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Abstract:

This memo is the text of a proposal from the MIT Laboratory for Computer Science Clinical
Decision Making group to the National Library of Medicine, requesting support for a five-year
program of research. The proposal is to develop an integrated program for the representation of
complex knowledge and reasoning processes in medicine, using the techniques of artificial
intelligence (AI) and decision analysis (DA). The project will address problems in both
diagnostic and therapeutic reasoning in two medical domains: coronary disease, and fluid and
electrolyte disturbances. The planned large-scale Al system will incorporate a common
knowledge representation formalism and alternative reasoning programs to do data
interpretation, hypothesis generation, hypothesis testing and revision, diagnostic query planning,
therapeutic planning and automatically-generated explanations. DA reasoning will be integrated
into the system, especially to improve the test and treatment planning components. A uniform
knowledge base will be developed in the two identified medical domains, utilizing knowledge
acquired from the analysis of protocols, expert opinion, case-based learning, hand-coded
knowledge from the literature, and strictly limited attempts to automatically acquire structured
knowledge from English free-text. A panel of specific cases will be developed that can be used to
validate additions to the knowledge base and changes in the reasoning components of the system.
A series of protocol analyses will be done, involving both diagnostic and therapeutic decision
making in clinical settings where uncertainty and risk are predominant factors. Specific
attention will focus on the degree to which experienced clinicians rely on case-based reasoning
and means will be developed to represent, index and utilize such case-based experience in the
reasoning program. A new generation of DA tools will be built to aid the construction of DA
models for use in actual clinical settings. These tools will utilize the same knowledge bases as
the Al models, and will share with them the ability to look in varying depth of detail at
problems and to generate explanations of their workings. A set of template analyses dealing
with rapidly progressive glomerulonephritis, renal transplantation, use of anticoagulant therapy
and the timing of surgery for valvular heart disease, and a knowledge base of risk and prognosis
estimates in these domains will also be constructed. An Al based system for quantitative and
qualitative reasoning about patient preferences will augment a system to help health
professionals and patients to establish individual patient utility structures.

Keywords:  artificial intelligence, medical reasoning, clinical decision-making, knowledge
representation, diagnosis, therapy planning, hypothesis generation, protocol analysis,
uncertainty, preference.
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2 1 INTRODUCTION
1 Introduction

This report is the text of a proposal to the National Library of Medicine for a five-year research
grant that was awarded to MIT/LCS and Tufts/NEMCH to pursue the collaborative research
described herein. The project period is from Fall 1985 through Fall 1990. In line with our tradition
of making our preliminary ideas, even in the form of research proposals, available to our working
colleagues, we present the text of the technical part of the proposal. Readers should keep in mind
that this is a description of work to be done, not accomplishments already made. Of course, we
plan to bring our accomplishments up to the standards of our dreams.

In addition to the listed authors, we wish to thank other members of the Clinical Decision
Making Group at the MIT Laboratory for Computer Science and of the Division of Clinical Decision
Making, Tufts University/New England Medical Center Hospital. We also wish to thank the
National Library of Medicine for undertaking to support this work as well as many other excellent
projects around the country that are aiming at the same general goals. We also acknowledge our
grant, No. RO1 LM04493, which supported the publication of this report.



2 Specific Aims

Our overall aim is to develop a framework for the representation of complex knowledge and reasoning
processes in medicine, using the techniques of artificial intelligence and decision analysis. We shall
address problems in both diagnostic and therapeutic reasoning and shall develop methodologies for
interconnecting both techniques. Realizing that research in both domains has not yet reached a
“critical mass” of sufficient magnitude to promote general use, we shall focus on a limited set of
clinical problems and to develop a shared, relatively uniform structured knowledge base capable of
serving each project. Specifically, we propose to:

1) Design and implement a modular, integrated system for medical reasoning, in some ways
analogous to the Macsyma program for symbolic mathematics. The system will provide inter-
faces among a variety of approaches and will operate on a knowledge base that includes empiric
knowledge, physiclogic knowledge, case-based experience and heuristics.

2) Develop new and adapt established components of medical reasoning (e.g., data acquisition;
hypothesis generation, evaluation, revision and restructuring; bayesian reasoning; explanation;
multi-level reasoning; planning; expected value calculation; sensitivity analysis: reasoning about
temporal events and causality; anatomic and physiologic reasoning) to conform to the uniform
system.

3) Develop & uniform technique for representing both the state of a patient (e.g., history, physical
examination and laboratory data) and the set of working hypotheses and expectations generated
by the reasoning module. The patient-specific model will enforce consistency using both rules
and constraints and will be capable of describing an evolving sequence of snapshots over time by
providing a formal representation for reasoning about time series events.

4) Develop a uniform knowledge base in several medical domains, including coronary artery
disease and fluid and electrolyte balance. Such knowledge bases will conform to an incrementally
evolving representation scheme and will utilize knowledge acquired by a broad variety of techniques:
protocol analysis, expert opinion, case-based learning, hand-coded knowledge from the literature
and limited attempts to automatically acquire machine readable free text (natural language) in
highly-restricted domains. The maintenance of the uniform knowledge base will identify areas of
inconsistency for either automatic or manual resolution.

5) Perform a series of protocol analyses involving both diagnostic and therapeutic decision
making in clinical settings where uncertainty, risk and temporal evolution are the predominant
factors. These analyses will help identify heuristics and strategies used by physicians in planning
in settings of competing goals and will help structure areas of the knowledge base.

6) Develop and maintain a panel of specific cases (patient specific models) that can be used to
validate any additions to the knowledge base.

7) Develop a decision analysis system that will function in a variety of medical domains (in-
cluding coronary artery disease, valvular heart disease, and acute and chronic renal insufficiency).
The system will use artificial intelligence techniques to assist both experienced and naive analysts
in constructing, debugging, and interpreting decision analytic models, sharing the same knowledge
bases as the models developed for diagnostic and physiologic reasoning.

8) Develop an artificial intelligence based system for quantitative and qualitative reasoning
about utilities (outcome descriptors) that will explore short-term morbidities and other transient
disutilities, and allow direct assessment of utilities using a micro-computer based “feedback system.”

9) Create a set of programs for use in medical practice and education that promote early
application of subsets of our evolving integrated system and knowledge base.



4 3 SIGNIFICANCE
3 Significance

Over the past decade the “classic” practices of medicine and medical education continue to ap-
proach a brink of intertwined crises—an explosion of information, an explosion of procedures, an
explosion of costs, and an impending explosion of regulation. Traditional approaches to medical
practice and medical education are, and likely will continue to be, unable to address this new set
of challenges. The GPEP report of the American Association of Medical Colleges (Graduate Pro-
fessional Education for Physicians) identifies a crisis in education and boldly points to the field of
medical informatics as a centerpiece for education and practice in the twenty-first century. Indeed,
in addition to the educational benefits of such an approach, the group of leading physicians that
formulated those recommendations properly recognized that the small, isclated and presently un-
derfunded field of medical information science offers one of the few hopes for physicians to maintain
control of their profession.

