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Abstract

Dataflow graphs are described as a machine language for parallel machines. Static and dynamic
dataflow architectures are presented as two implementations of the abstract dataflow model. Static
dataflow allows at most one token per arc in dataflow graphs and thus only approximates the
abstract model where unbounded token storage per arc is assumed. Dynamic architectures tag each
token and keep them in a common pool of storage, thus permitting a better approximation of the
abstract model. The relative merits of the two approaches are discussed. Functional data structures
and I-structures are presented as two views of data structures which are both compatible with the
dataflow model. These views are contrasted and compared in regard to efficiency and exploitation
of potential parallelism in programs. A discussion of major dataflow projects and a prognosis for
dataflow architectures are also presented.

Keywords: Dataflow, Dataflow graphs. Determinacy. Dynamic Dataflow architectures,
Functional data structures. I-structures. Multiprocessors, Parallel computation. Parallel computers,
Static Dataflow architectures, Structure storage, Tagged-Token Dataflow architectures, Token
storage.




Dataflow Architectures

1. Dataflow Model

The dataflow model of computation offers a simple, yet powerful, formalism for describing
parallel computation. However, a number of subtle issues arise in developing a practical computer
based on this model. and dataflow architectures exhibit substantial variation, reflecting different
standpoints taken on certain aspects of the model. For example, in the abstract dataflow model
data values are carried on fokens which travel along the arcs connecting various instructions in the
program graph. and it is assumed that the arcs are First-in-First-out (FIFO) queues of unbounded
capacity [36]. This gives rise to two serious, pragmatic concerns: (1) How should the tokens on arcs
be managed? (2) How should data structures, which are essentially composites of many tokens, be
represented? The manner in which these concerns are resolved has major impact. not only on the
machine organization. but also on the amount of parallelism that can be exploited in programs. In
this paper, we examine the major variations in dataflow architectures with regard to token storage
mechanisms and data structure storage.

The paper is organized as follows. The rest of Section 1 introduces dataflow program graphs and
the rules which determine when and how operations are performed. Also, it explains why data
structures can not be viewed as they are in conventional programming languages without seriously
compromising the suitability of the dataflow approach for parallel processing. Section 2 examines
the two token storage mechanisms adopted in current dataflow architectures. The static dataflow
approach places the restriction that at most one token can reside on an arc at any time, while the
tagged-1oken dataflow approach aliows essentially unbounded queues on the arcs with no ordering,
but with each token carrying a tag 1o identify its role in the computation. Section 3 presents two
alternatives to the view of data structures embodied in conventional languages. The first alternative
treats a data structure as a value which is. conceptually. carried on a oken. "Functional” structure
operations, such as cons, are provided to create new structures out of old ones. This approach is
elegant, but expensive to implement (even if the data structure is actually left behind in storage so
the token carries only a pointer) and restricts parallelism. The second alternative treats a data
structure as a collection of slots. each of which can be written only once. Any attempt to read a slot
before it is written is deferred until the corresponding write occurs. Section 4 gives an overview of
the major dataflow projecis. Finally, Section 5 gives our views of what the future holds for dataflow
computers.

1.1. Acyclic, Conditional, and Loop Program Graphs
A datallow program is described by a directed graph where the nodes denote operations, eg.
addition and multiplication. and the arcs denote data dependencies between operations [22]. As an
example. Figure 1 shows the acyclic dataflow program graph for the following expression.
let x=a*b
y=4*c
in (x+¥*(x—p/c
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Any arithmetic or logical expression can be translated into an acyclic dataflow graph in a straight-
forward manner. Data values are carried on fokens which flow along the arcs. 4 node may execute
(or fire) when a token is available on each input arc. When it fires. a data token is removed from
each input arc, a result is computed using these data values, and a token containing the result is
produced on each output arc.

Figure 1: Acyclic Dataflow Graph

Nodes sl and s2 in Figure 1 are both enabled for execution as soon as tokens are placed on the
input arcs a. b and c. They may fire simultaneously, or one may fire before the other: the results are
the same in either case. The result of an operation is purely a function of the input values; there are
no implicit interactions between nodes via side-effects, say through shared memory. This example
illustrates two key properties of the dataflow approach: (1) parallelism, ie.. nodes may potentially
execute in parallel unless there is an explicit data dependence between them, and (2) determinacy,
Le. results do not depend on the relative order in which potentially parallel nodes executel,
Further, notice that by supplying several sets of input tokens, distinct computations can be

"The unbounded FIFO queue model presented in this paper is a generalization of the dataflow model originally
formulated by Dennis. His model [22] requires that the output ares of a node be empty before it fires, implying thal at
most one wken can reside on any arc. Kahn's paper [36] implies that the determinucy of dataflow gruphs is preserved
even without this restricion.  Kahn's result also permits nodes 10 have internal siate, but we do nol consider this
generalization,
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pipelined through the graph. In this example, a single wave of tokens on the input arcs produces a
single wave of tokens on the output arcs. Graphs which have this property are called well-behaved.
All acyclic graphs for arithmetic and logical expressions are well-behaved.

In order to build conditional and loop program graphs, we introduce two control operators: switch
and merge. Unlike the plus operator. switch and merge are not well-behaved in isolation, but yield
well-behaved graphs when used in conditional and loop schemas[24]). Consider first the
conditional graph in Figure 2.a which represents the expression if x{y then x+y else x-y. The
initial tokens provide the data input to the switches as well as input to the predicate graph. The
predicate graph yields a single boolean value which supplies the control input to all the switches and
merges. A swilch routes its data input to the output arc on the True side or False side. according to
the value of the control inpul. Thus, the wave of input tokens is directed to the True or the False
arm of the conditional. As long as the arms of the conditional are well-behaved graphs, a single
wave of tokens will eventually arrive at the data input of the appropriate side of the merge. The
merge selects an input token from the True or the False side input arc, according to the value of the
control input. and reproduces the data input token on the output arc. To see that the conditional
behaves appropriately when waves of inputs are presented to it, consider the tricky case in which
the first wave of input tokens is switched to the True side, the second wave to the False side and the
tokens on the False side of the merge arrive before the tokens on the True side. The sequence of
control tokens at the merge restores the proper order among the tokens on the output arcs.

