5.1. Cluster-Creation

At cach cluster, this proccduré is applied exactly once and it consists of
at most log | V| pulses. At each pulse, one PULSE and one COUNT message
pass through each link oft_hg intra-cluster tree. One LAYER and ACK message
is sent over cach link exactly once throughout the whole aigorithm. It yields

a total communication cost of Cpps =O(|E |+]|V|logs |V]). Consider now a
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cluster with » nodes whose intra-cluster tree has height k& <logy n. Each
pulse takes & time units and the total number of pulses is 4. Thus, the total

time spent in forming this cluster and deleting n nodes from the remaining

graph is O(log?n). Since for all integer n, and for all k >2, logln g%n, the

total time investment is linear, i.e. Tppg =0(|V]).

4.5.2. Search-for-Leader

In this part, the center of activity moves along the Depth-First-Search
Tree in the Cluster Graph. Whenever a center of activity arrives at a certain
cluster, this cluster is ’examined’ by the Cluster-Search Subroutine. This sub-
routine involves broadcast of TEST messages and convergecast of CANDI-
DATE messagés. Afterwards, the center of activity moves by means of
NEW-—-LEADER or RETREAT message to another cluster. The whole process
described above will be referred to as move. Observe that move is performed
in whole along intra-cluster trees. Its complexities are C,,ye =0(|V]) and
Thoye =0(logi | ¥]). In these moves, cach edge of the DFS tree of the cluster
graph is transverscd exactly twice and the total number of edges is the total
“number of clusters minus 1, which can no exceed |¥V|-1. It yields a total
complexity _ Cprs =0(|V]) XCroye :O(lV]i) and

TDFS :O(I Vl) XTmave :O([V“nglyl)

4.5.3. Preferred-Link-Election

This procedure is called once at each cluster and is performed along the
intra-cluster spanning tree. To simplify the computations we will assume that,
at cach cluster, the elections of the preferred links are performed sequen-
tially. In this case, it is casier to evaluate the complexities of the process
since only constant-length mcssagc‘s arc used. Recall that in the above
Preferred-Link-Election Procedure, all the preferred links incident to a cer-
iain cluster were elected af the same time; this required variable-length

messages and made the computations more complex. Certainly, the complex-
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ities may only increase as a result of this modification.

By "sequential” elections we mecan that the preferred links, connecting
the cluster to necighboring clusters, are elected one-by-one, by means of
separate "clementary election processes”. Each such clcmcntary'process is
started only after the previous one has .bcen completed and is performed
along the intra-cluster tree, similarly to the original Procedure. Note, how-
ever, that election processes are performed in different clusters in parallel
and thus the maximum election time in a single cluster determines the time

complexity of the procedure.

An  elementary election process requires Copm =0(|¥V]) and
Totem =0(logy | V]). This clementary process is applied in total at most
(k=1)]V] times, according to the maximum possible number of preferred
links.  Thus, the total communication complexity is bounded by
Cirzc=0(k | V|?). Since the number of times that the elementary election
process is performed in a certain cluster cannot exceed the total number of

nodes, | V|, then Ty pc=0(|V|logs | V]).

4.6. The formal presentation of the Partition Algorithm

The variables and messages used in the algorithm
The input variables:

Neighbors(i) = The set of neighbors at the node i in the network.

The output variables: ,

Father (i) = The father of i in the intra-cluster tree. Initially, Father
(i) =nil.

Sons (i) = The sons of i in the intra-cluster tree. Initially, Sons(i) =
{2}.

Preferred(i) = Set of pointers to preferred links incident to i. For each

such link (i-j), node j is included in Preferred(i). Ini-
tially, Preferred(i)= {@}.

Leader (i) = The identity of the leader of the cluster, to which node |
belongs. Initially, Leader (i) =nil. _
Leader (i,j) = The estimate of ¢ about ILeader(j), kept for ecach

JENeighbors (i). Initially, Leader (i,j) =nil.
The global variables:

Remaining(i) = The subset of Neighbors(i) which were not joined to clus-
ters. Initially, Remaining(i) = Neighbors(i).

