& MASSACHUSETTS
V[T INSTITUTE OF
TECHNOLOGY

LABORATORY FOR %
COMPUTER SCIENCE

MIT/LCS/TM-288

DSCRIBE: A SCRIBE SERVER

Janice C. Chung

October 1985

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

DSCRIBE: A SCRIBE SERVER

Janice C. Chung

May 31, 1985

Abstract

This document gives a complete description of the design and implementation of Dscribe, the Scribe
server. Dscribe is a program which allows users on a variety of hosts to have files processed remotely
by the Scribe document preparation system. The first part of the document describes the
functionality of Dscribe and the motivation for writing the program. It also gives an overview of how
the program works. Later sections discuss important design issues and describe the implementation
in detail.

KEYWORDS: network services, Scribe, document formatting

This research was supported by the Advanced Research Projects Agency of the Department of
Defense and was monitored by the Office of Naval Research under Contract Number NO0O14-83-
K-0125.

Table of Contents

1. Introduction
1.1. Functionality
1.2. Why have a server?
1.3. User interface
1.4. Overview of the implementation
2. Design issues
2.1. Storage
2.2. Communication
2.3. Preprocessing for Scribe
3. Implementation
3.1. The front-end program
3.2. The back-end program
3.2.1. Before Scribe is invoked
3.2.2. While Scribe is running
3.2.3. After Scribe has finished
3.3. Printing and pressmerging
3.3.1. Printing
3.3.2. Pressmerging
4. Usage
I. Help information for Dscribe
Il. Message headers
lll. Preprocessed Scribe commands
IV. Where's the code?

OO NSNBWN =

R L T G T S e O N T Y S o i G Gy
NOONOLRELWON=2 2

1. Introduction

1.1. Functionality

"Dscribe" stands for "Distributed Scribe". The primary function of Dscribe, the Scribe server,
is to make the Scribe document preparation system available to Laboratory members working on a
variety of host computers. Dscribe’s other functions are to print files on the Dover or Imagen printers

and to pressmerge press files together.

The Scribe document preparation system consisté of the Scribe language and the Scribe
compiler. The user specifies the desired format of his document by inserting high-level commands
from the Scribe language into his text file; the combination of text and commands is called the
manuscript file. The Scribe compiler processes the commands in the manuscript file and generates
the finished document, a file which can be output on a certain printing device to yield a fully formatted

document.

The Scribe program is written as a single-machine application. !t runs on a particular machine
and serves only that machine’s users. Dscribe turns this single-machine application into a service,
allowing it to be used by a community of users on a network. A user can edit files locally, then call
Dscribe to have those files remotely Scribed. Advantages of this "server approach” are discussed in

the following section.

Dscribe’s two other functions, pressmerging and printing, provide additional services that are
often needed in conjunction with Scribing a file. A press file is a file that has been specially formatted
to be output on a Dover printer. Pressmerging combines a main press file with one or more ocne-page
press files and is useful for inserting figures into a document. The printing function prints a finished
document generated by Scribe on the appropriate printing device. Currently, the accessible printers

are the Dover printer on the ninth floor and the Imagen printer on the fifth floor.

The initial design for the Scribe server included two additional functions which have not been
implemented: (1) checking the status of earlier Scribe requests, and (2) maintaining the Scribe
database. According to the original design of Dscribe, a user couid initiate a Scribe process on a
manuscript file, then "disconnect” from Dscribe while Scribe continued its processing. The status-
checking function allowed the user to check, at some later time, the status of the Scribe run from
which he disconnected and to receive any output files at that time. The current implementation of
Dscribe does not allow the user to discqnnect in this manner; hence, the status-checking function is

unnecessary.

Dscribe’s original design prohibited the use of private databases, and instead proposed support
for maintenance of the standard Scribe database so that users could alter the standard database
used by the server. Dscribe’s design has since been modified to accommodate the use of private
databases; users may specify a private database directory via a Scribe command in the manuscript
file. With this change, the user no longer needs to be able to change the standard database.

Consequently, the database maintenance function has not been and will not be implemented.

1.2. Why have a server?

The principal motivation for writing Dscribe was to broaden the community of users that could
use the Scribe document preparation system. One group of users who have gained access to Scribe
consists of the IBM PC users in the Laboratory. Before Dscribe existed, PC users had to transfer their
files to another computer which did support Scribe, log on to that computer, and run Scribe there.

Now these users can edit files locally, then run Dscribe on the PC to have their files remotely Scribed.

There are several other reasons for implementing an application (not necessarily Scribe) as a
service rather than as a single-machine program. Before explaining them, however, we need to
introduce some terminology. A service program is divided into two parts: the back-end and the
front-end. The back-end program, or the server program, is the part that manages the application
and provides its services to users; the machine that it runs on is called the back-end machine. The
front-end program, or client program, is the part that runs on the user's host machine, also known as
the front-end machine. The user invokes the client‘program, and the client program communicates

with the server program to request service on the user’s behalf.

Now we list some reasons for writing an application service:

1. As mentioned above, by calling on a remote application server, a user can access a
resource that for some reason is not available on his own host machine (e.g. inadequate
space).

