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Abstract

We present a new transmission control strategy for local-area networks in which each
station dynamically estimates the probability that r stations are ready to transmit a packet,
for each nonnegative integer r. A station then transmits a packet with a probability based
on these estimates. Fach station updates its estimates using Bayes’ Rule after observing
whether the current time slot contained a collision, a successful transmission, or a hole (an
empty slot). This strategy we call Bayesian Broadcast.

An clegant related strategy — which we call Pseudo-Bayesian Broadcast — is derived
by approximating the probability estimates by a Poisson distribution with mean X and
further simplifying. Fach station keeps a copy of \, transmits a packet with probability
i, and then updates \ in two steps:

—5 = 1.39221, otherwise (for holes and

o If there was a collision increment X\ by
successes) decrement A by 1.

@ Set A to max(X\ + ¢, 1), where « is the average success rate on the channel.
Simulation results are presented demonstrating that the Pseudo-Bayesian Broadcast
algorithm, although simple, performs very well in practice.

Keywords: Networks, broadcast procedures, packet networks, ALOHA, Bayes’ Rule,
binary exponential backoff, ithernet, local-area networks.
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L INTRODUCTION

We propose three new strategies for the classic problem of controlling trallic on a
local-area or satellite broadcast communications network. The first strategy, which we
call Bayesian Broadcast, is presented to develop the underlying ideas. It is an “ideal”
strategy that is unlikely to be cost-cffective in practice. The second strategy, which we call
Pseudo-Bayesian Broadcast, is an extremely simple and elegant approximation to Bayesian
Broadcast. We give simulation results demonstrating that Pseudo-Bayesian Broadcast is
exceptionally effective and stable in practice. The name “Bayesian Broadcast” reflects
the fact that ecach station will dynamically estimate the number of active stations on
the network using Bayes’ Rule, and will calculate an transmission probability from this
information that is optimum given the available information. The third strategy, Recursive
Pseudo-Bayesian Broadcast, is a variation of the second strategy that performs better, at
the expense of increased control complexity.

Let us consider a network with some number (possibly infinite) of stations. Each station
is given packets to transmit by an associated processor. In practice a station may keep a
queue of packets ready to send, if its processor momentarily generates packets more quickly
than the stations can transmit them over the network. In this paper we concentrate on the
model where each station has at most one packet to transmit at any time (often called the
infinite source model). We call a station active if it has a packet to transmit, otherwise
we call it tnactive.

We assume that time is divided into slots, each long enough to tranmit one packet (the
“slotted ALOHA” or “S-ALOHA” model). Our procedures generalize for other models (see
section VI).

When a slot begins each active station must decide, cither deterministically or stochas-
tically, whether or not to transmit its packet. There are three possible outcomes:

o A hole if no stations transmit.
e A success if one station transmits.

e A collision if more than one station transmits.

When a hole or a collision occurs, no stations receive any feedback other than the fact
that a hole or a collision has occurred.

We assume that the network objective is to minimize the average delay experienced by
a packet between the time it is given to a station and the time it is successfully transmitted;
by Little’s result [K175] this is equivalent to minimizing the average backlog in the network.

There are a number of different models possible for the feedback each station obtains
from the network. We use the most straightforward model, where cach station can
distinguish collisions from successes from holes.

Each station will have a (common) control strategy specifying how often it will transmit
packets, including how often it will retransmit a packet which was involved in a collision.

Metcalfe and Boggs [MB76] recommend the Binary Ezponential Backoff strategy,
where a packet that has been involved in £ collisions waits an amount of time randomly
chosen between | and 2% time slots before it is retransmitied. Thus, as the network
becomes more congested, the probability that a station will transmit decreases. Gerla
and Kleinrock[GK77] discuss a number of adaptive strategies for the S-ALOHA network.
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Tanenbaum [Ta76] surveys a number of possible approaches to this problem. Some related
work appears in [IIVL82, GGMMS85]. Gallager [Ga85] provides an excellent overview of
the field, and the special issue of the IEEL Trans. Infor. Theory [Ma85] contains many
superb papers on this topic.

