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INTERVAL AND RECENCY-RANK SOURCE CODING:
TWO ON-L INE ADAPTIVE VARIABLE—-LENGTH SCHEMES

Peter Elias:
ABSTRACT
In these schemes the encoder maps each message intoc a codeword in
a prefix—free codeword set. In interval encoding the codeword is
indexed by the interval since the last previous occurrence of that
message, and the codeword set must be countably infinite. In
recency rank encoding the codeword is indexed by the number of
distinct messages in that interval, and there must be no fewer
codewords than messages. The decoder decodes each codeword on
receipt. Users need not know message probabilities but must
agree on indexings, of the codeword set in an order of increasing
length and of the message set in some arbitrary order. The
average codeword length over a communications bout is never much
larﬁer than the value for an off-line scheme which maps the jth
most frequent message in the bout into the jth shortest codeword
in the given set, and is never too much larger than the value for
off-line Huffman encoding of messages into the codeword set best
for the bout message frequencies. Both schemes can do much
better than Huffman coding when successive selections of each

message type cluster much more than in the independent case.
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I. INTRODUCTION A HISTORY

I analyse two on-line adaptive variable-length source coding
schemes, interval and recency rank encoding. In each scheme

the encoder encodes the current message selected from a set A of
m messages into a codeword selected from a prefix—-free set C of
sequences in an alphabet B of b letters, say B = {0,1,..0,b=13,
concatenating the result onto previous output. In interval
encoding the codeword represents the interval since the last
previous occurrence of the current message, and C mus£ be
countably infinite. In recency rank encoding the codeword
represents the number of distinct messages present in that
interval, and C must be the size of A. The decoder receives the
concatenation and decodes each message as soon as the last symbol
of its codeword is received. Either scheme can be used by
encoders and decoders who know the sets C and A and have agreed
to indexings of C = {Ci1,...3€~} in an order of increasing

length and of A = {ai1,...;a8x} in some standard order, but

know nothing about probabilities of messages. When messages are
selected from a probability distribution on A, the average
codeword length for either scheme is never much larger than for
probability rank encoding, which maps the jth most probable
message in A into the jth shortest codeword in C, and never too
much larger than for Huffman encoding, which is probability rank
encoding into the codeword set optimal for the given
distribution. Both adaptive schemes can do much better than
Huffman coding when successive selections of each message type

cluster much more than in the independent case.




If users know nothing about message probabilities, the nonadaptive
on-line code which is best in a minimax sense has m codewords of
length ilogi(m)!, and does relatively poorly in encoding any source
whose distribution has entropy much less than log(m). Therefore an
on—line scheme which does reasonably well for such sources must

be adaptiye. Interval and recency rank encoding seem to be the
simplest on-line adaptive schemes: simple to describe and to
implement, and simple encugh to analyze to allow quantitative
bounds on their performance in encoding an arbitrary finite
sequence. They are therefore pedagogically attractive: I gave
homework problems on interval encoding at MIT in 1979, and on both
schemes at Harvard in 1984. When this paper was ready for
submission I learned that Bentley, Sleator, Tarjan and Wei in [11
had independently introduced recency rank encoding, which they
call the move—-to—front scheme, at a meeting whose transactions

had just appeared. They prove essentially that part of Theorem 1
below which deals with recency rank encoding, and that part of
Theorem 2 which shows that the Same recency rank result holds for
sources which do not have defined probability distributions, when
probabilities are replaced by frequencies. The part of Theorem 1
dealing with interval encoding, and the tighter bounds on recency
rank encoding and frequency rank encoding in Theorem 2, seem to
be new. Both schemes are of interest: recency rank encoding

takes fewer bits (in the worst case, for most distributions), but
interval encoding has a very simple implementation: it could
encode and decode selections from a million-letter alphabet at a

microsecond rate.



Faller [8] and Gallager [9] give an elegant on-line adaptive

version of Huffman coding, developed further by Knuth [12]. These

schemes deal with redundancy due to a nonuniform first order

source distribution when the users can generate their own

codeword set. They can integrate over an arbitrarily long message
sequence and, when message probabilities are well defined,
converge to the performance of a Huffman code designed knowing
those probabilities. They will then do better than interval or
recency rank encoding for messages selected independently from A
with those probabilities, but will do worse when selections of
each message type clu;ter in time. Vitter [20] gives a
modification with better worst—case results on arbitrary sequences

of input symbols.