Unfortunately, in 1985 Medical Informatics is scarcely ready for that challenge. Many separate
technologies have been used to approach many separate problems. There has been virtually no
integration of technologic advances in one medical domain by investigators using other technologies
in other domains. Truly, it is a cottage industry of independent “artists.” Of course, such diversity
is quite appropriate in a young field and might continue to be appropriate if we had the luxury of
a leisurely pace of development. Sadly, we do not. We must begin to draw together the separate
threads of our research into a coherent carpet upon which medicine can ride into the future.

The Clinical Decision Making Groups at MIT and NEMC have certainly been major contributors
to this diversity. Evolving from initial work in flow charts and decision theory, we have developed
two main—but quite separate—streams of research. We have used artificial intelligence techniques
to approach the generation and structuring of hypotheses, limited amounts of therapeutic planning,
explanation, and pathophysiologic reasoning. We have used classic decision theory to approach
management dilemmas facing individual patients and generic problems facing many patients. We
have developed macrocomputer programs that make diagnoses, explain their reasoning, and serve as
intellectual blackboards for framing therapeutic ideas. We have developed microcomputer programs
that explore decision trees and utility instruments that explore patients attitudes toward their
illness. We have focused on isolated domains in nephrology and cardiology. But we have not
integrated these closely related domains and problems into a coherent approach. Each new project
developed a new data base, usually employing a new knowledge representation scheme. Only
infrequently were knowledge bases from one project reformulated into the representations of a new
project. Thus, we have developed many exciting pieces and ideas but have not fit them into an
enlarging tapestry of knowledge and process.

We propose a large coherent project that will address this problem. We believe that medical
practice requires the use of both categorical and probabilistic reasoning and that many tasks should
be addressed by combinations of these approaches. We propose to develop a single coherent frame-
work for representing both kinds of knowledge in a single knowledge base and for using alternative
processing techniques for a given task. In such a framework, each sub-project will add knowledge
in a form that can be used by investigators working in other sub-projects. Furthermore, we shall
deliberately cross-fertilize artificial intelligence and decision theory in several ways—we shall use
probabilistic and utility based reasoning to address certain hypothesis evaluation tasks and shall
use categorical reasoning to help structure, analyze, debug and explain decision tree models. We
shall utilize protocol analysis of experienced clinicians to identify both categorical and probabilis-
tic rationales; we shall also use these analyses to help develop knowledge for the growing coherent
knowledge base. Finally, we shall be utilizing both mainframe computers and personal workstations
operating in a coherent set of languages to optimize the dissemination of intermediate products



among colleagues and former trainees.

Our detailed specific aims fall into three major categories, each intended to advance the goals
of integration introduced above. First, we propose to build a large-scale artificial-intelligence based
system that will ultimately incorporate a common knowledge representation formalism for express-
ing all forms of medical knowledge, including empirical knowledge derived from judgmental clinical
experience and statistical data collections, as well as deeper medical models such as pathophysio-
logic, physiologic, and bioclogical knowledge. Within this system we intend to incorporate the large
variety of reasoning mechanisms that developed over the years in a number of separate research
projects, to provide a common interface so that different components can be used together, and
ultimately to use the common knowledge representation to enable the construction of new reason-
ing and action modules whose internal structures are mutually consistent. The great advantage of
this organization is that individual researchers can focus on the development of a single module to
explore a new research idea about aspect of the medical reasoning task (e.g., how to generate initial
diagnostic hypotheses, or how to plan a sequence of therapeutic interventions) and rely on already
available components to help test out their ideas. Indeed, we expect that competing modules for
several tasks will be constructed, thus enabling us to compare directly the capabilities of alterna-
tive approaches to some problem (e.g., two modules concerned with verifying the correctness of a
hypothesized disease, one based on reasoning from underlying causal models, the other from prob-
abilistic clinical associations). Of course, a typical project will likely use one module or the other.
If more than one is used and if those modules conflict in their conclusions (a likely occurrence),
then the specific project will have to resolve such conflicts. In other words, the modules will be
passively available but will not automatically become active participants, unless asked.

Second, we plan to unify our work on Al decision-making models and our work on decision-
analytic reasoning by integrating decision analysis as a component of the general medical reasoning
system (above) and by extending the use of Al techniques to helping to structure, analyze and
debug new decision trees and capture, analyze and reason about the nature of individual patients’
preferences. We have long recognized that in any medical AI program, whether diagnostic or
therapeutic, ultimately decisions must be made in the face of unresolvable uncertainty. For example,
a diagnostic program must be able to decide whether to stop further investigation because the value
of additional information is exceeded by the risk (or cost) of obtaining it; a therapeutic program
must decide whether a secondary disorder should be aggressively treated or deferred until the
patient’s primary problem is under control, where there is a serious trade-off between the risk of
complications from the combined therapies, on the one hand, and the risk of serious morbidity from
the (yet-) untreated secondary disorder on the other. Although we have developed decision aids
to help physicians make just such decisions, neither we nor our colleagues have yet incorporated
such capabilities into AI programs. Instead, such programs have relied on crude numerical scoring
criteria to make these decisions, often poorly. For example, neither the Present Illness Program
(built by our group) nor Internist-I (from Pittsburgh) had any good criteria for when to stop
diagnostic investigation, short of exhaustively tracking down possible explanations for every finding
discovered. Incorporating explicit decision analytic models in our AI programs should significantly
improve their performance in the face of uncertainty and risk.

Conversely, we believe that we are now ready to try to develop a new generation of decision
analytic tools that make it easier to construct, apply and interpret decision analysisin actual clinical
settings. Although the use of clinical decision analysis is rapidly increasing, it remains difficult to
build new decision models and to interpret their results. The decision analyst commences with
a blank sheet of paper and must laboriously think through in each case what are the serious
alternatives, risks, etc. In this project, we plan to generate a large body of medical knowledge,
encoded in a common representational framework. Because much of the knowledge of clinical
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medicine (at least in narrow domains) will be encoded therein, we will be able to use this knowledge
to help generate decision trees automatically, and thus to ease the decision analyst’s task and to
make it likely that his product is more complete. We have also conducted much research on
the problem of automatically generating explanations in Al programs, but have not yet applied
these methods to decision analysis problems. This should also be very fruitful, as the problems
of explaining the results of an analysis are one of the greatest difficulties of the technique and
should be amenable to Al methods. In addition, recent Al work on the qualitative understanding
of mathematical models—and of preference models in particular—promises to allow us to introduce
much more flexibility in decision analysis, using partial information about a patient’s preferences
to constrain the decision model.

