LABORATORY FOR
COMPUTER SCIENCE

s

i INSTITUTE OF
TECHNOLOGY

MIT/LCS/TM-284

A MIXED-INTEGER LINEAR PROGRAMMING
PROBLEM WHICH IS EFFICIENTLY SOLVABLE

Charles E. Leiserson

James B. Saxe

July 1985

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

A Mixed-Integer Linear Programming Problem
Which Is Efficiently Solvable

Charles IS, Leiserson
Laboratory for Computer Science
Massachuselts Institute of Technology
Cambridge, Massachusetts 02139

James B. Saxe
Department of Computer Scicnce
Carncgic-Mellon University
Pittsburgh, Pennsylvania 15213

Abstract-- Lfficient algorithms are known for Lhe simple linear programming problem where
cach inequality is of the lorm zj —Z; < a45. Furthermore, these techniques extend to the integer
lincar programming variant of the problem. This paper gives an eflicient solution to the mixed-
inleger linear programming variant where some, bul not necessarily all, of the unknowns are
required to be integers. The algorithm we develop is based on a graph representation of the
constraint system and runs in O(|V||E| + [V|?Ig|V|) time. Tt has several applications including
optimal retiming of synchronous circuitry, VLSI layout compaction in the presence of power and
ground buses, and PERT scheduling with periodic constraints.

Keywords: Algorithms, lincar programming, mathcmatical programming, graph theory,
shorlest paths, combinatorial optimization.

This research was supported in part by the Defense Advanced Research Projects Agency under Contract NOOO14-
80-C-0622 and by the Oflice of Naval Research under Contract N00014-76-C-0370.

1. Introduction

Much rescarch has centered on the problem ‘of finding shortest paths in graphs. It is well
known that there is a direct correspondence between the single-source shortest-paths problem
and the following simple lincar programming problem. * 7

Let S be a set of linear inequalities of the form ij- — S'- a;;, where the z; are unknowns
and the a;; are given real constants. Determine a set of values for the z; such that the
inequalities in S are satisfied, or determine that no such values erist.

This paper considers the mized-integer lincar programming varianl of this problem in which some
(but not necessarily all) of the z;.are required to be integers. The problem arises in the context
of synchronous circuil optimization [9], but it has applications to PERT scheduling and VLSI
layout compaction as well. :

Before formally defining the mixed-integer programming problem, we restate the linear pro-
gramming problem above in another form.

Problem L. Let (¢ = (V, I, a) be an edge-weighted, directed graph, where V = {1,2,...,
[V [} .is the v‘ertez_se't, the set If of edges is a subset of VXV, and for each edge (i,7) € If the
edge weight a;; 15 a real number. Find d_ vector 1 = (z1,22,..., z|y|) satisfying the constraint
thaﬁ:

Ly 2:," = Ay

for all (i, §) € E, or determine that no feasible vector ezists.

The graph G is called a constraint graph for the lincar programming problem. There are
three advantages in adopting a graph representation of the problem. First, an adjacency-list
representation (1, p. 200] of the constraint graph G is more cconomical than, for example, a
lincar programming tableau or, when the graph has relatively few cdges, a matrix of the Gije
Sccond, Problem L, frequently arises in situations that are naturally described by a graph. Finally,
the graph-theoretic formulation helps in understanding the algorithms that solve this kind of
problem. '

A method for solving Problem L was discovered in the late 1950's by Ford and Bellman [8, p.
74]. Yen [13] gave some improvements Lo the Bellman-Ford algorithm as well as a cogent analysis
showing that its running time is O(|V]*). This bound is easily improved to O(|V||E|) by using
an adjacency-list representation for the constraint graph.

The Bellman-Ford algorithm can also be used to solve Lthe integer lincar programming variant
of Problem L, in which all the z; are required to be integers. If the edge weights a;; all happen to
be integers, the Bellman-Ford algorithm will produce integer values for the z;. If the a;; are not
integers, however, but the z; are required to be integers, each edge weight a;; may be replaced
by |ai;] without affecting the satisfiablity of the incqualities.

The locus of this paper is the mized-inieger variant of Problem L.

