. MASSACHUSETTS
' INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

e

MIT/LCS/TM-308

FLOYD-HOARE LOGIC DEFINES SEMANTICS

ALBERT R. MEYER i

MAY 1986

i

345 TECHNOLOGY SQUARE. CAMBRIDGE, MASSACHUSETTS 02139

Floyd-Hoare Logic Defines Semantics

Albert R. Meyer
M.I.T. Lab. for Computer Science
545 Technology Square
Cambridge, MA 02139, USA
ARPANET: MEYER@MIT-XX

23 May 1986

Copyright 1986 Albert R. Meyer

Abstract. The first-order partial correctness assertions provable in Floyd-
Hoare logic about an uninterpreted while-program scheme determine the
scheme up to equivalence. This settles an open problem of Meyer and
Halpern. The simple proof of this fact carries over to other partial correctness

axiomatizations given in the literature for wider classes of ALGOL-like
program schemes.

Keywords: Partial correctness, relative completeness, deduction theorem,
Skolem, program scheme.

General Terms: Languages, verification, theory.

CR Categories: D.3.1 [Programming Languages|: Formal Definitions
and Theory -- semantics, syntar; D.3.2 [Programming Languages]:
Language Classifications -- applicative languages, Lisp.

This work was supported in part by NSF Grant No. A511190-DCR and by
ONR grant No. N00014-83-K-0125. This report is a nearly identical to a

paper to appear in the IEEE Symposium on Logic in Computer Science,
Cambridge, MA, June, 1986.

Table of Contents
1. Introduction.
2. Syntax and Semantics.
3. Semantics from Partial Correctness.
4. Provable Separation by Universal Formulas.
5. References.

00 =3 = W N

1. Introduction.

Can the semantics of a programming language be specified by axioms for proving
assertions about programs? Without restrictions on the assertion language and rules of
proof, a positive answer is straightforward (cf. [10]). However, in the fundamental case
of partial correctness assertions with first-order pre- and post-conditions, the story is
more complicated. Bergstra, Tiuryn, Tucker [3], and independently, Meyer, Halpern
[18], confirmed this author’s conjecture that the first-order partial correctness theory of
a program scheme is theoretically sufficient to determine the scheme up to equivalence.
This theorem applies to a quite general notion of recursively enumerable (r.e.) schemes
-- infinite, nondeterministic r.e. flowchart schemes whose assignment statements may
include array assignments, e.g., of the form a[z|:=2, and random assignments e.g., of
the form z:=79%, and whose tests may be any first-order formula (not necessarily open) of
predicate caleulus with equality.

Moreover, both Bergstra, et al. and Meyer/Halpern also observed that there are r.e. sets
of wvalid first-order partial correctness assertions which determine the semantics of
while-program schemes. Thus, in the abstract sense in which any r.e. set may be
regarded as a proof system, an axiomatic semantics (as opposed to denotational or
operational semantics, ¢f. [10]) for while-programs could be said to have been obtained.
Nevertheless, the r.e. sets described in [3], [L8] were not generated by actual proof
systems, and the problem of finding a reasonable system of axioms and rules which
proved enough wvalid partial correctness assertions to determine the semantics of
while-programs was left open ([18], p. 556). In particular, it was not even known
whether the most familiar proof system for proving partial correctness of
while-programs, the Floyd-Hoare system [7], [13], determined semantics.

Leivant [14] recently proved that the Floyd-Hoare axiom system does indeed provide an
axiomatic semantics for while-programs. His proof combines (i) a2 new, simplified proof
for the special case of while-program schemes of the main theorem (restated as
Proposition 1 below) about axiomatic semantics of r.e schemes, together with (ii) a
characterization of the proof-theoretic power of Hoare’s logic sketched in [15] (see also
[17]).1

In this note we piece together a few familiar facts about Floyd-Hoare logic, which,
together with the statement -- as opposed to a proof -- of Proposition 1, provide an easy
proof that this logic is sufficient to determine semantics of while-programs. Moreover,
the general properties of Floyd-Hoare logic used in the proof are possessed by many
extensions of Floyd-Hoare logic to richer programming languages with features such as
higher-order recursive procedures and blocks with local variables (cf. [6], [4], [1], [5]), so

lBergstra. and Klop [2] present an extended study showing that Floyd-Hoare logic determines semantics
of while-programs interpreted over single structures, but their results do not seem to cover uninterpreted
schemes.

we may conclude that these logics too provide axiomatic semantics for these richer
languages.