Our approach has the following general form. Just before slot ¢ begins, each station
k in the network computes a value for its broadcast probabilily by ;. Then station k will
transmit a packet (if it has onc) with probability b, independent of whether previous
attempts had been made to transmit that packet.)

How should station k compute by ,? It can use global inform <ation that is known by
every station, and local information known only by station k.

The available global information might consist of:

e The network hole/success/collision history, indicating whether cach slot was a hole,
a success, or a collision.

o The sender history, indicating the source of cach successfully transmitted packet.

o The sender parameter vector, indicating the local variables of the source of ecach

successfully transmitted packet. (e.g. its transmission probability).

The last two items would only be globally known if stations include it in their packets.
Control information can be included or “piggybacked” onto the successfully transmitted
data packets to make it global.

The kinds of private information known by station k include:

e The private transmission history indicating which time slots station k actually tried to
transmit. Other stations know that station k tried to transmit only if its packet was
successfully transmitted; if a collision occurs the staticns do not know which stations
were transmitting. When a collision occurs, those stations that tried to transmit know
there is at least one other active station, whereas stations that didn’t try to transmit
know there are at least two active stations (not counting itself) in the system.

e The private parameter vector, containing station k’s control paramecters. As noted
above, from time to time this information might be made global by station k, but in
between such times, it is private information.

We consider here at first the situation where the stations only use global information
to compute the transmission probabilities by . Then each station will compute the same
value b; for by, and our Bayesian updating procedure will be relatively straightforward.

In fact, the only kind of global information we will use will be the network
hole/success/collision history. Other global information might be incorporated into a
Bayesian Broadcast procedure; we do not consider this possibility here.

In section Il we develop the “theory” of our Bayesian Broadcast, showing how each
station can choose an optimum broadcast probability for each slot. However, the full
Bayesian Broadcast is a bit demanding to implement, so in section III we provide a very
simple practical implementation based on these ideas, which we call “Pseudo-Bayesian
Broadcast”. In section IV we present some very encouraging experimental results on the
average backlog when using Pseudo-Bayesian Broadcast. In section V we discuss a recursive
implementation of this idea which uses non-global information. In section VI we discuss the
application of Pseudo-Bayesian Broadcast to other network models (such as the FEthernet).
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II. BAYESIAN BROADCAST

Let R, denote the number of active stations at time ¢ (they are ready to transmit a
packet). This value will decrease with successes, and increase when a processor gives an
inactive station a packet.

To motivate our development, we begin by considering the “complete knowledge” case
where each station knows the value of 2, before slot ¢ begins. This is unrealistic, since R;
can not be determined from the available information, but it is of interest to determine
how the stations should act in this case.

How likely is it to have a hole, success, or collision for a given broadcast probability b,

(and wazting probability w, = 1 — b;) and given value R, = r? The probabilities are:
P(hole | B, = r) = I, (r) = w}, (1)
P(success | B, = r) == Sp,(r) =7 - by - wl ™}, (2)
P(collision | By = 1) = Cy,(r) = 1 — Hy,(r) — Sp,(7)- (3)

The optimal value for b; is:

this maximizes Sy, (R:). Note that b; depends only on R;.
If b, is chosen optimally as 1/R;, the expected number of stations attempting to
transmit will be one, and the probabilities of holes, successes, and collisions will be:

1 1
Hi(R)=(1- =)= 5
'R—“( t) ( Jr_et) e’ ( )
_— u‘!-._L Re—1 —~ il_
S;&(Rt) B (1 Rt) st e (6)
2

(The approximations hold for large R2;.)

However, the stations will typically not know the correct value for R;. For example,
some inactive stations may have been given newly generated packets during slot ¢ — 1.

In our first procedure, which we call the Bayesian Broadcast algorithm, each station
will use the evidence available evidence up to time time ¢ to estimate the likelihood Dr t
that R; = » for each » > 0. That is,

et — P(Ri=—z) for e —10, . (8)

given the available evidence. We call our procedure “Bayesian Broadcast”, since it relies
on Bayesian reasoning to estimate 7; = (pg.s, .. .)-

Initially, each station begins with the distribution 7y = (1,0,0,...) - it assumes that
all stations are inactive. Fach station will compute the same vector 7, using the available
global information. The vector m; = (pg,s, . ..) summarizes the global information available
about f2,.