2. Even if the application does run on his host machine, the user might want to call a remote
server in order to reduce the load on his own machine.

3. When an application program is designed as a server, it is easy to make the service
available to users on different kinds of hosts. Instead of having to write the application
program to suit each particular system, one need only write one server program for the
back-end machine, and one client program for each type of front-end machine. The
client should be designed to be small and easily portable.

4. Since the client program is generally much smaller than the application program, the
server approach saves space on the front-end machines. (This may be important for
small machines.)

5. The application program is easier to update since, in many cases, only the program on
the back-end machine needs to be modified.

6. Use of an application server produces consistent output no matter what host machine the
user is on, whereas the output from machine-specific application programs may vary
slightly from machine to machine.

1.3. User interface

Dscribe was designed to be fairly transparent to its users. Running Dscribe is very similar to
running Scribe. Files do not have to be altered in any way to accommodate the server; any file that
can be processed by Scribe can also be handled by Dscgribe. Also, users need not worry about

transferring files to another machine; this is automatically handled by the server.

When a user types "dscribe" at his host machine, he is presented with a menu and asked to
select the desired function: Scribe, Print, Pressmerge, Help, or Quit. By supplying a filename and
certain option flags on the command line, the user can bypass the menu; the proper syntax for such a

command line is described below for each function.

If the Scribe function is selected, the user is asked for the name of the manuscript file. The user
can bypass the menu with a command line of the following form: dscribe <{manuscript file name>
<optional list of Scribe option codes>. The server fetches a copy of the manuscript file and does some
preprocessing on it before having it Scribed. Preprocessing involves checking if other files are
required and doing the appropriate file transfers. If the server and client programs cannot locate a
file, the server prompts the user for a new filename. When Scribe has finished processing the
manuscript file, the user is asked (1) whether he wants the finished document transferred back to the
front-end, and (2) whether he wants the document printed. However, if the front-end is an IBM PC
and the document is a press or imp file, the first choice is not offered. Press and imp files are not sent
to PC front-ends because of the limited space on PCs; instead, these files are stored on the back-end.
The PC user may still request that the document be printed. All other Scribe output files are

automatically shipped to the front-end.

If the Pressmerge function is selected, the user is asked for the name of the main press file. The
menu can be bypassed with a command line: dscribe <name of main press file> -pressmerge. The
Scribe server preprocesses the main press file, then has it pressmerged. Afterward, it asks the user if
it should ship the new press file (with filename suffix ".mpress") to the front-end and/or to the printer

for output.

The user may also ask the server to Print a Scribe document file. To bypass the menu, the
command line should be of the form: dscribe <document file name> -print. The user may request
printing of a file that he has stored on the front-end machine or one that he believes is stored on the
back-end machine. The Scribe server keeps files on the back-end for up to a day, so it can print a
document file that was recently generated by Dscribe, even if there is no copy of it on the front-end.
The user can refer to such files by names that are meaningful on the front-end machine. The printing
device is determined from the suffix of the filename. Currently, the accessible printers are the Dover

laser printer on the ninth floor and the Imagen printers on the fifth floor.

If the user selects Help from the menu, he is presented with a page of information about the
functionality and operation of Dscribe. This information is shown in Appendix |. The menu is

presented to the user again at the end of the help information.

The user may quit from the Dscribe program by selecting Quit from the menu. He may also quit
by typing a 'q’ when being prompted for a filename or while the application program is running; this

causes an irreversible escape from the program.

When the user is prompted for an entry (e.g. menu selection, filename, yes/no answer), he must
supply his response within about a minute after the prompt. If he fails to do so, he receives a timeodt
message. The server supplies a default answer to any yes/no questions; in all other cases, the
program terminates. Thus, if, for some reason, the user does a 'control-C' to exit from the client

program, he has a limited amount of time in which to continue the program before it times out.

After the user selects a function, he is informed of the jobID of his Dscribe job. This joblD
“number is to be used for status checking. Since that function is not yet implemented, the user does

not need to remember this number.

Dscribe’s client program may be run in foreground or background mode, as long as this

capacity is provided by the front-end machine.

1.4. Overview of the implementation

The back-end program for Dscribe resides on the MIT-OA Vax and is started up every time the
system reboots. The front-end program runs on Vax 11/750 computers, MIT-XX, and IBM PCs. When
a user invokes Dscribe, his host machine opens a connection to the back-end machine (MIT-OA).
The server, which has been listening for connections, then forks off a handler process to handle the

requests of this particular user and loops back to wait for the next connection. A total of eight

handlers may be running simultaneously. (The number is limited by the number of pipes available.) If
a ninth user tries to connect to the back-end, he is informed that the system is fully loaded and is
asked to try again later. A handler process will timeout and terminate if the user fails to answer a
question in about a minute; this prevents any one user from tying up a handler for an indefinite period

of time.