We assume the reader has seen some version of the Floyd-Hoare axioms (given in many
of the references); the exact details are not needed. In the next section we briefly review
some key notations and definitions.

2. Syntax and Semantics.

A signature is a set of function and predicate symbols, each with an associated
nonnegative integer arity. A (first-order) structure, M, with signature, X, consists of a
nonempty set called the domain of M, and an interpretation mapping the symbols in X
to total functions and predicates of corresponding arity on the domain. A wvaluation
over M is a mapping from a set of (first-order) variable symbols to elements of the
domain. In the case that array assignments occur in program schemes, the valuation
also maps array variables to total functions of corresponding arity on the domain. (The

first-order and array variable symbols are assumed to be disjoint from each other and
from the signature X.)

Valuations serve to model the state of computer memory, with the value of each
variable interpreted as the current value of a corresponding memory location or array.
Assignment statements update the memory and thus are modelled by mappings on
valuations. So any program scheme, a, and structure, M whose signature contains that
of a, determines a binary next-state relation, R\ between valuations over M of the
variables of a. That is, sR_,t means that under the interpretation given by M,

starting with valuation s, there is a (nondeterministic) execution of the successive
assignment and test instructions in « which terminates with . We omit the formal
definitions (cf. [11], [19]).

For program schemes a, £, we write aC J to indicate that R is contained in RﬁM for
all M of suitable signature. Then « is equivalent to g8 iff aC S and fCe.

Let F be a first-order formula with signature X and free variables V. Then any
structure M whose signature contains X, together with any valuation over M of a set of
variables containing V, determines a truth value for F in the usual way. The formula F
is valid in M, written M|=F, iff F is true for all valuations over M of the free variables
of F. Let Valid(M) be the set of F such that M|=F. We say F is valid, written |=F,
iff it is valid in all structures M of suitable signature.

For any (possibly infinite) set, T, of first-order formulas, let Theory(T) be the set of
first-order formulas provable by the usual rules of predicate calculus with the formulas
in T as additional axioms. For formulas T without array wvariables, the completeness
theorem for predicate calculus implies that F' € Theory(T) iff M|=F for all M such that

M|=AT. (With array variables present, the implication from right to left may trivially
fail. For example, let ¢ and b be one-dimensional (7.e., unary) array variables, and let T
consist of the single formula a[0]=0. Then T semantically implies 5[0]=0 because a is
implicitly universally quantified in 7, but the formula 5[0]=0 is not in Theory(T).)

The partial correctness assertion {F}a{G} reads informally as, "If F holds at the start
of execution of «, then G holds whenever « halts." More precisely, let M be a structure
whose signature contains the signatures of F, G, and «, and let s be a valuation over M
of the free variables of F, G, and a. Then M,s|={F}a{G} iff (s|=F implies t|=G for
all ¢ such that sR_,t). The partial correctness assertion P is walid in M, written
M|=P, iff M,s|=P for all valuations s over M of the free variables of P. Similarly, Pis
valid, written |=P, iff it is valid in all structures M whose signature contains that of P.

If Tis a set of first-order formulas and P is a partial correctness assertion about a
while-program scheme, then we write T P to mean that P is provable from the
axioms and rules of Floyd-Hoare logic using Theory(T) as first-order axioms. In
particular, |—{F}a{G} means that the assertion is provable using only the valid
formulas of predicate calculus as axioms. We shall not repeat the familiar axioms and
rules of inference of the Floyd-Hoare system here, but we remind the reader that the
axioms and the consequents of each of the rules are partial correctness assertions. There
are no axioms or rules of inference for deducing first-order formulas. Indeed the only
place where first-order formulas appear by themselves (viz., not as pre- or post-
conditions within partial correctness assertions), is as antecedents in the

Rule of consequence (Hoare [13]):
F=F,, {F}o{G;}, G;=G

{Fre{G}

3. Semantics from Partial Correctness.

The partial correctness theory of an r.e. program scheme determines its semantics in the
following precise sense:

Proposition 1. (Separation, Bergstra, Tiuryn, Tucker [3], Meyer, Halpern
[18]) For any r.e. program schemes «, § such that a8, there are first-order
formulas F, G such that
(i) |={F}B{G}, i.e., {F}B{G} is valid, and
(ii) {F}a{G} is not valid.