With the Bayesian Broadcast procedure, each station performs the following four steps
during each time slot:



e Compute the optimum transmission probability b, from the initial probability vector
T
o Transmit a packet (if onc needs to be sent) with probability b,.

e Perform a Bayesian update of 7, (the initial probability distribution for R;) to obtain
X¢ (the final probability distribution for R;), using the evidence (hole, success, or
collision) observed in time slot ¢.

e Convert the final probabilities x; for R, into initial probabilities 7, for 2, by
considering the generation of new packets and the fact that a packet may have been
successlully transmitted during time slot ¢ (i.c. modelling the flow of packets into and
out of the system).

In subsections II.A — I1.C below we consider the details involved in the preceding steps.

IILA. Computing the Broadcast Probability

One can choose by to maximize the expected chance of a success, even though there is
uncertainty about 2, as summarized in 7, since

E(P(success at time t)) = Zpr,t - Sp,(7)- (9)

Given 7, this is a polynomial in the unknown variable b;. In practice there would be at
most a finite number of nonzero coeflicients at any time. We can compute the value by
which maximizes (9) by differentiating and root finding (or by Fibonacci search [GKHKT75]
if (9) is known to be a unimodal function of b;).

In practice the computation required to find the optimum b; will probably be excessive.
One might use shortcuts such as computing b; only every so often, or approximating it
by (£(R:))~'. However, we believe that in practice the “Pseudo-Bayesian Broadcast”
algorithm to be described later will be the best choice.

This section has described how to compute the optimum broadcast probability b, from
7, the globally known initial probability distribution for R;.

II.B. Bayesian Updating of the Probability Vector

We now describe how each station computes its final probability distribution for Ry,
given that slot ¢ was a hole, a success, or a collision.
This problem is ideally suited for an application of Bayes’ Rule:

P(E | H)P(H)
P(E)

P(H | E) = (10)

(The final probability P(H | E) of a hypothesis H, after evidence F is received, is equal to
the initial probability P(IT) of II times the probability P(F | H) that E will occur given
H, divided by the overall probability P(£) of evidence E.)

We have a hypothesis “R; = 1”7, for ecach » > 0. The values pr,t are the initial
probabilities of these hypotheses before the evidence from time slot ¢ is considered.
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Let g ¢ denote the final probability P(RR; = r | I2;) where IZ; is the slot ¢ evidence
(hole, success, or collision), and let

Xt 3(%,:;‘]1,&;---) (]-1)

denote the corresponding final probability vector. The g, ;s are easily obtained using
Bayes’ Rule by multiplying each initial probability p,, by the appropriate likelihood
Hy, (7), Sp,(r), or Cp,(r) according to whether a hole, success, or collision was observed,
and then normalizing so that the ¢, ;’s add up to one.

This completes our description of how each station incorporates the slot ¢ evidence
into its probability distribution for R2;. The resulting distribution should make the best
possible use of the globally available information; it is hard to imagine improving over this
application of Bayes’ Rule.

II.C. Converting the final probabilites x, into the initial probabilities m,

Finally, we convert x;, the final probability distribution for I2;, into an initial distribu-
tion for ;1. Why p; ¢4 might be different than ¢; 7 First, if slot ¢ was a success, the
expected number of active stations will decrease by one. Second, we expect some inactive
stations to receive new packets from their processors during slot ¢, so the expected number
of active stations will increase for this reason.

II.C.1 Modelling Successful Packet Transmission

We model the effect of successes as follows. We let u, ; denote a station’s estimate of
the probability that the number of active stations is r, taking into account the evidence
from the channel, including the effect of a success on the number of active stations.

If time slot ¢ contained a success, then we set

Ur,t = Qr41,t, for r = 1, “any (12)

otherwise we set
Up i =gy s fOr r =20,.... (13)
The vector p, = (ug,,...,) is used as input into the next step, where the generation of

new packets is taken into account.