Problem MI. Let G = (V,V1,E,a) be a edge-weighted, directed graph, where V =
{1,2,..,|V|} is the vertez set, the set Vi is a subset of V, the set I of edges is a subset
of V. X'V, and for each edge (i,7) € E the edge weight a;; is a real number. Find a vector
T = (z1,zs,..., Z|v|) satisfying the consiraints that

z; =2 < ayy
for all(i,5) € E and that z; € Z for alli € Vi, or determine that no feasible vector ezists.

1

The vector z = (z,, z,..., zjv|) is called a solution Lo graph G, and iff graph G has a solulion,
we say that G is satisfiable. When it is clear {rom context, we use the same terminology for
Problem L.

In addition, we shall refer to the vertices in V7 as the integer vertices of G and the vertices in
VR =V =V} as the real vertices of G. We also partition the set of edges into two sets depending
on whether the vertex at the head of the edge is integer or real:

Er={¢5)eE|jeV},
Er={(t,7)€ L |j€Vg}.

This paper presents two algorithms to solve Problem ML The first, which runs in O(|V||V;]|E|)
time, is a straightforward extension of the Bellman-Ford algorithm. The second is more sophis-
ticaled and has a running time of O(|V||E2] + |V ||Vy|Ig [V]). We conjecture that the O(|V || £])
running time achieved by the Bellman-Ford algorithm for the pure lincar programming and pure
integer programming versions of the problem is not achievable in general for sparse instances of
Problem MI.

The remainder of this paper is organized as follows. Section 2 reviews the Bellman-Ford
algorithm. Section 3 presents a simple relaxation algorithm for solving Problem MI. Scction 4
discusses three techniques--Dijkstra’s algorithm, rewcighting, and I'ibonacci heaps —which are
used in Scction 5 lo construet an asymplotically cfficient algorithm for Problem MI. We discuss

applications and present some concluding remarks in Section 6.

2. Shortest paths and the Bellman-Ford algorithm

This section reviews how the Bellman-Ford algorithm solves Problem L. Although the results
of this section are well known and can be found in most textbooks on combinatorial optimization
(see, for example, [8, p. 74]), we repeat the material here for the reader’s convenience.

There is a natural correspondenee between Problem L and the graph-theoretic single-source
shortest-paths problem. Let ¢ = (£,V,a) be an instance of Problem L. Suppose that for cach
vertex 1 € V, there is a path to ¢ from vertex 1, and let d; be the weight of shortest (least-weight)
path from vertex I to vertex 4. (At the end of the section, we shall discuss the case in which some
vertices are not reachable from vertex 1.) Then for any edge (4,7) € E, we have d; — d; < ay;
since the cdge (4, 7) can be appended to a shortest path from vertex 1 to vertex 7 to produce a
path from vertex 1 to vertex j of weight d; + a;;. Thus the shortest-path weights d are a solution
to G.

Whenever G is satisfiable, there are infinite number of solutions. For example, if z is a solution
to 7, then uniformly adding any constant &£ to cach z; yiclds another solution y, where y; = z,+k
for each i € V. The assignment z; « d; gives cach z; its largest possible value subject to the
constraint that z; = 0. To see this, consider any path p of weight d; from vertex 1 to vertex 1.
If the inequalities associated with the cdges of p are summed, the unknowns associated with the
intermediate vertices cancel and the result is the inequality z; — z; < d,.

Whenever the graph G contains some cycle ¢ whose weight is negative, the shortest path
weight from vertex 1 to any vertex 1 on cyele ¢ is undefined because the weight of any path
to vertex ¢ can be diminished by appending a traversal of ¢. In this case the graph G is not
salisfiable. If the inequalitics associated with the edges of ¢ are summed, all the unknowns z;
cancel, and the resulting incquality asserts that 0 is less than or cqual to the weight of ¢, which
is false.

The Bellman-Ford algorithm, which is given below, solves Problem L by finding the weight
of the shorlest path to each vertex from vertex 1. Should the graph contain a negalive-weight
cycle, the algorithm reports that the graph is unsatisfiable by calling the procedure Fail, whose
semantics we leave unspeeified. ' : -
Algorithm BF (Bellman-Ford algorithm).