Thirdly, we intend to use protocol analysis to explicate the methods that human clinicians use to
reason about uncertain, risky, and evolving cases in two specific areas of medicine: coronary artery
disease and fluid and electrolyte balance. We shall develop and maintain an extensive knowledge
base covering these areas and design a formalism for maintaining a panel of specific patient cases,
collected to test and validate the operation of our evolving programs. The problem of knowledge
acquisition is thought to be the next major bottleneck in the development of “expert systems”.
We plan to push on the methodology of knowledge collection and encoding, to develop formal
methods that can be used by trainees, as well as expert clinicians, so that the problem of collecting
and maintaining a large body of up-to-date knowledge about specific medical disciplines should no
longer require the super-human efforts of a senior clinician (we think here of Dr. Jack Myers in
the Internist project) but can be factored into more sharable formal parts. We have used protocol
analyses, both formal and informal, to suggest new computational techniques. Such analyses have
given us insights into the clinical decision process we are seeking to model in the computer. We
plan to extend our protocol studies, and also to integrate their use into the larger system to help
define the structure of the general medical knowledge to be represented, suggest appropriate ways
to represent and index past cases, and (perhaps) develop new case-based reasoning methods.

The above discussion has concentrated on the significance of our proposed research within the
context of medical reasoning systems. If the promise of medical informatics (or medical artificial
intelligence, as we have been referring to it) is to be fulfilled, a diversity of interesting research
ideas must be pulled together into a common system wherein detailed interaction and sharing of
conceptual models and stored knowledge is supported. Such a system will produce an environment,
not now available, in which new experiments can be performed within a framework of other com-
ponents, an existing knowledge base, and an existing panel of carefully collected cases useful for
testing and verification of the ideas. In addition, this system will enable us to extend our research
significantly, merging the symbolic and probabilistic reasoning methods we have developed, and
continuing our studies of the behavior of human decision-makers to help understand and capture
both their knowledge and methods of thought.

Ultimately, of course, the goal of this research is to create computer systems that incorporate
the best expertise of human clinicians and the “distilled wisdom”® of probabilistic data, systems
that are widely available and cheaply reproducible, systems that can help improve the quality
and efficiency of medical care by providing consultation on demand, monitoring possible errors,
permitting the investigation of diagnostic and therapeutic alternatives, explaining the application
of general medical knowledge to specific cases, and helping to educate both existing and new
physicians.



4 Preliminary Studies

Beginnings of the MIT/NEMC collaborative research group. The Clinical Decision Making Group
traces its beginnings to projects at MIT and NEMC in the late 60’s, investigating the use of com-
puters for diagnostic and therapeutic decision-making. At NEMC, a group of investigators pursued
the notion that a straightforward encoding of the questioning behavior of a medical expert could
lead to programs that behaved as experts in the corresponding medical domain [Blei72,Schw70].
Such flowcharts did in fact capture some of the style and substance of medical reasoning, but
were found inapplicable to large problems because of their lack of explicitness in expressing the
underlying medical knowledge [Szol78]. At the same time, G. Anthony Gorry’s doctoral thesis
presented a technique for diagnostic reasoning based on a sequential Bayesian probabilistic model
[Gorry77] which extended earlier work by Warner [Warner81]. In this approach, the impact of new
evidence is evaluated by applying Bayes’ rule to compute new likelihoods for all possible diagnostic
hypotheses after each piece of evidence is introduced. The principal advance of this work was to
add an active questioning component that would determine what was the most appropriate next
question to ask, given what was already known about a patient. The key idea was to ask that
question that was most likely to be most informative (in the information-theory sense) by choosing
that question whose likely answers would lead to the minimum expected entropy in the resulting
posterior probability distribution. This model was successfully applied in a number of domains
[Beta71] but is limited by simplifying assumptions that must be made to avoid an unsatisfiable
appetite for conditional probability estimates [Szol78].

These two groups joined forces in the beginning of the seventies to build the Acute Renal Failure
program, which incorporated the sequential Bayesian model for diagnostic reasoning and a decision
analytic model for therapy selection [Gorry73|. The decision analytic approach also appeared as an
attractive method to apply to human (not just computerized) decision making in clinical medicine
[SchwT73], and our group has become one of the strongest advocates of the clinical use of decision
analytic techniques. A landmark pair of papers on these ideas appeared in 1973 in the American
Journal of Medicine, marking the first appearance in a major medical journal of clinical decision
analysis. It is with this project that our group began an active effort to apply decision analysis
clinically, leading to the establishment of the Division of Clinical Decision Making at NEMC, the
development of microcomputer tools to support the use of decision analysis in the clinical setting,
and the training program at NEMC to teach physicians to use such methods.

The first of our Artificial Intelligence in Medicine programs: The Present Illness Program. As the
limitations of flowcharts and decision analytic programs for large domains of medical reasoning
became apparent, the group began to experiment with explicit attempts to emulate the reason-
ing process of expert human clinicians as the basis for building intelligent medical consultation
programs. The Present Illness Program (PIP) developed a representation of knowledge based on
frames, expressing typical findings associated with various diseases, physiclogic states and clinical
states found in the domain of nephrology, with additional knowledge indicating which findings
were particularly strong indications for the disease hypothesis, flexible scoring functions to help
evaluate the fit of observed findings to hypotheses and the degree that hypotheses under consider-
ation accounted for the total set of known abnormalities, and links among frames that represented
causal and complicating relationships as well as differential diagnostic lists. PIP used a strategy
of triggering to evoke hypotheses when they were suggested by strongly-indicative findings, and an
activation strategy that permitted it to pay attention only to such triggered hypotheses and their
causally linked relatives. The program’s performance on selected cases was impressive [Pauk78],
though a number of fundamental problems remained unsolved [Szol78, PauSz77]. A later version
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of the program also introduced the first explicit temporal model in an AI medical diagnostic pro-
gram, allowing PIP to do a simple form of reasoning about diseases in the past and their present

consequences, as well as to make limited prognostic predictions about the future course of present
diseases [Szol76].