The Ziv and Lempel schemes [131, [23], [24], [25] are much more
sophisticated and powerful, encoding message sequences of
ind&easing length and coping with redundancies of higher order.
Modified and augmented versions of the Ziv and Lempel schemes
have been implemented by Miller and Wegman [15] and Welch [211,
and seem to work very well for some sources, but analytic bounds
are less simple. A variant by Rodeh, Pratt and Even [181 which
uses universal codewords as variable-length backpointers is close
in spirit to interval encoding but preserves the power (and
complexity) of dealing with higher order source properties. Other
adaptive back-pointer schemes are referenced and analyzed in

Gonzalez—-Smith and Storer [101].

The work [1] by Bentley et al derives from a scheme for managing

a self-organizing file system described and analyzed by Knuth [i111]




and (with generalizations) by Rivest [171 in the independent case.
Sleator and Tarjan [19] consider the generalized schemes without
the independence assumption. If the most recently used item is
put at the front of the list, the position of each item is its
recency rank. Sending the codeword whose rank in order of
increasing length is the message rank can also be done using
Rivest’s interchange ranking scheme, in which after each access
the accessed item and the cne which precedes it by k in rank order
interchange their ranks. The corresponding coding scheme does
better for independent messages but worse in the worst case than
recency rank encuding: £17] and [19] give further bibliography of

the self-organizing file problem.




11, —=LINE CODIN F_WEAK-LAW

Huffman and probability rank encodings can be used on-line only
to encode the output of a source which selects messages from A
with probabilities that are well-defined, at least in the sense
of the weak law of large numbers, and known to the users. BGiven
such a source whose jth most probable message has probability
@(j), users who know message probabilities and are free to
choose their own codeword set can use the Huffman algorithm to
find an optimal set Co for @, whose jth shortest codeword

is La(j) letters long, and do probability rank encoding by
assigning that codeword to the jth most probable message in A.
The expected codeword length of the resulting Huffman encoding
is known to be bounded above and beiaw in terms of the entropy

H{@):

(2.1) H(Q) = £ @{(jllog(l/@{j)),

max{1,H(@?} £ Ealla) = £ B(i)Lla(j) < H(@) + 1.

(The logarithmic base is the alphabet size b. Expectations are

summed over all and only terms with positive probabilities.)

On-line Huffman coding is not available to users who do not-knaw
their message probabilities exactly, or cannot choose their own
codeword sets. If users must map their message set 1-1 into a
fixed prefix—-free codeword set C given in advance, then
probability rank encoding is optimal for users who know message
probabilities, or atleast know a ranking of their messages in an
order of decreasing probability. The given set C may be chosen to

do reasonably well for all distributions in some class. If there



is no upper bound to the number of positive probabilities in the
distribution, an infinite set C is required. One such set, C,,

has as its jth codeword c.(j) the usual (1 + ilag(j)J)—symbol

b-ary representation of the integer j, prefixed by a sequence of

Llog(i)} 0’s. Another such set, Cz, has as its jth codeword the

b-ary representation of j preceded by c.(1+ilog(j)!). The

lengths L.(j), L=(j) of these codewords are then

(2.2) Lait(j) =1 + 2llog (i)}

|
[y
+

2log(j) = Bi{log(j)),
L=¢j) = 2 + Llog(i)) + 2|log(1+]log(i)])}

£ 2 + log(j) + 2log(i+log(j)) = 6z=(log(ij)),

for i < 1, and the expected codeword lengths Ea(lL,),

Ea(Lz) are bounded above respectively by

(2.3) £ Qi) (1+210g(j)) < 1+2% B{(i)log(1/8(j))= 1+2H(Q)
= B.(H(@),
E @(j)(2+log(j)+2log(1+log(j))) L 2+H@) +21ag (1+H(Q))

= B=(H(@)),

using the fact that B.(v) and G2 (v) in (2.2) are convex N and
increasing in v, and the Wyner inequality Ea(log) < H(@)

[22]1, which holds since @ is nonincreasing so 1/Q(j) < j.

Thus knowing only ranking, not B, and doing probability rank
encoding into C. or Cz rather than into the optimal Cgq,

costs a factor in average codeword length which is at most 3 for
C., and for C- approaches 1 for large H(Q). Infinite
prefix—free codeword sets were discussed by Levenstein in [141.

Results like (2.3) for a set like C, were given in [4]1, and in



(5] for C. and a binary version of C=. (For b=2 the function

L= can be improved to L=’ (j) = 1+llog(j)j+2]log(i+lag(j))],
which satisfies the Kraft inequality with equality. Other sets
better for very large values of H are described in [31, [2] and
{71.) Algorithms for constructing a C which is minimax optimal
for probability rank encoding —— i.e. which minimizes over some
class of distributions the maximum of some measure comparing
expected codeword length to expected Huffman codeword length —

are given in [3], [16] and [&1].