Put another way, suppose aoZ 8. Then there is always a first-order partial correctness
assertion about a and # which wrtnesses their inequivalence. That is, to the challenge,
"What is the computational difference between a and A?" one can always give an
answer, "If F' is true before execution of 3, then G is true afterward, but this is not

necessarily the case for a."

Our main result is that in the case that 3 is a while-program scheme, a valid witness
assertion not only exists, but can be proved valid in Floyd-Hoare logic -- or any similar
logic with the general properties described below. Namely, we have:

Theorem. (Provable Separation) For any r.e. program scheme o« and
while-program scheme § such that a3, there are first-order formulas F, G
such that

(i) H{F}B{G}, i.e., {F}B{G} is provable, and

(i) {F}a{G} is not valid.

We remark that the Theorem holds even when a nondeterministic choice construct
and/or random assignments are allowed in while-program schemes, assuming that the
Floyd-Hoare system is extended with the usual axiom scheme for random assignments
and a rule for choice constructs, cf. [11]. The schemes may also contain arbitrary first-
order tests. However, the proof below does not directly apply when array assignments
are allowed in while-program schemes for reasons indicated below. However, it does
not seem that array asignments create fundamental difficulties, and we expect that our
methods can be extended to handle array assignments as well.

To prove the Theorem, we recollect the following familiar facts.

Proposition 2. (Relative Completeness, Cook [6]) Let M be an expressive
structure. Then Floyd-Hoare logic is complete relative to the theory of M:

M|={F}a{G} iff Valid(M)—{F}a{G}.

The exact definition of expressive structure is not needed. It is sufficient to observe:

Proposition 3. (Expansion) Every structure can be expanded (cf. [21]) to an
expressive structure.

Proof. Clarke [4] observes that finite structures are expressive. Harel ([11], p. 30)
remarks that every structure can be extended to an arithmetic universe; it is easy to see
that if a structure is infinite, it actually expands to an arithmetic universe. Also every
arithmetic universe is expressive ([11], Theorem 3.2). O

Like the rules of predicate calculus, the Floyd-Hoare proof rules are finitary, so we have:
Proposition 4. (Compactness) If T |—{F}a{G}, then Tﬁ.nl—{F}a{G} for
some finite set T, CT.

P

Finally, the Floyd-Hoare system obeys the following familiar property:

Proposition 5. (Deduction Theorem) If T U{H}—{F}a{G} for some set, T,
of formulas and some first-order formula, H, without free first-order variables,
then T —{FAH}a{GAH}.

Proof. From the deduction theorem for predicate calculus by induction on the length of
the Floyd-Hoare proof. O

We have used the phrase "without free first-order variables" instead of "closed"
because we cannot rule out the possibility that the formula H contains free array
variables. We remark that the Deduction Theorem fails if assignments to array
variables free in H can appear in «, which is why array assignments were disallowed.

We now prove our Theorem as follows.

Proof of separation by Floyd-Hoare logic. Suppose a f for some r.e. scheme a and
while-program scheme £. By Proposition 1, there are first-order formulas F, G such
that {F}B{G} is valid and {F}a{G} is not. Since this last assertion is not valid, there
must be a structure M such that M}={F}a{G}. It follows directly from the definitions
that Mj={FAH)}a{GAH} for any formula H such that M|=H.