Suppose the user has selected the Scribe function. The handler communicates with the front-
end program across the network and attempts to assemble on the back-end computer all the files
needed for the Scribe run. It does this by transferring the user’'s manuscript file to the back-end and
then preprocessing it. This means it scans the file to find implicit and explicit references to other files,
then it transfers these files to the back-end, and, if necessary, preprocesses them in turn. (When we
speak of transferring a file from the front-end to the back-end, we actually mean sending a copy of it
to the back-end.) The intent of the preprocessing is to prevent Scribe from ever having to stop and

wait for input once it starts running.

Files transferred from the front-end to the back-end are cached under new names in the
server's working directory on the back-end. When Dscribe needs to access a file, it checks to see
whether the file exists on the front-end and on the back-end, then compares their timestamps to see
which version is more recent. If the front-end has a newer version, it is shipped to the back-end,

where it replaces the old version.

When all necessary files are assembled in back-end storage, the handler forks a Scribe process
to compile the back-end’s copy of the manuscript file. The handler intercepts the output that Scribe
would normally display on the user’s terminal. Before forwarding it to the front-end program, it
replaces any names of back-end files with corresponding front-end filenames so the user will see
filenames that he recognizes and expects to see. The front-end program displays the forwarded

output to the user. When Scribe finishes, the server transfers the output files to the front-end.

Whatever function the user selects, be it Scribe, Pressmerge, or Print, the back-end program
simulates the user and invokes the application program; then it acts as middleman between the
application and the real user on the front-end machine. The back-end engages in a constant
dialogue with the front-end program, sending it instructions, which the front-end then carries out. In
some instances, the front-end routine merely performs the task dictated by the back-end, (e.g. display
this message to the user), but usually it also sends a reply in the form of an acknowledgment or

information that the back-end requested (e.g. the timestamp of a file or input from the user).

If a user quits from Dscribe or if the front-end program times out, then the handler process
associated with that user cleans up and exits gracefully. In order to clean up, it must make any
adjustments necessary to reflect the fact that this particular job is finished. For example, the handler

must deactivate any files associated with the job. (See section 2.1.)

2. Design issues

2.1. Storage

Manuscript files, auxiliary files, database files, and finished documents produced by Scribe are
cached on the back-end machine (as opposed to being deleted after each run) in case they might be
needed again by Dscribe at a later time. The directory structure in back-end storage is flat; all files
are stored in the server's working directory. This structure was selected instead of a structure
allocating one directory per user in order to avoid having unnecessary multiple copies of files on the
back-end. The directory is protected so that only the superuser of the back-end machine has access

to the files.

The server maintains two tables of information on the files kept in back-end storage. The name
table maps from the front-end machine name (e.g. MIT-XX, PC) and the file’s original name to the
server-generated name. When the server copies a file from the front-end to the back-end, it assigns
to the file a new name derived from the time that the server forked off a handler process to handle the

Dscribe client. The new names are guaranteed to be unique within a one-month time period.

The file table maps in the reverse direction, from the server-generated filename to the
originating filename. It also includes, for each file, information on the file's timestamp on the front-
end, the host name, the user name, the joblD, an "active"” flag which indicates whether or not the file
is being used in an active Dscribe run, and a "keep” flag which is reserved for use by the status-

checking function (not yet implemented).

Dscribe has been designed so that it can handle filenames with or without version numbers. If
the front-end machine’'s operating system does not include version numbers in filenames, the
treatment is straightforward. When the timestamp of a front-end file is later than the timestamp of the
back-end copy of the same file (or if there is no back-end copy), the front-end file is transferred to

back-end storage, replacing any older version there.

If the front-end operating system appends version numbers to filenames, Dscribe treats each
different version as a distinct file in back-end storage. (For example, paper.mss.1 and paper.mss.2
are treated as different files in the same way that paper.mss.1 and draft.mss.1 are treated as different
files.) Sometimes the user omits a version number, expecting the latest version number to be
appended as a default, The Scribe server asks the client program to parse all filenames, so a filename

without a version number will be always be given the appropriate default version number.

The information in the name table and file table is used by Dscribe to identify files during
preprocessing and to translate between front-end and back-end filenames. As files are transferred to
the back-end, new entries are made in the two tables, and the files are "activated” (the active flag is
set). If Dscribe discovers that a file it needs is already "active" (being used and possibly altered by
another Dscribe run), it simply fetches another copy of the same file from the front-end. This way, two
users can simultaneously Scribe the same file. After a run has finished, all relevant files are

"deactivated".

The name table and the file table are constantly updated to reflect the current state of back-end
storage. Consequently, every handler process must be able to see changes made by the other
handlers. Each of the two tables has its contents encoded in a log file in the server's working
directory; each handler maintains a local file table and a local name table. When a handler wants to
modify a table, it changes its local copy and appends the new information to the table's log file. When
it wants to examine a table’s contents, it compares the timestamp of its local copy of the table with the
time of the last update of the table’s log file. If the log file has more recent contents, the handler
discards its old table and reads the log file to create a new, up-to-date table. Shared read and
exclusive write locks are used to control access to the log files. This scheme allows each handler to

have up-to-date information without having to read in a new table for each access.