Probability rank encoding into a minimax—optimal codeword set is
sensible for clients of a multiuser system who each know the
probabilities of their messages but must share a single
system—wide codeword set. Users who do not know probabilities,
however, are common in data processing. Such users are not likely
to know an accurate probability ranking of their message set, so
thé} cannot do accurate probability rank encoding on line. The
work reported here started from the observation that interval
coding into Ci or Cz, which is suitable for such users because

it requires no knowledge of either @ or ranking, has an average

codeword length which also satisfies the upper bounds in (2.3).

In interval coding into C, or C>, assume that all messages

have been encoded and decoded correctly at least once by time t.
(Initialization is dealt with in Section 3.) The coder sends the
kth codeword c. at time t if the message a, just selected was
most recently selected at time t-k. By the weak law of large
numbers the relative frequency of the jth most probable message

among the first N messages approaches @(j) in probability as N



increases, so the mean interval between occurrences of that
message approaches 1/8(j). The upper bounding functions

Gi(log(u)), G=(log(u)) in (2.2) are convex N in u, so their
values at the mean argument u = 1/@(j) are greater than the
limits of the means of L. and L. over the different intervals
between successive occurrences of the jth most probable message.
Thus the mean lengths of the codewords which represent the jth
most probable message are bounded above in probability by
G.(log(1/@¢(j))) and G=(log(1/@(j))) respectively. The mean
lengths of all codewords are therefore bounded above in
probability by the expectations of those quantities with respect
to @(j). Since B. and 6z are convex N in v = log{u), that

expectation is also bounded by the right sides of (2.3).

In recency rank encoding the coder sends c. at time t to
represent the present message a, if k-1 other message types

havé occurred since the most recent previous occurrence of a,.
The interval since the last occurrence of a message will be larger
than its recency rank if some other message occurs more than once
in that interval. Since larger integers are mapped into longer
codewords, recency rank encoding never takes more and sometimes
takes fewer symbols per message than interval encoding into the
same C, so its average codeword length over a long sequence is
bounded in probability by (2.3) again. Its possibly greater
economy in channel use is balanced by its need for more memory

accesses to encode a message: see the algorithms in Section 3

below.

Theorem 1 summarizes the obvious generalization of the above
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results for on-line encoding of sources with defined
probabilities. Theorem 2 gives more precise and general bounds
on average codeword lengths for on-line interval and recency rank
encodings of an arbitrary finite sequence of messages, with no
assumptions about the character of its source, and compares their
performance to that of off-line adaptive probability rank and
Huffman encodings. The tighter bounds in Theorem 2 show
differences in performance between interval, recency rank and
probability rank encodings which persist in the limit when
messages have defined probabilities, while Theorem 1 gives the
same upper bound for all three. Bentley et al [1] give upper
bounds for recency rank encoding similar to those in Theorem 1
for both independent letter sources (their Theorem 2) and for

arbitrary sequences (their Theorem 1).




I11. BOUNDS FOR WEAK-LAW SOURCES.

Some definitions are needed for Theocrem 1.

A function f:A*->B= mapping message sequences into sequences

of channel symbols is an pn—line scheme if it is 1-1 and

(i) f(@)=8,

(ii) for each t > 0 and x(1),...,x{t) in At the set
{f(a(i},---,«(t),aai!igjgm} of m sequences in B*

have the common prefix flx(1l),...,x(t)), and

(iii) deleting that common prefix leaves a prefix—free set

of m codewords in B>,

An 6n—1ine scheme is nonadaptive if f(x(1),...,x{t)) is the

concatenation of flx(1)),...,f(x{t)), and otherwise is adaptive.

Let F(A,B) denote the class of all on-line schemes from A* to

B>,

A source s is a weak law source with probability rank
distribution @ if in its first N selections afl),...,x{N) it
chooses the jth most probable message with a relative frequency
which converges in probability to Q(j) as N grows. Let S{@)

denote the class of all such sources.