N
The loop graph shown in Figure 2.b computes = [;(i}. The figure is somewhat stylized in that the
1=

dots are used to indicate that the output of the predicate is connected 1o each of the switches and
merges, and the graph corresponding to function F is indicated by the "blob" containing F. The
initial values of / and sum enter the loop from the False sides of the merges, and provide data to the
predicate and swirches. If the predicate evaluates to True, the data values are routed to the loop
body. Assuming the body is a well-behaved graph. eventually a single wave of results is produced,
providing tokens on the True side of the merges. In this way. values circulate through the loop until
the predicate turns to False, which causes the final values to be routed out of the loop and restores
the initial False values on the control inputs to the merges. Note that if many waves of inputs are
provided, only one wave is allowed to enter the loop at a time: the second wave enters the loop as
soon as the first completes. and so on. Also note that loop values need not circulate in clearly
defined waves. Suppose Fis a very complicated graph. or simply does not fire for a long time. The
index variable i may continue to circulate. causing many computations of F to be initiated. This
behavior is informally referred to as dynamic unfolding of a loop.

1.2. Data Structures

The dataflow model introduced thus far is fully general in a formal computational sense [34], but
has limited practical utility because of the absence of data structures. Suppose we introduce a data
structure constructor cons which "glues together” two data values. producing a pair. and selectors
Jirst and rest which access the components of a pair. Since these new operators are functions, they
fit easily in the dataflow model. provided we assume tokens can carry composite data values. Note
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Figure 2: Conditional and Loop Graphs

that a component of the pair might be a pair, and so on: thus we must allow arbitrarily large
structures to be carried on a token. Only in the abstract model do we think of structures as being
carried on tokens: in practice tokens carry pointers to structures which are left behind in storage.
The cons operation can be extended to a general array operation append which takes an array x, an
index / and an element v, and produces a new array y such that ¥{j]. ie, the f}' element of y, is the
same as x[/] for all j not equal to i, and such that y{{] is v.

Even though data structures sit aside in storage. we must be careful not to treat them as we do
arrays or records in a conventional language such as Pascal or Fortran. Consider the effect of a
conventional store operation which modilies an element of a data structure. In general there may
be many tokens carrying pointers to the structure, Suppose one is destined for a modify operation
and another is destined for a selecr operation with the same index. The two operations can
potentially execute in parallel because there is no explicit data dependency from one to the other.
However. the value produced by the select operation depends upon which operation happens to
execute first. This defeats the determinacy of the model: it is no longer true that instructions can
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execute in any order consistent with the data dependencies and the results remain unaffected by the
order. Append. however, does not change the data structure: it produces a new structure that is
similar to the old one. Consider the earlier scenario, in which a token is destined for a select and
another carrying a pointer to the same structure is destined for an append, the select operates on the
old structure and hence is not affected by the append.

These observations raise a tough question. Is it possible to support data structures efficiently and
still maintain the elegance and simplicity of the dataflow model? We return to this question in
Section 3.

1.3. User-defined Functions

Another highly desirable property of a model of computation is the ability to support user-
defined functions. Each of our examples represents a function which, given a set of input values,
produces a set of results. Any good high-level language provides a way of abstracting variables so
that an expression can be turned into a procedure or a function. At the dataflow graph level, a
user-defined function is no more than an encapsulation of a graph which allows arguments and
results to be transmitted properly. Non-recursive functions can be handled by graph expansion at
compile time. However, to support user-defined functions more generally, we need an apply
operator which takes as inputs a function-value, (ie. description of an encapsulated dataflow
graph) and a set of arguments, and invokes the function on the specified arguments. There are
subtle issues involved in the implementation of apply. For example, when should the graph
corresponding to the function actually be created? After all the arguments have arrived? As soon
as a particular argument has arrived? Ofien the semantics of function application in high-level
languages requires the apply to be implemented in a particular way. However, all implementations
must support dynamic expansion of graphs and a method to route tokens to input arcs of the newly
created graph. If a copy of the function graph is to be reused, then a mechanism is required to
distinguish tokens belonging to different invocations. In this latter case the FIFO queueing of
tokens on arcs will not suffice. A mechanism for user-defined functions develops naturally out of
the tagged-token approach, so we will return to this topic after discussing various implementations.

1.4. Dataflow Graphs as a Parallel Machine Language

We can view dataflow graphs as a machine language for a parallel machine where a node in a
dataflow graph represents a machine instruction. The instruction format for a dataflow machine is
essentially an adjacency list representation of the program graph: each instruction contains an
op-code and a list of destination instruction addresses. Recall, an instruction or node may execute
whenever a token is available on each of its input arcs. and when it fires the input tokens are
consumed. a result value is computed. and a result token is produced on cach output arc. This
dictates the following basic instruction cycle: (1) detect when an operation is enabled (this is
tantamount to collecting operand values). (2) determine the operation to be performed. ie., fetch
the instruction. (3) compute results. and (4) generate result tokens. This is the basic instruction
cycle of any dutaflow machine; however. there remains tremendous flexibility in the details of how
this cycle is performed.
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It is interesting to contrast dataflow instructions with those of conventional machines. In a von
Neumann machine. instructions specify the addresses of the operands explicitly and the next
instruction implicitly via the program counter (except for branch instructions). In a dataflow
machine. operands (tokens) carry the address of the instruction for which they are destined, and
instructions contain the addresses of the destination instructions. Since the execution of an
instruction is dependent upon the arrival of operands. the management of token storage and
instruction scheduling are intimately related in any dataflow computer.

Dataflow graphs exhibit two kinds of parallelism in instruction execution. The first we might call
spatial parallelism: any two nodes can potentially execute concurrently if there is no data
dependence between them. The second form of parallelism results from pipelining independent
waves of computation through the graph. In the next section we show that it is possible to execute
several instances of the same node concurrently, thereby exploiting this temporal parallelism.

2. Token Storage Mechanisms

The essential point to keep in mind in considering ways to implement the dataflow model is that
tokens imply storage. The token storage mechanism is the key feature of a dataflow architecture.
While the dataflow model assumes unbounded FIFO gueues on the arcs and FIFO behavior at the
nodes, it turns out to be very difficult to implement this model exactly. Two alternative approaches
have been researched extensively. The first we call staric dataflow; it provides a fixed amount of
storage per arc. The other approach we call dynamic or tagged-token dataflow; it provides dynamic
allocation of token storage out of a common pool and assumes that tokens carry tags to indicate
their logical position on the arcs.