The digitalis therapy program. At the time PIP was exploring diagnostic reasoning, our group
also began a project in therapeutic management, selecting the administration of digitalis glycosides
as a problem domain. The resulting Digitalis program [Gorr78] was the first AIM program with
the explicit understanding that it would encounter a patient multiple times. This meant that
the program was involved in repeated management decisions, having to generate expectations
about what it expected to see on the next encounter, and having to revise its understanding of
the patient’s case when those expectations were violated. The program used a pharmacokinetic
model of digitalis to compute dosage schedules from a goal body stores level and a knowledge of
renal function, and used heuristic rules derived from clinical knowledge to select the appropriate
goal level based on the patient’s underlying disease, factors predisposing the patient to digitalis
toxicity, and past experience with the drug in that patient. The notion of the patient-specific model
(PSM), a data structure that keeps track of all that is known about the patient—all reported data,
interpretations of those data, hypotheses under consideration, planned tests and treatments, etc.—
developed from this program and continues to play a central role in many of our later projects. The
Digitalis program’s performance on retrospective cases was comparable to that of the house staff
actually caring for the patients, and there was some indication that the program would avoid life-
threatening errors by never overlooking relevant factors in its systematic exploration of each case
[Long80]. However, the narrow focus of this program and the fact that the management of both
heart failure and arrhythmias has altered dramatically (with the introduction of new therapeutic
agents) has reduced the value of a program that focuses on the single drug digitalis. Indeed, we have

begun work on two independent follow-up projects that explore the patient management problems
in both ventricular arrhythmias and congestive heart failure.

The Hodgkin’s disease program. In the mid-70’s another collaborative project between our groups
produced a decision-analytic program for diagnostic test planning and therapy selection for patients
with Hodgkin’s disease. In addition to its value in bringing together disparate sets of data about
Hodgkin’s patients, suggesting some general guidelines on diagnostic test selection and providing a
commeon decision model for this class of patients, the program also introduced several interesting
new concepts [Safr76, Ruth81]. First, the complete decision tree was not explicitly stored in the
program; instead, the sets of possible tests and treatments were represented and the program itself
generated those branches of the tree whose expected value seemed significant. Thus, it could work
with reasonable-sized decision trees in a domain where the total tree would have thousands of nodes.
Second, a sophisticated user interface permitted the user to explore limited “what-if” scenarios and
to get an assessment of which facts contributed most strongly to the program’s conclusions and
which weighed most heavily in the opposition (by ranked likelihood ratios). In later extensions
of this formalism to non-Hodgkin’s lymphomas and other domains, the underlying computational
model was extended to introduce likelihoods and utilities that could be expressed in symbolic forms,
not fixed on a numeric scale. Expected values in such a tree are expressions, then, not numbers; we
explored the use of a symbolic mathematical manipulation system (Macsyma) to manipulate and
simplify these expressions, and their use in performing sensitivity analyses by symbolic solution of
the equations.

Clinical use of decision analysis, and the Division of Clinical Decision Making at NEMC. The
joint efforts of our group in applying decision analysis to medicine have been centered at the
New England Medical Center. The initial work on sequential diagnosis by Gorry was extended
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by Schwartz, Kassirer, Gorry and Essig in the domain of acute renal failure. Their more general
paper on clinical judgment was one of the first introductions of formal decision theory to the
medical literature. Our group developed an interest in the development of simple bedside models
of therapeutic and then diagnostic settings. That work introduced the concept of treatment and
diagnostic thresholds. Our interest in simplification led us to promulgate the tabular form of Bayes
rule and, more recently, the declining exponential approximation for life expectancy. Our interest
in more complex models led to work in Markov process representation and the DECISION MAKER
computer program for sensitivity analysis. Another program, in very preliminary form, examines
a limited frame-based medical knowledge base and generates plausible decision trees using depth
first search. No heuristies for model development are supported.

Our interest in the application of decision theory to generic situations led to reports on problems
such as coronary surgery (which included the first application of decision theory to prospective
decision making in actual individual patients), prenatal diagnosis (which has led to a model applied
to over 1500 patients), brain biopsy in herpes encephalitis, the workup of a cold thyroid nodule, the
workup of nephrotic syndrome, the workup of Hodgkin’s lymphoma, and the necessity for cerebral
arteriography in patients with polycystic kidney disease.

Our interest in the assessment of patient utilities and their implications for medical decision
making originated in patients with coronary disease and pregnant couples concerned about trisomy
21. We have identified the fallacy of arbitrary indices such as the five year survival rate and the
implications of risk averse attitudes among patients. We have examined tradeoffs between quantity
and quality of life. We developed a standardized instrument for utility assessment in patients
being treated for arthritis and are now applying the same instrument to coronary disease, renal
transplantation, peripheral vascular disease and breast cancer.

The Division of Clinical Decision making was formed in 1980 when our group received their first
training grant from the National Library of Medicine. The Clinical Decision Making Consultation
Service began receiving consultation requests two years before that time after its formation by
Drs. Kassirer and Pauker. It remains one of only two such units available, the other being at
Dartmouth-Hitchcock Medical Center, formed by J. Robert Beck, MD, one of our first trainees.
Our interest in the application of decision theory to individual patients has led to a series of
published clinical decision conferences and provides an on-going stream on clinical material that
guides our research interests. We are now in the first year of our second five-year training grant.
Our program has graduated 12 physicians and currently has another 4 in training. We have also
established a sabbatical program that allows academicians from other institution to visit our unit.

Protocol analyses to study human clinical problem solving. Starting with the investigations that
led to PIP, we have been continually involved in the formal and informal study of how human
clinicians actually make medical decisions. We have found such studies to be a critically important
part of our ability to generate new ideas for how to build computer methods of reasoning, and the
more formal studies have also generated results of direct interest to cognitive science.

Our early innovations in the representation of knowledge—including applications of frames,
triggering relations between findings and hypotheses, and the use of causal and differential diag-
nosis links between hypotheses—were inspired by two types of empirical observation of clinicians.
First, “informal” but very carefully documented observations of physicians in action, collected by
a researcher highly trained in AI knowledge representation techniques and supported by physician
collaborators, provided an overview of different types of knowledge and problem-solving processes
to be investigated [Rubi75]. Second, more formal protocel collection experiments were designed
that asked a physician to “think aloud” while taking the present illness of a patient simulated by a
researcher thoroughly familiar with the case [Kass78]. The verbatim transcript of these encounters
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provided valuable data about diagnostic strategies. This type of protocol collection is sensitive
to the natural control structures of the physician’s knowledge, and provided strong evidence of
the frame-oriented knowledge base, with hypothesis-directed questioning and triggering of new
hypotheses. These cbservations led to the design of the Present Illness Program.

