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Abstract:

Qualitative simulation is a key inference process in qualitative causal
reasoning. However, the precise meaning of the different proposals and
their relation with differential equations is often unclear. In this paper,
we present a precise definition of qualitative structure and behavior de-
scriptions as abstractions of differential equations and continuously differ-
entiable functions. We present a new algorithm for qualitative simulation
that generalizes the best features of existing algorithms, and allows direct
comparisons among alternate approaches. Starting with a structural de-
scription abstracted from a differential equation, we prove that the QSIM
algorithm is guaranteed to produce a qualitative behavior corresponding
to any solution to the original equation. We also show that any qualita-
tive simulation algorithm, because of its local point of view, will sometimes
produce spurious qualitative behaviors: ones which do not correspond to
any mechanism satisfying the structural description. These observations
suggest specific types of care that must be taken in designing applications
of qualitative causal reasoning systems, and in constructing and validating
a knowledge base of mechanism descriptions.
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4 Introduction

1 Introduction

An expert system is often a “shallow model” of its application domain,
in the sense that conclusions are drawn directly from observable [eatures
ol the presented situation. Resecarchers have long felt that genuninely ex-
pert performance must also rest on knowledge of “deep models,” in which
an underlying mechanism, whose state variables may be not be directly
observable, accounts for the observable facts [Gentner and Stevens, 1983].

One major line of research toward the representation of deep models is
the study of qualitative causal models [de Kleer, 1977, 1979; de Kleer and
Bobrow, 1984; de Kleer and Brown, 1983, 1984; Forbus, 1981, 1982, 1983,
1984; Hayes, 1979; Kuipers, 1982, 1984; Kuipers and Kassirer, 1083, 1984;
Williams, 1984a, 1984b]. Research on qualitative causal models differs from
more general work on deep models in focussing on qualitative descriptions
of the deep mechanism, capable of representing incomplete knowledge of
the structure and behavior of the mechanism. Symbolic manipulation of
qualitative descriptions also appears to be a plausible model of human
expertise [Kuipers and Kassirer, 1983, 1984].

Qualitative causal reasoning consists of a number of different opera-
tions, ranging from the initial formulation of the problem, to prediction of
possible behaviors, to explanations of observations. These operations vary
considerably from one problem domain to another, ranging from engineered
electronic devices with a carefully designed correspondence between phys-
ical component and functional behavior [deKleer, 1977; Williams, 1984b],
to commonsense predictions of the behavior of physical objects under the
influence of active processes [Forbus, 1982, 1984], to the behavior of physi-
ological mechanisms whose relation to the physical organ is only partially
understood [Kuipers and Kassirer, 1983, 1984|. Forbus (1982, 1984), in
particular, has developed a sophisticated Qualitative Process Theory, which
proposes that commonsense reasoning about mechanisms is based on deter-
mining the processes that are active in a given physical situation at a par-
ticular time. The processes then yield the state variables and constraints,
from which the behavior of the mechanism is derived.

A central inference within all of these approaches is qualitative simu-
lation: derivation of a description of the behavior of a mechanism from
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Figure 1: Qualitative simulation and differential equations are both ab-
stractions of actual behavior.

a qualitative description of its structure. Differential equations provide a
useful analogy (figure 1). A differential equation describes a physical sys-
tem in terms of a set of state variables and constraints. The solution to the
equation may be a function representing the behavior of the system over
time. The qualitative structural description is a further abstraction of the
same system, and qualitative simulation is intended to yield a correspond-
ing abstraction of its behavior. This paper formalizes and investigates that
relationship.

A theory and algorithm for qualitative reasoning must address several
issues, which provides a framework for comparing the proposals of different
researchers, and the contribution of this paper.

e how quantities are described qualitatively,
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e how state transitions are selected,
e whether quantities correspond to standard mathematical analysis,
e whether qualitative simulation produces all and only valid behaviors.

All qualitative simulation systems describe quantities in terms of their
ordinal relations with a small set of landmark values. De Kleer, Bobrow,
and Brown [de Kleer and Brown, 1984; de Kleer and Bobrow, 1984] and
Williams [1984a, 1984b| take the only landmark to be zero, and thus define
three qualitative values, {+,0,—}, and define addition and multiplication
as operations over the qualitative values. Forbus (1982, 1984) and Kuipers
(1984) define a quantity space as a partially ordered set of landmark val-
ues, so that a quantity is described in terms of its ordinal relations with
the landmarks. The Kuipers (1984) approach is different from the others
in allowing new landmarks to be discovered during the qualitative simula-
tion, and used to define new qualitative distinctions. The QSIM algorithm
presented here describes quantities in terms of a lincarly ordered set of
landmarks, but still allowing new landmarks to be discovered and inserted.
We demonstrate below that without discovering and using new landmark
values, important qualitative distinctions can be missed, such as the dis-
tinction between increasing, decreasing, and stable oscillation.

Different qualitative simulation systems take different positions on whether
quantities should be an abstraction of the standard mathematical notion of
real numbers — in which case M is described as an alternating sequence
of points and open intervals — or whether a non-standard model should
be used, allowing two points to be infinitesimally separated. Forbus (1982,
1984) and de Kleer [de Kleer and Brown, 1984] adopt a non-standard model
in which “mythical time” separates qualitative states that correspond to
the same physical point in time. Such mythical time points appear to be
required when a propagation step must run more than once to generate
a state corresponding to the next physical state. De Kleer and Bobrow
(1984) adopt the standard model for quantities, but appear less committed
to alternating points and intervals in the time domain. Kuipers (1984) and
Williams (1984a, 1984b) follow the standard model. As Williams’ work
and this paper demonstrate, the standard model makes it possible to state
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and prove useful theorems about the validity of the predictions made by
qualitative simulation.

All qualitative simulation systems produce the set of possible behaviors
by generating, then filtering, possible transitions between pairs of qualita-
tive state descriptions. Most systems simulate forward, by generating all
possible successors of the current state; de Kleer [de Kleer and Brown, 1984;
de Kleer and Bobrow, 1984] generates all possible qualitative states, then
determines the valid transitions among them. De Kleer’s approach can only
succeed il there is a fixed set of qualitative values, so that the set of possible
states can be generated in advance. In both cases, the filtering criteria are
local: they depend on the quantities in the two state descriptions, and on
the structural constraints in the system.

An important class of filtering criteria are transilion ordering rules [de
Kleer and Bobrow, 1984; Kuipers, 1984; Williams, 1984a). For example, if
A+ B =C with A,B,C > 0, and B and C are approaching zero, then B
must reach zero before C. A large number of these rules can be formulated,
corresponding to different signs, directions of approach, and combinations
of quantities approaching limits. In designing a system, it is difficult to be
sure that all possible such rules have been captured; in implementing it, it
is dillicult to check that they have been written correctly. As described in
Appendix B, all of the transition ordering rules can be recognized as special
cases of a simple test of valid relationships between the current values of a
set of quantities and a set of corresponding values. These tests, applying to
the ADD, MULT, M", and M constraints, capture all single-constraint
transition-ordering criteria of this type, can be implemented efficiently, and
most importantly, can be straight-forwardly proven correct.

All qualitative simulation systems predict multiple possible behaviors
given certain structural descriptions and initial conditions, Researchers in
this area (myself included) have hoped to prove that the predicted behaviors
include all and only the possible behaviors of real mechanisms satisfying the
given description. Half of this is correct: we prove below that qualitative
simulation cannot miss any actual behavior. However, because of the local
nature of its decision criteria, qualitative simulation can predict behaviors
that are not possible for any real mechanism satisfying the given descrip-
tion, and we construct a counterexample. We discuss the implications of
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these results for the construction of a qualitative causal reasoning system.

Qualitative simulation systems vary widely in speed [de Kleer, personal
communuication; Forbus, personal communication|. In order to be useful
as part of an expert problem-solver, a qualitative simulation system must
be efficient. The QSIM algorithm is very [ast. Furthermore, experiments
with semantic variants (e.g. the {+,0,—} semantics) can be made casily
by changing the eniries in Table 3. It has been implemented in Lisp on the
Symbolics 3600, and all examples in this paper have been run, as well as
numerous others in elementary physics and in nephrology.

1.1 Overview

This section provides an overview of qualitative simulation and the
QSIM algorithm. The concepts presented here are defined more formally
below. -

Qualitative simulation of a system starts with a deseription of the known
structure of the system, and an initial state, and produces a tree consisting
of the possible future states of the system. The possible behaviors of the
system are the paths from the root of this tree to its leaves. Table 1 gives
an informal description of the structure and unbranching behavior a simple
system.

The structural description consists of a set of symbols representing

the physical parameters of the system (continuously differentiable real-
valued functions), and a set of constraints on how those parameters may
be related to each other. The constraints are two- or three-place relations
on physical parameters. Some specify familiar mathematical relationships:
DERIV (vel,acc), ADD(net,out,in),
MU LT (mass, ace, force), MINUS(fwd,rev). Others assert qualitatively
that there is a functional relationship between two physical parameters, but
only specify that the relationship is monotonically increasing or decreasing;:
M (price, power) and M~ (mph, mpg). The constraints are designed to per-
mit a large class of differential equations to be mapped straight-forwardly
into structural descriptions.

Each physical parameter is a continuously differentiable real-valued
function of time. Its value at any given point in time is specified qual-
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Table 1: Informal structure and behavior of the “Ball” system.
A ball is thrown upward and falls to the ground under constant gravity.
Continuous quantities are described in qualitative terms, with no more
commitment to numerical detail than absolutely necessary.
Structure

e There is a constant downward acceleration from gravity.

e Acceleration is the derivative of velocity.

e Velocity is the derivative of height.

e Initially, we have zero height and positive upward velocity.
Behavior

e The ball is initially at zero height and positive upward velocity.

o The ball is at positive height and rising; velocity is positive but de-
creasing.

e The ball’s velocity becomes zero while the ball is at some positive
height.

e The ball is still at positive but decreasing height, while velocity is
negative and decreasing away from zero.

e The ball returns to zero height while at a negative velocity.

® Unless we have included an arbitrary range restriction, height and
velocity both become negative and decreasing away from zero, forever.

Qualitative simulation determines the essentially different regions of the
system’s behavior. It need not be given the acceleration due to gravity nor
the initial upward velocity. It does not determine the height to which the
ball rises, nor its velocity when it returns to the ground. It does guarantee
that the ball rises, then falls back to the ground with non-zero velocity.
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itatively, in terms of its relationship with a totally ordered set of land-
mark values. The landmark values may be either numerical (e.g. zero)
or symbolic; their ordinal relationships are their essential properties. As
the qualitative simulation proceeds, it can discover and add new landmark
values to the sequence. The qualitative state of a parameter consists of
its ordinal relations with the landinark values and its direction of change.

Time, similarly, is represented as a totally ordered set of symbolic dis-
tinguished time-points. The current time is cither at or between distin-
guished time-points. All of the time-points are generated as a result of the
qualitative simulation process.

At a distingunished time-point, if several physical parameters linked by
a single constraint are equal to landmark values, they are said to have cor-
responding values which can be discovered and used by the qualitative
simunlation. The special case of a monotonic function constraint with cor-
responding values (0,0) is sufficiently common that it is signified by the
constraints M, and M, .

A set of constraints on the physical parameters of the system is only
valid in some operating region, defined by the legal ranges of values that
some parameters may take on. The legal range of a parameter is a closed
interval whose endpoints are landmark values of that parameter. These
endpoints may be associated with transitions to other operaling regions
where a different set of constraints apply. The operating regions are de-
signed as an interface to Forbus’ (1982, 1984) concept of processes, but that
topic is beyond the scope of this paper.