BIFl. z; « 0
BF2. for:« 2to |V] do z; «00;
BI'3. for ind — 1 to |[V|—1 do

B4, foreach (1,7) € E do _
BI'5. ‘.'.1':3.“ — iIliTl(_Ij, z; + a,-j);
BI'6. foreach (7,5) € I/ do '
BIF7. if z; > z; + a,; then [7ail;

For each vertex 7 € V,ithe Bellman-Ford: algorithm iteratively updates the weight z; of a
tentative shortest path from vertex 1 to vertex 7. Alter initialization, the algorithm makes [V |—1
passes through: the edges in: £ and-refazes each: edge (7, 7) by computing £j < min(z;, z; + a;;).

A simple analysis duc to Yen [13] indicales why the Bellman-Ford algorithm works. The
weight z; converges to the weight d; of a shortest path from vertex 1 to vertex 7 if the edges on
the path are relaxed in order along the path. The sequence of edges relaxed by the Bellman-Ford
algorithm consists of [V] =1 copices of some ordering of F, and therefore contains every vertex-
disjoint path as a subsequence. If there are no negative-weight cycles in G, then every shortest
path is vertex disjoint, so cach z; converges to the shortest-path weight d;. On the other hand,
il there is a negative-weight cyele in the graph, the algorithm deteets this condition by iterating
once more through all edges to sce whether any of the incqualities remain unsatisfied.

The Bellman-Ford algorithm as given above determines the weight of the shortest path from
vertex 1 to each vertex, and therefore solves Problem L whenever all vertices of G are reachable
from vertex 1. The code can be adapted to solve Problem I, on arbitrary graphs by simply
changing the initialization step (lines BIF1 BF2). In particular, if cach z; is assigned a finite
initial value u;, the relaxation in lines BF3-BF5 sets cach z; to its maximum value subject to the
constraints that z; — z; < a;; for cach edge (¢,7) € E and that z; < u; for cach vertex 1€ V.
Notice that whenever the constraint graph G is satisfiable, it is satisfiable subject to the additional
constraints z; < u;. Should the incqualities be inconsistent beeause there is a negative-weight
cycles in the graph, the relaxation will not converge to a solution, and the inconsisteney will be
detected by the test in lines BF6-BF7.

3. Simple relaxation algorithms for Problem MI

As was mentioned in the introduction, Problem MI can be solved dircctly by the Bellman-
Ford algorithm when all unknowns are real (Problemn L) and when all unknowns are integer.
The combination of integer and real unknowns, however, scems to make the problem harder.
In this section, we gain some intuition about the structure of Problem MI by introducing two
algorithms that solve it in O(|V||V;|]Z]) time much the same way as the Bellman-Iord algorithm
solves Problem L. The asymptotically efficient algorithm in Section 4 is derived from the sccond
of these algorithms. -

A natural approach to solving Problem MI is to see whether the Bellman-Ford relaxation
approach can be made to work. Since we have both integer and real vertices in the graph,

3

0.4 0.4 o./

0.2 =3 0.4

Figure 1. An instance of Problem ML Integer vertices (V; = {1,4}) are
shown as squares and real vertices as circles.

however, we must modily the relaxation step BF5 in the Bellman-Iford algorithm to produce an
integer value whenever j is an inleger vertex (line R6). This approach does in fact work, but
it requires more iterations than the simple Bellman-Ford algorithm. The next algorithm solves
Problem MI. The number of iterations z in line R2 will be determined in the analysis following
the algorithm.

Algorithm R (Relazation).

R1. foreach:€V do z; + 0;
R2. for ind+— 1ton do

R3. foreach (7,7) € E do

R4. begin

R5. z; < min(z;, T; + ag;);
RR6. if j € Vi then z; « |z;];
R7. end;

R8. foreach (z,7) € E do

R9. if z; > z; + a;; then Fail;

In order to determine a value of n such that Algorithm R works, we introduce the notion of
a reducing path. Let p be a path starting at some vertex &, and suppose that z is initially sct to
0 and that all the remaining z; are initialized to co. Suppose the edges in path p are traversed
in order starting from k, and cach cdge (7, 7) along the path is relaxed as in stalements R5-RR6.
If cach relaxation of an edge (i (i,) reduces the value zj, the path p is called a reducing path.

Whenever a sequence of cdges contains all reducing paths as subsequences, the relaxation of
cach edge in the sequence in order yiclds a solution. (The proof is analogous to Yen's analysis
[13] of the Bellman-Ford algorithm.) The Bellman-Ford algorithm solves PProblem L because in a
satisfiable graph with only real vertices, cach vertex occurs at most once on any single reducing
path. (And in fact, every shorlest path is a reducing path.)