Several years later, motivated by other empirical research on clinical cognition [Elst78] and
developments in the methodology of protocol analysis [Eric80], we undertook a review of the lit-
erature on clinical cognition and the methodologies for investigating it empirically [Kass82]. We
augmented the “thinking aloud” protocol with the “cross examination” protocol, developing the
notion of designing a variety of protocol collection techniques sensitive to different aspects of the
subject’s knowledge representation. Using these methods, we collected data about causal reasoning
and explanation by expert physicians, culminating in the development of a new model for causal
reasoning by qualitative simulation [Kuip84a; Kuip84b]. Our analysis determined that much of the
content of a causal explanation centered around the qualitative description of continuous parame-
ters, describing them in terms of their ordinal relations with a set of “landmark values” and their
directions of change. We were able to construct a representation that is an abstraction of differ-
ential equations, and provides a qualitative description of the behavior of a mechanism, given a
qualitative description of its structure. Thus, as with PIP, we have developed important knowledge
representation techniques based on our observations in verbal protocols.

Under other funding, we are currently pursuing similar investigations of physicians’ strategies for
making decisions among alternatives in critical situations involving substantial risk and uncertainty.

Automatic generation of explanations and justifications. We have long recognized that it is critical
for any medical expert system to be able to explain what it knows about a particular area of medicine
and how it has brought that knowledge to bear in reasoning about a specific case. Without this
ability, a user is left to take the program’s advice or warnings on faith, and there is little indication
that even good advice would often be heeded if not backed up by justification. Indeed, a recent
survey of what physicians demand from potential computerized expert systems places the need
for explanation at the top of the list of desiderata, even more important than consistently-correct
performance [Teac81].

Underlying our approach to explanation has been the the explicit representation of as much
knowledge as possible. After all, it is virtually impossible to explain what isn’t known explicitly. Our
specific research on automatically generating explanations began with the Digitalis program, which
was re-implemented in the knowledge-representation language OWL in the mid-70’s to support an
ability to translate the program’s procedures into readable English text. This first version of an
explanation capability could tell how some procedure was done (e.g., how the program determined
the patient’s sensitivities to digitalis), in what ways any data would be used by the program
(e.g., what effect does the patient’s age have on the program’s reasoning), and how the program’s
general procedures had applied in the case of a particular consultation. In addition, the program
had included a form of sensitivity analysis because it could explain what difference an altered
response to any question would make in the program’s reasoning chain, using a form of dependency-
maintenance [Swar77].

Later studies of how medical students reacted to this program’s explanations suggested a fun-
damental defect in this simple form of explanation (which was also shared with other widely-used
explanation methods such as the ones in Winograd’s SHRDLU and Shortliffe’s Mycin). The diffi-
culty was that the knowledge the program needed to perform its (in this case) therapy selection task
was more limited than the knowledge needed to understand why the procedures it used were rea-
sonable. To provide effective explanations, it is not enough to state how something should be done,
but to justify from additional background knowledge why that is the reasonable way to do it. The
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final version of the Digitalis program, again coded in a general-purpose knowledge-representation
language, used methods of automatic programming to derive the performance program from an
underlying model of the medical domain (e.g., hypokalemia in the presence of digitalis raises the
risk of ventricular fibrillation) and from underlying performance principles (e.g., if a drug is being
given that, together with a correctable abnormality, raises the risk of a dangerous condition, then
recommend correcting the abnormality and in the meantime reduce the level of the drug). Expla-
nations could then be generated that highlighted how the principles and specific relationships in
the model interacted to yield the program’s behavior [Swart83]. The English generation routines
developed in this project were then also successfully employed in the ABEL program because both
had been developed in the same knowledge-representation language.

Our more recent studies on explanation have concentrated on questions of how to generate more
cohesive English text, to improve the readability of the program’s cutput [Gran82] and on how to
generate explanations of complex physiological systems [Asbe84].

Comparative studies of different diagnostic methods. In the late 70's, as we were trying to under-
stand the shortcomings of the first generation of Al in Medicine systems [Szol82], we undertook
a comparative study of the PIP and Internist I diagnostic algorithms. Versions of both programs
were applied with a new data base constructed for the domain of birth defects diagnosis, and we
were able to complete detailed comparisons of detailed differences between the two programs, whose
overall approach is similar, but whose details differ significantly [Sher81]. We found, for example,
that the triggering scheme of hypothesis activation in PIP was indeed quite effective in reducing
the number of simultaneous hypotheses that the program had to consider, compared to Internist’s
broader “think of anything supported by the findings” approach, without often overlocking the
correct hypothesis. On the other hand, Internist’s criterion for confirming a hypothesis, which
relies only on its relative ranking compared to competing hypotheses, could on several occasions
correctly sort out ambiguous cases that left PIP’s demand for an absolute level of match between
predicted and observed findings unsatisfied. We believe that such comparative studies have not
been done often enough, and their realization is one of the motivations for our proposal to bring

numerous Al reasoning methods into a coherent and comparable framework within the program
we propose,

Introducing causal models, hypotheses at multiple levels of detail and quantitative reasoning. In
reviewing the inadequacies of the early AIM programs based on seeking a match of patient facts
to expected findings of prototype disorders (whether in an explicit frame-based approach like PIP
or based on production rules like Mycin), we focused on one central problem: When a prediction
and an observation fail to match, the program has no recourse but to lower its confidence in the
hypothesis that made the prediction, and perhaps raise its confidence in another. Yet when we
observed human clinicians faced with such problems, a disagreement between fact and expectation
was often the occasion for much more active, interesting diagnostic reasoning. Indeed, it appears
that just such discrepancies are the key that allows a human reasoner to recognize that a second
disorder is present, that this patient is exhibiting some subtle variant of a disorder, that the
expression of a disease is partly masked by treatment in progress, etc.

In the ABEL (Acid/Base and Electrolyte) project, we explored the use of causal models of
medical relationships at multiple levels of detail to capture in a single system both the typical asso-
ciational facts known in medicine (e.g., diarrhea causes acidosis) and successively deeper expressions
of the mechanism of that association, reaching down to fundamental issues of the conservation of hy-
drogen ions, the composition of gastro-intestinal fluids, the homeostatic mechanisms of respiration
and renal excretion, etc. In addition, this program introduced a notion of quantitative consistency,
giving it the ability to reason about whether the degree of one disturbance was sufficiently ex-
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plained by the magnitude of its purported causes(s), and thus the ability to hypothesize additional
disturbances if the simplest relationship appeared inadequate [Patil81]. Such an expressive knowl-
edge representation also made possible new, more sophisticated diagnostic strategies and plans for
optimal information-gathering [Patil82]. Both these issues are further subjects of investigation in
the current proposed study. We have also implemented an initial therapy program, ABET, that
proposes acute symptomatic therapy for acid/base and electrolyte disorders [Brom83].

Recent and Current work. At present our group is working on a number of problems that form
an important part of the background for the current proposal, because we propose to integrate the
various methods developed in these other projects into a single computer system. In that environ-
ment, the parts can be used together, can call on each other’s services as solvers of subproblems,
and ultimately form the basis for a new common representation and reasoning scheme in which

each of these methods (as well as those derived from earlier, simpler reasoning schemes) is available
as interrelated facilities.