The initial state of the system is defined by the operating region and
a set of qualitative values for the physical parameters. The qualitative
simulation proceeds by determining all of the possible changes in quali-
tative value permitted to each parameter, then filtering the combinations
by applying progressively broader constraints. If more than one qualita-
tive change is possible, the current state has multiple successors, and the
simulation produces a tree.

Two qualitative states in the same operating region are identical if all
parameters are equal to the same landmark values, and all the directions
of change are the same. If one of the successors to a given state is identical
to a direct predecessor, a cyclic behavior can be created.
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Table 2 presents the formal structure and behavior descriptions of the
Ball system, for comparison with Table 1. In the next sections we define
the formal notation necessary to state the QSIM algorithm and prove its
validity.
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Table 2: Formal structure and behavior of the Ball system.
The Ball system is formally described in terms of three physical parameters,

Y,V, and A.
Structure
DERIV(Y,V)
DERIV(V, A)
Y{.E”:} =1
V[tn] = V' > L'I
YEA{t) =g <0.
Behavior
Y v A
ty (0,inc) (V*, dec) (g, std)
(to, 1) ((0,00),2nc) ((0,V*),dec) (g,std)
tl {Krnur: -ﬂ'd:’ {ﬂ, dﬁ‘ﬂ} '[:g, Sid}
(tista) ((0,Yinae),dec) ((—oo,0),dec) (g, std)
o (0,dec) ((~00,0), dec) (g, std)

(t2,00) ((—o0,0),dec) ((—o00,0),dec) (g,std)

QSIM also produces “qualitative graphs” to represent the behavioral de-
scription.

INF INF
Yi = Y1
= v
(4] e e e et 0
v
MINF MINF
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2 Qualitative Behavior

In the following sections, we present a more rigorous definition of qual-
itative simulation, leading up to a definition of the QSIM algorithm and
the prool of several theorems characterizing its strengths and limitations.
The validity proofs for several steps of the algorithm are contained in the
appendices.

A physical system is characterized by a number of real-valued parame-
ters, which vary continuously over time. We consider each physical param-
eter to be a function [ : [a,b] — R*, where R* = [-o00, 0], the extended
real number line. The domain and range of a lunction f are both closed
intervals in the extended reals, R*. We use %" instead of |, treating coasa
genuine landmark value, because it is useful (though not essential) to have
the invariant that ¢ and f(t) are always bounded by explicitly stated land-
mark values in the domain and range of f. The function [ : [0,00] — R* is
defined to be continuous at co exactly il lim; .. f(t) exists. For example,
both e * and €' are continuously differentiable on [0, co|, but sin ¢ is not.

2.1 Behavior of a Single Function

We will define the qualitative behavior description first for a single,
continuously differentiable function f : [a, 8] — R".

Definition 1 For [a,b] C R*, define f : [a,b] —+ R" to be a reasonable
function if

o f is continuous on [a,b],
o f is continuously differentiable on (a,b),
o [ has only finilely many critical points on (a,b),

o limy o f'(t) and lim, ~ f'(t) exzist in R*. Define f'(a) and f'(b) to be
equal to these limils.
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The restriction to finitely many critical points excludes examples like
J(t) = t* # sin 1/t that are continuously differentiable, but whose hehavior
changes infinitely quickly around ¢t = 0. Without the fourth restriction,
f'(t) can still behave pathologically around the endpoints of the interval,
even without crossing zero.

Periodic behavior like an oscillating spring can be accomodated with
only finitely many critical points by explicitly detecting the repeated state
and creating a cyclical behavior description. Then the domain of f need
only contain one period.

Definition 2 Every reasonable function f : [a,b] — R* has associated with
it a finite set of landmark values, including, but not limited to, 0, f(a),
f(b), and the value of f(t) at each of its critical points.

Definition 3 Where f is a reasonable function, t € [a,b] is a distin-
guished time-point of f if t is a boundary element of the set {t € [a,b] |
f(t) = z, where = is a landmark value of f}.

That is, the distinguished time-points are those points where f passes
its landmarks, even if its derivative is not zero at the time. The restriction
to boundary elements handles the case where f becomes constant over an
interval: only the endpoints of the interval are distinguished time-points.
De Kleer and Bobrow (1984) eliminate this case by assuming that param-
eters have derivatives of all orders, in which case any function which is
constant over an interval is constant everywhere.

All functions mentioned below should be presumed reasonable unless
specified otherwise. A reasonable function f : [a,b] — R* has the finite set
of distinguished time-points:

a=tg<t <---<t, =5
and the finite set of landmark values:
Lh<l<---<l.

We can now define the qualitative state of f at ¢ in terms of its ordinal
relations with its landmarks, and its direction of change.
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We reluctantly contribute to the proliferation of notations for qualita-
tive description of continuous functions. The advantages of the notation
used here are that it (1) naturally allows for an arbitrary and changing
set of landmark values, (2) uses a single term for the qualitative descrip-
tion of a function’s magnitude and derivative, and (3) emphasizes that the
qualitative description of the derivative is of low and fixed resolution, while
qualitative description of magnitude is of higher and possibly changing res-
olution.

Definition 4 Let Iy < --- < I, be the landmark values of f : [a,b] — R".
For any t & [a,b], QS(/,t), the qualitative state of f at t, is a pair
(qual,qdir), defined as follows:

qual = { l; & flt)= lj, a landmark value
['EJ'?IJ" 1} .lf f{t] € “j:'."j-r-i]

e if f'(t) >0
gdir = ¢ std if f'(t) =0
dec if ['(t) <.

Proposition 1 Where a =ty < --- < t, = b are the distinguished time-
points of f, consider s,t € (a,b) such that t; < s < t < t;;, for some 1.

Then QS(f,s) = QS(f,t).

Proof: By the Intermediate Value Theorem, since f is continuously
differentiable, f(t) cannot pass a landmark value, and f'(t) cannot change
signs between adjacent distinguished time-points. ||

This justifies our basic intuition that the qualitative state of the function
is constant over intervals between landmarks. Hence, we may make the
following definitions.
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Definition 5 For adjacent distinguished time-poinls t; and t;,,, define
QS(f,ti,t;;1), the qualitative state of [ on (i), lo be QS(f,¢)
fﬂ]" any = (f-g,t,:.l}.

Definition 6 The qualitative behavior of f on [a,b] is the sequence of
qualitative states of [:

QS{I: ill}: Qs{fj iu,h},QS[I,tL] ni Qs{f:tn h'til): Qs[f:tn)

alternating between qualitative states at distinguished time-points, and qual-
itative states on inlervals between distinguished time-points.

2.2 Systems of Functions

Definition 7 A system is a set F = {f,... f,.} of reasonable functions
fitla,b] — R, each with its own sel of landmarks and distinguished time-
points. The distinguished time-points of a system F are the union
of the distinguished time-points of the individual functions f; € F. The
qualitative state of a system I of m functions is the m-tuple of individual
qualitative states:

QS{F‘J tl] = [stfl:'tl}!‘”QS(fm:'tiH
QS(F,ti, 1) = [QS(fististisa)s o - QS(Srms tiy tis1)]

If t; and/or t;., are not distinguished time-points of a particular f;, then
t; and the interval (t,,t;.,) must be between two distinguished time-points
of f;, say by and b, ;. Then QS(f;,t;) and QS (fitisti 1) are defined to be
the same as the containing QS(f;,i,te.,). The qualitative behavior of
F is the sequence of qualitalive states of F':

QS{FI !“}iQS[FTt“I !'I}IQS{F! tl):-"QS{F!tn]'

These definitions give us a precise semantics for the qualitative descrip-
tion of continuous functions, and clarifies the concept of the “next state.”
Every state has a qualitative description QS(F,t), but that description
changes only at discrete distinguished time-points, and remains constant
on the open intervals between them. Thus the “next state” of a mechanism
is more properly called the next distinct qualitative state description of the
mechanism.
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2.3 Qualitative State Transitions

Since a reasonable function f is continuously differentiable, the Inter-
mediate Value Theorem and the Mean Value Theorem restrict the way it
can change from one qualitative state to the next. There are two types of
qualitative state transitions: P-transitions, moving from a point to an
interval, and I-transitions, moving from an interval to a point.

Definition 8 Where t; 1s a distinguished lime-poini, a P-transition of f
15 a pair of adjacent qualitative states of f,

Qs[f'r t:} = Qs[fi 'El':- 'tt'-l l}

whose first state is the qualitative state at a dislinguished time-point. An
I-transition s a pair of adjacent qualitative states of f,

QS{I: tia, !'t'} = Qs{f; ti]

whose first state is the qualitative state on the interval between distinguished
time-points.

Table 3 specifies the set of possible transitions that can take place in
the qualitative behavior of a single function. The validity of this table is
proved by the propositions in Appendix A.
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Table 3: The possible transitions
A reasonable function [ : [a,b] — R* is restricted to the following set of
possible transitions from one qualitative state to the next. The contents of
this table are justified by Propositions 3, 4, 6, and 7 in Appendix A.
P-Transitions

I-Transitions

Name QS(f,t)

= QS[f:tfrtt"r |}

F1 (1;, std) (L, std)

P2 (I;, std) ((L31541),inc)
P3 ({;, std) ((L;-1,1;), dec)
P4 (I;,ine} ((1;,141),8nc)
P5 ((Ls l541),8mc) ((414541), me)
P6 (I;,dec) ((;-1,1;), dec)
P7 {[fj', EJ.'.| 1},dﬂﬂ> {[fj,fj.; 1}, l'iEC}

Name QS[f,fi,t£+1] - QS{f,i.‘pi:l
Il (1, std) (15, std)

12 {{l':j, !j-‘I]g lﬂC} “j-i-thd}

I3 {(l5,1:1),inc) (ljs1,n¢)

I4 (L bj1)ime) (43 4541) inc)
I5 ((1531;51), dec) (1, std)

16 ((Ljsl541), dec) (l;,dec)

I [:“J':":J'H]rdﬂc} ((L:0541), dec)
I8 ({3 41),tne) (1*, std)

19 ((Ly,1;41), dec) (I*, sid)

In cases I8 and I9, f becomes std at I*, a new landmark value such that
l; < I" < lji1. In these cases, a previously unknown landmark value is
discovered because other constraints force f'(t) to become zero.
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3 Qualitative Structure

The qualitative structural deseription consists of a set of parameters
representing the state variables of the mechanism. Simulation assigns a
qualitative behavior to each parameter. Constraints holding between two
or three parameters in the structural description serve to limit the possible
combinations of qualitative behavior. The constraint notation used here
has the advantage, like de Kleer’s confluences, of having a clear correspon-
dence with differential equations by making explicit all the functions and
operators in the equation.

3.1 Arithmetiec Constraints

Constraints corresponding to the basic arithmetic and differential oper-
ators are fundamental to a structural description.

Definition 9 ADD(f,g,h) is a three-place predicate on reasonable fune-
tions f, g,k : [a,b] — R* which holds iff f(t)+g(t) = h(t) for everyt € [a,b].

Definition 10 MULT(f,g,h) s a three-place predicale on reasonable func-
tions f,g,h : [a,b] — M* which holds iff f(t)+g(t) = h(t) for everyt € [a, b].