When some unknowns are integer and some are real, however, it is possible for a reducing
path to visit the same vertex more than once, even if the graph is satisfiable. For example, in the
graph shown in Figure 1, the reducing path p = 3—+2-21-52—-3—-24-3-2 visits vertices
9 and 3 three times each. If all the z; are initially set to 0, the edges of p must be relaxed in
their order along the path to achicve convergence. Morcover, relaxing the entire edge set in some
arbitrary order only 3 = |V|—1 times might not achieve convergence. Since the value of n in
line R2 must be at least the maximum number of edges in any reducing path, the value [V -1,
which was used in Algorithm BF, will not suffice.

4

Fortunately, reducing paths are never very long in satisfiable graphs because of the following
lemma. 5 i ‘
Lemma 1. Suppose G = (V, Vr, I2,a) is satisfiable. If p.is a reducing path in G, then
1. p wsits no integer vertez more than once, and
2. p never visits the same real verlez twice without visiting some integer verter in
between.

Proof. If cither condition is violated, then the reducing path p can be extended indefinitely by
repealing the cycle that causes violation. J

Lemma Iallows us to determine a value for n in line R2 of Algorithm R such that the z
converges to a solution whenever G is satisfiable, ‘Any reducing path contains cach integer vertex
al most once and each real vertex at most [V;| + 1 times. Since the number of edges in a path is
onc less than the number of vertices, any reducing palh for a'satisfiable graph can have no more
than [Vi| + (IVif +1)[Va] — 1 = |Vi||[Va] + |V| = 1 cdges. Thus the.limit 7 of the outer loop in
Algorithm R should be set. to [V;||Vg[+ |V [~ 1. The overall running time of Algorithm R is thus
oIV [Ivill=)). | = fl

This analysis suggests the following algorithm which is slightly more cfficient than Algorithm
R, and which forms the basis of the asymptotically cflicient algorithm presented in the next
section. ‘

Algofithm M (Modified relazation).

ML1. foreach i € V do z; « 0;
M2. for ind « 1 to |[Vg| do

M3, foreach (7,7) € Er do
M4. zj « min(z;, z; + a;;);
M5. for ind2 « 1 to |V| do
M§. begin
M7. foreach (7,7) € Er do
M8. zj < min(z;,|z; + ai;]);
M9. for ind «— 1 to |Vg| do

- M1o0. foreach (i,7) € Ex do
Mi1. z; + min(z;, z; + a;;);
Mi2. . end; .
M13. foreach (,5) € E do
Mi4. if z; > z; 4+ a;; then Fail;

The only difference between this algorithm and Algorithm R is that it treats the edges in E;
scparalely from the edges in Eg. In lines M7-M8 of Algorithm M, each edge in I} is relaxed once.
There are |Vy| such passes over E; which are preceded, followed, and separated by ezhaustive
relazations of the edges in Eg (lines M2-M4 and M9 -M1 1). In each exhaustive relaxation of Ep,
edges are relaxed until no further changes in the valucs of z; are possible for j € Vg. (Actually,
the relaxations in lines M2-M4 and M9 M11 are only guaranteed to be exhaustive if there are
no negative-weight cycles in Ep. If there are eycles of negative weight, however, this condition
is detected at the end by the convergence test in lines M13-M14.)

4. Dijkstra’s algorithm and reweighting

Section b gives a more eflicient algorithin to solve Problem MI than cither Algorithm R or
Algorithm M. Three important techniques are used in the algorithm. The first is Dijkstra’s
algorithm which finds shortest paths in a graph from a single source in the case when all the edge
weights are nonnegative. The sccond is reweighting, which is a technique due to Ildmonds and
Karp [3] and used by Johnson 7] in his cfficient algorithm for solving the all-pairs shortest-paths
problem. The third is the Fibonace: heap datla structure due to Iredman and Tarjan [1], which
is an improved priority queue thal makes Dijkstra’s algorithm run in time O(|E] + |V]Iig|V]).