Messages used in the Cluster-Creation Procedure (BFS):
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PULSE =
LAYER{j,q} =

ACK{x} =

COUNT{c} =

REJECT =

REJECT —ACK =

Message starting a new pulse of BFS

Message sent by a node belonging to layer number j in a
cluster whose leader is g

Message sent in response to LAYER. Here, x is a binary
flag, which equals 1 is the sender has chosen the receiver
as its father

Message sent by a node which has ¢ new descendants in
the tree.

Message informing the nodes of the last layer that they
are rejected from the cluster and that the cluster-
formation procedurec has terminated ‘

Acknowledgement for the above REJECT message

Variables used in the Cluster-Creation Procedure (BFS):

Layer (i) =
Pulse (i) =

ack(i,j) =

Count(i) =

Total(i) =

count(i,q) =

reject —ack(i,q) =

The layer of the intra-cluster tree to which / belongs. Ini-
tially, Layer (i) =nil. (Layer(i) =0,1,... logg | V|).

The number of the present pulse. Initially, Pulse(i) = 0.
(Pulse(i) =0,1,... |V|-1).

The binary flag, kept for each j€Neighbors(i). which
equals 1 if the ACK message from q¢ was reccived at the
present pulse. (ack(i,q)=0,1).

The number of new leaves, joined in the last pulse, whose
ancestor is 7. Initially, Count(i) = 0. (Count(i) = 0,1,...
| V| -1).

The total number of nodes in the cluster, accumulated
until now. Initially, Total(i) =0. (Total(i) =0,1,... |V]|-1).

A binary flag, kept for all g€Sons which equals 1 if the
COUNT message from g was received in the present
pulse. (count(i,q)=0,1).

A binary flag, kept for all g€Sons (i) which equals 1 if the
REJECT —ACK message from ¢ was received at the
present pulse. (reject —ack(i,q)=0,1).

Messages used in the Search-for-Leader Procedure (DFS):

NEW—LEADER {i} =

TEST =
CANDIDATE {c} =

RETREAT =

Message informing that i is a new cluster leader

Message requiring the nodes to start election of the next
cluster leader in the neighborhood of the cluster

Message including an identity ¢, which is a candidate for a
new cluster leader

Message used in the scarch of the remaining graph for
backtracking from a cluster to its father in the cluster
graph

The variables used used in the Search-for-Leader Procedure (DFS):
Cluster —Father (i) =

Candidate (i) =

candidate(i,q) =

The neighbor j from which node /i was chosen as a new
cluster leader. Initially, Cluster —Father(i) = nil.

The neighbor j which node ¢ has chosen as a possible can-
didate for being a new cluster leader. Initially,
Candidate(i)=nil.

A binary flag, kept for all g€Sons which equals 1 if the
CANDIDATE message from g was reccived in the present
pulse. (candidate (i,q)=0,1). :
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Messages used for in the Preferred-Links-Election Procedure

ELECT =

LIST {list} =

Message requiring the nodes to start the election of the
preferred links in the cluster

Message where "list” is a list of links, which are candidates
for being preferred links

FINAL ~LIST {list} =

Message carrying the final list of the prefeered links

Variables used in Preferred-Links-Election Procedure

List (i) =

the list of links, chosen by node i together with its des-
cendants as possible candidate for being preferred links
incident to a cluster. It has a format {[c,(k-g@)].[b,(r-
p)l.....} where c,b are identitics of necighboring clusters
and (k-q),(r-p) are the preferred links to the above clus-
ters. Initially, List(i)= {&}. The MERGE operation which
can be performed with two lists of the above format first
just joins these lists and then deletes the redundant

. entries, resulting from the join.

list(i,q) =

The algorithm for node

A binary flag, kept for all g€Sons which equals 1 if the
LIST message from g was received in the present pulse.
(list(i,q)=0,1).