Since the interpretation of symbols not mentioned in a partial correctness assertion do
not affect the truth of the assertion, M and its expansions satisfy the precisely same
partial correctness assertions whose signatures are contained in that of M. So, by
Proposition 3, we could have chosen M to be expressive. Since {F}B{G} is valid, we
trivially have M|={F}B{G}, so by Proposition 2, Valid M)}—{F}3{G}. Now by
Proposition 4, there is a finite subset Tﬂ.ngValid(M) such that Tﬁn}—{F}ﬁ{G}. Since
formulas and their first-order universal closures have the same first-order theories, we
may assume the formulas in sz’n do not have free first-order variables. By Proposition

5, letting H be the conjunction of the formulas in T i We have H{FAH}B{GANH]}.

Moreover, since M|=H, we have M|={FAH}a{GAH}. So {FAH}B{GAH} is the
desired provable witness to the inequivalence of o and 4. O

Relative completeness theorems in the sense of Cook (Proposition 2) are known for
several ALGOL-like extensions of while-program schemes such as blocks with local
variables and procedures with call-by-value parameters [6], recursive procedures with
simple procedure parameters and even with higher-order procedure parameters under
suitable syntactic restrictions [1], [22], [23]. The argument above applies directly to
establish the Provable Separation Theorem for these logics of ALGOL-like program
schemes.

In fact, for various weaker kinds of relative completeness which have been considered in
the literature, the proof also carries over by establishing suitable variations of the
Expansion proposition. For example, several program logics for higher-order recursive
procedures have been shown to be complete relative to expressive Herbrand definable
interpretations [5], (8], [9]. But (i) every structure (with countable signature) is
elementarily equivalent to a countable structure by the downward Skolem-Lowenheim
Theorem, (ii) elementarily equivalent structures have the same first-order partial

correctness theory (cf. [20]), and (iii) any countable structure can straightforwardly be
expanded to an expressive Herbrand definable structure. With these remarks, our
argument now implies that Provable Separation holds for these additional program
logics. The argument should also readily apply to logics which are merely complete
relative to arithmetic universes [11] when the logics include enough rules to do some
rudimentary reasoning about finite domains. In this way we expect an axiomatic
semantics for full ALGOL-like program schemes without syntactic restrictions can be
established, though we have not as yet worked out the details.

Leivant has indicated that his methods will generalize similarly, although the proof

sketched in [14] appears to rest on properties special both to while-programs and
Floyd-Hoare logic.

We remark that we cannot hope to construct an effective proof system for proving the
nonvalidity of witness assertions. This follows because « is divergent iff the partial
correctness assertion {true}a{false} is wvalid; but the while-program schemes
equivalent to the totally divergent scheme are not r.e. [12], [16].

4. Provable Separation by Universal Formulas.
Finally, we note that the form of the pre- and post-conditions in the assertions

witnessing semantical separation can be very simple. This follows by a straightforward
Skolemization argument.

Corollary. The witness assertions for the Separation by Floyd-Hoare Logic
Theorem can be chosen so that the pre-condition, F, is a universal formula
and the post-condition, G, is quantifier-free.

Proof. Meyer and Halpern [18] show that the post-condition G in Proposition 1 can be
quantifier-free. From the proof of Floyd-Hoare separation, we have F, H, and a
structure M such that

(i) H{FAH}B{GAH},
(ii) M|=H, and
(iii) M}={F}a{G}.

By the rule of consequence, we have from (i) that —{FAH}#{G}. Also, (ii) and (iii)
imply that MJ={FAH}a{G}. Now let U be the universal formula obtained by
Skolemizing (FAH). Then we claim {U}B{G} is the desired witness.

To see this, observe first that —{U}B{G} by the rule of consequence because U=(FAH)
is valid. Second, since any structure satisfying (FAH) expands to one satisfying U, we
can choose any expansion, N, of M satisfying U and be sure that Nj={U}a{G}. O

These observations were suggested by similar ones in [14] which they simplify and

strengthen. Note that this form of pre- and post-conditions is about as simple as

possible, since entirely quantifier-free pre- and post-conditions are not sufficient for
separation [18].

Acknowledgement. Thanks to Ed Clarke for comments and to Daniel Leivant for
relaying and explaining his results.