2.1. Static Dataflow Machine

The one-token-per-arc restriction can be incorporated in the model by extending the firing rule to
require that all output arcs of a node be emply before that node is enabled. With this restriction,
storage for tokens can be allocated prior to execution. since the number of arcs is fixed for a given
graph. The basic instruction format is expanded to include a slot for each operand. Distributing
tokens lo destination instructions involves little more than storing data values in the appropriate
slots. The slots have presence flags wo indicate whether or not a value has been stored. Thus, when a
token is stored. it is straightforward to determine if the other inputs are all present. This idea
underlies the static dataflow machines proposed by Dennis and his co-workers [21, 23, 25] (see
Figure 3).

Instruction templates reside in the acriviry store and addresses of enabled instructions reside in the
instruction queue. The fetch unit removes the first entry in the instruction queue. fetches the
corresponding op-code. data. and destination list from the activity store. forms them into an
operation packet. forwards the operation packet to an available operarion unit. and finally clears the
operand slots in the template. The operation unit computes a result. generates a result packet for
cach destination. and sends the result packets to the updaie unir. Instructions are identified by their
address in the activity store. so the update unit stores each result and checks the presence bits 10
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Figure 3: Static Dataflow Architecture

determine if the corresponding activity is enabled. If so, the address of the instruction is placed in
the instruction queue. These units operate concurrently, so instructions are processed in a pipelined
fashion.

It is possible to connect many such processors together via a packet communication network, The
activity store of each processor can be loaded with a part of a dataflow graph. Notice that large
delays in the communication network do not affect the performance. ie. the number of operations
performed per second, as long as enough enabled nodes are present in each processor. This is an
important characteristic of dataflow machines; they can use parallelism in programs to hide
communication latency between processors.

2.1.1. Enforcing the One-Token-Per-Arc Restriction

The above description of the static machine skips over a very important and rather subtle point:
the one-token-per-arc restriction of Dennis’ model. Suppose the units communicate with a full
send-acknowledge protocol. ie. a token moves to the next unit only after that unit has signalled
that it can accept the token, and the Update unit writes into an operand slot only if the slot is empty.
Even with these assumptions. multiple tokens belonging to the same arc may coexist in the
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machine. since there may be buffering in the units and communication network. It is infeasible for
the update or fetch units to determine that there is no token in the system for a particular arc, 1f
multiple tokens can coexist on an arc then the FIFQO assumption may be violated, because two
firings of a node may execute on different operation units within a PE and the one that is logically
second in the queue may finish first. The communication system will ultimately direct these result
tokens to the same destination node, but in the wrong order. To see how the dataflow model
malfunctions if tokens on an arc get out of order. consider the example in Figure 2.b with the plus
operator replaced by minus. The results of F(1) and F(2) can potentially reside on the left input to
the minus concurrently. but if F(2) is processed before F(1) the answer will be wmngz.

If the one-token-per-arc restriction can be enforced, then the problems due to reordering of
tokens will not arise. The restriction cannot be enforced at the hardware level, but its effect can be
achieved by executing only graphs which have the property that no more than one token can reside
on any arc at any stage of execution. It is possible to transform any dataflow graph into a dataflow
graph with this property. In the simplest transformation. for each arc in the graph, an
acknowledgment arc is added in the opposite direction. A token on an acknowledgment arc
indicates that the corresponding data arc is empty. Initally. a token is placed on each
acknowledgment arc. A node is enabled to fire when a token is present on each input arc and each
incoming acknowledgment arc. At the hardware level, the only difference between the two kinds of
arcs is that the value of a token on an acknowledgment arc is ignored. Instead of the presence bits
for operands. a counter is associated with each instruction. The counter is initialized to the number
of operands plus the number of incoming acknowledgment arcs and decremented by the update
unit whenever an operand or acknowledgment arrives. The node is enabled when the counter
reaches zero. Notice that the generation of acknowledgments must be delayed enough after the
operation packet is formed so that there is no way for results of the second firing to overtake the
first.

The one-token-per-arc restriction is not entirely satisfactory. Even though many of the
acknowledgment arcs in a program graph can be eliminated [40], the amount of token traffic
increases by a factor of 1.5 to 2, the time between successive firings of a node increases drastically,
and most importantly. the amount of parallelism that can be exploited in a program is reduced. In
particular, the dynamic unfolding of loops is severely constrained, as shown by the following
example. Suppose Fin Figure 2.b is replaced by the acyclic graph in Figure 1 (perhaps we take the
inputs a. b, and ¢ to be §). It should be possible to pipeline four distinct computations through this
graph. but. unfortunately. with the static approach the second initiation must wait until the divide
node fires. clearing the input arc for ¢. This problem has received subslantial attention [20] and can
be partially overcome by introducing extra identity operators to balance the path lengths in a graph.
For example. if three identity nodes are added on the right input to the divide in Figure 1, the path
lengths would be perfectly balanced. The balancing approach assumes that exccution times for all
operators are the same and communication delays between operators are constant.  Neither
assumption is realistic and balancing becomes computationally intractable without these

5
“Misunas shows [39] that multiple tokens per arc can also cause the machine 1o deadlock.



assumptions.

We note in passing that modeling unbounded-FIFO datatlow graphs by fixed storage dataflow
graphs (introduction of acknowledgment arcs is one example of such modeling), changes the
"meaning” of a dataflow graph in a subtle way. A graph may be deadlock free in the unbounded
case, but its corresponding graph with acknowledgment arcs may deadlock under certain
circumstances. These shortcomings, in addition to the inability to handle user-defined functions,
motivated work on the more general dynamic dataflow approach discussed next.

2.2. Dynamic or Tagged-Token Dataflow

Each token in a static dataflow machine must carry the address of the instruction for which it is
destined. This is already a tag. Suppose, in addition to specifyving the destination node, the tag also
specifies a particular firing of the node. Then. two tokens participate in the same firing of a node if
and only if their tags are the same. Another way of looking at tags is simply as a means of
maintaining the logical FIFO order of each arc. regardless of the physical arrival order of tokens.
The token which is supposed to be the ' value to flow along a given arc carries / in its tag. The
trick is to give simple tag generation rules for the control operators. switch and merge. Arvind and
Gostelow [7] have given such rules for Dennis’ operators [22]. However, if only well-behaved
graphs are considered, then it is possible to develop even simpler tag manipulation rules [9]. We
briefly explain these latter rules as well as the effect of tagging on the dataflow model presented in
Section 1.