Congestive Heart Failure (CHF) project. In the CHF project we are exploring the idea of an
“intelligent blackboard” to help physicians think through difficult cases of patients with heart
failure [Long82]. The program we are building is to have at its heart a large causal model of
nodes representing different qualitative states of different portions of the circulatory system, with
links representing the causal relations among these states and constraints that are maintained by
a truth maintenance system. The program also has facilities for accepting data and hypotheses
about the patient, for interpreting those data within the current clinical context, for propagating the
consequences of input data and intermediate conclusions to other nodes in the network, for allowing
assumptions to be made by either the user or a program and for maintaining logical dependencies
between those assumptions and their consequences so that assumptions and their results can be
retracted and alternatives considered (via a TMS). This capability will permit the program to be
used not only for diagnosis but also to evaluate possible therapeutic interventions: the user can
assume some interaction and explore what consequences are propagated. The program also will
eventually incorporate a reasoning module that employs our knowledge of temporal relationships
associated with causal links in the network to calculate possible sequences of events and states
that must have held in the past to account for what is currently known. For example, consider a
program that is reasoning about a future time. In that context, “now” is the future and “the past”
of that future is now, which should match the actual present (for diagnostic confirmation) or the
present should be changed to match it (for therapeutic reasoning).

The CHF project will continue as an independent research project, with a significant (but far
from total) overlap of personnel and interests, but we plan to incorporate the general-purpose
reasoning mechanisms such as those described here into the overall system we propose here, to
make these capabilities available as part of the research system and to permit their use in our
planned focus on the coronary disease and fluid and electrolyte balance problem domains.

The ventricular arrhythmia management project. For the past four years we have pursued a collab-
orative project with a group of physicians at Boston University/University Hospital to develop a
comprehensive system for ventricular arrhythmia management in the setting of a cardiac intensive
care unit [Long83]. This system is to incorporate (1) a real-time monitoring module that over-
sees the outputs from a standard arrhythmia monitoring system; (2) a disease-assessment module
that tracks the clinical state of the patient as evidenced by changes in patterns of events from the
monitoring system as well as clinical inputs from doctors and nursing staff, reports of therapies un-
dertaken, laboratory data, etc; (3) a therapy module that generates a treatment plan based on (the
disease-assessment module’s view of) the patient’s underlying disease, modifies this plan based on
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the patient’s response to treatment, and predicts expected results from pharmacokinetic and phar-
macodynamic models of the therapeutic agents utilized; and (4) a user-interface and explanation
module that attempts to keep the user informed and in control of the complex management process,
The overall goal of the Arrhythmia project is to replace the “knee-jerk” reactions sometimes seen
in overwhelmed CCU staff with informed decisions based on a computer-aided careful consider-
ation of therapeutic goals, expectations, and incremental successes. This large project, which is
seeking separate funding and is currently under review, is in collaboration with a different group
of investigators than we propose here, and addresses many concerns (real-time data interpretation,
for example) that are not central to the present proposal. There is, however, one major reasoning
concept developed in the Arrhythmia project that we plan to incorporate into our program. The
control structure of the Arrhythmia program focuses special concern on the problem of being able
to change some input data, especially data about a past event, and to have the system determine
the present consequences of that change. This is difficult for two reasons: First, one cannot simply
roll back the clock and start reasoning again from the changed data because the program will have
taken actions based on what it had believed to be true, and these generally cannot actually be
undone if they affected the real world (not just some internal model). Second, it is impractical
to include in every knowledge source in the program an explicit component to deal with possible
changes of its inputs, and how to respond. Therefore, a mechanism is needed that effectively allows
any knowledge source to act as if its input data were unchangeable, and then provides a general
facility to re-do that reasoning that does in fact have to change. Such a facility has been designed
[Long84], and we plan to incorporate its ideas in the proposed system.

Qualitative simulation. Beginning with some early work in our group on the relationship between
anatomical and physiological function [Smith78] and later general work in AI on endowing com-
puters with reasoning capabilities about simple processes in the physical world [Hayes79], we have
been interested in extending the causal reasoning models of the ABEL and CHF programs to the
level of physiological models. At the same time, Ben Kuipers and Jerome Kassirer, as part of their
investigation of the role of causal reasoning in human clinical thought, have developed detailed
qualitative physiclogical models from explanations given by human doctors. These models differ
from classical differential-equation models in that they can (and typically do) severely underspecify
the precise quantitative relations involved. For example, a functional relationship between two
parameters may not be known exactly, but it is simply known to be monotonically increasing. A

value may be unknown, but it may be known that it lies between two particular landmark values
and is decreasing toward the lower one.

The QSIM (Qualitative Simulator) program takes such a qualitative description of a physio-
logical process and simulates the behavior of the system forward in time, determining significant
future time points (e.g., when that falling value reaches its next landmark) and the possible quali-
tative behaviors of the values of all parameters at those points and intermediate intervals. Clearly,
sometimes this system cannot determine exactly what will happen and must explore alternative
futures. For example, when two quantities are changing at the same time, it is in general im-
possible to tell which will reach its next landmark first; similarly, if a quantity is being increased
by one effect and decreased by another, its direction of change cannot in general be told without
knowing the relative magnitudes of the influences. QSIM extends the the abilities of programs to
use causal relationships in their reasoning by allowing those relationships to be computed from a
deeper model of the processes that underlie them. Thus, for example, rather than simply encoding
primitively that an increase in one physiclogical parameter causes another one to decrease, QSIM
would run the underlying model to determine what happens to the second parameter. QSIM is
being used to model and reproduce the observed reasoning of human subjects. Alan Moskowitz and
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Ben Kuipers are in the process of assembling a small diagnostic program based on QSIM, which
uses hypothesis evocation strategies similar to PIP’s, predicts what should happen under those
hypothetical circumstances by qualitative simulation, and then evaluates hypotheses by trying to
verify the predictions of the QSIM model. We intend to incorporate this qualitative simulation
capability in our proposed program, and to develop our integrated program and knowledge base to
support just the sort of experiments represented by this combination of different components.