Given a graph G = (V, E,q) such that all edge weights a;; are nonnegative, Dijkstra’s
algorithm computes for each vertex i, the weight d; of the shortest path from vertex 1. Because
cach edge is relaxed exaclly once, this algorithm is Faster than Lhe Bellman-Ford algorithm which
solves the same problem for arbitrary edge weights. Dijkstra’s algorithm derives its clliciency from
the observation that along any shortest path from vertex I, the shortest-path weights d; form a
nondecreasing sequence if all the edge weights are nonnegative. Thus, a sequence co nsisting of all
edges (4, 7) € I in nondecreasing order of the distances d; contains as subscquences shortest paths
from vertex 1 to all vertices in V. Furthermore, such a scquence of edges can be computed on
the fly using a priority queue. (The textbook [1] gives a proof of correctness for this algorithm.)

Algorithm D (Dijkstra’s algorithm).

D1. Ty« 0;

D2. for ¢+ 2to |V]| do z; « oo;
D3. Q«V;

D4. while Q@ 5 0 do

D5. begin

D6. Choose © € () such that z; = min;eq z;;
D7. Q Q- {i};

Ds8. foreach j € Vi such that (1,5) € Er do
D9. z; « min(z;, z; + a;;);

Di1o. end;

If the set @ in the algorithm is implemented as a standard priority queue, each extraction
(lines D6-D7) and update (line DY) cosls O(lg|Q[) = O(lg|V|]) time. Thus the total running
time of Dijkstra’s algorithm is O(|E|lg|V|). Fredman and Tarjan [4] deseribe a data structure
called Fibonacci heaps that supports arbitrary deletion in O(lgn) amortized time and all other
standard priority queue operations (including update) in constant amortized time. By using a
Iibonacci heap in Dijkstra’s algorithm, they show that the performance can be improved to
O(lE| + V| Ig V1.

Since Dijkstra’s algorithm is cquivalent to the Bellman-Ford algorithm on graphs with non-
negative edge weights, it can be used to solve Problem L on such graphs. This is not very
interesting in itself, since any graph G = (V,E,a) in which all edge weights are nonncgative
can be trivially satisfied by setting z, to 0 for cach i € V. Our interest, in Dijkstra’s algorithm
comes from a stronger property of the solutions it finds. Suppose the initialization step (lines
D1-D2) is changed so that each variable z; is initialized to a finite valuc u;. Then the relaxation
procedure in lines D3 -D10 will set each z; to ils largest possible value consistent with the con-
straints that z; — z; < a,; for cach cdge (4,7) € I and that z; < wu; for cach vertex 1 € V. In
other words, lines D3-D10 of Dijkstra’s algorithm are functionally equivalent to lines BF3-BF5

6

of the Bellman-Ford algorithm provided that all the edge weights a;; are nonnegative. Since a
graph with only nonnegative edge weights can never contain a rl(\.gnﬁ\fu-W(\.'tghL cycele, no test for
convergence is necessary in this case. iy et -

The clficient algorithm we shall present to solve Problem Ml is a modification of Algorithmn
M. Notice that lines M9 MI1 of Algorithm M exhaustively relax the cdges in Egr'in a manner
similar to lines BF3- BI'5 of the Bellinan-Ford algorithm. In Algorithm M, however, this code is
executed many times. The effieient algorithm to solve Problem MI usos a trick to replace this
code with code based on ihe more eflicient relaxation procedure in lines D3-D10 of Dijkstra’s
algorithm. This trick is the teehnique of reweighting duc to I’dmonds and Karp [3].

Lemma 2. Let G = (V,E,a) be an edge-weighted graph, for each i € V let r; be a real
number, and let Il = (V' I,b) where b — dij +1; — 15 for each edge (7,7) € EE. For each
vertez it € V let z; be a real number and let Yi = zi—r1i. Thenz;—x; < a;y for all(1,7) € E
if and only if y; — y; < bi; for all (i,7) € I (that is, = s a solution to (7 if and only if y 1s -
a solution to H.) .

Proof. Trivial. §

We call the vector r = (ry, 7y, .. -»T|v|) a reweighting of the graph G.