2.2.1. Tagging Rules

We intend the tagged-token approach o support user-defined functions. so a program is viewed
as a collection of graphs, called code-blocks. where each graph is either acyclic or a single loop. A
node is identified by a pair <code-block, instruction address>. Tags have four parts: <invocation 1D,
iteration ID. code-block, instruction address>, where the latter two identifv the destination
instruction and the former two identify a particular firing of that instruction. The iteration ID
distinguishes between different iterations of a particular invocation of a loop code-block, while the
invocation 1D distinguishes between different invocations. All the tokens for one firing of an
instruction must have identical tags. and enabled instructions are detected by finding sets of tokens
with identical tags. Tokens also carry a port number which specifies the input arc of the destination
node on which the token resides: this is not part of the tag. and thus does not participate in
matching.

Consider first the execution of an acyclic graph such as in Figure 1. A set of tokens whose tags
differ only in the instruction address part is placed on the input arcs. When an instruction fires, it
generates tags for each result token by using the destination address in the instruction as the
instruction address part and copying the rest from the input tag. For conditionals the scenario is
similar. but there are two destination lists. A single wave of inputs is steered through one arm or
the other. We will ensure, however. that no two waves of inputs carry the same invocation and
iteration IDs in their tags. Thus. for any given tag. a data item carrying that tag will arrive on at
most one side of the merge. Since the order of twokens on the arcs is immaterial, there is no need o
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orchestrate the merge via the output of the predicate as in the FIFO model; the streams of tokens
produced by the two arms can be merged in an arbitrary fashion. This modified conditional schema
is shown in Figure 4.a. The @ is not an operator; it merely denotes that two arcs converge on the
same por.

1 0

b gl
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T &
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Figure 4: Conditional and Loop Graphs for Tagged Approach

The loop requires a control operator, named D. to increment the iteration ID portion of the tag
(see Figure 4.b). The iteration ID of each initial input to the loop is zero. Like the conditional
schema, the merges can be eliminated from the loop schema because the tags on the tokens on the
True and False sides of a merge will be disjoint. The D! operator is used to reset the iteration 1D to
zero. To implement nested loops and user-defined functions, an additional operator is required to
assign unique invocation ID’s, The applv operator takes a code-block name and an argument as
input. and forwards the argument 1o the designated code-block after assigning it a new invocation
ID and setting its iteration 1D to zero. The tag for the output arc of the apply node is also sent to the
invoked graph so the result can be returned to the destination of the apply node. as if it were
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generated by the apply node itself. One may visualize the action of an apply as coloring input
tokens in such a manner that they do not mix with wkens belonging to other invocations of the
same code-block. Of course, there must be a complementary operator to restore the original color
for the result tokens. The interested reader is referred to [10] for more detail.

The tagged-token approach eliminates the need to maintain FIFO queues on the arcs (though
unbounded storage is still assumed). and consequently offers more parallelism than the abstract
model presented in Section 1. In fact, it has been shown that no interpreter can offer more
parallelism than the tagged-token approach [8].

2.2.2. Tagged-Token Dataflow Machine

A machine proposed by Arvind er al [4] is depicted in Figure 5. It comprises a collection of
processing elements (PE's) connected via a packet communications network. Each PE is a complete
dataflow computer. The waiting-matching store is a key component of this architecture. When a
token enters the waiting-matching stage. its tag is compared against the tags of the tokens resident
in the store. 1f a match is found. the matched token is purged from the store and is forwarded to the
instruction fetch stage, along with the entering token. Otherwise, the incoming token is added to
the matching store to await its partner. (Instructions are restricted to at most two operands so a
single match enables an activity.) Tokens which require no partner, Le, are destined for a monadic
operator, bypass the waiting-matching stage.

Once an activity is enabled, it is processed in a pipelined fashion without further delay. The
invocation 1D in the tag designates a triple of registers (CBR., DBR. and MAP) which contain all the
information associated with the invocation. CBR contains the base address of the code-block in
program memory: DBR contains the base address of a data area which holds values of loop
variables that behave as constants, and MAP contains mapping information describing how
activities of the invocation are 10 be distributed over a collection of PE’s. The instruction fetch stage
is thus able to locate the instruction and any required constants. The op-code and data values are
passed to the ALU for processing. In parallel with the ALU, the compute tag stage accesses the
destination list of the instruction and prepares result tags using the mapping information. Result
values and tags are merged into tokens and passed to the network, whereupon they are routed to the
appropriate waiting-matching store.

It is important to realize that if the waiting-matching store ever gets full the machine will
immediately deadlock: tokens can leave the waiting-matching section only by matching up with
incoming tokens. A similar argument can be made to show that if the total storage between the
output of the waiting-matching section and the paths leading to its input is bounded. a deadlock can
occur [17]. Therefore. in addition to the functional units described in Figure 5. each PE must have a
token buffer. This buffer can be placed at a variety of points, including at the output stage or the
input stage. depending on the relative speeds of the various stages. Both the waiting-matching store
and the token buffer have to be large enough to make the probability of overflow acceptably small.

The apply operator is implemented as a small graph. The invocation request is passed to a
system-wide resource manager so that resources such as a new invocation 1D, program memory etc.
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Figure 5. Processing Element of the MIT Tagged Token Dataflow Machine

can be allocated for the new invocation. A code-block invocation can be placed on essentially any
collection of processors. Various instances, i.e.. firings. of instructions are assigned to PE's within a
collection by "hashing” the tags. A variety of mapping schemes have been developed to distribute
the most frequently encountered program structures efficiently. The MAP register assigned to a
code-block invocation keeps the hashing function to be used for mapping activities of the code-
block.
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Efficient handling of "loop constants” is a fairly low-level optimization, but important enough to
deserve mention. In the abstract model variables which are invariant over all iterations for a
particular invocation of a loop, but vary for different invocations, must be circulated. Variable Nin
Figure 2.b is an example of such a variable. Values of such variables cannot be placed in the
instructions without making the graph non-reentrant. To avoid this overhead, most dataflow
machines provide a mechanism for efficient handling of loop constants. As an example of the
importance of this optimization, note that the inner loop of a straightforward matrix multiply
program has seven loop variables, five of which are loop constants. In the MIT tagged-token
machine, storage for such constants is allocated in program memory when a loop code-block is
invoked: DBR points to this area. allowing these constants to be fetched along with the instruction.
The constant area is deallocated when the invocation terminates. If the loop invocation is spread
over multiple PE’s, setting up constant areas is a little tricky, since an image must be made in each
PE before the first iteration is allowed to begin.