Whenever notified about being chosen as a start node, do
send NEW-LEADER{i} to itself

end

For NEW-LEADER{k} from j do
/* i is chosen as a new cluster leader */
send NEW-LEADER{k} to all q € Sons(i)
if k € Remaining(i) then send NEW-LEADER{k} to k
if k =iand Leader(i)=nil then do
/* i is notified for the first tlme that it was chosen as a new cluster

leader */

Cluster-Father(i) « j

Father(i) « i
Leader(i) « i
Layer(i) « 0
Pulse(i) « 0

send PULSE to itself.
/* trigger the cluster creation process around yourself */

end
end

For PULSE message do

/* next pulsc of the cluster creation process */

Pulse (i) « k

if Layer(i)< k then /* i is an internal node in the tree */
for all g € Sons(i) do
send PULSE to q ;
count (i,q) « 0

end

if Sons(i) ={@}then send COUNT{0} to Father(i)

else

/* node i is belongs to the last BFS layer which is finally JOH‘Cd to the clus-

ter */

forallp € chghbors(l) do
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send LAYER{layer(i),Leader(i)} to p
ack(i,p) « 0
end
end

For LAYER{k,j} from q do
Leader(i,q) * j
Drop q from Remaining(i)
MERGE {k,(i-j)} to List(i)
/* consider link (i-j) as a candidate to be a preferred link */
if Father (i) = nil then do
/* tentatively join the cluster */
Leader(i) « j
Layer (i) « k41
Father (i) « q
send ACK{1}to q
/*inform g that it is your father */
end
else send ACK{0}to q
/* i was alrcady joined to some cluster */
end

For ACK{x} from q do
ack(i,g) « 1 .
if x =1 then do /*g is a ncwson */
join q to Sons(i)
Count(i) + Count(i) +1
/* counter of sons increased by 1 */
end . :
if ack(i,j) =1 for all j € Remaining (i) then
send COUNT{Count(i)} to Father(i)
end ,

For COUNT{c} from j do
/*node j has ¢ descendants in the last layer */
count (i,j) « 1
Count (i) « Count(i) +c¢
if count (i,q) =1 for all g € Sons(i) then do
if Leader(i) # ithen send COUNT{Count(i)} to Father(i)
else do /* i is a leader */
if Count(i) > Total (i) then do
/*continue creation of the cluster */
Total(i) « Total(i) + Count(i)
Pulse(i) « Pulse(i) +1
send PULSE to itself
/* trigger the new pulse of cluster creation process */
end
else send REJECT to itself
/* reject the last layer; creation of the cluster is completed */
end
end

For REJECT from q do /* Last layer is rejected */
for all q € Sons(i) do
reject - ack (i,q) « 0
send REJECT to g
end
if Layer(i) =Pulse(i)+1 then Father(i) « nil.
/* i belongs to the last layer, which is now rejected */

=D3=



end

if Layer(i) =Pulse(i) then Sons(i) «{@}
/* i is in the last layer which will finally remain in the cluster */
if Sons(i) ={@} then send REJECT-ACK to Father(i)

For REJECT-ACK from q do

end

For

end

reject-ack (i,q) « 1

if reject-ack(i,j)=1 for all j € Sons(i)

then do '
if Leader (i) # ithen send REJECT-ACK to Father(l)
else send TEST to itself

/*if i is a leader then start looking for a new cluster leader */
end

TEST from q do

Candidate(i) « nil
for all q € Sons(i) do
candidate(i,q) « 0
send TEST to q
end
if Layer(i) =Pulse(i) thendo /* i is in the external layer */
if Remaining(i) #{@} then do
Candidate (i) «+ min {k | k € Remaining (i)}
/*choose a local candidate for the new cluster leader */
send CANDIDATE { Candidate(i) } to Father(i) :
end .
end .
if Sons(i)={Z} then send CANDIDATE { nil } to Father(i).