The mean cost in b-ary symbols per message of encoding the first N

11
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messages from a source s€S(Q) using the coding scheme feF(A,B) is
the quotient If(x(1),...,x(N))I/N, where 1X| denotes the number of
symbols in the string X. That quotient need not approach a limit
in probability as N increases, but will have limits superior and

inferior in probability. Let

Maus (f,8) = plimsup 1f(x{1l),...,a(N)) /N,
N->a

Mine(f,8) = pliminf Iflx(1l),...,a(N))E/N.
N->o

If a 1imit in probability in fact exists, denote it by

M('F,s) - ”1:'1#({,5) = "-up(f,s)q

Let @ be a nonincreasing distribution on the first m positive
integers. Let La be the length function of a Huffman codeword
set for @ as in (2.1). Let L be the length function of a
countably infinite prefix—free codeword set which, like L, and

L= in (2.2), has an upper bound
L{i) £ B(log(j)),

where G(v) is convex N and nondecreasing in v, so G(log(uw)) is
convex 1 and nondecreasing in u. Let Huffman coding into Cqa and
probability rank, interval and recency rank encodings into C be

represented respectively by the online coding functions Fray
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fer; fin and faw in F(A,B). Then for all s€S(@),

(i)

sup inf Mine (f,8%)

€8(Q) $€F (A.B) Ealla) = M(f.,s) > max{1,H(@)3,
e £

<1 + H(@).

{(ii)

L GH@).

(iii)
Ifrmlax(l),ue.,x(N))I/N > Hfrm{x(l),...,x(N))I/N > L(1),

Proof

The fact that M(f.,s) and M(fer,s) are constant on S(@) and

equal toc the expectations of Lo and L is immediate from the
definition of a weak law source and the weak law of large numbers
itself. The rest of (i) is standard. The upper bound in (ii) was
proved above in (2.3). The lower bound L(1) in (ii) and (iii)
holds since an on-line encoder is 1-1, so every message is mapped
into some codeword, which is no shorter than the shortest. The
proof of the upper bound in (iii) is the immediate generalization
of the proof given above that the bounds in (2.3) hold for
interval, and thus a _fortiori for recency rank, encodings. A

more formal proof of Theorem 1 results from taking appropriate

limits in probability in the more detailed Theorem 2 below. l

Comments on Theorem 1

The mean codeword lengths of Huffman and probability rank encoding



have limits in probability which are constant on S(Q). The mean
codeword length of an adaptive encoding of the output of an s in
S(@) need not approach a limit in probability, and if it does the
limit need not be constant on S(@). The upper and lower bounds in
(iii) may therefore differ widely, unlike those in (i) and (ii).
Both bounds are approached or attained as limits in probability

by some sources in S(Q) for some @ and some codeword sets C.

For example let Q. be uniform, @.(i) = 1/m on A, with m=b%

for integer k. The cyclic source S$~€S5(8m) which runs through
messages in standard érder generating n successive copies of each
has period nm. After the first input cycle, for n = 1 the output
of s, is mapped by both interval and recency rank encoders into
a2 sequence of copies of the mth shortest codeword. That gives
mean codeword length L.(m) = 1 + 2k for Ci, which attains the
upper bound 1 + 2H(Q..) for any k, and Lo(m) = 2+k+2)1og (1+k) }
fnr-Cz, which attains the upper bound 2+H(B.,) +210g (1+H(Q..) )

when k = b?—2 for some integer j. For n > 1 the ocutputs of both
interval and recency rank encodings of s. are cycles of n
codewords starting with the nmth or mth, followed by n-1 copies
of the shortest codeword. Since L(j) < klog(j) for some k, mean

codeword length approaches L(1) for both schemes as n grows.

The coding scheme corresponding to Rivest’s interchange rule for
files [17]1, in which each message has an associated rank at time

t and when selected interchanges ranks with the message whose rank
is k smaller, does not satisfy the upper bound in Theorem 1 on all
of S(Q.) for large m. It always sends the mth longest codeword

if the message of rank m always occurs next. That situation
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occurs if the only two of the m messages which actually appear are

the two which have been assigned initial ranks m and m—-k, and

those two alternate forever. In that case H(Q) is log(2) b-ary
symbols, the upper bound for C, from Theorem 1 is 1+2}1loge{2) ]}

(3if b =2 and 1 if b > 2) and is attained by both interval and
recency-rank encoding into C,, while the mean codeword length

using Rivest’s algorithm is > log(m) for any prefix—free C with

m members, and is 1+2log(m) for C,.

The fact that a source is in S(@) does not guarantee the
existence or determiné the value of its limiting mean codeword
length under interval or rank encoding into some given C. However
the existence of a stationary conditional distribution of the
intervals or recency ranks of the jth most probable message for
each j does. As an important example let s(Q@) denote the source
in S(®) which picks messages independently from @. If the jth
mos£ probable message occurs at time t, the conditional
probability that it last occurred at time t—-k is just

@¢3) (1-@(j))*~*. Averaging L(k) over positive k gives a mean
codeword length for the jth most probable message. Averaging over

J then gives

(3.1) M{frrn,S(@)) = £ @=(5)E (1-Q(j))%—1L (k).