The tagged-token architecture circumvents the shortcomings identified in the static architecture,
but it also presents some difficult issues. In the static machine, the storage has to be allocated for all
arcs of a program graph, though tokens may coexist only on a small fraction of them. In contrast,
token storage is used more efficiently in the tagged-token approach, because storage requirement is
determined by the number of tokens that can coexist. However, programs exhibit much more
parallelism under the tagged-token approach (actually even more so than the unbounded-FIFO
model), and consequently. can drive the token storage requirement so high that the machine may
deadlock [17]. This has turned out to be a serious enough problem in practice that we now generate
only those graphs in which the parallelism is bounded. In the dynamic machine. the mechanism for
detecting enabled activities appears more complex, since matching is required as opposed to
decrementing a counter.  Further, tokens carry more tagging information though no
acknowledgment tokens are needed. If tags are to be kept relatively small, there must be facilities
for reusing tags. This, in tum. requires detecting the completion of code-block invocations, an
action which generally involves a nontrivial amount of computation. This task would be virtually
impossible if the graphs were not "self-cleaning”, which is a consequence of graphs being well-
behaved. Finally, an efficient mechanism is required for allocating resources to new code-block
invocations.

2.3. Tags as Memory Addresses and vice versa

The performance of a tagged-token machine is crucially dependent upon the rate at which the
waiting-matching section can process tokens. Though the size of the waiting-matching store
depends upon many factors, based on our preliminary studies we expect that it will be in the range
of 10K to 100K tokens. In this size range. a completely associative memory is ruled out, but a hash
table. possibly augmented with a small associative memory is viable, and the waiting-matching
sections of the machines discussed in Section 4 are organized as such. Hashing basically involves
calculating the address of a slot in the hash table by applying some "hash" function to the tag of the
1oken (see [33] for examples of the hashing functions used in a tagged-machine).

Gino Maa. a member of our group. has suggested that tags should be viewed as addresses for a
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virtual memory in which the primitive operation is store-extract. Given a data and an address, the
store-extract operation stores the data in the slot specified by the address if the slot is empty,
otherwise the contents of the slot are read and the slot is considered empty. A page of virtual
memory may contain, for example, tokens with identical contexts. It is clear that only a tiny
fraction of the virtual address space will be occupied at any given time and physical storage is
required only for this fraction. Thus, the problem of the design of the wailing-matching section
becomes the problem of implementing a very large virtual memory (40-bit addresses oe larger),
where a non-existant page is allocated automatically upon an attempt to access it and deallocated
when all its entries are empty. Caches may be effective in organizing such a memory as there is
evidence to suggest that when an incoming token finds its partner, the partner is usually among the
most recently arrived tokens [15]. The difference between the implementation of a large virtual
address space and the hashing approach discussed earlier may be minimal, however viewing tags as
addresses allows us to place many variations of static and dynamic machines on a continuum, in
which the address on a token in the static machine becomes the tag on a token in the dynamic
machine.

Consider extending the static machine by operators to allocate activity store dynamically, thus
allowing procedure calls to be implemented. In all such implementations, a part of the address
serves the purpose of the "context” part of the tag in the dynamic machine, and the task of
allocating a new context is subsumed by the task of allocating activity storage. A common
optimization in such schemes is to separate the operand slots of an instruction from the rest. and to
allocate a new template containing operand slots for a code-block at the time of invocation. To
achieve sharing of a code-block among several invocations requires relocation registers like CBR,
DBR, etc. of the MIT tagged-token machine. Another variation discussed in the literature
eliminates the need for acknowledgment arcs by allowing only acyclic graphs [26. 44]. Since a loop
can be modeled as a recursive procedure, this offers a trade-oft between the cost of extra procedure
calls and the savings due to the elimination of acknowledgments. As discussed earlier, there are
subtlc issues associated with the implementation of the apply operator, e.g., the time of storage
allocation affects the amount of parallelism that can be exploited by the machine.

Coming from the other direction, a variation of the tagged-token machine that has been proposed
by David Culler and Greg Papadopoulos (also of our group) is to replace the waiting-matching
section of the wagged-token machine by a token storage that is explicitly allocated at the time of
procedure invocation. It is possible to do so if the storage requirement of a code-block can be
determined prior 10 invoking it. The type of bounded-loop graphs that we propose to run on the
machine have this property.

After examining some of the variations discussed here. the distinction between the static and
dynamic dataflow becomes somewhat fuzzy. Choosing a good design among the ones proposed (or
one yet o be proposed) is an active research topic in this field. The only general statement we can
make is that giving the programmer or the compiler a greater control over the management of
resources increases his responsibility and burden. but may provide significant performance
improvements and may simplify the design of the machine.



_15_

3. Data Structures

Section 1 described how data structures can be incorporated in the dataflow model without
sacrificing its elegance or utility for parallel computation. We now illustrate the difficulties in
implementing "functional” data structures efficiently and describe an alternative view known as
I-structures.  This latter approach offers an efficient implementation without sacrificing
determinacy, and allows more parallelism to be exploited in programs than the "functional"
approach.

3.1. Functional Operations On Data Structures

The simplest form of "functional" data structures is reflected in the operations cons, first, and rest.
Cons glues two values together (o form a pair; first and rest select values from such pairs. Clearly,
we cannot allow arbitrarily large values to be carried on a token. so pairs must be maintained in
storage with tokens carrying the addresses of these pairs. To this end, dataflow machines provide
structure storage. which should be considered as a special operation unit with internal storage. The
unit is shared by all PE's and is capable of performing many concurrent structure operations.

To see how the structure store and its associated operations behave, we can step through the
execution of a first operation. A first operation is enabled by the arrival of a token carrying a
pointer. Neither the fetch unit in the static machine nor the ALU in the tagged-token machine can
access the structure storage directly.” Thus. a new packet containing the read request and the
address or tag of the destination node of the first operation is sent to the structure storage, Upon
receipt of such a request, the structure storage controller produces a token containing the left value
of the pair and sends it to the appropriate destination instruction: this is depicted in Figure 6.

Similarly. for the cons operator. two input data values together with the destination node address
(or tag) are sent 10 a structure storage unit. The structure controller allocates storage for the pair,
writes the elements, and sends a pointer for the newly allocated storage to the destination
instruction.