Definition 11 MINUS(f,g) is a two-place predicate on reasonable fune-
tions f,g : [a,b] — R* which holds iff f(t) = —g(t) for everyt € [a,b].

Since addition and multiplication are commutative,

ADD(f,q,h) & ADD(g, f,h),
MULT(f,9,h) & MULT (g, f, h),
MINUS(f,g) & MINUS(qg, f).

Definition 12 DERIV(f,q) is a two-place predicate on reasonable func-
tions f,g : [a,b] — R* which holds iff f(t) = ¢'(t) for every t € [a,b].
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3.2 Qualitative Function Constraints

The qualitative structure description of a mechanism might state that
one physical parameter is a function of another, without specilying the
function completely. Rather, it can be described qualitatively in terms
of regions of monotonic increase or decrease, and landmark values passed
through.

The most common and important cases are functional relationships that
are strictly monotonic everywhere. The monotonic function constraint M *
applies in the situation when the function is strictly monotonically increas-
ing, and M when it is decreasing.

Definition 13 M’ is a two-place predicale on reasonable functions f, g :
la,b] — R°. M (f,g) is true iff f(t) = H(g(t)) for allt € |a,b], where H is
a function with domain g([a,b]) and range f(|a,b]), differentiable and with
H'(z) > 0 for all z in the interior of the domain. M is defined similarly,
except that H'(z) < 0.

The restrictions on I are motivated by two requirements. First, the
critical points of f and g must match across a M ' (f,g) constraint. Second,
it must be possible to break a function such as sinz “at the joints” into
regions of monotonic increase and decrease, so H'(z) = 0 must be allowed
at the boundary of the domain.

Clearly, M (f,g) <+ M*(g,f), and M (f,q) & M (g, f).

Note that M*(f,g) does not imply that f and g are monotonic functions
on [a,b]. For example, M *(2sin t,sin t) holds on [0,27], where H(z)=2=.
As a notational variant of M*(f,g), we may write f = M*(g) or g =
M*(f).

Proposition 2 Consider two continuously differentiable functions f,g :
la,b] — R*, where M*(f,g). Then for all t € (a,b),

F1(t)>0 iff ¢(t)>0
f)=0 iff ¢(t)=0
'ty <0 iff g(t)<o0
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Proof: M'(f,g) means that f(t) = H(g(t)), so f'(t) = H'(g(t)) = ¢'(t).
Since I'(z) > 0, ¢'(t) = 0if and only if f'(t) = 0. The two strict inequalities
follow fromn the monotonicity of H. [|

Thus, the sets of distinguished time-points may not correspond precisely
across [ and g, but their eritical points, and hence their regions of constant
directions-ol-change, are identical.

A qualitative functional relationship need not be strictly monotonic if
it can be divided into sections that are alternately increasing or decreasing
monotonic, with critical points at the joints between sections. An example
may be clearer than the definition. Suppose that = = cos0 for z € [—1, 1]
and @ € [0,2x|. We may say that FC(0,z, descrip), where

(0,1)

((0,7),(=1,1),M")
deserip = { (w,—1)

((r,27), (~1,1), M)

(27, 1)

That is, if # = 0, z = 1; when 0 € (0,7), then z € (—1,1) and M (8, z);
and so on.

Definition 14 A qualitative functional constraint is a three-place pred-
icate FC(f, g, deserip), where [ and g are reasonable functions f, g : la,b] —
R, and descrip is a list of descriptors. The predicale is true iff f and g sat-
isfy the qualitative description descrip. A descriptor is either a pair of
corresponding landmark values for [ and g, or a triple consisting of two
intervals defined by landmark values for f and g, and the symbol M* or
M~ indicating the relationship between f and g when their values lie in the
intervals.

At the joints between monotonic sections, the restrictions on permissible
combinations of directions of change are weaker. In particular, it is possible
for one parameter to have direction of change std while the other is ine or
dec. Otherwise, for qualitative simulation, these more complex functional
constraints can be treated exactly like the monotonic constraints they imply
at the current time-point. Only the strict monotonic constraints M™* and
M~ are used in the remainder of this paper.
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3.3 Qualitative Structure Description

The definitions of these constraints now allow us to define qualitative
structural descriptions as an abstraction of differential equations. If a mech-
anism can be described by a certain differential equation, there is a corre-
sponding, but strictly weaker, qualitative structural description for it. That
is, any behavior which satisfies the differential equation must necessarily
satisfy the qualitative structural description.

Theorem 1 Let
Flu(t),u'(t),...,u™] =0 (1)

be an ordinary differential equation of order n, to be satisfied by a function
u:la,bl —= R, where F is defined only in terms of the arithmetic operations
addition, multiplication, and negation, along with funclions of continuous
and strictly.non-zero dertvative. Then a set of parameters and constraints
can be defined, corresponding with equation (1), such that any reasonable
function u : R — R which satisfies equation (1) also satisfies the set of
constraints.

Proof. Define parameters f,... fi, corresponding to the arguments
u(t),w'(t),...u™ to F, and to each subexpression appearing in equation
(1). Equation (1) can then be transformed into a system of simpler equa-
tions, derived from the subexpressions of F, each involving a single func-
tion or operator applied to parameters as arguments, and with the result
assigned to another parameter. For example, if one subexpression of F is
(ezp, + exps), and the parameters corresponding to exp,, exp,, and the
entire subexpression are f;, f;, and f;, respectively, then the subexpression
corresponds to the equation f;+ f; = fi. This, in turn, can be transformed
to the constraint ADD(f;, f;, fi). If f; corresponds to a subexpression of
the form g(ezp), where f; corresponds to ezp, and ¢' is strictly positive, then
the constraint generated is M (f;, f;). Similarly, if f; and f> correspond to
the arguments u(t) and v/(t), the constraint generated is DERIV (fy, fa).

Suppose some function u : |a,b] — R satisfies equation (1). Other real-
valued functions corresponding to each parameter f; are defined by the
subexpression equations of F. The ADD, MULT, MINUS, and DERIV
constraints are equivalent to the corresponding equations, by definition,
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and so are satisfied by u and the lunctions derived [rom it. The M ' and
M constraints are strictly weaker than the specific function appearing in
F, so if u and its derived functions satisfy equation (1), they must satisfy
the M' and M constraints as well. ||
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4 Qualitative Simulation

This section describes the QSIM gualitative simulation algorithm, and
refers to the proofs of the various steps, appearing in the appendices.

4.1 Input and Output

The qualitative simulation algorithm is given the following structural
description of a mechanism.

1. Aset {fi... [} of symbols representing the functions in the system.

2. A set of constraints applied to the function symbols: M ' (f,g), M (f,q),
ADD(f,g,h), MULT(f,g,h), MINUS(f,g) or
DERIV(f,g). Each constraint may have associated corresponding
values for its functions.

3. Each function is associated with a totally ordered set of symbols rep-
resenting landmark values. Each function has at least the basic set
of landmarks {-oc0,0, co}.

4. Each function may have upper and lower range limits, which are
landmark values beyond which the current set of constraints no longer
apply. A range limit may be associated with a new operating region
which has its own constraints and range limits.

on

. An initial time-point symbol, ¢, and qualitative values for each of the
ft' at fu.

The result of the qualitative simulation is one or more qualitative behav-
ior descriptions for the function symbols given. Each yualitative behavior
description consists of the following:

1. A sequence {f;...t,} of symbols representing the distinguished time-
points of the system’s behavior.

2. For each function f;, a totally ordered set of landmark values, possibly
extending the originally given set.
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3. For each function, at each distinguished time-point or interval be-
tween adjacent time-points, a qualitative state description expressed
in terms of the landmark values of that function.

4.2 The Algorithm QSIM.

The qualitative simulation algorithm, QSIM, repeatedly takes an active
state and generates all possible successor states, filtering out states that
violate some consistency criterion. Because it may not be able to deter-
mine the next state uniquely, QSIM builds a tree of states representing the
possible behaviors of the mechanism.

Place the initial state on the list ACTIVE, of states whose successors
need to be determined. Repeat the following steps until ACTIVE becomes
empty or a resource limit is exceeded.

1. Select a qualitative state from ACTIVE.

2. For each function in the structural description, determine (from Table
1) the set of transitions possible given the current qualitative state.

3. For each constraint, generate the set of tuples of transitions and filter
for consistency with that constraint.

4. Perform pair-wise consistency filtering on the sets of tuples associated
with the constraints in the system, applying the consistency criterion
that adjacent constraints must agree on the transition assigned to the
shared parameter.

5. Generate all possible global interpretations from the remaining tuples.
If there are none, mark the behavior as inconsistent. Create new
qualitative states resulting from each interpretation, and make them
successors of the current state.

6. Apply global filtering rules to the new qualitative states, and place
any remaining states on ACTIVE.

After an example, the individual steps of the algorithm are discussed in
detail.
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4.3 Example from the Ball System

This section illustrates one cycle of the QSIM algorithm by showing
how the third state (¢ = t;) of the Ball system (Table 2) is derived from its
predecessor.

We start with an active state whose description is:

QS{At tlh 'El} = {g:r Etd.:]
QS(V,to, L) = ((0,00), dec)
QS(Y, b, 1) = {(0, o), tnc)

IFirst, we determine the possible transitions for the individual functions:
A

Il (g,std) = (g, std)

v
I5 {(0,00),dec) = (0, std)
16 {{0,00),dec) =+ (0, dec)
IT ((0,00),dec) => ((0, 00), dec)
19 ((0,00),dec) = (L*, std)
Y

I4 ((0,00),inc) = ((0,00),inc)
I8 ((0,c0),inc) = (L*, std)
Next, each constraint forms a set of transition tuples. Those marked

with ¢ below are eliminated by constraint consistency filtering. Then those
marked with w are eliminated by pairwise consistency filtering.

DERIV(Y,V)  DERIV(V,A)

(I4,15) ¢ (I5,11) ¢
(I4,16) ¢ (16, 11)
(14,17) (I7,11)
(14,19) w (19,11) ¢
(18,I5) w

(18,16)

(18,17)

(18, I9)
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These tuples can be formed into the [ollowing two global interpretations:

Y Vv A

4+ 17 I
g8 16 I1

The first of these interpretations yields a qualitative state description
identical to the preceding state, so it is considered redundant. The only
remaining possibility then becomes the unique successor:

QQ[A_ £y } {g, std)
Qb {Y f[} = { AT Std}

The following sections explain the steps of the QSIM algorithm in detail
and discuss the prools of their validity.

4.4 Tunction Consistency

The possible transitions that a single parameter can take from one qual-
itative state to the next are given in Table 3. In Step 2, the current state
of each function is used to retrieve the set of applicable transition patterns
from Table 3. Constraints between neighboring functions are not consid-
ered until Step 3. Transitions are zlso checked against invariant assertions
at this stage, to eliminate impossible transitions for functions that are (e.g.)
always finite or never negative.

For any particular qualitative state, Table 3 provides at most 4 possible
transitions. Thus, if there are n functions in the system, the possible next
states are to be found within a product space of at most 4" points. At
this stage, however, we do not explicitly generate this product space, so we
need create at most 4n individual transitions.

Appendix A presents the proofs that justify the possible transitions
given in Table 3. It also discusses the handling of divergence to co and
asymptotic approach to limiting values.
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4.5 Constraint Consistency

Step 3 of the QSIM algorithm aggregates the individual transitions into
2-tuples and 3-tuples corresponding to the arguments of individual con-
straints. These tuples can then be checked for consistency according Lo two
criteria local to individual constraints. (See Appendix B.)

s The tuple of directions of change must be consistent with the con-
straint in the stale resulting from the transition.

e The result of the transition-tuple can be compared with corresponding
values of the argnments to that constraint.