J k
Formulas for computing the conditional distribution of the recency
rank of message j when it is selected by s(@) are available but
complex [11]. However there are simple closed forms for the mean
recency rank of the jth most probable message and of all messages

from s(@) (e.g. in [171), which give not an exact value like
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(3.1) but two additional convexity bounds,

(3.2) M{frm,s(Q.)) L @G)6(1/2 + £ @(3)/(@(i)+R(5)) ),
3 ,

€ G{1/2 + £ @(i)R{(F)/(RLiY+R(F)) ) o
i3
which may or may not be tighter than the bound G(H(®@)) in the
Theorem. When @ = Q.,, the uniform distribution, the recency rank
of each message also has a uniform distribution. Then an exact

expression is immediate:

m
(3.3) M{frr,s(@n)) = (1/m)E L(Kk).

k=1
On the whole the independent letter source in S(@) has a limited
role here, since it is not extremal in its performance as it is
in so many information theory problems: in general it attains

neither bound in (iii) for interesting L.
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IV. ENCODING ARBITRARY MESSAGE SERUENCES.

Next, consider encoding an arbitrary sequence «f(1),... «{(N) of N

selections from A = {a,,....,am}. To intitialize the adaptive

schemes extend the sequence on the left by setting
(4.1) al(t) = a, at t=1-i, 1 ¢ t < m,

as though all m messages had been sent just before the start of
actual transmission, in the inverse of the users’ standard order.
Let T denote the set of N transmission times, T(i) the set of
times at which message a, is selected, n(i) the number of such
selections, tw.(i) the time of the kth such selection, R{(i) the
relative frequency and r(i) the rank in an ordering by decreasing
frequency of message a:, and @{(j) the relative frequency of the
message of rank j = r(i). The permutation r is not unique if there
are-equiprobable messages, but the value of B{(j) is. (4.2) defines

these terms and one such r for reference.

(4.2) T = €1,..28, T() =<t in T | o(t) = a,3,
nii) = 1T I, R(i) = n(i)/N,
toli) = 1-i,
titi) = min (RET() | tDtu—2(idd, 1 < k < nti)d,
rei) = 1€i’4 R(i%) > R(i), or R(i’) = R(i) and i* < i},

Q(r(i)) = R(i),

where to(i) comes from (4.1) (and is not a member of T(i)).

Interval and recency rank encodings can be defined as on-line

schemes on an arbitrary sequence in AN once the indexed set C



and the standard order on A needed in (4.1) are given. Huffman
and other probability rank encodings are not defined as on-line
schemes when no probabilities are given in advance. The
appropriate schemes for comparison are off-line adaptive or
two-pass schemes, which wait until all N messages are available,
compute the relative frequencies and treat them as probabilities.
The frequency rank function r in (4.2) defines an off-line
frequency rank encoding into any C, and an off-line adaptive
Huffman encoding is just freguency rank encoding into the set

Ca optimal for the @ in (4.2). Such off-line adaptive Huffman

encoding is used for the compaction of large files.

All these encoders, on-line and off-line, can be decomposed into
two stages. The first stage maps the message sequence ofl),...,

x(N) into a sequence of integers. Let x(t), y(t) and z(t) denaote
respectively the outputs of the first stages of interval, recency

rank and frequency rank encoders at time t. Then for t€T,

(4.3) x(t) = min {klal(t-k) = a(t)3,
yt) = 1alt’) it—x(t) < t* < t31,

z{t) r{c(t)).

Because of (4.1) the sets on the right in the first two lines of

(4.3) are never empty for t€T.

If the message set is the first m positive integers and the
standard order is the usual order on integers then message i is
its own index, A = {1,...,m?}, and these first stages of coders
map integers to integers. Then simple algorithms compute outputs

x(t) and y(t) at time t given input a(t). A sample implementation

i8




i9
of interval encoding distributes the initialization effort, which
is useful if m is very large. It uses an m—-element array LAST of

integers < N initialized to 0.