Qualitative mathematical reasoning. In a recent Master’s thesis, Elisha Sacks has extended the
qualitative reasoning notion by introducing an ability to reason with the mathematical form of
the equations describing a system. Previous qualitative reasoning systems typically limit what
can be said about the values of parameters to identifying which range of landmark values bound
them and the sign of their derivatives. Functional relations are also usually limited to rough
characterizations of their basic form (e.g., monotonic or not, increasing or decreasing). In Sacks’
QMR program [Sacks84], by contrast, any function can be defined by an exact closed form on a set of
intervals, or by successively weaker parameterized forms, or by the rough characterizations of other
qualitative reasoners. QMR makes use of more precise specifications when they are available. In
addition, because the mathematical form that characterizes some behavior is explicitly represented,
QMR can often describe the behavior of a system by analysis of the mathematical form of its
total (though perhaps under-specified) time behavior rather than by step-by-step simulation of
its evolution in time. This makes it much simpler to identify asymptotic or cyclic behavior than
in programs that generate a trace of the predicted future of a system and then have to extract
appropriate characterizations of that behavior from the trace. Although QMR promises to be a
powerful analysis tool, thus far it has been applied only to quite simple physical systems (though
ones typical of other qualitative simulation exercises), and requires further extension to deal with
larger and more complex systems such as we are likely to encounter in physiological models.

Reasoning about preferences. One domain in which QMR is already finding some application is
a project being pursued by Michael Wellman, to develop a program that will reason about the
partially-specified preferences of individuals. The Utility Reasoning Package (URP) encodes a
large body of knowledge from the utility theory literature and attempts to answer questions about
a subject’s preferences given some information about them by applying theorems of utility theory.
Much of this reasoning also must be done qualitatively because precise quantitation of individual
utilities is difficult to obtain and errorful.
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5 Experimental Design and Methods

5.1 An Integrated AI System for Medical Reasoning

Despite the record of success of medical Al research programs during the past decade, the sad fact is
that only two rather small programs based on Al methods (for pulmonary function test evaluation
and for interpretation of serum electrophoresis results) are in routine (not developmental) clinical
use. In fact, the field is strewn with the carcasses of “successful” projects. Most of the techniques
that have been developed in one research project are reflected, at best, in ideas transported into
others, with very little opportunity to make use of previocusly-developed knowledge bases or reason-
ing modules in the service of new systems. Therefore, the researcher interested in implementing a
program for exploring the use of detailed physiological reasoning based on qualitative simulation to
evaluate diagnostic hypotheses,! for example, must create some form of knowledge representation
in which to express the program’s underlying knowledge, must find an active medical collaborator
to help select a medical domain in which the techniques may be refined and tested, must participate
in the collection and debugging of at least a small knowledge base in the selected domain, and must
then choose some existing hypothesis-generation method as described in the literature, implement
a version of it that fits with the other components listed above, debug it, and perhaps make some
refinements just to set the stage for the research problem originally posed. Note that although
hypothesis generation can be an interesting domain of research, that is not what the exemplified
researcher is interested in here; indeed, there is perhaps no need to advance the state of the art in
hypothesis generation in order to make substantial progress in the use of qualitative simulation as
a hypothesis-validation tool. Yet all the other components of work must still be done, and even
when they are done, the resulting system will still lack some capabilities of other systems that have
been built to explore different but similar objectives. For example, another system that addresses
hypothesis generation may have useful and extensive capabilities to generate explanations (not
critical in this example project, but of some significant value) but these will be unavailable unless
the list of pre-conditions of the desired research is extended by yet another component to build.

The consequence of this state of affairs is inefficiency in research progress, and great difficulty
in integrating the results of diverse research efforts toward a comprehensive system. Feigenbaum
had recognized this difficulty already by 1977, when he called for new generations of AI/Medicine
researchers to “stand on their predecessor’s shoulders, not their toes.” [Feig77] The codification of
one simple knowledge-representation and inference scheme, EMYCIN, did in fact serve as a vehicle
for this admonition, and much of the commercial success of “expert systems” can trace its lineage
to such simple rule-based systems. The technical means to support advanced research programs,
however, were limited in the late 1970’s, and most researchers who were attempting to advance new
ideas about medical reasoning based on such innovative ideas as the use of causality, multiple levels
of detail, time, qualitative simulation, etc., found the available general-purpose tocls inadequate.

Within our own research group, of the many interesting research projects reviewed in section
C of this proposal, only a very few examples of actual sharing of code or knowledge can be found.
The comparative study of the PIP and Internist-I diagnostic strategies actually made use of the
code of the original PIP, cutfitted with a new knowledge base about birth defects, and ABEL made
use of the language-generation parts of the explanation-oriented version of the Digitalis program.
This means that many opportunities for sharing of code and data have been missed, and many
researchers have been distracted from their primary interests by the need to build enough of a
infrastructure to test their newly-contributed code and ideas.

This state of affairs is reminiscent of the symbolic mathematical computation community of

'This example, reflecting the experience of Dr. Benjamin Kuipers in our group, is an actual one, not invented.
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twenty years ago, wherein one project might develop an excellent program for factoring of ex-
pressions, another for integration, a third for power-series expansions, and a fourth for expression
simplification. Not until the late 60's, however, with the development of such comprehensive sys-
tems as Macsyma, were all these capabilities integrated to provide a better environment both for
developing new subsystems and for users with complex, multi-part problems.

Two important lessons should be emphasized from the Macsyma experience: First, a large
degree of integration led to the selection of a small number of systematically-supported repre-
sentations, general translation facilities among those representations, and a requirement that any
function in the system must be able to accept any validly represented input without error.? Sec-
ond, integration did not go so far as to demand a single, uniform representation for expressions
or a single approach to functional tasks. Thus, Macsyma recognized that an expanded polynomial
representation may be best for addition, but it is terribly inefficient for computing the integral of
(z+ 1)109%,

Our proposal here is to undertake an effort akin to that of the Macsyma project: to build a
coherent, integrated system for medical reasoning that is based on a uniform underlying repre-
sentation of knowledge and to provide modular reasoning facilities that address alternative means
of diagnostic and therapeutic reasoning within a circumscribed medical domain. The principal
reasons for undertaking such a project are (1) to improve the efficiency of research, as discussed
above, (2) to encourage efforts in particular toward the successful integration of probabilistic and
categorical reasoning, and (3) to face the issues of how to capture, represent and reason with the
comprehensive medical knowledge of some limited area of medical expertise and how to capture,
represent and use a panel of cases within that limited domain.

We propose to approach the desired integration we seek in two stages: First, we shall build
interface facilities among modules of several of the existing reasoning systems that we now have,
to permit experimentation with their joint use. This will involve characterizing precisely what
combinations of programs we wish to try to use together, defining what information needs be
passed between them, and building special-purpose, ad hoc translation facilities to support their
common use. Examples of possible such interactions are: the triggering machinery of PIP for
hypothesis formation coupled to an hypothesis evaluation scheme based on QSIM (to carry further
the example from above), and the URP program that performs a qualitative analysis of preference
structures with a decision-tree evaluator. Of course, before such integration can be achieved, we
must dissociate each existing program into its components, some central and some supporting.