For CANDIDATE {c } from q do

end

Candidate(i) «min { Candidate (i), ¢ }
candidate(i,q) « 1
if candidate(i,j) =1 for all j € Sons(i)
then do
if Leader(i) # ithen send CANDIDATE { Candidate(i) } to Father(i)
else do /* [ is a leader */
if Candidate (i) =c # nil then send NEW-LEADER { ¢ } to itself
else do
/* all the nodes neighboring to your cluster already belong to
some clusters */
scnd ELECT to itself
/* trigger the procedure for clection of preferred links in
your cluster */
if Cluster-Father(i) #ithen
/* backtrack in the cluster graph and continue scarch */
send RETREAT to Cluster-Father(i) )
/* else the remaining graph is empty and after the elcctlon

of preferred links is completed, the algorithm terminates */
end )

end

For RETREAT do
/*backtrack to the fathcr of the cluster which will coordinate the search */

if Leader(i) #ithen send RETREAT to Pathcr(x)
else scnd TEST to itself

/*if i is a leader, then trigger the scarch in its cluster */
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end

For ELECT from j do

end

for all g € Sons(i) do
list(i,q) « 0
send ELECT to q

end
if Sons(i) ={@} then scnd LIST { LlSt(l) } to Father(l) /*iisa Icaf*/

For LIST { AList } from q do

end

llst(l qQ «1
{iERGE Alist to List(1)
/* Merge AList with List(i) and then discard duplicate links emanating to the
same¢ cluster */
if list(i,j) =1 for all q € Sons(i) then do
if Leader(i) #ithen send LIST { List(i) }to Father(i)
else send FINAL-LIST { List(i) } to itself
/* i is a leader and List(i) is the final list containing all the preferred
links */
end
end

For FINAL-LIST { AList } from p do

end

for all j € Remaining(i) do

if [*,(i—j)] appears in AList, then join j to Preferred(i)
end
for all g € Sons(i) send FINAL-LIST { AList } to q .
/* Now, the initialization phase has terminated for node i. It may trigger
the first pulsec of the synchronous algorithm right now */

- 5. Lower bound on com plexity of Synchronization

Notice that Synchronizer y exhibits a trade-off between its communica-

tion and time complexities. To be more precise, C(y)=0(|V| +W), while
T(y)=logy V for any 2 <k < V. A natural question is whether this trade-off is
an optimum one, i.e. whether there exists another Synchronizer §, which is
better than the Synchronizer ¥ both in communication and in time. We give
oﬁly a partial answer to this question. For particular networks, this might be
true. However, we are able to show that there exist networks, for which the

best possible improvements are within small constant factors, i.e. the worst-

L
case trade-off of any Synchronizer § is C(8)=Q(|V] T®). This fact is for-
mally stated in the following Theorem.

Theorem 2: For any integer i, there exist (infinitely many) networks (V,E), in
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1

. 14—
which any Synchronizer 8 with T(8) < i —1 requires C(8) > % v i

Proof : In order to satisfy the condition impﬁsed on Synchronizer, crach noﬁe
should gencrate new pulse only after recéipf of all the messages sent to it in
the previous pu]sé. Thus, in between each two Successive pulses, there must
be some information flow, provided by the control messages of the Syhchron-
izer, between each pair of neighbors in the network. Without such information
flow, a node cannot find out in finite time whether some message, sent in the
previous pulse, is still in transit on a certain link or not. This follows from the
fact that the network is completely asynchronous and the node does not know
a priori which of the incident links carry messages of a certain pulse. The
information flow between neighbors may pass through the link, connecting
them (e.g. Synchronizer a«), or may go along alternative paths (e.g. along
links of a spanning tree, like in Synchronizer 8). For any fixed pair of neigh-
bors in the network, the length (in the number‘of edges) of the shortest
information-flow path between these neighbors is an obvious lower bound on
time complexity of a particular Synchronizer. Among these lower bounds, we
choose the maximum one, i.e. thé maximum, over all pairs of neighbors in the
network, of the length of the shortest information-flow path between these

neighbors.