Definition 15 Landmark values p and q are corresponding values of f
and g if there is some t € [a,b] such that f(t) = p and g(t) = q.

M, (f,g) and M (f,g) are abbreviations for M (f,¢) and M (f,g),
respectively, with corresponding values (0, 0).

Definition 16 Suppose QS(f,titi1) = ((leylei1),tnc). Then Iy, is the
limit of f during (L. t;.4). If f(tis1) = li 1, we say that f has moved to
its limit. Otherwise, f(t;.1) < li1, and we say that [ has moved toward,
but not reached, tts limit. Similarly if f 1s decreasing during QS(f, ti, tiv1).

Informally, if f is between landmark values but moving toward a limit,
it may or may not reach that limit by the next distinguished time-point. If
several functions are moving toward limits, constraints between functions
limit the space of possibilities. For example, if M*(f,g) is true, and f and
g are moving toward corresponding limit values, then either both will reach
their limits, or neither will. Similarly, if f + ¢ = h, and two functions are
moving toward corresponding limits, while one is bounded away from the
third corresponding value, the possible transitions can be filtered.

These constraint-based consistency criteria generalize the Transition
Ordering rules of Williams (1984a). The propositions in Appendix B define
and justify the comparison of the proposed transition-tuple with a partic-
ular set of known corresponding values.
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4.6 Pairwise Consistency Filtering

Two constraints are adjacent if they share an argnment. At this point,
each constraint has an associated set of transition tuples, consistent with
that individual constraint. A tuple is a proposed assignment of transitions
to the functions in that constraint. To be pairwise consistent, tuples on
adjacent constraints must assign the same transition to the function they
share. For certain tuples, there may be no opposite number to make such
a consistent pair. If so, that tuple may be deleted.

Waltz (1975) developed this local consistency filtering algorithm to con-
verge quickly on a small set of possible labelings for a graph representing
the edges, vertices, and regions of a visual scene. (The algorithm is also de-
scribed in detail in Winston (1984).) A key step in the development of the
QSIM algorithm was the observation that il iransitions, rather than gual-
itative states are taken as the analog of edge labels, the Waltz algorithm
could be applied directly.

Filtering on transitions rather than states simplifies several steps of
the algorithm. The possibility of creating new landmarks can be consid-
ered without actually creating landmarks that might have to be retracted.
The pairwise and global consistency fltering can match atomic transition
names rather than much more expensive structure-matching on the pre-
dicted next state. Finally, some of the global filters (Section 4.8) depend
on the sequence of transitions leading up to a proposed state, and would
be more difficult to express in terms of state descriptions.

The Waltz algorithm visits each constraint in the mechanism descrip-
tion, looking at all the adjacent constraints and the function joining the
pair. It applies the following rule to cach transition tuple associated with
the constraint it is visiting.

if: that tuple assigns a transition to the function which is not assigned
by any tuple associated with the other constraint,

then: delete that tuple.

The algorithm then visits each constraint adjacent to a constraint at which
a tuple was deleted, and terminates when no more filtering is possible. This
process is important to the efficiency of the QSIM algorithm, since deleting



30 Qualitative Simulation

a single tuple eliminates an entire region of the cross-product space of global
interpretations.

4.7 Generating Global Interpretations

A global interpretation is an assignment of a transition to each function
in the system. The result of Waltz filtering is a reduced set of tuples
associated with each constraint. Not all combinations of these tuples are
possible global interpretations. Suppose, for example, that we have the
following constrainis and associated transition tuples:

M'(f,g) M*(g,h)

(I2,12) (I2,12)
(I3,13)  (I3,13)

Clearly, although no further local consistency filtering is possible, there are
only two possible assignments of transitions to (f,g, k), namely (12, 12, I2)
and (I3, 13,13). This pruning takes place as the global interpretations are
created.

Global interpretations are built one at a time, by a depth-first traversal
of the space of assignments of tuples to constraints. An attempted inter-
pretation fails if the next tuple cannot be assigned without conflicting with
transitions assigned (o functions by previous tuples. In case all possible
next states are eliminated, the current state must be the endpoint of the
domain.

A global interpretation is then used to construct a new qualitative state
description, which is added to the tree of state descriptions as a successor
to the current state. At this point, if all functions in a constraint are equal
to landmark values, the constraint records them as a set of corresponding
values.

4.8 Global Filters

The completed qualitative state descriptions are mathematically plau-
sible successors to the current state. There are, however, several global
filters that can be applied before a new state is added to ACTIVE.
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The mathematically valid filters applied at this stage are the [cllowing.

o (No Change.) Delete the new state if all transitions are in the set
{11,14,I7}, because the new state description would be identical to
its immediate predecessor, which therefore already captures its qual-
itative behavior. In other words, something must reach a limit point
for an I-transition to take place.

e (Cycle.) If the new state is identical to one of its predecessors (all
functions have identical landmark values, and all directions of change
are the same), then mark the behavior as cyclic, install a pointer to
the identical predecessor, and do nol add the new state to ACTIVE.

e (Divergence.) If any function takes on the value oo or —co, the current
time-point must be the endpoint of the domain, so the new state does
not go onto ACTIVE.

The first filter does not reduce the number of behaviors described, but
only eliminates a redundant description. The second detects when all the
consequences of a particular state have already been determined, and need
not be explored anew. The third determines when a state must be ai the
endpoint of the domain, and thus can have no successors.

We refer to the qualitative simulation algorithm described here as the
pure QSIM algorithm. TFor a particular application, additional heuristic
filters may be added.?

4.9 Complexity

The process of formalizing qualitative simulation led to the improved

?Some possible heuristics include:

¢ (Quicscence.) If all functions have derivative zero, conclude that the system is
quiescent, the new time-point is the endpoint of the domain (possibly ¢ = oo), and
do not place the new state on ACTIVE,

¢ (No Divergence.) In physical systems, eliminate transitions in which any state goes
to oo or —oo. A more accurate description of the system would inelude an operating
region change corresponding to some component breaking.
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QSIM algorithm, which turned out to be 30 to 60 times faster than its
predecessor ENV (Kuipers, 1982, 1984) on a variety of examples ranging
from 3 parameters and 2 constraints (the Ball) up to 16 parameters and 14
constraints (the Starling equilibrivm [Kuipers and Kassirer, 1983, 1984])
We can estimale the algorithmic complexity of QSIM as [ollows. Suppose
there are n parameters in the system, m constraints, and the longest be-
havior has length t. (1 is then log of the total number of qualitative states.)
Since a constraint can have no more than three parameters, n = o(m).

A sel of possible state transitions is assigned Lo each parameter from
a lixed-length table, and no more than 4 transitions can be assigned
to any parameter. This defines a search space of 4" state transitions,
but only 4n transitions need actually be created, requiring o(n) time.

A constraint can have no more than 4% = 64 transition tuples. Filter-
ing a tuple against the direction-of-change tables (Appendix A) takes
constant time, but the number of corresponding values grows linearly
(though slowly) with the length ¢ of the behavior. Thus constraint
filtering requires o(mt) time.

Waltz filtering visits each constraint at least once, but beyond that
visits only neighbors of constraints where it was able to delete a tuple.
Thus, the number of constraints visited is proportional to the total
number of tuples, which is linear in the number of constraints. Each
visit takes bounded time. Thus, Waltz filtering takes o(m) time.

Generating the global interpretations explicitly constructs the re-
maining parts of the product space. Typically, the remaining space is
small, but unfortunately there are pathological cases which yield 2™
possible successor states.

The most expensive of the global filters is the check for previous
identical states, which requires o(nt) time.

A pathological case where the number of global interpretations gener-
ated is exponential in the number of functions in the system can be easily
constructed. Consider a system with three parameters f, g, and h, and two
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constraints, DERIV (f,q) and DERIV (g,h), in a state where [, g, and h
are all positive and increasing. Then the possible tuples are:

DERIV(f,q) DERIV(g,h)

(13,13) (13, 13)
(3, 14) (13, I4)
(14,13) (I4, I3)
(I4,14) (14, I4)

Neither local consistency filtering nor the formation of global interpreta-
tions eliminate any of the possible assignments, so for n parameters linked
by a chain of DERIV constraints, there are 2" interpretations.

f g h

I3 I3 I3
13 I3 4
I3 I4 I3
I3 14 I4
I+ I3 I3
I4 I3 14
14 I4 I3
I4 14 14

In practice, creation of the global interpretations significantly reduces the
number of compatible assignments. The algorithm need not halt, however,
and can continue forever producing longer and longer (but always finite)
behaviors, each of which satisfies the qualitative constraints.

Although the QSIM algorithm is exponential in the worst case, in prac-
tice generating the successors of a given state appears to be approximately
o(mt). The Spring example (3 parameters, 3 constraints) takes about
0.4 seconds, and the Starling mechanism (16 parameters, 14 constraints)
[Kuipers and Kassirer, 1983, 1984] takes about 1.0 second on the Symbolics
3600.
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5 Questions and Answers

Now that we have defined the QSIM algorithm, with a clear structure
and mathematically accessible properties, we can examine it to answer some
of our questions about the utility of qualitative simulation as a reasoning
method. We can also compare dilferent approaches to gqualitative simulation
by changing the table of permissible transitions.

5.1 Should Simulation Create Landmarks?

The most important semantic difference between QSIM and other ap-
proaches to qualitative simulation is that QSIM can create new landmark
values during the simulation, while the other algorithms require all land-
marks to be specified when the structure is defined. In this section, we
show that the inability to create new landmark values makes it impossible
to express certain important qualitative distinctions, such as that between
increasing, decreasing, and stable oscillation.

The fixed landmark assumption is particularly deeply embedded in de
Kleer’s approach, which depends on arithmetic operators defined over a
fixed set of qualitative values, {+,0,—}. A change in landmarks wonld
change the qualitative values, and thus require the operators to be rede-
fined. Such a redefinition is not always possible.

The structure of QSIM makes it possible to experiment with {+,0, —}
semantics for qualitative simulation simply by replacing Table 3 with an
alternate table of legal transitions (Table 4).

Table 5 shows the behavior of the Spring system under the {+,0, -}
semantics. This behavior can be considered a cycle only if two functions
are allowed to match between landmark values. That is, only if we may
conclude from this table that V (t;) = V(). A match between the states ¢,
and ty in this behavior suppresses the distinction between increasing, stable,
or decreasing amplitude (see Table 6). De Kleer and Bobrow (1984) present
an example of a spring with frictional damping, whose actual behavior is
a decreasing oscillation. The behavioral description they present is cyclic,
and similar to that given in Table 5 above, with the addition of terms for the
frictional force. Their description accurately captures the repetitive series



Questions and Answers

Table 4: Possible transitions under {+,0, -} semantics

P-Transitions

I-Transitions

Name QS(f,t)

Pl
P2
P3
P4
P5
P6
PT7
Q8
Q9
Q10

(I;, std)
(L5, std)
(I, std)
(lj,inc)
(4, 4541),¥nc)
(;,dec)
{“J'!IJ 1), dec)
(s Ly 1), std)
[IJ,ij_l] std}
{[I.T hfj],ﬁt{i}

Name QS(f,tiylii1)

Il
I2
I3
I4
I5
I6
I7
J8
J9
J10

liylii1),1nc)
Liylii),tne)
lii1),9nc)
j,fj.ij,dec}
l;.1),dec)
J'!IJ'~I):dec}

T, Ty, T, Ty, e, T N, oy T

= QS(f,titii1)

{Ij,std}

((Ljs L1 1) ine)
[:[i.f |T’!J'Ld£ﬂ}
({Lis11),inc)
(L5l 1),2ne)
((4-1, !i}:d¢¢>
(L3 1541), dec)
r;'[":.1":- !J t l}r Std}
{{Ij, !_.i' ' 1},‘£ﬂﬂ}
(15 45), dec)

= QS(f,ti1)

{I.'l'tatd}
{£J'+hstd}
(lj51,1n¢c)
(L3141, ine)
(l;, std)

{l;, dec)

<UJ': lj11), dec)
((tj;L541), std)
(L 1541), std)
(L1 4541), std)

35

The landmarks are fixed as {—oo,0,00}. The transitions that create new
landmarks (I8 and I9 from Table 3) are eliminated, and new transitions
are added (with Q and J names) to permit direction of change std between

landmarks.
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Table 5: The Spring behavior with {+,0, —} semantics
De Kleer’s three qualitative values, +, 0, and —, are given here in the QSIM
notation: (0,00}, 0, and (—o0,0).