The implementation of large, flat data structures, such as arrays, presents difficult design trade-
offs. If arrays are implemented as linked lists using cons. selection operations are inefficient. If,
instead. array elements are stored contiguously. as a generalization of the pairing operation, the
append operation becomes costly. This is because append involves creating a new array and copying
all except one element from the old array. Efficient implementations of arrays have been
rescarched extensively [1. 31] and two key ideas have emerged to reduce copying. First. if the array
descriptor (or pointer) fed to the append operator is the only descriptor in existence for the

3?\1'{-! providing direct access (o a large storage shared by many PE's is cenainly a design choice. but a fundamental one.
In o machine with many processors and many structure controllers, the ume 1o aceess a particular memory controller may
be very large. If the instruction processing pipeline blocks for structure operations, the performance of the machine will
he greatly affecied by the latency of the communication system. One beauty of dataflow machines is they can be mude
extremely wlerant of latency. and thus can sustain high performiznee with many processors working on a single problem.
Drcwiled argumients o tis account can be tound in Arvind and lannueei [11).
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Figure 6: Action of a first operation

corresponding array, the array can be updated in place without risk of causing a read-write race.
Second, if the array is represented as a tree, then only the nodes along the path to the appended
element need be regenerated: the rest of the tree can be shared. This reduces the amount of
allocation and copying, but increases the time for selection.

3.2, I-structures

The "functional” view of structures imposes unnecessary restrictions on program execution,
regardless of how efficiently it is implemented. Consider the simple example cons(fla).g(a)). the
cons will not be enabled until both f{a) and g(a) have completed. Thus. another part of the program
which uses the first element of the pair. but not the second. must wait until both elements have
been computed. Such data structures are called strict in programming language jargon. In contrast,
cons can be treated as a non-strict operator [27]. allowing an element of a pair 10 be used regardless
of whether the other element has been produced. The resultant increase in parallelism is far greater
than one might naively imagine.

The firing rule for non-strict cons is difficult to implement. One way to circumvent this difficulty
is 10 treal cons as a triplet of operations, as shown in Figure 7. The implicit storage allocation of
strict cons becomes visible as a new type of node in the dataflow graph. The descriptor produced by
the allocate operator is passed to the two store operations. in addition to the subsequent select
operations. This allows consumption of a structure to proceed in parallel with production, but also
raises an awkward problem: a first or rest operation may be executed before the corresponding
store. This seemingly catastrophic situation can be resolved with the help of a smart structure-
storage controller, If a read request arrives for a storage cell which has not been writien, the
controller defers the read until a write arrives. This is the basic idea behind I-structure storage.

Referring to Figure 8. cach storage cell contains status bits to indicate that the cell is in one of
three possible states. (1) PRESENT: The word contains valid data which can be freely read asin a
conventional memory. Any attempt to write it will be signalled as an error. (2) ABSENT: Nothing
has been written into the celi since it was last allocated. No attempt has been made o read the cell;
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Figure 7. Implementation of Non-strict Cons

it may be written as for conventional memory. (3) WAITING: Nothing has been written into the
cell, but at least one attempt has been made to read it. When it is written, all deferred reads must be
satisfied. Cells change state in the obvious ways when presented with requests. Destination tags of
deferred read requests are stored in a part of the I-structure storage specially reserved for that

purpose.

Whilie I-structure storage can be used to implement non-strict cons, to exploit the full potential of
this form of storage. functional languages can be augmented with explicit allocate and store
operations. From a programmer's perspective, an I-structure is an array of slots [42] which are
initiaily empty, and which can be written at most once. Regardless of when or how many times a
select instruction for a particular slot is executed, the value returned is always the same. This
preserves the determinacy property of the model. I-structures are not "functional” data structures;
they are "monotonic objects” which are constructed incrementally. hence their name.

I-structures provide the kind of synchronization needed for exploiting producer-consumer
parallelism without risk of read-write races. I-structure read requests for which the data is present
require about the same time as conventional reads, and with special hardware [32] deferred reads
can be processed quickly. Thus. as long as most read requests follow the corresponding write, the
overhead of I-structure memory is small. and the utility is enormous.

The benefit of non-strict structures in terms of the amount of parallelism exhibited by programs is
surprisingly large. For example, methods in which a large mesh is repeatedly transformed into a
new version by performing some calculation for each point are common in numerical computing.
Some such methods show tremendous parallelism because all mesh points can be computed
simultaneously. However, even when this is not possible because of data dependencies, it is usually
possible to overlap the computation of several versions of the mesh. This latter form of parallelism
can be exploited only if the mesh is represented as a non-strict structure.
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4. Current Dataflow Projects

We now present an overview of some of the more important dataflow projects, restricting our
attention to those that have built or are currently building a dataflow machine. In particular, we do

not address how dataflow concepts have influenced high-performance von Neumann computers
being designed today.

4.1. Static Machine Projects

It is no exaggeration 1o say that a/l dataflow projects started in the seventics were directly based
on Dennis’ seminal work [22]. Such projects. besides Dennis’ own project. include the LAU project
in Toulouse. France [16]. the Texas Instruments dataflow project [25]. the Hughes dataflow machine
[28]. and several projects in Japan [48.41]. Even the work on tagged-token machines at the
University of Manchester in England and the University of California at Irvine was inspired by
Dennis’ work.
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4.1.1. The MIT Static Machine Dataflow Project

Dennis” group at MIT has proposed and refined several static dataflow architectures over the
years [21. 46, 19, 25]. and have implemented an eight-processor engineering model of the static
machine shown in Figure 3[19]. The processing elements (PE) were built out of AMD bit-slice
micro-processors and were connected by a packet-switched buuterfly network composed of 2x2,
byte-serial routers with send-acknowledge protocol. The structure controller was not implemented.
Dataflow graphs for the machine were compiled from the language VAL [2]. A PDP-11servedasa
front end. While the machine operated successfully, it was only large enough to run toy programs.
Also, because of microcoding, the PE's were far slower than the routers. The Texas Instruments
machine [35]. which was architecturally similar to Dennis’ machine, was built by modifying four
conventional processors, Even though these machines proved to be too slow to generate
commercial interest in dataflow machines, they have had marked influence on instruction
scheduling in high-performance machines intended for scientific computing.