Back-end storage is cleaned up periodically. Every day at 5 a.m. the back-end process of the
server is halted, all files in the server’s directory (including the log files for the name table and file
table) are deleted, and the server is restarted. If this cleanup did not occur, the log files would
continue to grow, and updates to the tables would take longer and longer. The cleanup also prevents
the cache from filling up with files that are accessed once and never used again. In the current
implementation, files produced by late night runs are not saved overnight. If this approach turns out
to be very inconvenient for users, the cleanup program might be changed to delete only those files

that have been in back-end storage for longer than some specified amount of time (e.g. 24 hours).

2.2. Communication

Communication between the server and client processes is based on a high-level message
passing protocol. Each message contains a header and the text of the message, if any. The header is
a numeric opcode that is associated with a particular type of message. The opcode tells the recipient
how to interpret the message contents that follow and whether or not a reply is required. Opcodes
can be application-specific (e.g. an opcode that tells the front-end "Parse this Scribe JCL into
directory, filename, suffix, and Scribe options") or general (e.g. an opcode that says "Display the

following text to the user (in whatever way is suited to the front-end terminal) and get an integer

reply”). (See Appendix Il for a listing of the headers used by Dscribe.)

Conversation between the back-end and front-end processes is always initiated by the back-
end. Once the front-end program has established a connection to the back-end, it enters a loop in
which it waits until it receives a message from the back-end, then it performs the appropriate actions
in response to that message. The dialogue is not strictly lockstep. Although the front-end usually
sends a response message to the back-end, in some cases it does not. (For example, when the server
sends a string that should be displayed to the user, the front-end displays the string, but does not

send any acknowledgment back to the server.)

The network communication is handled by block streams, an implementation of Dave Clark’s
Unified Stream Protocol (USP). USP was designed to ensure a reliable, bi-directional stream of data
across the network. Each message is transmitted in a block, which is structured to allow parsing into
the message header and the body of the message, as described above. The block stream code on the
Vaxes and MIT-XX is written in CLU on top of the TCP protocol. The block stream code on the IBM

PCs is written in C.

2.3. Preprocessing for Scribe
The Scribe compiler is implemented to serve users on the same machine that it is running on.

Consequently, it makes the following assumptions about its environment:

1. All files involved in the processing can be found on the machine that is running Scribe.

2. The user will read the messages displayed on the screen and respond to any questions
posed by Scribe during processing.

These assumptions are not valid in the server environment of Dscribe. First, all files involved in
the processing must be transferred from the front-end machine to the back-end machine (and they
are renamed in the process). Second, it is the back-end process, and not the user, who initially
receives Scribe’s output messages and must decide how to handle them. Since the source code for
Scribe was not available for us to alter, we had to find another way to reconcile these assumptions

with the actual environment of the server. Qur solution was to "preprocess” the manuscript file.

Preprocessing consists of two parts:

1. Making any files that are referenced (explicitly or implicitly) by the manuscript file
available on the back-end, and

2. Modifying the manuscript file to reflect the new names of the files transferred to the
back-end.

10

The preprocessor reads through the manuscript file in search of references to other files. As it
encounters each reference, it arranges a file transfer, if necessary, and changes the reference to
include the new name that the referenced file bears on the back-end. The referenced file may also
have to be preprocessed in turn. (See Appendix Ill for details on how the preprocessor processes

various Scribe commands.)

By doing this preprocessing, the server places all the files where Scribe expects to find them (in
the server’s working directory) and changes filenames in the manuscript file so that Scribe searches
for files under their new names. If the server cannot find a file during preprocessing, it asks the user
for another filename to replace it. The user then types in either a new filename or a carriage return to
proceed. If the user does not supply substitute filenames for missing files, the server lists the missing
files and halts without running Scribe. This precaution by the server ensures that if Scribe is called by
the server to process the manuscript file, it will be able to find all the files it seeks and will not have to
stop and ask the user for input. Since Scribe won’t require any interaction with the user once it starts
processing the manuscript file, the server can simply forward all screen output to the front-end as
"display this text" messages without waiting for responses. We see then that preprocessing does
reconcile Scribe’s assumptions with Dscribe’s server environment; assumption 1 is satisfied and

assumption 2 becomes irrelevant.

11

3. Implementation

3.1. The front-end program

A front-end program must be written for every type of machine that wishes to access the Scribe
server,; therefore, the front-end program should be designed to be portable. Dscribe's front-end
program is small and has a simple structure. When a user types "dscribe", the client program first
opens a connection to the server program on the back-end machine. Then it enters a wait-action
loop. The client waits to receive a message from the server. When a message arrives, the client
dispatches to an appropriate subroutine which handles that type of message. The client also
periodically checks to see if the user has typed a ’q’ to quit. If this occurs, the front-end sends an

ABORT message to the server and then waits for a message from the server to terminate.

In order to keep the client program small, we pushed as much computation as possible onto the
back-end. The client program contains routines that send and receive messages, routines that deal
with the user interface, and routines that must extract information from the front-end machine’s
operating system. All but one of the routines are application-independent. The routine that parses
the JCL for Dscribe knows that the JCL may include Scribe option codes following the name of the file
that is to be Scribed.