5. An asymptotically efficient algorithm for solving Problem MI

This section shows how Dijkstra’s algorithm and reweighting can be incorporated into Algo-
rithm M to yicld a faster algorithm for solving Problem MI. Given a graph G = (V, V5, E,a), the
idea is to find a rewcighting r such that the rewcighted graph /1 = (V, Vy, 2, b) has cdge weights
bij = ai; +r; —r; > 0 for all cdges (4,7) € Fg. Lemma 2 guarantees that G is satisfiable if and
only if /I is satisfiable and also that a solution y to I can be converted into a solution z to G by
selling z; = y; + r; for cach 1 € V. The advantage gained by transforming the problem on G to
a problem on 1 is that the relaxation-portion of Dijkstra’s algorithm (lines D3-D10) can replace
the Bellman-Ford relaxation (lines M9-M11), which is the most expensive part of Algorithm M.

The first stage of the algorithm is to determine the reweighting values r; for all 1 € V and
the new edge weights bij = a; +r; —r; for all (¢,7) € E. We must choose the values r; such
thal b;; > 0 for all (¢,7) € Kg. Since this is cquivalent to requiring that r; — r; < ay; for all
(¢,7) € ER, values for the 7; can be found by applying the Bellman-Ford algorithm to the graph
(V,Eg,a). The first few lines of the algorithm are:

Algorithm T (Efficient algorithm).

T1. fori€V dor « 0;
T2. for ind — 1 to |Vg| do

T3. for (7,7) € Er do

T4, rj « min(r;,7; + a;);
T5. for (7,7) € Ex do

T6. ifr; >+ a;; then Fail
T7. for (i,7) € E do

T8. b{j —ay; 115

If the algorithm fails in line T6, then there is a cycle of negative wcigh.t among the edges in
I’g, and hence graph G is unsatisfiable even in the absense of integer constraints. Otherwise, the
values b;; computed in line T8 are nonnegative for all (7,7) € Ep.

7

The next stage of Algorithm T is to solve the mixed-integer problem on the graph 1/ =
(V, V1, E,b). The algorithm alternately performs single relaxation passes on the edges in IS7 and
exhaustive relaxations of the edges in If g, as in Algorithm M. We begin by initializing the values
¥:, which will converge to a solulion to 1 il H is satisfiable. :

T9. fori€V do y; + 0;

This initialization has the added fortune of subsuming the first exhaustive relaxation of Fg (lines
M2-M1 in Algorithm M). Alter the exccution of line T9 we have Y5 =¥ = 0~0 < by for all
(1,7) € Eg, which means that the edges in Kp are already exhaustively relaxed.

The next portion of Algorithm T parallels lines M5-M12 of Algorithm M and is where most
of the computing gets done.

T10. for ind « 1 to |V;| do

TI11. begin

L2 for (¢,7) € Er do

T13. Yy« min(y;, |y + bi;]);

T14. Q —V;

L5 while @ # 0 do

T16. begin

Taz. Choose 1 € Q such that y; = minjegq ¥5;
T18. Q+—Q-{i};

T19. for j € Vg such that (i,j) € E do
T20. y; + min(y;, y; + bj);

T21. end;

T22. end;

This code solves the problem on graph I in almost cxactly the same way that Algorithm M
would. The only dilference is the method by which the edges of Eg are exhaustively relaxed.
Whereas lines M9-M11 of Algorithm M perform the exhaustive relaxation using the Bellman-
Ford algorithm, lines T14-T21 of Algorithm T take advantage of the nonnegativity of the b;; for
(4,7) € Eg and use Dijkstra’s algorithm.

The final part of Algorithm T is to cheek the convergence of the y and to apply Lemma 2 to
produce a satislying assignment z for the original graph G.

T23. for (,5) € E; do

Ta4, if y; > y; + b;; then Fail;
T25. for (4,7) € E do
T26. Ty &=y + 1

Lines T23-T24 check the convergence of y by testing the inequalitics associated with the edges
in ;. The inequalities resulting from edges in 'k need not be checked because the relaxation
in lines T14-T22 is guaranteed to be exhaustive. (If there were negative-weight cycles in Fg, we
would have detecled this in lines T5-T6.)

Lines T25-T26 convert the solution y to graph /I into a solution z to graph G. Lemma 2
cnsures that the inequalitics z; — z; < ay; are satisfied, but we must also show that the z; are
integers for all 1 € V;. For cach 7 € V1 the value ; is an integer, however, and furthermore, the
values of the 7; produced in lines T1-T4 are zero for all 1 € V7. Thus for all the integer vertices,
the z; are integers.