4.1.2. The NEC Dataflow Machines

The latest machines which may be classified as static machines are NEC's NEDIPS [48] and
Image Pipelined Processor (IPP) uPD7281 [41]. NEDIPS is a 32-bit machine intended for scientific
computation and uses high-speed logic, while the IPP is a single chip processor of similar
architecture, intended as a building block for highly paraliel image processing systems. We focus
on the latter machine, Generally. image processing involves applying a succession of filters 1o a
stream of image data. Thus, each IPP chip may be loaded with a dataflow program for a specific
filter or several filters.

The NEC designers have generalized the machine described in Section 2.1 by allowing multiple
tokens per arc. To see how this is done. consider once again the static machine in Figure 3.
Instruction templates must be enlarged to include a collection of operand slots. If we assume that
the operands of an enabled instruction are immediately removed from the activity store and
forwarded to the operation units, then tokens cannot accrue in the slots for both the left and right
arcs simultaneously. Thus, both arcs can share the same slots as long as a flag is provided in the
instruction template to indicate on which arc (left or right) the current tokens reside. Further, the
collection of slots in an instruction are managed as a cyclic buffer, with two pointers marking the
head and tail of the queue. When an incoming token is for the same arc as the arc to which the
previously arrived tokens in the instruction belong, the update unit adds the data value of the
incoming token 1o the tail of the queue. Otherwise, the data value at the head is removed and
placed in the instruction queue. along with incoming token. Notice it is not necessary for all
instruction templates to contain the same number of operand slots.

In the IPP implementation. the three components of the instruction template, op-code, operand
slots. and destination list are placed in threc separate memories so they can be accessed at
consecutive stages of the instruction pipeline. Each IPP provides storage for 64 instructions. 128
arcs. and 512 16-bit data elements. which can be partitioned into queues of up to 16 slots per
instruction. The IPP also allows regions of the data memory to be used for constants and tables. In
addition. special hardware operations are provided for generating. coalescing. splitting. and merging
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streams of tokens. A novel technique is employed to govern the level of activity in the instruction
pipeline: instructions with multiple destinations are queued separately from those with single
destinations, so when the pipeline is starved the multiple-destination instruction queue is given
priority, and when the instruction pipeline is full the other queue is favored. Buffered input/output
ports which support a full send-acknowledge protocol are provided, allowing up to 14 IPP’s to be
connected in a ring. The system relies on a host processor to provide input/output, bookkeeping,
and operating system support.

[PP does not handle acknowledgments specially and requires that operand storage is allocated
statically, ie. by the programmer or compiler. The programmer must tune the program graph to
avoid buffer overflows and ensure that tokens do not get out of order. This makes program
development for this machine a tedious task. The buffer overflow problem is much less severe in
NEDIPS because it provides much more data memory (64K words) than IPP. Still the problem is
serious enough to cause the designers to modify NEDIPS so operand buffers can be extended or
shrunk dynamically in 128 word increments. As discussed in Section 2.3, this extension also makes
it difficult to classify NEDIPS as a static machine.

NEDIPS and [PP are the first commercially available dataflow processors, and regardless of their
commercial success, which only time will tell, they are major milestones in non-von Neumann
architectures,

4.2. Tagged-Token Machine Projects

The tagged-token dataflow approach was conceived independently by two research groups, one at
Manchester University in Manchester, England and one at the University of California at Irvine.
The tagged-token architecture presented in Section 2.2 is based on work by the latter group, which
has since moved 1o the Massachusetts Institute of Technology. The prototype tagged-token
machine completed at the University of Manchester in 1981 [29] is an important milestone, and
presents some interesting variations on the machine described above. A number of other prototype
efforts are in progress in Japan, most notably in Amamiya’s group at NTT [3, 47], and Sigma-1 at
ETL which is discussed later in this section.

4.2.1. The Manchester Dataflow Project

The Manchester machine is essentially like the instruction processing section shown in Figure 5.
It is a single ring consisting of a token queue, a matching unit, an instruction store. and a bank of
ALU's. The ALU’s are microcoded and fairly slow. It has demonstrated reasonable performance
(1.2 MIPS) with this arrangement, although the choice of many slow ALU’s has received some
criticism because all the ALU’s can be easily replaced by a single fast ALU. Tokens are 96 bits
wide. including: 37 bits for data. 36 for tag. and 22 for destination address. The matching unit is a
two-level store. The first level has a capacity of 1M tokens and uses a parallel hashing scheme 10
map an incoming tag into a set of eight slots. The contents of the sclected slots are associatively
matched against the incoming tag. The second-level overflow store uses hashing with linked lists.

The Manchester machine has no structure store per se. Instead. a host of exotic matching
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operations are provided so that the matching store can function as a structure store as well [49]. The
analog of an invocation ID can be treated as an array descriptor, and the iteration 1D can function as
the index, so a tag can represent an arrayv element. A store operation generates a token which goes
to the matching unit and sricks there. A read operation generates a token which matches with an
glement stuck in the store, extracts a copy of it, and forwards the copy to the destination of the read
operation, but leaves the sticky element in the store. If the read token fails to find a partner in the
store, it cycles through the ring. busy-waiting. When the structure is deallocated, its elements must
be purged from the store. This approach has not proved very successful. It increases the already
large load on the matching unit and communication network. degrades the performance of the
maltching unit on standard operations, as well as makes its design much more complex. To resolve
these problems. the Manchester group is developing a structure-store similar to the I-Structure
store. Sticky tokens are also used for loop constants (discussed in Section 2.2). The iteration part of
the tag 1s ignored in performing the maitch and the sticky token remains in the store even when a
match is performed. Cleaning up the matching store when a loop terminates presents difficulties.

The Manchester machine has provided a target for a number of dataflow languages and has run a
number of sizable applications. Extensions to multi-ring machines are being studied through
simulation. Work continues in areas related to controlling parallelism and instruction set design.