X vV A
to (0,%nc) ((0,00),std) (0, dec)
((0,00),ine)  ((0,00),dec)  ((—oco,0),dec)
ti ((0,00),std)  (0,dec) ((—o0,0), std)
((0,00),dec)  ({—o0,0),dec) ((—o0,0),inc)
ta (0,dec) ((—ee,0), std) (0,inc)
{(—o0,0),dec) ((—oc,0),inc) ((0,c0),inc)
ts ((—o0,0),std) (0,inc) ((0,00), std)
((=o0,0),ine) ((0,00),inc) ((0, 00), dec)
ty (0,inc) ((0,00), std) (0, dec)

of increase and decrease in the different parameters, but since it does not
express a distinction between increasing, decreasing and steady amplitude,
it cannot even ask which qualitative behavior is correct.

The heart of the problem is the inability to create new landmarks.
Without representing the initial value (or subsequent critical values) of
a parameter in a way that permits ordinal comparison, it is not possible to
ask whether the next repetition of a cycle leaves that parameter increased,
decreased, or stable. If, in addition, states can be matched between land-
mark values, three very distinct types of behavior can be collapsed into a
single, apparently cyclic, behavior.

In order to express important qualitative distinctions between possible
behaviors, it appears important to be able to identify a new critical point
of a changing parameter (e.g. a turning point or new equilibrium value),
and represent it so that the subsequent simulation treats it as a first-class
landmark value.
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5.2 Is the Real Behavior F'ound?

In this section, we show that all actual bhehaviors of a mechanism are
predicted by its qualitative simulation. We take as our “gold standard” the
solutions to the ordinary differential equation describing the mechanism.

We say that a real-valued function satisfies a given qualitative behavior
description if the gualitative description of the function matches the given
qualitative behavior. We then prove that any solution te a differential
equation satisfies some qualitative behavior produced by the corresponding
structural description. The proof is straight-forward, since the bulk of the
work has already been done in validating the individual steps of the QSIM
algorithm. The algorithm generates a space including all possible behaviors
of a given qualitative description, and then discards only behaviors which
are internally inconsistent. Thus, the remaining behaviors necessarily in-
clude all of the actual behaviors of the mechanism.

Definition 17 Suppose we have a reasonable function u : [a,b] — R and a
qualitalive behavior description of the function-symbol f,

QS{fgtﬂ],QS'(f,tu,tl] . **QS[ITtﬂ—litﬂ]‘iQS[fitﬂJ

with distinguished time-poinits {iy,...t,} and landmarks {l,,...1;}. We say
that u satisfies the behavior description if there is an order-preserving map-
ping m of {ty,...t,} into |a,b] with m(ty) = a and m(t,) = b, and an order-
preserving mapping of {l;,...1;} into R, such that, for all distinguished
time-points t;, QS(u,m(t;)) matches QS(f,t;) and QS(u,m(t;),m(tis;))
matches QS(f, ti,tisy).

Theorem 2 Let
Flu(t),«'(t),...,u™] =0 (2)

be an ordinary differential equation of order n, and let {u(ty) = yp, u'(ts) =
Y1, u"(to) = y,} be the initial conditions on the solution to (2). Suppose
that equation (2] and its tnitial conditions are satisfied by a reasonable
function u : [a,b] — M. Let C be the set of functions and constraints derived
from (2] by the methods of Theorem 1, and let QS(F,t,) be the qualitative
state description derived from the given set of initial conditions. Let T be
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the tree of qualitalive state descriplions derived from C and QS(F,ty) by the
pure QSIM algorithm. Then the funclion u and the subezpression functions
derived from il salisfy some behavioral description in T.

Proof. QSIM works by progressively restricting the region of a space
of qualitative behaviors that it is considering. By showing that any actual
solution u is initially in the space, and that no filtering operation can elim-
inate a genuine solution, we conclude that u and its derived functions must
satisfy some behavior in T.

The function u satisfies the initial state description QS(F,t,) because it
is a qualitative abstraction of the initial conditions to equation (2). Step 2 in
QSIM generates all possible gualitative state transitions for the functions
in C from a given qualitative state, using Table 3 which is justified by
Propositions 3, 4, 6, and 7. Thus, any change in qualitative state of the
system must be included in the possibilities generated. Step 3 of QSIM
filters out combinations of transitions whose result is a state which fails to
satisfy individual constraints. Inconsistent sets of directions of change are
detected by comparison with tables in Appendix A. The proper implications
of sets of corresponding values are checked against Propositions 10,11, 12,
and 18. The pairwise consistency filtering of Step 4 simply eliminates from
consideration transition tuples which are inconsistent with all neighboring
tuples, and thus could not contribute to a global interpretation. Step 5,
similarly, eliminates combinations of tuples which do not make consistent
assignments of state transitions to particular functions. Finally, the global
filters included in the pure QSIM algorithm are discussed in section 4.8 and
shown not to eliminate possible behaviors of the system. Thus, at each stage
of the simulation, all possible successors to the current qualitative state lie
in the space generated, and no genuinely possible successor is eliminated.
Since a reasonable function u has a qualitative behavior of finite length, if
the tree of states is generated in breadth-first order, it must be generated
by the QSIM algorithm within finite time. []
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5.3 Are All the Behaviors Real?

In this section, we show that the QSIM algorithm, and local qualitative
simulation algorithms in general, cannotl be guaranteed against producing
spurious behaviors: behaviors which are not actual behaviors for any phys-
ical system satisfying the structural description.

A weak qualitative structure description provides few constraints, and
thus is consistent with many poessible behaviors. However, it is also con-
sistent with many possible mechanisms, and we might hope that each the
qualitative behavior always corresponds to some mechanism that satisfies
the structural description. Although this is often the case, and has been
conjectured to be universally true, there are cases where spurious behaviors
are generated. Thus, if several behaviors are generated, some of them may
not be possible behaviors of the mechanism.

One of the attractive applications of qualitative simulation is to pre-
dict possible future states, particularly to warn of surprising or disastrous
events. Theorem 2 above gnarantees that there can be no false negatives:
every actual behavior is predicted. However, if a valid description of the
mechanism can produce invalid predictions (false positives), its usefulness
is limited. As we discuss below, the problem is not fatal, but requires
substantial care in the construction and use of a problem-solver.

Theorem 3 Let C be a set of function-symbols and gualitative constraints,
and let QS(F,t,) be the inilial qualitative state description. Let T be the
tree of qualitative state descriptions derived from C and QS(F,ty) by the
pure QSIM algorithm. For some C and QS(F,t;) there are behaviors in T
which do not correspond to any solution u : [a,b] — R to any differential
equation and initial condition corresponding to C and QS(F,ty).

Proof. Consider a mass on a spring, oscillating on a [rictionless surface.
The qualitative structural description of this system is

DERIV(X,V)
DERIV (V, A) (3)
My (A, X),
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which might also be written in the form of a second-order dilferential equa-

tion:
X
di®

With initial state X(t,) = 0, V(ty) = Vinie, A(ly) = 0, this system is periodic
for any function A = —M,; (X), because il we deline total energy as

= =M (X). (4)

TE(z,v) = [ My (y)dy + 50%,
L]

then equation (4) implies that $TE = 0.

The local inference methods of QSIM are not able to determine, at
the end of one cycle, whether the oscillation of the system is periodic, or
increases or decreases in magnitude. It can, however, branch to express all
three behaviors.

Table 6 shows the hehavioral description produced by qualitative sim-
ulation of the Spring system. The simulation proceeds without branching
through the cycle, predicting and creating the new landmarks Xouezy Xonin,
Vininy Amin, and A,..; until X, V, and A are approaching 0, V,;; and 0,
respectively. X and A must reach their limits together, but the simulation
branches according to whether V reaches its limit at the same time [fq},
later (t}), or earlier (t]). In the first case, the state at t; matches the state
at fy, so the behavior is stable and periodic. In the second, the oscillation
is decreasing with a new critical point V. < Vini. And in the third case,
motion continues past Vj,; to a different new critical point V| . > Vin.
Furthermore, having taken this branch, there is no way to represent the
decision as a permanent selection of divergence, convergence, or stable os-
cillation. The same choice recurs at approaches to other landmarks.

Only the stable periodic behavior is an actual behavior possible for this
structural description, but the local inference methods of QSIM cannot
prove this fact. Thus, there are behaviors produced by the qualitative
simulation algorithm which do not correspond to the behavior of any system
satisfying the qualitative structure description. ||

The problem also occurs with the algorithms of de Kleer and Forbus,
even without creating new landmarks. If we add a single structural land-
mark corresponding to the initial velocity, by defining a translated variable
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Table 6: The Spring Simulation

In QS(F,t3,t), we have V — V,,;, while X — 0 and A — 0. No local rule
can determine whether V reaches its limit before, after, or at the same time
as X and A reach theirs. The simulation branches three ways, even though
only one behavior is valid.

The first behavior is recognized as a cycle, since the state at £y matches
the state at ¢;. The last two cases are not cycles, since neither £ nor ¢
matches f5, so the simulation continues onward from that point.

X v A
to (0,inc) (Vinit, std) (0, dec)
((0,00),1nc) ((0, Vinie), dec) {(—o00,0), dec)
ty (Xaz, std) (0, dec) (A pin, std))
((0, Xz ), dec)  ((—o0,0),dec) {(Asmin, 0),1nc)
ta (0,dec) (Vimin, std) {0,4nc)
((—o0,0),dec)  {(Viin,0),inc)  {((0,00),inc)
ts (Xomin,std) (0,inc) (A naz, std)
((Xomins 0),2nc)  {(0, Vinit), tnc) {(0, Aoz ), dec)
ts (0,7nc) (Vinie, std) (0, dec)
ty (0,inc) (Vinaz: td) (0, dec)
tl‘{l {{xm'ngn]:iﬂﬂ} {“nig,iﬂﬂ} {(D,Am:},dﬂﬂ}

{(Xemin» 0),50¢)  {(Vinits Vitaz)stne) (0, Apnaz ), dec)
t (0,ine) (V.1 .y std) (0, dec)
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W(t) = V(L) — Viuie [deKleer & Brown, 1984], we obtain precisely the same
three-way branching behavior. Without the translated variable, the de
Kleer approach does not express the distinction between increasing, steady,
and decreasing amplitudes.