In summary, we have proved the following thecorem.

8

Theorem 3. Algorithm T solves Problem MI.

The running time of Algorithm T is O(VI|E] + |V||Vi]lg|V]), if the priority queue is imple-
mented using a I'ibonacci heap. '

6. Applications, extensions, and conclusions

The solution to Problem Ml was demanded by a problem concerning optimization of sychronous
c.irA(:uiLry by retiming [9]. This scetion bricfly deseribes two ot,hcrmproblems--compaction of
VLSI circuits in the presence of power and ground buses and PERT scheduling with periodie
constraints - which can-be reduced to Problem MI. We also consider an extension of Problem MI
where mi:ltip}e classes ol periodie constraints must be satisfied. (FFor example, some of the z; are
required to bé'in_Le'gni"S, and others to be exact multiples of an integer constant c.)

Circuit. compaction

Optimal (one-dimensional) compaction of VLSI circuit layouts [5] is another application of the
Belhnan-Ford algorithm. 1Bach layout feature is given a variable representing an z-coordinate,
and the design riles are enforeed using constraints of the form z; —z; < a;;. It may be desirable,
however, to allow feature 7 to be to the left of feature J or vice versa, but not to allow them
to occupy the same position. Unfortunately, if one wishes to allow this kind of transposition of
layout fealures, cither optimality or performance must be sacrificed because the problem becomes
NP-complete [10]. But for certain compaction problems arising in practice, transposition of layout
features can be allowed.

Some design methodologies enforce the placement of power, ground, and clock to be at regular
intervals. For example, one signal processing system [11] requires that these wires be repeated
every 200X, and that the width of all cells in the system be integer mulliples of this distance.
The designer is then constrained to build a new cell so that the layout featurcs are tightly packed
among the global wires. In this context, where some layout features may go on one side or the
other of some global wire but may not overlap, the compaction problem can be formulated as
Problem MI.

PERT scheduling

Suppose we have a constraint graph with vertices representing milestones in a project, and
edge-weights indicating the timing constraints between milestones. Generally, the Bellman-Ford
algorithm can be used to provide an optimal scheduling of the milestones. If a work day is from
9:00 a.m. to 5:00 p.m., however, we may not wish to schedule a onec-hour job to start at 4:30
p.m. Advancing the job to the next day may cause an carlier job to be advanced as well if the
two jobs are constrained to fall near each other. The problem of PERT scheduling with periodic
constraints can be cast as Problem MI.

Intuitively, the mixed-integer formulation allows one to include for each job (1) a real variable
representing the starting time of the job, and (2) an integer variable representing, say, noon on
the day the job occurs. Thus one can include constraints which say, for example, “This job must
start before 4:00 p.mn. on the day it occurs.”

Multiple periodic constraints _

Suppose that in the PERT scheduling application mentioned above, we also wish to take into
consideration constraints involving weckends. To do this, we would associate with cach job a
third variable representing, say, Sunday noon of the weck during which the job occurs. We

9

arc then required to solve a variant of Problem MI in which there are two classes of periodie
constraints - some variables are required to be exactl integers and others to be exact multiples of
7 while the remainder.may have arbitrary real values. '
The solution to this problem is based on the following algorithm for solving Problem MI. (We
assume without loss of generality that G = (V, Vy, I2,a) is strongly connected).
Algorithm U
Ul. if (V, E,a) contains a negative-weight cycle then Fail
else foreach (z,7) € V; X V; do
bij — [the least path weight from ¢ to 7 in (V, E,a)l;
U2, if (VI, Vi X V7, b) contains a negative-weight cycle then Fail
else find an integer assignment z on V; such that z;—z; < by lor all 7,7 € Vi
U3. Apply the Bellman-Ford algorithm to (V,ER,a) using the =; lound in Step U2 as
initial values for the integer vertices and infinite initial values for the real verbices;

Step Ul produces a graph /1 = (Vr, Vi X Vi, b) which is feasible if and only if G is leasible,
Step U2 solves If if I is [casible, and Step U3 extends the solution from the set Vi of integer
vertices to the entire vertex set V. Step Ul can be performed in O(|V[*) time by the Floyd-
Warshall algorithm [8] or in O(|V||I2] + |V;||V|1g|V|) time by Fredman and Tarjan’s improved
version [4] of Johnson’s algorithm [7]. Step U2 can be performed by the Bellman-Ford algorithm
and takes time O(]er[s) because I1 is a complete graph. The cost of Step Ul dominates the cost
of Step U3, which takes only O(|V||Eg|) time.