4.2.2. Sigma-1 at Electrotechnical Laboratory, Japan

Under the auspices of the Japanese National Supercomputer Project, the Electrotechnical
Laboratory is developing a machine [50] based on the MIT tagged-token architecture. The current
proposal is to produce a prototype 32-bit machine capable of 100 Mflops, by the end of 1986. The
individual processors are pipelined and operate on a 100ns cycle. The network is packet-switched
and composed of 4x4 routers. The engineering effort involved in this project is substantial,
including the development of a 1-board PE and a 1-board structure memory. Together, these will
require eight to ten custom ¢cMOS gate-array chips and a custom VLSI chip. The PE will contain
16k words of program memory, 8k words of token buffering, and 64k words of waiting-matching
store, and the structure memory 256k words, (The memory sizes may be increased by a factor of
four by the time the machine is built.) The machine will have up to 180 boards. divided roughly
half and half between the structure memory and ALU boards. A 6-board version of the PE has
been operational since November 1984,

A number of interesting design choices have been made in Sigma-1. A short latency two-stage
processor pipeline is employed to execute code with low parallelism efficiently. In the first stage.
instruction fetch and maitching are performed simultaneously. If the match fails. the fetched
instruction is discarded. In the sccond stage. destination tags are generated in parallel with the
ALU operation. Tokens are transferred through the network as 80-bit packets. Two cycles are
required to receive a packet, but the first stage of the processor pipeline operates on the first 40 bits
of the packet (the tag) while the second 40 bits are received. The waiting-matching store is
implemented as a chained hash table. The first operand of a pair is inserted in the matching store in
4 cycles: matching the second token of a pair has an expected time of 2.6 cvcles. Sticky tokens are
employed for loop constants, however. the designers of the ETL machine have intimated that the
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utility of this approach may not warrant the added complexity in the matching unit. The structure
controllers support deferred reads. Rather than support a general heap siorage model, in which
data objects may have arbitrary lifetimes. structures are deleted when the procedure which created
the structure terminates. This simplifies storage management and is probably acceptable for writing
numerical applications, the intended application area for the machine.

4.2.3. The MIT Tagged-Token Project

Not surprisingly, the tagged-token machine presented in Section 2.2 reflects the approach of the
authors' group at MIT. This machine developed through a sequence of stages [7, 30, 14, 13, 12, 4]
from theoretical work on the U-interpreter model [8, 9]. The MIT group has focused on developing
an entire dataflow system, rather than on hardware development per se. Two soft prototypes have
been implemented to serve as vehicles for studying architectures, program development and
resource management. A simulator provides a detailed model of the machine, including internal
timings, while a dataflow emulator is being developed 10 run on the Multiprocessor Emulation
Facility [6] (MEF). to study dynamic behavior of larger applications. The MEF is a collection of
Lisp machines (38 Texas Instruments Explorers and 8 Symbolics 3600's) which will be connected by
a high bandwidth packet-switched network in the near future. Each Lisp machine emulates a
dataflow PE. Both the simulator and emulator execute graphs produced by our compiler from the
high-level dataflow language Id [10, 42]. A number of reasonably large benchmarks are being
studied on the soft-prototypes of the MIT Tagged-Token machine, including a complex
hydrodynamics and heat conduction code.

5. Prognosis

in this paper we have outlined two salient issues in dataflow architectures: token storage
mechanisms and data structures, and surveyed several dataflow machines, We have not attempted
to cover ail the current research topics; for the interested reader, these include: demand-driven
evaluation [43], controlled program unfolding and deadlock avoidance [17,45, 5], efficient
procedure  invocation, storage reclamation, relationships with parallel reduction
architectures [38. 18. 37]. network design and topology. and semantics of programming languages
with [-structures. However, dataflow architectures are of more than academic interest, so in
conclusion we consider their potential in the real world.

Today a vast collection of single-board computers are available which offer roughly 1 MIPS at
low cost: these are touted as building blocks for multiprocessors. Can dataflow machines compete?
It is not clear if a single dataflow processor can achieve the performance of a von Neumann
processor at the same hardware cost.  The dataflow instruction-scheduling mechanism is clearly
more complex than incrementing a program counter. An enginecring effort substantially beyond
any of the current dataflow projects is required to make a fair comparison. The Sigma-1 project is
an important step in this direction. The question becomes more interesting when we consider
machines with multiple processors, where the dataflow scheduling mechanism yields significant
benelits. In the basic von Neumann machine the processor issucs a memory request and waits for
the result to be produced. The memory cycle time is invariably greater than the processor cycle
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time, so computer architects devote tremendous effort to reduce the amount of waiting. This
problem is much more severe in a multiprocessor context because the time 1o process a memory
request is generally much greater than in a single processor and is unpredictable. Further, most
traditional techniques for reducing the effects of memory latency do not work well in a
multiprocessor setting. The dataflow approach can be viewed as an extreme solution to the memory
latency problem -- the processor never waits for responses from memory; it continues processing
other instructions, Instructions are scheduled based on the availability of data, so memory
responses are simply routed along with the tokens produced by processors. Thus, even if individual
dataflow processors do not yield the performance per dollar of a conventicnal processor, we can
expect them to be better utilized than a conventional processor in a multiprocessor setting. For
large enough collections of processors they should be cost effective as well as show absolute
performance not achievable by conventional processors. But it is not yet clear where this threshold
lies.

The preceding discussion suggests that dataflow machines are likely to be competitive in high-
performance range. however, we would not make such a claim lightly. 1t is unlikely that a large
collection of 1 MIPS machines of any ilk will compete with a few very high performance processors,
Le., processors which can perform 10 to 100 MFLOPs each. To compete among supercomputers, it
may be necessary to engineer a dataflow machine with the technology and finesse employed in
conventional supercomputers. This is a major undertaking. far beyond any of the dataflow projects
currently proposed. Most supercomputers include vector accelerators to improve performance on a
restricted class of programs. It remains to be seen how effective these will be in a multiprocessor
context and the extent 1o which analogous accelerators will be needed for dataflow machines.

This paper has focused on architectural issues, and accordingly has scarcely touched on the high-
level programming model which accompanies dataflow machines. Nonetheless. programmability
of parallel machines is critical. Conventional programming languages are imperative and sequential
in nature: do this. then do that, etc. Efforts to use these languages for describing parallel
computation have been ad hoc and unwieldy. greatly increasing the difficulty of the already onerous
programming task. The programmer must determine what synchronization is required to avoid
read-write races. Even so, subtle timing bugs are common. A class of languages. called functional
languages, completely avoid these synchronization problems by disallowing "updatable” variables.
Functional languages employ function composition, rather than command sequencing, as the basic
concept and can be translated into dataflow graphs easily. exposing parallelism. These languages
can be augmented with I-structures to make data structures more efficient. without sacrificing
determinacy or parallelism. It is our belief that dataflow architectures together with these new
languages will show the programming generality, performance and cost effectiveness needed to
make parallel machines widely applicable.
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