The client program is totally responsible for determining the user interface, including how
messages are presented to the user and how the user should indicate his reply (e.g. via windows,
menus, keyboard entries). This frees the server program from concerns about the user interface and
what types of front-ends it might be dealing with. The client adapts the interface to best suit the

capabilities of the host machine.

The client must also perform any tasks that require knowledge of the front-end operating
system. For instance, if a character string needs to be parsed into a filename, the front-end program
does the actual parsing and sends the result to the back-end. If the back-end had to do the parsing, it

would have to know the filename syntax for every type of front-end machine it deals with.

3.2. The back-end program
In this section we give a detailed account of the Scribe server’s actions in response to a Scribe

request.

As mentioned in section 1.4, the Scribe server forks off a handler process to take care of each

user requesting service. When the server creates a new handler, it passes to the handler its block

12

stream connection to the client. What used to be a connection between the "master server" and the
client becomes a connection between the handler and the client. Network communication takes

place over this connection.

Each handler makes several entries to a Dscribelog on back-end storage as it processes the
user's request; this log is useful for monitoring use of the Scribe server and for tracking down

problems during debugging.

The handler’s first task is to determine which function the user wants. This is done either by
examining the JCL of the Dscribe command line or by asking the user, as described in section 1.3.
Assume here that the user has selected the Scribe function. We will consider three stages of the
handler’s processing: before Scribe is invoked on the manuscript file, while Scribe is running, and
after Scribe has finished.

3.2.1. Before Scribe is invoked

The handler starts by making sure that an inactive copy of the newest version of the manuscript
file is on the back-end. It does this by comparing the timestamp of the front-end’s version of the file
with that of the back-end’s version. If the front-end’s timestamp is later, a copy of the front-end file
replaces the back-end’s old version. If the back-end has a current copy, but it is active (being used in
another Scribe run), another distinct copy of the front-end file is brought into back-end storage for the
second Scribe to process. If the handler cannot find the file on the front-end, it requests a new

filename from the user until either the named file can be found or the user types 'q’ to quit.

Once the manuscript file has been transferred, the handler gets an up-to-date copy of the
corresponding .aux file, if there is one, onto the back-end. The .aux file is an auxiliary file that Scribe
saves information in from one run to the next. Because Scribe automatically looks in the working
directory for the .aux file, the handler must get the .aux file onto the back-end, where it will be found
by Scribe.

The next step is preprocessing the manuscript file, i.e. getting all referenced files into back-end
storage and changing the manuscript file to include their back-end names. Section 2.3 describes this
procedure, and Appendix Il lists the various Scribe commands that require processing. The server
keeps two copies of each file that is being used by an active Scribe run: one copy, called the
"holding" copy, is the original version that was transferred from the front-end; the other copy, called
the "prep" copy, has all the front-end filenames replaced by back-end filenames. Scribe is invoked

on these prep copies.

13

The final step before actually invoking Scribe is translating the auxiliary file. All front-end
filenames in the .aux file must be replaced with their corresponding back-end filenames. The server's

name table provides the new names.

If, at any time before or during the Scribe run, some exceptional condition causes the handler
to terminate, the handler first restores order by deleting all prep copies and deactivating all files

related to the job.

3.2.2. While Scribe is running

The handler invokes Scribe by forking a Scribe process to work on the prep copy of the
manuscript file. It then acts as an intermediary between the Scribe process and the client process on
the front-end machine. The handler intercepts the output character strings that Scribe would
normally display to the user. It translates any back-end filenames in these strings to front-end
filenames (via the file table), and then forwards the converted strings to the front-end, where they are
displayed. By parsing these output strings, the handler determines what the names of the Scribe
output files are. If the Scribe process aborts for some reason, the handler checks to see if there is an

error (.err) file that should be sent to the front-end machine.

3.2.3. After Scribe has finished

When the Scribe process has ended, the handler deletes all the prep copies of files related to
the Scribe job from back-end storage, so once again, the server possesses only front-end versions of
the files. The prep copies are deleted after each use because they cannot be reused. It is necessary
to preprocess each file for each run in case the environment has changed. For example, referenced

files may have different back-end names from one run to the next.

If the finished document produced by Scribe is a press or imp file, the handler asks the user if
he wants to have it transferred to the front-end. (An exception occurs if the front-end machine is a
PC; in that case, press and imp files are not transferred.) All other output files (.doc, .aux, .otl, .err,
lex) are automatically shipped over. Before the files are transferred, however, they must be
translated; that is, all back-end filenames must be converted to front-end filenames. The handler

consults its file table to perform this task.

If there is any trouble in transferring a file to the front-end, the file is cached in back-end
storage. Otherwise, all of the Scribe output files, other than the finished document and the .aux file,

are deleted from the back-end.

Finally, the handler deactivates all the files associated with this Scribe job. It then asks the user

14
if he wants the finished document to be printed out. (See the following section.)