Formally, definc the gisth of a graph to beethe length of the shortest
cycle in that graph. We use the following Lemma in our proof.

Iemma : For each integer i, there cxist (infinitely many) networks (V,E) with

i . ) 1 1+=
glrtthzandiE'l)IlVl k.
Proof : [B-78], page 104, Theorem 1.1 .0

For a particular choice of i, let (V,E) be a network with girth g =i and

1

1+—
1 [ V] ‘. For an arbitrary Synchronizer & for (V,E) let T(8) CE be

IE|>4—

the set of cdges which carry the information flow and let 4(§) be the max-

imum, over all (i,j)€[£‘, of the length of a shortest path between 7 and j in
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the induced graph (V,I(8)). From the previous paragraph it follows that

T(8) >d(8) and C(8) > |T(d)].

1
1+—
If C(8) > |E | then the Theorem follows because |E | > —‘11— |V] *. Other-

wise, if C(8) < |E | then |I'(8)] < |E | which implies that there exists an edge
e €E —T(8). The length of a shortest path in (V,I(8)) between the two end-
points of e is at lecast g—1, since this path together with the edge ¢ form a

simple cycle in (V,I(8)). Thus, T(8) >d(8§) >g-1>i-1.0O

6. Summary and comparison with existing works

In this paper we have studied the problem of simulation of the synchro-
nous network by the asynchronous one. We have proposed a new simulation
technique, referred to as "Synchronizer™ and have proved that its

communication-time trade-off is optimum within a constant factor.

Essentially, our Synchronizer is a new, simple methodology for designing
efficient distributed algorithms in asynchronous networks. For the model in
question, i.e. point-to-pecint communication network no such methodology was
explicitly proposed in the literature. However, let us mention briefly some of
the related works. The current work was directly inspired by [G-82]. In this
pioneering work, Gallager introduced the notion of communication-time
trade-off in distributed algorithms and proposed a number of "synchroniza-
tion"” techniques, which were used in distributed of Breadth-First-Scarch Algo-
rithms. These clegant techniques are not Synchronizers in the sense of this
paper since they are not gencral and cannot be applied to other algorithms.
However, Synchronizer « and Synchronizer B of this paper are natural gen-
eralizations of these techniques. It is worth mentioning that we have been
able to improve Gallager’s BFS algorithms using Synchronizer y, which can be

viewed as a combination of the two Synchronizers above.

In our paper we consider a point-to-point communication network where

communication is is performed exclusively by message passing. Other

-27=




researchers ([AFL-83], [Sch-82]) studied some issues related to synchroniza-
tion under different distributed computation model, where any processor can
communicate with any other processor via shared memory. The results of
[AFL-83, Sch-82] are of no use in our context, since the underlying model and
the problems in question are substantially different from ours. Let us, how-

ever, give a brief review of these works.

[AFL-83] proves that synchronous network has greater computational
power than asynchronous one, assuming that only a bounded number of pro-
cessors can access the same variable. [Sch-82] deals with synchronization of
distributed programs and other "state-machine” applications; it is not con-
cerned at all with complexity of algorithms. However, it addresses fault-
tolerant issues, not addressed in the current paper. It is worth mentioning
that some of basic concepts as well as some of the basic difficultics in this
paper arc quite similar to those mentioned in [Sch-82]. For example, the
notion of "safe"” in the current paper corresponds to the technique described
in [Sch-82] of only using "fully acknowledged"” messages when chécking ames-
sage queue. Similar technique appears also in [L-78] in the mutual exclusion
| example. The notion of a "pulse” in the current paper corresponds to a
"phase” in [Sch-82] (timestamps gencrated by a logical clock are used in
[Sch-82] instead of pulse numbers). The condition imposed on pulses in the

current paper is analogous to the monctonicity requirement of [Shn-83].
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