5. References.

1. Apt, K.R. Ten years of Hoare’s logic: a survey, Part I. ACM Trans. on Prog. Lang.
and Systems 3 (1981), 431-483.

2. Bergstra, J.A. and J.W. Klop. Proving program inclusion using Hoare’s logic.
Theoretical Computer Science 30 (1984), 1-48.

3. Bergstra, J., J. Tiuryn, and J. Tucker. Floyd’s principle, correctness theories and
program equivalence. Theoretical Computer Science 17 (1982), 113-149.

4. Clarke, EMM., Jr. Programming language constructs for which it is impossible to
obtain good Hoare axiom systems. J. ACM 26 (1979), 129-147.

5. Clarke, EXM., Jr., SM. German, and J.Y. Halpern. On effective axiomatizations of
Hoare logics. J. ACM 30 (1983), 612-636.

6. Cook, S.A. Soundness and completeness of an axiom system for program
verification. SIAM J. Computing 7 (1978), 70-90.

7. Floyd, R.W. Assigning meaning to programs. In Proc. Symp. in Applied
Mathematics: Mathematical Aspects of Computer Science, Schwartz, J.T., Ed., 1967,
19-32.

8. German, S., EMM. Clarke, Jr., and J. Halpern. Reasoning about procedures as
parameters. In Logic of Programs, Proceedings 1983, Lect. Notes in Comp. Sci. 164,
Clarke, Edmund M.,Jr. and Dexter Kozen, Eds., Springer-Verlag, 1984, 206-220.

9. Goerdt, A. A Hoare calculus for functions defined by recursion on higher types. In
Logics of Programs, Brooklyn, June 1985, Lect. Notes in Comp. Sci. 193, Parikh, R.,
Ed., Springer-Verlag, 1985, 106-117.

10. Greif, I. and A.R. Meyer. Specifying the semantics of while-programs. ACM
Trans. on Programming Lang. and Systems 3 (1981), 484-507.

11. Harel, D. First-Order Dynamic Logic. Lect. Notes in Comp. Sci. 68,
Springer-Verlag, 1979.

12. Harel, D., A.R. Meyer and V. Pratt. Computability and completeness in logics of

programs: preliminary report. In #h AcM Symposium on Theory of Computing,
1977, 261-268. Revised version, M.I.T. Lab. for Computer Science TM-97, (Feb. 1978)

16 pages.

13. Hoare, C.A.R. An axiomatic basis for computer programming. Comm. ACM 12
(1969), 576-580.

14. Leivant, Daniel. Hoare’s logic captures program semantics. Extended summary.
1985, Unpublished report, Dept. of Computer Science, Carnegie-Mellon Univ.

15. Leivant, Daniel. Logical and imperative reasoning about imperative programs. In
12 AcM Symp. on Principles of Programming Languages, 1985, 132-140.

16. Luckham, D.C., D.M. Park and M.S. Paterson. On formalized computer programs.
J. Computer and System Sciences 4 (1970), 220-249.

17. Makowsky, J.A. and I. Sain. On the equivalence of weak second order and
nonstandard time semantics for various program verification systems. In IEEE Symp.
Logic in Computer Science, Meyer, A., Ed., 1986, 00-00. To appear.

18. Meyer, A.R. and J.Y. Halpern. Axiomatic definitions of programming languages:
a theoretical assessment. J. ACM 29 (1982), 555-576.

198. Meyer, A.R., and R. Parikh. Definability in dynamic logic. J. Computer and
System Sciences 23 (1981), 279-298.

20. Meyer, A.R. and J. Tiuryn. Equivalences Among Logics of Programs. J.
Computer and System Sciences 29 (1984), 160-169.

21. Monk, J. Mathematical Logiec. Graduate Texts in Mathematics 37,
Springer-Verlag, 1976.

22. Olderog, E. Sound and complete Hoare-like calculi based on copy rules. Acta
Informatica 16 (1981), 161-197.

23. Olderog, E. R. Hoare’s logic for program with procedures -- what has been
accomplished? In Logic of Programs, Proceedings 1983, Lect. Notes in Comp. Sci. 164,
Clarke, Edmund and Dexter Kozen, Eds., Springer-Verlag, 1984, 383-395.