Algorithm U extends naturally to the case in which there are mulliple classes of periodic
constraints, provided that each period (e.g., 1 week) is an exact multiple of the next smaller
period (e.g., 1 day). First, Step Ul is applied (with an appropriate scaling of the edge weights)
to produce an cquivalent problem in which the most loosely constrained class of vertices in the
original problem is eliminated from consideration. This new problem is then solved recursively
(or by dircct application of Algorithm T if only two classes of vertices remain). Finally, the
solution is extended to the entire set of vertices, as in Step U3.

Acknowledgments

We would like to acknowledge the contributions by Flavio Rose of MIT when we first studied
this problem. The three of us originally produced Algorithm U, which is more thoroughly
deseribed in Rose’s master’s thesis [12]. Thanks to Alex Ishii and Ron Rivest of MIT for reading-
drafts of the paper. Thanks also to Don Johnson of Penn State, Dick Karp of Berkeley, Gene
Lawler of Berkeley, and Nimrod Megiddo of CMU for helpful discussions.

References

(1] Alfred V. Aho, John E. Hoperoft, and Jeflrey D. Ullman, Data Structures and Algorithms,
Addison-Wesley, Reading, Massahusetts, 1983.

[2] E. W. Dijkstra, “A notc on two problems in connexion with graphs,” Numerische Mathe-
matik, Vol. 1, 1959, pp. 269-271.

[8] Jack Edmonds and Richard M. Karp, “Theoretical improvements in algorithmic cfliciency
for network flow problems,” Journal of the Association for Computing Machinery, Vol. 19,
No. 2, April 1972, pp. 248-264.

10

[1] Michacl L. Fredman and Robert Endre Tarjan, “Fibonacci heaps and their uscs in improved
network optimization algorithms,” Proceedings of the 25th Annual Symposium on Founda-
tions of Computer Science, INELE Computer Socicty, October, 1984, pp: 338 -346.

[5] Min-Yu Hsuch, “Symboiic layout and compaction of integrated circuits,” Memorandum No.

: UCB/ERL M79/80, University of California, Berkeley, December 1979

[6] Donald B. Johnson, “Priorily queues with update and finding minimum spanning trees,”
Information Processing Letters, Vol. 4, No. 3, December 1975, pp. 53-57.

[7] Donald B. Johnson, “Efficient algorithms for shortest paths in sparse networks,” Journal of
the Association for Computing Machz'ne_ry, Vol. 24, No. 1, pp. 1-13, January 1977.

[8] Eugene L. Lawler, Combinatorial Optimization: Networks and Matroids, 1lolt, Rinchart and
Winston, New York, 1976.

[9] Charles L, Leiserson, [Mavio M. Rose, and James B. Saxe, “Optimiiing synchronous circuitry
by retiming,” Third Caltech Conference on Ve'ry Large Scale Integration, R:mdn._] Bryant, ed.,
~ Computer Science Press, Rockville, Maryland, March 1983, pp. 87-118. :
[10] Thomas Lengauer, “On the solutjon of inrfquaﬁty systems relevant to IC-layout,” Proceedings
of the 8th Conference on G‘mphthéoretic Concepts in Computer Science, Carl Ilanser Verlag,
Munich, West Germany, 1982. :

[11] Richard F. Lyon, “A bit-serial VLSI architectural methodology for.signal processing,” VLSI
'81, John P. Gray, ed., Academic Press, New York, 1981, pp. 131-140.

[12] Flavio M. Rose, Models for VISI Circuits, Masters Thesis, Department of Eleetrical En-
gineering and Computer Scicnce, Massachusetts Institute of Technology, March 1982. Also
available as MIT VLSI Memo No. 82-114. g

[13] Jin Y. Yen, “An algorithm for finding shortest routes from all source nodes to a given

destination in general networks,” Quarterly of Applied Mathematics, Vol. 27, No. 4, 1970, -
pp. 526-530.)

11