INTERVAL ENCODING

for t=1 to N do
begin
if LAST(x{(t))=0 then x{t)=t+x(t)-1
else x(t)=t-LAST(x(t));
LAST(x(t)) = t

end

This algorithm takes 0(1) operations per input integer. Since the
m words used to store entries in LAST must be finite an
occaisonal reinitialization is required, but a 48 bit wordsize
allows a message per microsecond for almost nine years between
restarts. The more complex part of an implementation for a large
message set whose members are not the integers is computing

meésage indices (addresses) in time 0(1), for example by hashing.
A sample implementation of recency rank encoding uses an
m—element array RANK of integers < m. It initializes first,

since its time requirement makes it less appealing for very
large m.

RECENCY RANK ENCODING

for j=1 to m do RANK({(j) = 3;




for t=1 to N do
begin
y{t)=RANK (x{t));
for i=1 ta'm do if RANK(i)<y(t)
then RANK (i)=RANK({i)+1;
RANK (x{t)) =1

end

The recency rank algorithm takes O(m) operations for
initialization and for each input. Storing the ranking data as a
linked list of messages, linked in order of increasing rank, and
using the move-to-front algorithm ([113, C111, [1713, [1°1),
requires instead y(t) accesses to find y(t) and 0(1) more to
relink it at the head of the list. That is a significant mean
improvement if the algorithm is doing significant data compression
on average, e.g. if y(t) typically has half as many significant
bits aé x(t), but access cost still grows like some function of m,
depending on distribution assumptions. More imaginative
algorithms, using more complex data structures and caching and
batching of updates, might do better. Aan algorithm for Rivest’s
interchange ranking scheme is much more eccnomical: it maintains
two arrays of size m, one giving the rank of message i and the
other the index of the message of rank Jj, and takes 0(1) accesses

to update both.

The second stage of all three schemes maps the integer j into
€s, the jth codeword in a prefix—free set C of size n indexed in
an order of nondecreasing length. The indexing is not unique if

there are codewords of equal length, but the length L(j) of the

20
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jth codeword is. C must be countably infinite for interval
encoding, and may be no smaller than A for frequency rank or

recency rank encoding. The function L must satisfy the Kraft

inequality

n
(4.4) I bbct> ¢ g,

i=1 -F
known to be necessary and sufficient for the existence of a
prefix—free set C with length function L. The cost of encoding
a message «(t) into C is L{(w(t)), where wi(t) is the output of one
of the three encoder first stages defined by (4.3). Those costs

are bounded next.




V. COST BOUNDS FOR ARBITRARY MESSAGE SEGQUENCES

The mean cost per message of encoding N messages into a sequence
of codewords in a set C with length function L is the mean over
the N messages of the length L(w(t)) of the encoding into C of the
output wi(t) of the first cuding stage just discussed, where w is

X or y or z in (4.3). For any function uon T let EZ+u and

Zr¢s> denote sums of u(t) over the t in T and in T,

respectively, and denote the corresponding means by

(S5.1) MT(U) = (1/N)ZTU, M-rc:,;(l.l) = (lln(i))E-ru,u.

Then the mean codeword length per message is the expectation of

the means over the T(i) with respect to the distribution R(i):

(5.2) Mr(L(w)) =(1/N)E E+cs,L(w) = X RU1IIMy a5 (L(W)) .
i

The means in (5.2) can be bounded above by bounding L above by
(5.3) L(j) £ B(logti)),

where G{v) = G(log(u)) is convex N and nondecreasing in v, and
therefore also in u. (The convex hull of {(lng(j),L(j))ilgjgn}

is the smallegt such B, defined for all finite n and for some L
with infinite n, like L., and L=. Other G, like B. and G=,

are sometimes more convenient.) Bounding L(w) by G{log(w)) term
by term on the right in (5.2) and then applying first convexity in

w and then convexity in log(w) gives

22



23

(5.4) M-(L(w)) ¢ = R(i)B(log(Mr s> (w))),

G(Z R{i)(log(1/R(i))+1o0g(R{i)M+ s, (W) )))

G(H(R) + Z R{i)10g{(R{i)Mr (s> (w))).

A weaker bound comes from moving the averaging over R(i) to the
argument of the logarithm in the second line of (5.4) and using

(5.2):

(5.5) Mr{L(w)) < B(log(M+(w))).

Evaluating Mrci> (W) and Mr(w) in (5.4) and (5.5) as
functions of the rank distribution @ and the parameters m, N when

W is x and y and z gives the several upper bounds in Theorem 2.

THEOREM 2

Let a(1),...,x{N) be any sequence in AN, A = {ai,... am}.