The fundamental problem is that simulation, qualitative or quantitative,
is inherently local: the successors to the current state are computed given
only the information in the current state. Like QSIM, the Forbus (1982,
1984) and Williams (1984a, 1984b) algorithms are genuine simulations, ex-
amining individual states to determine their successors. The de Kleer and
Brown (1984) algorithm is effectively a simulation; even though the states
are not necessarily generated in chronological order, the existence of a state
transition is a local decision, based only on the two states involved. Given
a descriptive framework consisting of the functions and constraints describ-
ing the mechanism, and the states to be linked, there is simply not enough
information available to eliminate all spurious behaviors.

These observations yield some important warnings about the proper use
of qualitative descriptions of mechanisms, and the result of their simulation.

e The structural description must be shown to be consistent, preferably
by demonstrating that it is an abstraction of an accurate quantitative
description, to guarantee (Theorem 2) that the qualitative simulation
will include a genuine behavior.

o If the qualitative simulation of a consistent structure yields a single
behavior, then that behavioral description must represent the actual
behavior of the mechanism.

o If qualitative simulation yields several possible behaviors, further

analysis is required before concluding that they represent possible
futures.

Qualitative simulation is a useful tool for causal reasoning about the
behavior of mechanisms, and QSIM is a particularly complete, efficient
implementation of it. However, like all tools, it has important limitations
that any user should be familiar with. The formal analysis we have used
in this paper is valuable both for the design of the QSIM algorithm and
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for determining the strengths and limitations of qualitative simulation in
general.

5.4 What Next?

Two directions for further research appear promising for more accu-
rate gualitative predictions of behavior. First, the dynamical systems ap-
proach to qualitative analysis of differential equations (e.g. Arnold, 1973)
has greater expressive and inferential power than local qualitative simu-
lation methods. By describing the behaviors of the Spring as trajectories
through phase space rather than temporal sequences of qualitative states,
it is possible to take a single branch between increasing, decreasing and
stable oscillation, rather than repeating the choice at each move toward
limits. The theory of dynamical systems also includes global classification
theorems delimiting the possible qualitatively distinct behaviors. Further
study is needed to determine how practical problems can be stated and
solved, and how the solutions can be applied.

Second, if one structural description of a mechanism has spurious be-
haviors, a different description might not. By changing the problem to
take into account the conservation of total energy, an expanded view of the
spring mechanism allows QSIM to determine that there is a single, periodic
behavior. A physicist can look at equation (4) and recognize or derive the
fact that it represents an energy conserving system, and therefore that the
behavier must be periodic. Part of this knowledge is the ability to recog-
nize the physical system described by a structure, and to know that there
is a better structural description for it; one which adds parameters and
constraints (e.g. energy) that illuminate the actual behavior.

This approach takes us outside the realm of qualitative simulation,
and into the realm of problem formulation. Chi, Feltovich, and Glaser
(1982) have shown that an important distinction between novice and expert
problem-solving in physics is that the experts are able to select a descrip-
tion of the physical situation that yields the answer directly; novices search
a space of alternate models. Thus, expert causal reasoning uses domain-
specific knowledge to select the correct formulation of a problem, leading
to its direct solution.
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A The Qualitative State Transitions

This appendix applies the Intermediate-Value and Mean-Value Theo-
rems Lo prove the validity of the transition rules in Table 3 on page 18 that
restrict the possible qualitative behaviors of a single function.

Let f : [a,b] — R be a reasonable function with distinguished time-
points

a=lp<---<t, =b,

and landmark values
L <0< .

Definition: Where ¢; is a distinguished time-point, a P-transition of
f is a pair of adjacent qualitative states of f,

QS{.{‘ ii] = QS(fi Lirtis 1]

whose first state is the qualitative state at a distinguished time-point. An
I-transition is a pair of adjacent qualitative states of f,

Qs[f:r i- 11 i #Q?[J‘,t]

whose first state is the qualitative state on the interval between distin-
guished time-points.

Proposition 3 Let QS(f,t;) and QS(f,t;,t;,1) be adjacent qualitative states

of f. Then there is some landmark value l; such that f(t;) = I, and the
only possible P-transitions of  are given by the table below:

QS[J{:JI] = QS{f1ti1ti-.~1]

1. (l;,std) (L5, std)

2. {'!J'T ‘“d} {[Ih '!_'i ri}i 3‘.'14'.‘:}
3. (I, std) ((t5-1,1;), dec)
4. (l;,inc) {{":Ja!.fﬂ} inc)
5. (I;,dec) ((4-1,1;), dec)
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Proof: If t; is a distinguished time-point, then by definition there must
be a landmark value {; such that f(t;) = ;. In cases 1-3, there are rea-
sonable functions [ with QS(f,t,) = (l;,std), and with direction of change
std, ine, or dee in QS(f, L, 1;,1), so no subsequent direction of change can
be excluded. In these cases, by the Mean Value Theorem, f(t) must be
equal Lo, greater than, or less than f(t;) = L, respectively, on the interval
(i, t;1). By Proposition 1 and the Intermediate Value Theorem, J(t) must
be within (l;,l;,1) if it is increasing, or (I, y,1;) if it is decreasing. In case
4, il the direction of change is ine, then f'(t;) > 0. Since the derivative
is continuous, there is an interval around ¢ = t; in which f'(t) > 0. By
Proposition 1, since there are points within (t;,¢;.1) where the direction of
change is inec, it must be inc¢ throughout (t;,t;,}, so f({) must be within
(L, 1). Case 5 is similar. ||

The three P-transitions from the state (l;, std) handle the case where
a higher order derivative, which is not explicitly represented by QSIM, de-
termines the direction of motion. In such a situation, all three transitions
are generated, and other constraints filter out the impossible cases. De
Kleer and Bobrow (1984) determine and use higher-order derivatives ex-
plicitly to make that decision, at least for linear equations. Their approach
determines the order of the structural description, and thus knows how
many higher-order derivatives to compute. The advantages of the current
approach are that it places much weaker conditions on the differentiability
of the parameters, and that it is not restricted to linear equations.

Proposition 4 Let QS(f,t:,t;.1) and QS(f,t;+1) be adjacent qualitative
states of f. Then there are landmark values l; and l;,, such that the only
possible I-transitions are given by the table below:

QS (fytitisn) = QS(f,tis1)

(1, std) (15, std)
{{EJ',IJ-”}JHC} (L1, std)
. ([13'11:"+I]:£n':) {IJ'H:'iﬂ'c}

((15,15.41),dec) (1, std)
o (43 8j41), dec) (15, dec)

G o E0
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Proof: Similar to the procl of Proposition 3. Cases 1 - 5 here corre-
spond to cases 1, 3, 5, 2, and 4, respectively, in Proposition 3. ||

When considering [ in the context of a system F, we need transitions
appropriate to a time-point t which is distinguished for the system but not
for the individual function. In other words, t might reach a distingnished
time-point before [(t) reaches its next landmark value.

Proposition 5 Suppose that an additional time-point t* € [a,b] ts intro-
duced into the set of distinguished time-points of f:

a=ty< <l <t <ty <---<t,=b

Then
QRS (f,tx t") = QS(f,t") = Q@S(f,t", tes1) = QS(f, thstes1)-

Proof: Since, for all t € (t,te1), QS(f,t) = QS(f,tx,tx+1) by defi-
nition, we conclude that QS(f, ts,ts:y) is identical to each of QS(f,t,t*),
QS(f,t*), and QS(f,t*,tess). ||

Proposition 6 Let f : [a,b] — R be a reasonable function, and let a =
g < --- < t, = b be a set of time-points including all the distinguished
time-points of f, but possibly additional points in [a,b]. Then the possible
transitions of f consist of those listed in Propositions 3 and 4, plus the
follownng I-transitions and P-transitions:

QS{f!tﬁ Ly 1]‘ = QS{!, ti+1]

{('EJ'!II'J"*'-‘-}! 'i'ﬂ-‘.-";l ({I.fr l!_'||'+1:‘i1 'I.-ﬂ-ﬂ}
{Uj:!ji-i}:deﬂ} (4, Lj+1), dec)

Qs{fnfi} = Qs(f:thti+1]

“{f:%#l}aincb {("'-.f: !J' |.1},!:ﬂl:}
(5, 1541), dec) {“_-:‘:!j-f 1), dec)
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Proof: Consider an I-transition beginning with QS(f, ti.4;1). If £y
is a distinguished time-point of f, the transition is specilied by Proposition
4. If ;. is not a distinguished time-point of f, Proposition 5 shows that
the qualitative state remains constant across the transition, providing the
above alternatives as the only additional possibilities. If the transition is
a P-transition beginning with QS(f,¢;) the proof is similar, depending on
whether {; is a distinguished time-point of f. ||

A.1 Discovering a New Landmark

Suppose that QS(f,t;,t:1) = ((l;;1551),inc). Since there is no land-
mark in (I;,[;,,), we can exclude the transition to

QS{]’, tl'-1 1} = {[L'j', !_1' i j], Std}

because that would imply that f'(t;,,) = 0, making f(t;;:) a landmark
value, by definition. However, if I; < ... < [ is only a partial set of
the landmarks of f, then the above transition is possible, but only when
fltii1) = U7, a landmark value of f such that [; < [* < {;,,.

In this case, the following partial behavior is possible:

qualitative state known landmarks
QS(f, tistiv1) = {(Lis Li41),8ne) l; < iy
QS([f,tis1) = (I, std) ;< <l

QS(f,tist; 1) is now seen to be syntactically incorrect, given subsequent in-
formation acquired about the true set of landmarks. It shounld be revised to
be QS(f,t:,tis1) = (({;,1"),inc). Furthermore, it is possible for f to move
across [* several times before encountering the critical point that reveals its
existence as a landmark. However, the madifications needed to correct the
behavioral description are straight-forward and locally computable. In the
Ball system example discussed above, the maximum height of the ball is
such a new landmark, discovered when V (t), and therefore Y'(t), become
zero. We summarize this discussion in:

Proposition 7 Suppose that l; < ... <l are all the known landmarks of
a reasonable function [, which may have other landmarks as yet unknown.
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Then, tn addilion lo the transilions histed in Propositions 3, 4, and 6 the
Jollowing I-transitions are possible:

QS(f,ti,tii1) = QS([f,tii1)
(4
(4

In case one of these transilions is followed, the set of landmark values in
QS(f,ti.1) is augmented by l; < I* < l;,,. Note that the total ordering on
the set of landmarks is preserved.

b 11)yinc) (I*, std)
ylii1),dec) (I*, std)

able 3 on page 18 collects and names the transitions permitted by
Propositions 3, 4, 6, and 7, for use in the QSIM algorithm.

A.2 Infinity and Asymptotic Approach

I-transitions express the possible consequences of a changing parameter
reaching a limiting landmark value. But what if a parameter approaches
its limit asymptotically? By allowing both domain and range to include
+oo and —oo as endpoints, we can express asymptotic approach as reaching
the limit point at ¢ = co. The same method allows us to treat divergence
to infinite values as a possible behavior. Thus, every time-interval has an
endpoint, but some distinguished time-points (e.g. ¢t = oo, or t such that
f(t) = oc) may have no successor states. There are two constraints on
these types of behavior.

First, at ¢ = oo, every function in the system must be equal to some
landmark value and must, if that landmark is finite, have derivative zero
(i.e. direction of change std). Recall that oscillatory systems are han-
dled with a finite domain and repeated states, rather than with an infinite
domain.