3.3. Printing and pressmerging

In order to print and pressmerge files, the Scribe server makes use of already existing programs
that perform these tasks. In the same way that it calls Scribe to format a file, the server calls the
Pressmerge program to pressmerge a file, the Dover program to print a press file on the Dover printer,

and the Ipr program to print an imp file on the Imagen printer.

3.3.1. Printing

When the user selects the Print function of Dscribe, he supplies the name of a finished
document produced by Scribe. The server determines what type of printer is required by examining
the suffix of the filename. A filename's suffix must be ".press" or ".mpress" to be output on the

Dover; the suffix must be ".imp" to be output on the Imagen.

The file that is to be printed must be stored on the front-end and/or the back-end machine. As
long as the file is in back-end storage, it does not have to also be in front-end storage. This allows
users to request printing of press or imp files that were generated by recent Dscribe runs but not sent
back to the front-end. If, however, the file is not on the front-end, and the back-end copy is active
(being used by another Dscribe run), the user is told to try later because there is no copy of the file
that can be processed. This situation should occur very infrequently; however, if it does turn out to

occur often, a method of queueing print requests could be added.

The Scribe server forks a Dover or Ipr process to print the file. Flags are set so that the user’s
name and the front-end name of the file will be printed on the cover sheet of the printed document.
The server intercepts the printing process’s screen output, translates back-end filenames to front-end
filenames that are meaningful to the user, and forwards the output to the front-end, where it is

displayed.

3.3.2. Pressmerging

The Pressmerge program combines a main press file with one or more one-page press files. It
is useful for inserting figures into a document. Suppose the user has a figure stored in the file
"figure.press" and he wants to insert it into his main text file "main.mss". There are two ways to do
this. The first way is to put an arrow at the place of insertion in the text of main.mss. The arrow looks
like: <= =<figure.press<. The second way is to insert a Scribe command: @Presspicture(height =2
inches, file = "figure.press”). When the Scribe compiler processes this command, it allocates the

specified amount of space for the figure and inserts an arrow "< = =<figure.press<" into the press file.

15

When the user wants to pressmerge a file, he tells Dscribe the name of the main press file.
Dscribe gets a copy of the main press file and preprocesses it. The preprocessor searches through
the file, and when it encounters an arrow, it parses the name of the insert-file and fetches a copy of
the insert-file to back-end storage. Because of the way the preprocessing is done, the Scribe server

requires that the name of any insert-file not include any directories.

When preprocessing is done for a Scribe run, any referenced file is fetched to the back-end and
the reference is changed to include the file's back-end name. The analogous thing does not happen
in preprocessing for a Pressmerge run. The structured format of press files makes it difficult to
substitute one string for another (the back-end filename for the front-end filename) in the main press
file. Instead of altering the main press file, the server temporarily stores all insert files under their
front-end names in back-end storage so the Pressmerge process can find them. When the
pressmerging is finished, the insert files are "restored"” to their back-end names in back-end storage.
This scheme is feasible as long as the front-end filenames are legal filenames on the back-end
machine. If a front-end program were to be written for a host machine whose filenames were not legal
on the back-end machine, then a method would have to be devised to insert back-end filenames into

press files so the Pressmerge process could find needed insert-files.

If any insert-files are found to be missing during preprocessing, the server presents a list of the
missing files to the user and asks him whether he still wants to pressmerge the file. If the answer is
yes, or if all insert-files are present, the server forks a Pressmerge process and forwards the screen
output to the front-end machine. When Pressmerge is finished, the user has the option of having the

new ".mpress" file transferred to the front-end and/or printed on the Dover.

16

4. Usage

Although client programs have been implemented for Vaxes, MIT-XX, and IBM PCs, we expect
most usage of Dscribe to come from users on the PCs. Users on MIT-XX and the Vaxes already have
Scribe available on their machines, and there is little advantage to using Dscribe over Scribe. The
cost of the network 1/0 incurred by the server probably makes Dscribe run slower than local Scribe
programs. However, implementing the XX and Vax front-end programs has had the beneficial side
effect of getting the USP code written and debugged on these machines. This USP code will be

needed for future services.

If usage of the server is heavy enough, the back-end program may be moved from MIT-OA to a

larger, faster machine to improve the program’s performance.

17

I. Help information for Dscribe
This is a copy of the information that is presented when a user selects the "Help" option from

the Dscribe menu.

Dscribe, the Scribe server, can be used to Scribe a file or to pressmerge or print (hardcopy) a
file. When you type "dscribe", a menu will be provided and you will be asked to select the desired
function: Scribe, Print, Pressmerge, Help, or Quit. If you choose Help, this information will be
displayed. If you choose Scribe, Print, or Pressmerge, you will be asked for a file name. In the case of
Scribe, you may append some Scribe option flags to the file name. After you have entered the file
name, Dscribe will do a little preprocessing and then invoke the appropriate program to operate on

your file. The version of Scribe that is used is Scribe 4(1400)-1.

*** A note about Pressmerging *** -- The names of insert-files must not include any
directories. For example, either of the following two lines in a Scribe .mss file would cause Dscribe to

do unpredictable things:

<= =</usr/foo/figure.press<
@Presspicture(height = 1 inch, file = "<{foo>figure.press")

This implies that any insert-file must be in your working directory.