Extend the sequence by (4.1) and de#ine-the rank frequencies Q(j)
by (4.2), the first stage outputs x({t), y(t) and z(t) of interval,
recency rank and frequency rank encoders by (4.3) and the average
Mr(u) of u over T by (5.1). Let C. be a prefix—free set of

N 2 m codewords with length function L. bounded by

(5.6) La(i) £ Bntlog(j)), for 1 i <n

-~ ]

and, if n { @, let C be a countably infinite prefix—free codeword

set with length function L bounded by

(5.7) ~ Lti) £ B(logt(j)), for integer j>O,



where B.(.) and G(.) are convex N and nondecreasing functions
of real argument on their respective domains [0O,109(n)] and [0,@).
Let La be the length function of the Huffman codeword set

optimal for @, and let &§ =(m—1)/N. Then

(i)
Mr(L(x)) > L(1),

L GH@) + log(1+8)).

£ Gl{log(m)+log{1+8/2)),

{(ii)
Mril . t(y)) > Loty
£ Gn(H(®) + I B(j)log(jl@¢(j) + I @(k) + &),
k>3
< Br(10g(2Ea(.)-1+6m/2)),
(iii)
Mri{L.(z)) > max{L. (1) ,H(@) 3,
£ B-(H(@) + E B(j)log(iR(j))),
L Bn(log(Ea(.))),
(iv)
Mr{la(z)) = EgilLg) 2 max{1,H(@ 3,
< H@ + 1.
Comments.

Some comments and examples show the relation of Theorem 2 to
Theorem 1 and illustrate the various upper bounds. The proof of

the theorem follows.

For a weak law source, as N->o the upper bounds on sample means
become upper bounds on limit superiors in probability, the rank
probability distribution is the limit in probability of the rank

frequency distribution of the source, and Theorem 2 with & = O can




25

be read as a more detailed and tighter version of Theorem 1i.

The first upper bound in each of (i), (ii) and (iii) comes from
(5.4) and is tighter than the second. These bounds get tighter
in going from (i) to (iii) because G is an increasing function of
its argument and the quantities added to its argument from (i) to

(iii) are nonpositive: since B(j) decreases with s

1og (jA(3)) < 1og(j@(j) + I B(k)) < log(E @(j)) = log{(i) = O.

k>3 J
While the second uppef bound in each of (i), (ii), (iii) (which
comes from (5.5)) is weaker it also has interest since it bounds
in terms of expectation rather than entropy. These bounds also
get tighter from (i) to (iii): since the mean of a nondecreasing

distribution on {1,...,m} is at least 1 and at most (m+1)/2,

log{(Ea(.)) < log{(ZEa(.)-1) € logim).

For the uniform distribution Qm(j) = 1/m, in the limit of large

N the four arguments of G and G.. in the two upper bounds in each
of (i) and (ii) all equal log{m). The arguments are a bit

smaller in (iii), where the argument is (1/m)logim!) for the first
bound (approaching log{m/e) for large m) and log((m+1)/2) for the
second. The examples given in Theorem 1 still approach or attain
the upper and lower bounds in (i) and (ii) when C., = C = C.

or Co.

For nonuniform distributions, however, the arguments of G in the
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six bounds can all be quite different. Let @ be a binary source,
m=bhb = 2, with relative frequencies Q@(1) = 0.9, @(2) = 0.1. In

the limit of large N,

Mr(L(x)) < B(H(R)) = G(O.44690)
< B(log(m)) = G(1),
Mr(laly)) < B.(H(@)+E mjnag(juu)gjmk)) = 6(0.2368)
$ Bn(l0g(2Ea(.)-1)) = B.(0.2630),
Mrila(z)) < Ba(H(@) + I @(3)10g(j@(i))) = B.{(0.1)

€ Bn(log(Ea(.))) = Bn(0.1375).

The entropy bound in (i) can be tighter than the expectation
bounds in (ii) and (iii), although that is not illustrated by the
last example. E. g. if b = 2, m = 1000, @(1) = 0.9 and

Q(i) = 0.1/999 for all other i, H(@)=1.4654 < log({Ea(.))=5.6710.

Proof

As in Theorem 1 the Huffman bounds (iv) are standard and all
lower bounds are obvious since each coding scheme is 1-1. It

remains to prove the upper bounds in (i), (ii) and (iii).

By (4.2) and (4.3) the mean of the frequency rank variable z over
T(i) is just the rank r(i) of the constant value which «(t) takes
on T(i), if T(i) is not empty. And (5.2) gives the mean over T as
the expectation with respect to R(i) of the means over the T(i).