Proposition 8 Let f : [a,00] — R be a reasonable function. If the limit of
f(t) as t — co 1s finite, then lim, . f'(t) = 0.

Proof. If lim; ., f'(t) > 0, then for some interval (e, 00), f'(t) must be
bounded away from zero. In this interval, f(t) = f(¢) + f'(t*) * (¢ — ¢) for
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some t* € (¢,00), by the Mean Value Theorem. Thus, lim; ., f(t) = oco.
Similarly in case lim; .o, f'(t) < 0, so the limit must be zero. ||

Second, if f(t) = oo, then t = b, the right-hand endpoint of the domain,
since a function cannot be continucusly differentiable across co. If b < oo,
then the direction of change must be tne.

Proposition 9 Let [ : [a,b] — R* be a reasonable function such that
limg_y, f(t) = co, where b is finite. Then lim, ,; f'(t) = co.

Proof. Suppose that lim, ,, f'(t) has a finite limit M > 0. Then for
some interval (b — 6,b), f'(t) € (M — €, M + ¢), which implies that

F(b—8)+ 6% (M —e) < f(b) < f(b—6)+6#(M+e)

which contradicts f(b) = co. ||

Using these propositions, we can test whether a distinguished time-
point can match ¢ = oo, and test moves to oo for consistency. With these
observations, the extended reals [—oo,cc| can be treated like any other
closed interval, and asymptotic approach is handled.
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B Constraint Consistency

This appendix specifies the rules by which each type of constraint tests
a tuple of qualitative state transitions for consistency. There are separate
tests for consistency of the qualitative magnitudes and the directions of
change.

B.1 Qualitative Magnitude Consistency

This appendix defines and justifies the evaluation of M*, M, ADD,
or MULT constraints when applied to particular gqualitative values.

The magnitude of a quantity is described qualitatively in terms of its
ordinal relations with a set of landmark values. The validity of a particular
application of an M', M, ADD, or MULT predicate is tested using not
only the signs of the arguments, but also their relations with other sets of
corresponding values. For example, if we know that ADD(p,q,r) is true,
then (p,q,r) is a set of corresponding values for this ADD constraint, and
if ' < pand r' > r, we can determine that ADD(p',q,r') must be false.
In the QSIM algorithm, these predicates are evaluated in order to test the
validity of a possible tuple of transitions at a particular constraint.

The criteria below generalize the Transition Ordering rules of Williams
(1984a, 1984b), and show how possible transition-tuples are compared with
known sets of corresponding values. The qualitative state before the tran-
sition is presumed to be consistent. Each criterion asks whether the ordinal
relations between the current values and the corresponding values will re-
main consistent with the constraint after the proposed transition.

B.1.1 Monotonic Function Constraints

If two function f and g, related by M*(f,g), are approaching corre-
sponding limits, we know that either both reach their limits together, or
neither does.

Proposition 10 Suppose M~ (f,g), with corresponding values (p,q), and

QS{far'l: !"1} = {[pzp']!de‘:}
QS(g,t1,t2) = ((9,9), dec)
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Then one of the following two possibililies must be true at ty:

f g
U}H]= 9(t2) = q
(tz) > p g(t2) > q.

Proof: Since M '(f,g) is true, there is a strictly monotonic function
H such that f(t) = H(g(t)) for all t € [a,b]. In particular, since p and
q are corresponding values, p = H(g). Thus, if g(ts) = g, we know that
f(ts) = p, and conversely by the synunetry of M (f,g). [|

If f and g are approaching limits, but only one of the limit points belongs
to a corresponding value pair, then only the other limit point is possibly
reachable in the next state.

Proposition 11 Suppose M*(f,q), with corresponding values (p,q), and

QS(f,t1,ta) = ((p, '), dec)
QS(g, tist2) = ((¢",4'), dec)

where ¢" # q. Then one of the following two possibilities must be true at
tj:
i g

(1) f(t2)>p g(t2) =4q"
(2) f(t2)>p g(t2) >q".

Proof: Since (p,q) is a corresponding value pair, there must be some
t* € [a,b] such that f(¢*) = p and ¢(t*) = g. Notice that it is not possible
for ¢' < q, because then g(t) < g(t*) while f(i) > f(t*) for t € (t1,t2), which
contradicts M (f,g). Thusg<g¢" <¢.

J cannot reach p without g simultaneously reaching g, as shown in the
previous proposition. Thus the only possibilities are that g reaches ¢", or
that neither reaches its limit. |

By symmetry, it is clear that analogous propositions hold whether the
constraint is M or M, or whether the corresponding limits are ap-
proached from above, below, or one from each side,
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B.1.2 Addition Constraint

We can use exactly the same technique to prove similar consistency
criteria for ADD(f,g,h) and MULT(f,q,h), in cases where Lthree, two or
only one of the limit points belongs to a known set of corresponding values.
The complexity of determining, implementing, and verifying all such tests
is formidable. Fortunately, there is a general relationship that captures all
possible such criteria.

Proposition 12 Let p, q, and r be corresponding values of f, g, and h,
where ADD(f,q,h). Then, for any t € [a,b], the following holds:

(7(t) —p) + (a(t) —q) = (h(t) — 7). (5)

Proof. f(t)+¢(t)=Ah{t)and p+qg=r. ||

The signs of the three terms in equation (5) can be determined di-
rectly from the ordinal relations among current values and landmarks, and
checked for consistency with the AD D relation by table lookup. The qual-
itative state of the three terms in equation (5) can only change if at least
one of [, g, and h reaches p, g, and r as a limit. A proposed tuple is rejected
if the resulting state would fail to satisfy equation (5).

The [ollowing propositions demonstrate the effect of this filter on cases
where the limits of f, g, and h share three, two, or only one value with a
particular correspondence.

Proposition 13 Suppose ADD(f,q,h), with corresponding values p+q =
r, and

QS[I'I 11,13} = {{P:p‘l}i df':}

QS(g,ts,t2) = ((q,9'), dec)

QS(h,ty,t2) = ((r,7"), dec)

Then ezactly one of the following four possibilities must be true al ty:

f g h
(1) f(ta)=p g(ta) =q hit)) =r
(2) flt2)=p g(te) >q h(ta) >r
(3) fltz)>p glta) =g h(ts) >r
(4) f(ta) >p g(ta) >q h(ts) >r
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Proof. For t € [t1,t:], f(t)—p >0, g(t) — g = 0, and h(t) —r > 0. The
three terms of equation (5) must have compatible signs, and cannot change
discontinuously from their state in (¢, {2), so cases 1-4 above are the only
possibilities. [|

In case we are not so fortunate as to have f, g, and h approaching
corresponding limits, we may have two of the functions approaching cor-
responding limits, and know where the corresponding value of the third
function is with respect to its limit. This allows us further to constrain the
set of possible next states.

Proposition 14 Suppose ADD(f,q,h), with corresponding values p+q =
r, and

QS (£, t1,t2) = ((p,p'), dec)

QS(g,t1,t2) = ((9,4'), dec)

QS(hT ‘{l: tEJ = {:[THTTIL rfE‘C}

where " # r. Then it is not possible to have both f(t;) = p and g(t2) = q.

Proof. Consider equation (5). If r > ¢, then the term h(t) — r is
negative for ¢ € (t;,¢2), while the other two terms are positive, which is a
contradiction. Thus r < 7",

All terms of equation (5) are positive on (f;,%2), and h(t) — r must be
strictly positive at ¢ = ta, so at most one of the other terms can be zero at

t2. ||

Proposition 15 Suppose ADD(f,g,h), with corresponding values p+q =
r, and

QS(L“: ’tﬁ} = {{P:‘P']!d‘gc}

QS(g,t1,t2) = {[q",q‘),dﬂc}

QS (h,ty,ts) = {(r,r"), dec)

where ¢" # q. Then it is not possible to have both f(t:) = p and h(t;) = r.
If g < 4", it 1s impossible to have h(ts) = r. If ¢ > q", it is impossible for
[(tz) = p.

Proof. If ¢ < 4", the middle term of equation (5) is strictly positive
on [t;, s, so only the first term can possibly become zero at t., so only
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f and g can possibly reach their limits. If ¢ > ¢", then the second term
of equation (5) is strictly negative on (f;,fs], so only the third term can
possibly become zero at Ls, so only g and h can possibly reach their limits.

The same technique can be used in case only one of a set of correspond-
ing values appears in the current set of limits.

Proposition 16 Suppese ADD(f,g,h), with corresponding values p+q =
r, and
QS{Iilhtﬂ) = l:[:p,p'},dﬂﬂ}

QS(g,tit2) = ((¢",4"), dec)
QS(h, ty,t2) = ((r",r'), dec)

where q" # q and " # r. Then if ¢" > qandr" < r, or if ¢" < q and
™ > r, 1t 1s impossible for f(t:) = p.

Proof. Examination of equation (5) shows that these cases would result
in the first term being zero, while the other two have opposite signs, which
is impossible. [|

Proposition 17 Suppose ADD(f,q,h), with corresponding values p+q =
r, and

QS{fr!ht" {{ :Pr) dEL‘}

QS(g,ti,t2) = ((¢",4"), dec)

QS(h,ty, tﬂ ((r,r"), dec)

where p" # p and q" # q. Then if p" > p and ¢" > q, or if p" < p and
q" < q, it is impossible for h(t;) = r.

Proof. Examination of equation (5) shows that these cases would result
in the last term being zero, while the other two have the same signs, which
is impossible. []

By symmetry, similar propositions hold in the cases where f, g, and h
are approaching their limits from various combinations of directions, not
only when all are decreasing. Fortunately, equation (5) makes it unneces-
sary to implement checks based directly on Propositions 13 - 17.
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B.1.3 Multiplication Constraint

If the three functions in a MULT constraint are approaching related
limits, we can constrain the possible results, similarly to what we did with
ADD constraints in the previous section. A separate consistency test checks
for legal combinations of signs (+,0,—) at a multiplication constraint.

Proposition 18 Let p, g, and r be non-zero corresponding values of the
functions f, g, and h, respectively, where MULT (f,9,h). Then, for any
t € [a,b], the following holds:

(9)-(-(4) o

Proof. f(t)=g(t) = h(t) and pxg=r. |

As with the addition constraint, QSIM uses equation (6) directly to test
the consistency of various combinations of f, g, and A reaching their limit
values, in comparison with a corresponding set of values, p+g = r. When
f(t) and p have the same sign, we can retrieve their ordinal relations to
classify the term f(t)/p as greater than, less than, or equal to 1. With
respect to this classification, the legal combinations of A, B, and C, where

MULT(A, B,C) are given by the following table:

C B
<1 =1 >1

<1 <1 <1 any
A =1 <1 =1 >1
>1 any >1 >1

Note that it is not necessary for the value 1 to be a landmark value of
any of the functions involved. The table is a guide to the implementation of
a consistency test for MULT (f, g, h), rather than representing an inference
that QSIM makes explicitly. The consistency test applies when the ordinal
relation between f(f) and p changes as f reaches its limit.

Propositions can be proved to demonstrate the degree of filtering pos-
sible with different sets of corresponding values, similar to Propositions 13
through 17 for addition, but they are omitted here.
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B.2 Direction-of-Change Consistency

An important difference between QSIM and the algorithms used by de
Kleer and Forbus is that quantities are represented by qualitative descrip-
tions rather than qualitative values. Thus, rather than being a partial
function that sometimes fails to compute a result, ADD is a three-place re-
lation evaluating to true or [alse according to whether its arpuments satisfy
the addition constraint. This appendix specifies the tables of acceptable di-
rections of change for ADD and MULT. The corresponding tables for M *
and M are obvious.