When the Scribe and Pressmerge functions have completed, you will be asked if you would like
the press or imp file transferred back to your host machine. (If your host is a PC, you will not be given
this choice; press and imp files will not be transferred to PCs.) All other output files (e.g. .doc, .aux,
.otl, .err) will automatically be sent back to you. Finally, you will be given the option of having the
output file printed. The printer (9th floor Dover or 5th floor Imagen) will be selected based on the

filename's suffix, which must be .press, .mpress, or .imp.

If you would like to bypass the menu, do the following: (XX users should substitute a '/’ for

each’-’ here):

e To Scribe a file "example.mss":
dscribe example.mss -f -w
(-f and -w are some of the OPTIONAL Scribe option flags.)

e To print a file "example.press":
dscribe example.press -print
(The appropriate printer will be determined from the file name’s suffix.)

e To pressmerge a file "example.press":
dscribe example.press -pressmerge
(The output file will be named "example.mpress”.)

18

To quit from Dscribe at any time, enter a 'q’. Dscribe may ask you to verify that you want to

leave the program.

Dscribe can be run in background -- just redirect the output to some file.

--comments and complaints to BUG-DSCRIBE@OA

19

Il. Message headers

Here is a list of the message headers used by the Scribe server in communicating with its

clients. A brief explanation is provided for each header.

CHECKJCL = 490 % Checking whether user’'s command line has a jcl

HASJCL = 495 % Informing BE that user’'s command line has a jcl

DISPLAYSTRING = 500 % Sending string to be displayed to user

DISPLAYCHUNK = 505 % Sending string to be displayed to user without newline

QASTRING = 510 % Sending question that requires string answer

REPLYSTRING = 520 % Sending string reply

QAINTEGER = 530 % Sending question that requires integer answer

REPLYINTEGER = 540 % Sending integer reply

QABOOLEAN = 550 % Sending question that requires boolean answer

REPLYBOOLEAN = 560 % Sending boolean reply

REQUESTID = 570 % Requesting host, user, and working directory names

SENDID = 580 % Sending host, user, and wd names (as 3 strings)

REQUESTJCL = 582 % Requesting jcl - dir, filename, suffix, # options, options

SENDJCL = 585 % Sending jcl - 3 strings, integer, series of strings

REQUESTTIME = 590 % Requesting FE timestamp for filename

SENDTIME = 600 % Sending filename, boolean (found?), and timestamp
% (as 6integers)

REQUESTFILE = 610 % Requesting transfer of file

SENDBYTEFILE 615 % Sending filename, bytecount, and bytes of file

SENDFILE = 620 % Sending filename (as string) and file contents

REQUESTPARSE = 622 % Requesting FE parse of filename string argument

SENDPARSE = 625 % Sending parse of filename string

REQUESTCONCAT = 626 % Requesting conversion of directory name to concatenatable
% form

SENDCONCAT = 627 % Sending converted directory name

REQUESTACK = 630 % Requesting acknowledgment

ACK = 640 % Acknowledgment

REQUESTACCESS = 642 % Requesting access in given mode to given file

SENDACCESS = 645 % Sending boolean indicating whether access is permitted

EXITING = 650 % Notifying - about to exit

ABORT = 660 % Notifying BE that user wants to abort

TIMEOUT = 670 % Notifying FE that BE has timed out

ERROR = 700 % Error

20

Ill. Preprocessed Scribe commands
This appendix lists the Scribe commands that are preprocessed, explains what they mean, and

describes how the preprocessor handles each one.

e @Value(keyword) -- When Scribe encounters a @ Value command with a keyword of
Manuscript, FileDate, RootFileDate, or UserName, it inserts into the text the appropriate
string value. These values change when files are transferred to the back-end. To handle
this situation, the server inserts at the beginning of every manuscript file a series of
@ String commands which set the values of these keywords to reflect front-end filenames
and other information from the front-end.

e @Include(filespec) -- This command instructs Scribe to insert the text of the file
"filespec" at this point in the manuscript file. When the preprocessor encounters this
command in the manuscript file, it makes a copy of "filespec" available on the back-end
and adds "filespec" to the list of files to be preprocessed (since @Include commands
can be placed in @Include'd files).

e @Part(part-name, root "root - filename.mss") -- If this command occurs at the
beginning of an included file, it means that this file is to be processed as a part of a larger
document, specified by "root - filename.mss". The server makes the root - file and its
corresponding .aux file available on the back-end since they are both used in the
formatting process. Later it preprocesses the root .mss file.

e @Use(component = "filespec") -- This command directs Scribe to look in "filespec"
for the desired component. The server makes the appropriate files available on the
back-end.

o @Use(AuxFile = "other.aux") causes the file other.aux to be used as the
auxiliary file.

o @Use(Bibliography = "other.any") causes the file other.any to be used as the
bibliography file.

o @Use(HyphenDic = "dict.hyp") informs Scribe that the hyphenation dictionary
is in the file dict.hyp. If the filespec has no extension, the default is .hyp.

o @Use(Database = "<{Directory>") -- This command directs Scribe to look in
the specified directory, rather than in the user’s working directory, if it cannot find a
database file in the standard Scribe database. If a database file is referenced in the
manuscript file (by commands @Device, @Make, @Style, and @LibraryFile), the
preprocessor looks in the private database directory on the front-end and transfers
the file, if it is there, to the server's working directory on the back-end. All
transferred database files are preprocessed in turn because they contain @Marker
and possibly other @LibraryFile commands.