II.C.2 Modelling the Generation of New Packets

The are many ways to model the generation of new packets. We are actually concerned
with the rate at which stations “become active”, i.e. convert from having no packets to
send at time ¢ to having a packet to send at time t + 1. We consider two approaches.

I.C.2.a No Modelling of Packet Generation

Here we will rely on the Bayesian updating to keep the probability vector reasonably
accurate. This is the simplest case. We simply set 7, | = p.
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II.C.2.b Poisson Model of Packet Generation

Here we assume that new packets arrive according to a Poisson distribution with
parameter «, and that « is estimated reasonably accurately. We assume that new packets
are given to inactive processors. We can compute the initial probabilities for f2,,:

i

Prii+1 = Z Uj,t + Po(r — 7). (14)

3=0

Here P,(r — 7) denotes the value of the Poisson density function at point r — 7; i.c. the
probability that » — 7 new packets will arrive during a time slot.

This completes our description of the Bayesian Broadcast procedure, since we now have
our initial estimates for the distribution of 2, for the next time slot.

HI. THE PSEUDO-BAYESIAN BROADCAST ALGORITHM

We now present a practical implementation of the above ideas, which we call the
Pseudo-Bayesian Broadcast algorithm.

We derive this algorithm by assuming that m; can be reasonably approximated by a
Poisson distribution with mean X\; the station’s value of \ at time ¢ represents the station’s
estimalte of I2;. (We use the notation X rather than the subscripted form X\, for convenience
in this section: A now denotes a changeable control parameter for the stations.) Let

—A T
pr =2 (15)
denote the Poisson density at r for Poisson parameter A\. Each station will keep only X,
rather than the vector m;, and will approximate the initial probability p, ; by P\(r).

To develop the “Pseudo-Bayesian” broadcast and probability updating procedure, we
first consider the equations that would be used for a true Bayesian update if b; is the actual
broadcast probability (and wy = 1—b;). (These equations represent the unnormalized final
probability values.)

P(r) - Hy,(r) = e . Py, (r) (16)
Py(r) - Sp,(r) = Nby - et . Py (r — 1) (17)
Py(r) - Cp,(r) = P\(r) - (1 — Hp, (1) — Sp,(r)) (18)

From (9) and (17) it is easy to compute the optimal broadcast probability:
Sl
bt = m]]‘l(;\', 1); (19)
no complicated root-finding is needed. Thus we have derived our first practical benefit

from the Poisson approximation: the optimal value for b; (given the approximation) is
trivial to compute.



We next consider the problem of updating X in as Bayesian a manner as possible, while
preserving our Poisson approximation. We shall see that for holes and successes we can
use Bayes Rule exactly, while for collisions we must introduce an approximation error in
order to preserve the Poisson approximation.

From (16) we see that for holes the Bayesian updating takes a simple form, since the
resulting distribution will also be Poisson with mean Aw; = min(A — 1, 0). In other words,
when a hole occurs the stations reduce their estimate of the expected number of active
stations by one, unless X\ is already less than 1, in which case they set \ to zero.

From (17) we see that for successes the Bayesian updating and success modelling also
takes a simple form. Here (17) will yield a Poisson distribution with mean X\ — 1 shifted
one place to the right. However, the effect of modelling a successful transmission shifts the
distribution one place to the left. The net result is that the Poisson assumption remains
valid, and each station should decrement its state variable X by 1.

If there is a collision, Bayes Rule will not yield a Poisson distribution for the final
probabilities. However, we approximate the result by a Poisson distribution, by setting A
to be the mean of the resulting distribution, which is (using z to denote X - b;):

e

A — —_— 20
+e*’-~:r—-l ( )

which simplifies in the case X > 1,b, = ¢ to:

1
N e -
ey (21)

(It is somewhat surprising that we get a constant increment to X in this case.) For X < 1
(20) is reasonably well approximated by

2.39221 (22)

which is the value (20) yields for X = 1. Using (22) is equivalent requiring that X\ > 1 at
all times. The following algorithm makes this simplification.

We now summarize the above analysis, assumptions, and approximations in the follow-
ing presentation of the “Pscudo-Bayesian Broadcast” algorithm.