B.2.1 ADD(f,g,h)

The following table summarizes the combinations of directions of change
that satisly the ADD(f, g, h) constraint.

h g
ine  std  dec

tne tnc inc any
f std ine  std  dec
dec  any dec dec

B.2.2 MULT(f,g,h)

The combinations of directions of change that satisfy the MULT con-
straint depend on the signs of f, g, and h, as shown in the following tables,
derived from the identity h' = f'g + f4q'.

1.Iff>0,g>0,h>0,

h g

inc std  dec

inc  inc inc any
f std  inc std dec

dec  any dec dec
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2. Iff<D,g<0,h>0,

h q
ine  std  dec

iric dec dec any

[ std  dec std ine
dec any inc inc

3.1 f>0,9<0,h<0,

ine std dee
ine  any dec dec

f std inc std dec
dec  inc inc any

In case f < 0 and g > 0, the table is transposed.

4. 1 f>0,g=0,h=0,

h g
inc skd dec

e tne std dec

f std  inc sid dec
dec inc std dec

In case f < 0, the table remains the same, but with the signs reversed.
If f =0 and g # 0, the table is transposed.

5. 1 f=0,g=0,h=0,
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i

tne
std
dec

tne

std
std
std

std

std
std
std

dec

std
std
std

61
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C The QSIM Program and its Output

This appendix provides the structure-definition, the initialization, and
a complete trace of the output of QSIM on the Spring mechanism.

(define-structure spring
(functions a v x)
(landmarks (v (minf O v+ inf)))

(constraints (d//dt v a) (d//dt x v) (m0- a x))
(invariants

(a ((minf inf) nil))

(v ((minf inf) nil))

(x ((minf inf) nil))))

(defun initialize-spring ()
(make-initialization spring (generate-time-point)
‘{(x (0 inc))
(v (v+¢ std))
(a (0 dec)))))

The “paragraphs” of the following trace output each predict the succes-
sors of a given state. The sections of a paragraph describe:

e The initial qualitative state description;

e The number of qualitative state transitions assigned to each individ-
nal function;

e The decrease in number of transition tuples as each constraint applies
its filters;

¢ The effect of Waltz filtering when consideration of an adjacent con-
straint decreases the number of tuples;

e The effect of global filters;
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e The assignment(s) of transition rules that will create the successor
state(s).

Completing Si.
Completed S1 in 1 iterations.

Predicting successors of 51 in region SPRING.

0 = X [INC]
V* = V [STD]
0 = A [DEC)

Function A has 1 transitions.
Function V has 3 transitions.
Function X has 1 transitions.
Constraint M-(A X) has (1) -> (1) tuples.
Constraint D//DT(X V) has (3) -> (3) tuples.
Constraint D//DT(V A) has (3) -> (1) tuples.
Waltz filter of D//DT(X V): (3) -> (2).
Waltz filter of D//DT(X V): (2) -> (1).
Global interpretatiomns: (1) -> (1).
Predicting:

V: P3 (L1 STD) => ((LO L1i) DEC)

X: P4 (L1 INC) => ((L1 L2) INC)

A: Pé6 (L1 DEC) => ((LDO L1} DEC)
=> 1 successors.

Predicting successors of 52 in region SPRING.
0 < V[DEC] < V+
0 < X[INC] < INF
MINF < A[DEC] < 0
Function A has 2 transitions.
Function V has 4 transitions.
Function X has 2 transitions.
Constraint M-(A X) has (4) -> (2) tuples.
Constraint D//DT(X V) has (8) -> (4) tuples.
Constraint D//DT(V A) has (8) -> (4) tuples.
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Waltz filter of D//DT(X V): (4) -> (3).
Waltz filter of D//DT(X V): (3) -> (2).
Global interpretationa: (2) -> (1).
Predicting:

V: I6 ((Mi M2) DEC) => (M1 DEC)

X: I8 ((M1 M2) IHC) => (M* STD)

A: I9 ((M1 M2) DEC) => (M+ STD)

=> 1 =successors.

Predicting successors of S3 in region SPRING.

0 = V [DEC]
X1 = X [STD]
A1 = A [STD]

Function A has 3 transitions.
Function V has 1 transitions.
Function X has 3 transitions.
Constraint M-(A X) has (9) -> (3) tuples.
Constraint D//DT(X V) has (3) -> (1) tuples.
Constraint D//DT(V A) has (3) -> (3) tuples.
Waltz filter of M-(A X): (3) -> (2).
Waltz filter of M-(A X): (2) -> (1).
Waltz filter of D//DT(V A): (3) -> (2).
Waitz filter of D//DT(V A): (2) -> (1).
Global interpretations: (1) -> (1).
Predicting:

V: P6 (L1 DEC) => ((LO L1) DEC)

X: P3 (L1 STD) => ({(LO Li) DEC)

A: P2 (L1 STD) => ((L1 L2) INC)
=> 1 successors.

Predicting successors of 5S4 in region SPRING.

MINF < V[DEC] < 0
0 < X[DEC] < X1
A1 < A[INC] < O
Function A has 4 transitions.

The QSIM Program
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Function V has 2 transitions.
Fun: - ion X has 4 tranzitions.
Constraint M-(A X) has (16) -> (4) tuples.

Constraint D//DT(X V) has (8) -> (4) tuples.
Constraint D//DT(V A) has (8) -> (4) tuples.

Waltz filter of M-(A X): (4) -> (3).
Waltz filter of M-(A X): (3) -> (2).
Waltz filter of D//DT(V A): (4) -> (3).
Waltz filter of D//DT(V A): (3) -> (2).
Global interpretations: (2) -> (1).
Predicting:

V: I9 ((M1 M2) DEC) => (M#= STD)

X: I6 ((Mi M2) DEC) => (M1 DEC)

A: I3 ((M1 M2) INC) => (M2 INC)

=> 1 successors.

Predicting successors of S5 in region SPRING.

Vi = V [STD]
0 = X [DEC]
0 = A [INC]

Function A has 1 transitions,
Function V has 3 transitions.
Function X has 1 transitions.
Constraint M-(A X) has (1) -> (1) tuples.

Constraint D//DT(X V) has (3) -> (3) tuples.
Constraint D//DT(V A) has (3) -> (1) tuples.

Waltz filter of D//DT(X V): (3) -> (2).
Waltz filter of D//DT(X V): (2) -»> (1).
Global interpretations: (1) -> (1).
Predicting:

V: P2 (L1 8TD) => ((L1 L2) INC)

X: P6 (L1 DEC) => ((LO L1) DEC)

A: P4 (L1 INC) => ((L1 L2) INC)

=> 1 successors.
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Predicting successors of 56 in region SPRING.
Vi < V[INC] < 0O
MINF < X[DEC] < 0
0 < A[INC] < INF
Function A has 2 transitions.
Function V has 4 transitions.
Function X has 2 transitions,
Constraint M-(A X) has (4) -> (2) tuples.
Constraint D//DT(X V) has (8) -> (4) tuples.
Constraint D//DT(V A) has (8) -> (4) tuples.
Waltz filter of D//DT(X V): (4) -> (3).
Waltz filter of DJ/DT{X V): (3) -> (2).
Global interpretations: (2) -> (1).
Predicting:
V: I3 ((Mt M2) INC) => (M2 INC)
X: I9 ((M1 M2) DEC) => (M* STD)
A: I8 ((M1 M2) INC) => (M* STD)
=> 1 successors.

Predicting successors of S7 in region SPRING.

0 = V [INC]
X2 = X [STD]
A2 = A [STD]

Function A has 3 transitions,

Function V has 1 transitions.

Function X has 3 transitions.

Constraint M-(A X) has (9) -> (3) tuples.
Constraint D//DT(X V) has (3) -> (1) tuples.
Constraint D//DT(V A) has (3) -> (3) tuples.
Waltz filter of M-(A X): (3) -> (2).

Waltz filter of M-(A X): (2) -> (1).

Waltz filter of D//DT(V A): (3) -> (2).
Waltz filter of D//DT(V A): (2) -> (1).
Global interpretations: (1) -> (1).
Predicting:

I
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V: P4 (L1 INC) => ((L1 L2) INC)

X: P2 (L1 8TD) => ((L1 L2) INC)

A: P3 (L1 STD) => ((LO L1) DEC)
=> 1 successors.

Predicting successors of 88 in region SPRING.

0 < V[INC] < V=
X2 < X[INC] < O
0 < A[DEC] < A2
Function A has 4 transitions.
Function V has 4 transitions.
Function X has 4 transitions.
Constraint M-(A X) has (16) -> (4) tuples.

Constraint D//DT(X V) has (16) -> (8) tuples.
Constraint D//DT(V A) has (16) -> (8) tuples.

Waltz filter of M-(A X): (4) -> (3).
Waltz filter of M-(A X): (3) -> (2).
Waltz filter of D//DT(V A): (8) -> (8).
Waltz filter of D//DT(V A): (8) -> (4).
Global interpretatioms: (4) -> (3).
Predicting:

V: I3 ((M1 M2) INC) => (M2 INC)

X: I4 ((M1 M2) INC) => ((Mi M2) INC)

A: I7 ((M1 M2) DEC) => ((M1 M2) DEC)
Predicting:

V: I8 ((M1 M2) INC) => (M* STD)

X: I3 ((M1 M2) INC) => (M2 INC)

A: 16 ((M1 M2) DEC) => (M1 DEC)
Predicting:

V: I2 ((M1 M2) INC) => (M2 STD)

X: I3 ((M1 M2) INC) => (M2 INC)

A: 16 ((M1 M2) DEC) => (M1 DEC)
Found a cycle from 51 to 811,

=> 3 successors.

o active states.

67



68 The QSIM Program

Runtime: 0.4 seconds.
Total number of states 10.

The simmlation concludes here when three possible states are generated
for the final state of the eyele, due to a heuristic rule that recognizes the
existence of a cycle and deactivates its competitor branches. The alternate
branches can be reactivated by hand for further exploration.
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The following “qualitative graphs™ may also be antomatically generated,
and provide a convenient way to inspect the output of QSIM. The graph
below shows only the main, periodic, behavior of the Spring system.
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C.1  Availability of the QSIM Program

The QSIM program is available to researchers interested in qualitative
simulation. We are making the code available in order to encourage detailed
exploration and evaluation of these ideas and their possible applications
beyond what is possible in a published paper. The current implementation
runs in ZetaLisp on the Symbolics 3600 and the CADR, and with a reduced
graphical interface on the VAX in NIL.

It is often diflicult to evaluate ideas in artificial intelligence without ex-
perimenting with the strengths and limitations of a program implementing
those ideas. A paper making a particular set of theoretical points cannot
fully describe the capabilities and limitations of a complex algorithm, par-
ticularly as they relate to application areas of interest to particular readers.

Experiments are not often reproduced in Al because of the substantial
overhead in writing and debugging a sophisticated program. Distributing
the code makes it possible for the scientific community to evaluate the
program and the method for cases beyond those presented in publications,
As such, distributing the code functions as a form of secondary publication.

The QSIM program is made available to researchers in this spirit, in
return for comments, criticism, counterexamples, and bug reports. It is not
advertised or warranted as a software product, and all commercial rights
to the program are retained. Please contact me if you are interested.