21

e @Device(device-name) -- The Scribe compiler formats the finished
document to be output on the device specified by device - name. The name
of the corresponding database file consists of the first 6 letters of
device - name, followed by the suffix ".dev",

e @Make(document-name) -- This command specifies the type of
document that is being created. The name of the corresponding database
file consists of the first 6 letters of document - name, followed by the suffix
".mak".

o @Style(Keyword = value) -- This command sets the style keyword
Keyword to the specified value.

o @Style(References = RefType) causes Scribe to determine the
bibliography format from the contents of file RefType.ref in the
database.

o @Style(FontFamily ffname) specifies that the FontFamily finame be
used in printing the document. The corresponding database filename
consists of the first 6 letters of finame, followed by the suffix ".fon".

e @LibraryFile(filespec) -- If the user wants to include a file containing a set
of definitions for his manuscript file (but no text), this command gives the
file's name. The corresponding database file name consists of the first 6
letters of filespec, followed by the suffix ".lib".

e @Marker(entry type, name, device qualification) -- This command
occurs at the beginning of each database entry in a database file. The
preprocessor changes the name field to contain the back-end name of the
database entry.

e @Cite(codeword) -- This command cites an entry in the bibliography file. If any @Cite
commands exist in the manuscript file, the server must confirm the existence of the
bibliography file on the back-end. If the .bib file is not specified in a @Use command, its
default name is the same as that of the manuscript file with a suffix of ".bib".

e @Comment(....) -- Comments may contain Scribe commands which Scribe should
ignore, so the preprocessor merely skips over the entire argument of this command
without looking for commands within it.

22

IV. Where’s the code?

This is a list of the files containing code for the Scribe server, organized by machine and

directory.

MIT-OA: Directory /usr/chung

scribe — server.equ Equates file.
scribe - server.lib
scribe - server6.clu
scribe - serverB.bin
scribe - serverg*
scribe - server6.xload

Main routines for server program.

Executable server program.

handler47.clu Main routines for handler program.

handler47.bin

handler47* Executable handler program (forked by server program).
handler47.xload

utils47.clu Utility routines.

utils47.bin

cases42.clu Routines for preprocessing.

cases42.bin

printproc47.clu Routines to print and pressify.

printproc47.bin
- unhandled.clu
— unhandled.bin

filetable.clu
filetable.bin
nametable.clu
nametable.bin
queue.clu
queue.bin
set.clu

set.bin

dscribe.spc
dscribe8.clu
dscribe8.bin
dscribe8*
dscribe8.xload

Filetable cluster.

Nametable cluster.

Queue cluster.

Set cluster.

Specs for front-end routines.
Routines for Vax front-end program.

Executable Vax front-end program.

23

MIT-OA: Directory /fs/usr/local - clu (USP code)

/fs/usr/local - clu/blocks.clu
/fs/usr/local - clu/blocks.bin
/ts/usr/local - clu/btcp.clu
/fs/usr/local - clu/btcp.bin
/fs/usr/local - clu/host - name.clu
/fs/usr/local - clu/host — name.bin
/ts/usr/local - clu/port.clu
/fs/usr/local - clu/port.bin
/fs/usr/local - clu/chan - fudge.clu
/fs/usr/local - clu/chan - fudge.bin

MIT-OA: Directory /exe (executable)

dscribe* Same as /usr/chung/dscribe8.
scribe - handler*® Same as /usr/chung/handlerd?.
scribe - serverd* Same as /usr/chung/scribe — serverb.

MIT-OA: Directory /etc

dscribe.hlp Information typed when user chooses Help option.
dscribe - cleanup* C-shell script to clean up back-end storage.
scribe.loc File holding command string which invokes Scribe.

MIT-OA: Directory /adm

dscribelog Log for Scribe server use.
dscribe/ Directory where files are cached.
dscribe/befiletable.beft File of info on files in BE storage.

dscribe/benametable.bent File listing BEcodes corresponding to FE filenames.

MIT-XX: Directory ps:{chung.server>

dscribe.clu Routines for XX front-end program.
dscribe.tbin

dscribe.exe

dscribe.xload

dscribe.equate

dscribe.clulib

24

MIT-XX: Directory ps:<mar> (USP code)

(Copies of these files also exist in ps:{chung.server>.)

blocks.clu Incomplete USP code.
- create - file - form.clu .tbin file must be linked in.
- chan.tasm .tbin file must be linked in.

PC USP code and front-end code

Contact Bede McCall, Computational Resources, Laboratory for Computer Science.