The Pseudo-Bayesian Broadecast Procedure:
Fach station maintains a copy of A\, and during each slot:

e Broadcasts with probability &, if it has a packet.

® Decrements X by 1 if the current slot is a hole or a success, and increments X\ by

;}g = 1.392211... if the current slot is a collision.

e Sets A to max(X\ + @, 1), where a is the observed average success rate (which is also
the average arrival rate for new packets).



We note that since each station now only maintains a single parameter X, it would be
simple to broadcast N with every packet. In this way stations which have just powered-up
can “synchronize” easily.

IV. EXPERIMENTAL RESULTS_

The Pseudo-Bayesian Broadcast Procedure was simulated for 10° trials for a number of
different Poisson arrival rates «. The following results were obtained. Here 22"¢ denotes
the average value of R, and R]'** denotes the observed maximum value of R:

@ e | B
010 | 0044 7
0.15 0.13 10 |
020 0.32 18|
| [ Yo
0.30 2.13 41
0.32 31 54
0.34 7.17 101 |
0.35 13.04 113
0.36 30.65 27
0.37 1014.7 1763

It is clear from (5) that we should not expect to be able to handle o >> e™! =
0.3678..... We see that the algorithm becomes unstable for & > e™!, as expected.

These results are superior to those of previously published statistics for adaptive control
algorithms that use only global information. For the algorithm of Hajek and van Loon
[HVLS82] it is reported that the average backlog for o = 0.32 is approximately 5.0. (To
compare our results with theirs, you should sublract \ from our values of 22"¢, since they
do not count newly arrived packets in the backlog.) To be fair, we note that their main
objective was to prove that their algorithm was stable for & < e™'; we do not yet have
such a proof for Pseudo-Bayesian Broadcast.

For another comparison, in [GGMMS5] it is reported that for Binary Exponential
Backoff

020 = 0.44, R3S = 1.483, R§%, = 13.526, and R§%; = 12519.4.
Some practical data relating to the performace of Binary Exponential Backoff can be found
in [SHS0].

For our simulation results the stations model the input arrival rate, and increase \ by
their estimated « in each slot. We were curious what would happen if this was omitted
(as suggested in II1.C.2.a). The following simulation results were obtained for this case:

a Rave Rues
0.30 3.34 56
0.32 8.22 96
0.34 85.64 471
0.35 | 3809.32 7530 |




This version of the algorithm performs neticecably worse; it doesn’t even look stable at
a == 0.35.
V. RECURSIVE PSEUDO-BAYESIAN BROADCAST

The simple Pscudo-Bayesian Broadcast procedure will not be stable for o > e7! =
0.3678.... Yet transmission control procedures are known for the slotted ALOITA model
which are stable for significantly higher values of . The best result to date is an algorithm
which is provably stable for o < 0.4878. The history of this algorithm is involved, but
the ideas and analysis are due to Capetanakis, Gallager, Tsybakov, Mikhailov, Likhanov,
Huang, Berger, Mosely, and Humblet, among others (see [Ga85] for a presentation and
references). Pippenger has even shown that il the stations can determine exactly how

many stations were transmitting during a collision, then any rate « < 1 can be handled
[Pis1].

The ideas involved in these algorithms can be ecasily adapted for use here. We present
below the sketch of a “recursive” Pscudo-Bayesian Broadcast algorithm.

The idea is that whenever a collision occurs, the stations involved in that collision
invoke a “recursive” execution of the (recursive) Pseudo-Bayesian Broadcast algorithm,
beginning with a new X\ initialized to 2.392211 (an estimate for the expected number of
stations involved in the collision). A recursive execution may of course invoke another
recursive execution of its own, if it encounters a collision. A recursive execution terminates
when its X drops below 1. When a recursive execution terminates, the “parent” execution
resumes, after adjusting its lambda to account for the number of successes observed on
the channel since the recursive execution began. Note that the recursive execution may
terminate before all of the stations involved in the collision have successfully transmitted
their packets, in which case those stations that joined the recursive execution but which
didn’t get a packet sent successfully rejoin the parent execution. All stations can determine
when a recursive execution terminates, since the recursive X\ is updated only on the basis
of globally available information. The lowest-level or initial execution of the procedure is
slightly different, in that stations joining the system only join at the lowest level, and also
in that when a recursive execution terminates and control returns to the lowest-level, the
lowest level \ needs to be incremented by the expected number of new stations that have
joined the system since the recursive execution began.