With the relation between R and @ from (4.2) this gives

(5.8)
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L R(i)1og(R(i)Mycs>(2)) = £ R(i)log{R(i)r(i)) = % Q@{idlog(iR{(j)),

Mr(z) = £ R1)ri) = Er(r) = £ j@(j) = Eal.).

And (5.8), with (5.4) and (5.5), proves (iii).

The sum of the interval variable x over T(i), from (4.1), (4.2)
and (4.3), is just the interval from to(i) to thc15¢i) and is
bounded above since t.(:>{(i) < N. A bound on the mean over T

follows in the third line of (5.9) by (5.2):

(5.9 Evci> X(t) = thear (i) + i-1 <N+ i-1,

ROiIIMv s (%) £ {(1+{i-1)/N),

M+ (x) Z R1) Mrcisr(x) < m(1 + (m—1)/2N),

which with (5.4) and (5.5) proves (i).

To bound the sum over T{(i) of the recency rank variable and its

avefage over T, from (4.2), (5.1) and (5.2),

(5.10)  y(t,(i)) = $€x(£) 1O<tLt, ()30 + i-1, j=1,
= 1o () 1ta—2 (IS, (i3], 1<i<n i),

Exvcary(t) £ £ mindndid),nik)3? + i-1
k

R{IIMrcas{y) £ (E min{R(i).R(K)}> + (i—-1)/N ),
k

L (r{i)R(i) + T R(K)) + (i-1)/N ),
r(k) >r(i)

Mriy) = E RUiIMreisly) < £ §B(§) + £ I Q@(k) + m(m—1)/2N,
i k>j

= 2Ea(.) — 1 + mi{m—1)/2N.

ER(i)ng(R(i)vag>(y) < Z @{i)1log(i@(j) + E @(k) + (m—1)/N).
J k>j
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Summing over 1 < j ¢ n(i) in the first two lines of (5.10)
gives the third line, since message k can contribute at most 1 to
each of the n(i) values y(t,(i)) in the sum, by appearing as the
value of a(t) at one or more times in the jth of the n(i) disjoint
intervals on the right in lines 1 or 2, and can contribute to at
most n(k) such values in all, and thus can contribute at most
min{n{i),n(k)} to the sum in line three. The fifth line follows
since the definition of the rank function in (4.2) gives R(k) o
R(i) when r(k)>(i). Summing over i, using R(i) = Q(r(i)) from
(4.2) and changing the summation index to J = r(i) gives the next
two lines, and a similar summation and bounding i by m gives the

last line. (S5.4) and (5.5) complete the proof of (ii). .
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VI. OPEN PROBLEMS AND COMMENTS

This paper has shown that interval and recency rank encoding into
C: and C= do fairly well relative to Huffman coding for any @

on any M, and that C. is asymptotically optimal [5] as H(Q)
increases. It has not found the best codeword sets for these
schemes. Finding codeword sets which are minimax optimal relative
to Huffman encoding, for interval and recency rank encodings, by
minimizing the maximum of each of several comparative cost
measures over each of various classes of distributions, is a set
of open problems similar to but distinct from the several

optimization problems solved in [31, [&6]1 and [161].

The analysis has assumed no knowledge of the probability ranking
of M by the encoder. Available knowledge can be used to make the
standard order in (4.1) as near to probability rank order as
possible, which will reducé the starting transient but will not

affect long term behaviour.

An interesting question in concrete complexity mentioned earlier
is finding an efficient recency rank encoding algorithm for large
message sets, and in particular determining whether it is possible
to code in a time per letter independent of the sizee m of the

message set.

A finite message set has been assumed throughout. The schemes
work well with an infinite set in the steady state, giving finite
average codeword lengths for C, and Cz if H(Q) is finite, but

the steady state is never reached if m is infinite and the
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standard order is indeed strictly random with respect to a
probability ranking. Under those circumstances for each integer
K there is probability 1 that the first message has a rank in
standard order which takes more than K b;ary symbols to write, so
expected codeword length is infinite even if @ actually assigns
positive probabilities only to a finite (but unknown) subset of A.
Partial knowledge of ranking is sufficient for convergence,
however. For example in encoding the infinite message set of all
grammatical English sentences, the initial value for each
sentence which is its ASCII character string read as a binary
number ensures finite numbers at the output of the first stage of
an interval encoder, but reaching steady state takes more than
whatever time is available. Finding necessary and sufficient
conditions on the relation between an initial ordering of the
integers and a probability ranking or a probability distribution
on the integers such that expected codeword length is bounded and

converges is another interesting open problem.
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