We omit our preliminary simulation results here, although .they look very promising.
(We hope to present these results in a later version of this paper, after more data is
collected.) We expect that this recursive procedure should be stable for significantly larger
values of a than the simple Pseudo-Bayesian Broadcast. It would of course be interesting
to prove such a result about the Recursive Pscudo-Bayesian Broadcast algorithm.

Vi. QUEUES AND VARIABLE-LENGTH PACKETS

In practice, a station might have more than one packet ready to transmit, and would
keep its untransmitted packets in a queue. In this case we suggest that it could indicate
in each packet it sends whether it wishes to reserve the next time slot for a subsequent
packet.

With this approach there are then two kinds of slots: conlention slots (as usual)
and reserved slots. A contention slot followed by a sequence of reserved slots we term
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an tnierval. During an interval the transmitting station will completely empty its queue,
making maximum use of the bandwidth available.

We can modify the Psecudo-Bayesian Broadcast algorithm to work in this case by doing
the Bayesian updating by intervals rather than by slots: each station will increase \ by
1.39221 when there is a collision during a contention slot, and decrease X\ by 1.0 if there
is a hole or a success in a contention slot. During a reserved slot no Bayesian updating of
A is performed.

Here X is modelling the number of stations with nonempty queues, not the number of
packets backlogged in the system.

The “arrival rate” is then the average rate at which which stations with empty queues
receive a packet to transmit per time slot. (The arrival rate is measured per slot and not
per interval.) This can be estimated by computing the average number of intervals per
time slot. During each time slot each station can increase its A by this amount.

We observe that the above strategy is now applicable to neltworks where there are both
queues and variable-length packets (such as the Ethernet), since we can define a “slot”
to be the time period required for channel acquisiticn or collision detection, and consider
the first slot of a long packet to “reserve” the time necessary to transmit the rest of the
packet. (This may or may not work out well in practice; maintaining accurate slotting
with such a fine resolution may be impractical.)

VII. OPEN PROBLEMS

Determine for what arrival rates a will the Bayesian Broadcast, Pseudo-Bayesian Broad-
cast, and Recursive Pseudo-Bayesian Broadcast algorithms remain stable (i.e. have finite
expected backlog).

For the Bayesian Broadcast algorithm, determine the conditions under which it is true
that if a station joins the system late, the initial probability vector m; it uses shouldn’t

matter much, since it will converge to the values held by the other stations after a short
while.

For the Bayesian Breadcast algorithm, demonstrate that, given the best possible es-
timates for I; available from the past history, the described procedure for choosing the
broadcast rate is optimal. The described procedure is locally optimal in that it maximizes
the success rate at each slot. However, it might not be asymplotically optimal in that one
could obtain an advantage by choosing b locally non-optimally in order to gain information
for later slots. [ conjecture that for reasonable models of packet generation the proposed
procedure for finding for the broadcast probability is optimum in that one can’t expect to
do better over the long term with any other procedure that uses the same information.

For the Bayesian Broadcast algorithm, identily the most general conditions under
which P(success at time t) will be unimodal in b, so that the optimal value of b; can
be determined by Fibonacci search.

Extend the Bayesian approach here to handle the case that a station only obtains
information from the channel when it itself tries to transmit a packet. (This of course
would mean that stations would be using non-global information.)

Identify the best control procedure when stations use all available information (including
private information). It is not clear how to do this, even for as few as three stations,
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since the stations may no longer have equal values for the transmission probability by,
and computing b; for one station requires information about what values for b; the other
stations are likely to use, which requires knowing what information they is using about
what b, the first station will use, etc.

VIII. CONCLUSIONS

We believe the proposed Pseudo-Bayesian Broadcast procedure will be found to be
exceptionally effective in practice, since it makes nearly the “best possible use” of the
information available on the network in determining the broadcast probabilities to use.
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