The second, and larger, step toward our goal is to define a common set of knowledge represen-
tation formalisms and to build new reasoning programs that are fully based on these, so that they

will be coupled together by virtue of their underlying representations, not only through translations
between their inputs and outputs.

5.1.1 Representation Language

The first requirement for an effective close integration of a large number of reasoning components
is that they share some common underlying language within which to communicate their require-
ments and results. Although we propose initially to foster communication among various existing
reasoning modules by special-purpose translation, that is clearly not the long-term solution. In-
stead, we ought to have a language in which any component of any internal “thought” of any of the

*This did not require that every algorithm must werk with any representation. The function could explicitly
ask for conversion to a representation it was capable of processing, or it could even simply return a {rivial symbolic
answer: e.g., asking for the integral of a form the system could not integrate would return the represented equivalent

of “integral(...)".
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reasoning modules can be stated. This means that the representation must be able to express such
typical associations as “diarrhea causes acidosis,” “a liquid stool is usually basic,” “patient A has
lost 10 pounds in the past 24 hours,” “it is unlikely that any patient loses 10 pounds in 24 hours,”
“although patient A is reported to have lost 10 pounds in 24 hours, this fact is disbelieved because
of the previous principle,” however “in a series of patients with cholera (ref ...) the mean daily
weight loss was ten pounds.” Indeed, virtually any of the technical issues that we are interested in
advancing finds a counterpart in the required knowledge representation. Thus, we need to develop
a uniform representation language in which we can make statements about causality, temporal
relations, preferences and values, plans, the behavior of (physiological) systems, likelihoods and
distributions of probabilities, facts of biochemistry, anatomy and physioclogy, records of previous
cases, summaries of data from the literature, records of what a program has been told, what it has
inferred, and what it has recommended, and internal states of the reasoning system itself, such as
its goals, assumptions, and problems.

This comprehensive list defines a difficult and perhaps overly-ambitious research project. We
are saved from the implications of such a difficult task to some extent by the fact that we are
not attempting to solve these representation problems in their total generality, but with respect to
the particular representational needs of the medical domains we are focusing on and the reasoning
components we are developing. ® Therefore, the representation we shall develop will evolve during
the course of the project as we identify additional capabilities needed from it. There will, however,
be a major early effort to design a representation that will serve the needs of those modules to be
included from the beginning,.

It is important to note here that what we need to develop is not another knowledge repre-
sentation language of the form ordinarily thought of by artificial intelligence researchers, such as
KL/ONE, FRL, OWL, etc. Indeed, we plan to use such a representation language as the implemen-
tation medium for what we need. To understand the distinction, it is useful to consider the contrast
that Alan Newell makes between the symbol level and the knowledge level of understanding of an Al
program. At the symbol level, a medical diagnosis program is seen to be performing activities such
as calculating the values of certain parameters, applying inference rules, asking questions of the
user, etc. At the knowledge level, it is making hypotheses, testing them, predicting the outcome of
some therapy, etc. Naturally, its knowledge-level processing is implemented in terms of its symbol-
level capabilities. Thus, at the symbol level, the program’s making a new hypothesis may appear
as the addition of a symbol such as hypothesis-12 to the list that is the value of the parameter
current-hypotheses. There is indeed often a fairly deep hierarchy of such levels, for the symbol
level may itself be implemented in some other programming language, which in turn runs in the
machine language of the computer, which ultimately is pushing electrons around wires. In general,
it is preferable to implement the knowledge level needed for an application in that symbol level
language which comes closest to directly supporting the needs of the user at the knowledge level.
As a very simple example, consider that if sequences are to be an important element of reasoning
at the knowledge level, then a symbol-level implementation language that has strong support for
manipulating lists would be a good choice.

Choosing a symbol-level language in which to implement our common representation is difficult
because even the best well-developed, well-supported flexible languages such as Lisp are at too
low a level to provide much of the support we will need. Therefore, we are locking at more
advanced representation languages such as NIKL, KL/ONE, KRYPTON, FRL/HPRL, OWL, etc.

%Lest the reader conclude that this task is impossible, we already have a well-developed prototype for such
representations—English. The only problem is that that system is difficult to manipulate within the computer. We
are not proposing to deal with natural langnage in general, but do anticipate that we shall require a very general
representation scheme.
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as possible choices, and have tentatively settled on NIKL as our working choice. All of these
languages supply important capabilities we shall need in building cur own representations, such
as taxonomic hierarchies, automatic inheritance of attributes and values from hierarchic superiors,
methods of categorizing new instances into their appropriate place in the taxonomy based on their
characteristics, etc. In contrast to lower-level programming languages, however, many of the design
issues of these knowledge representation languages are not well fixed, and languages tend to change
often in response to new demands on them or a newly-developed understanding of their mechanisms.
There is the risk, then, that in using such a knowledge representation language, one will be drawn
into the arguments at what should (for this project) be the symbol level, and may have to ride
atop a moving base as that language continues to change. Despite this danger, we have no real
alternative to building on top of such a language, because the kinds of facilities provided are needed;
if we were to begin with Lisp, for example, we would simply have to build up our own version of
some representation language (which we have indeed done in the past [Szol77]).

Among the available languages, NIKL [Mose84] appears to have the best current compromise
between elegance of design and practical usability. NIKL is the New Implementation of KL/ONE,
and falls into the current tradition of languages that maintain a distinction between a definitional
and an assertional component. The definitional component encodes, not surprisingly, definitions
of terms and their hierarchic relationships. What is important about NIKL and the best of the
other languages in this tradition is that the hierarchic relationships are present by virtue of other
knowledge in the system, not simply because of arbitrary declarations by the user. Thus, if anemia
is defined as a disease with a role hematocrit that is restricted to be less than 38%, then any
other disease with such a role and a restriction on its value that is more restricted (e.g., less than
25%) will automatically be classified under anemia.* NIKL also supports multiple inheritance,
so that a single concept may be classified under several others. The definitional knowledge ex-
pressed is monotonic (i.e., not subject to retraction during reasoning). NIKL also provides facilities
for instantiating its knowledge to form specific instances of concepts that represent not generic
conditions but their occurrence in a specific patient; this is important for representing the patient-
specific models. NIKL’s assertional component, the means it has of stating arbitrary facts about
the world and deriving conclusions from them, is not precisely defined; it can use virtually any
inference mechanism, from a general-purpose theorem-prover (practically intractable) to arbitrary
computations (which can be fast, but not necessarily correct).

The task for us, then, in using such a representation language, is to determine how to express
the kinds of concepts relevant to medical reasoning in the representation language in such a way
that the power of the underlying language is exploited. For example, if the knowledge is appro-
priately structured, NIKL can automatically derive that the causal relationship between bacterial
endocarditis and renal infarct is a specialization of the more general causal relationship that some
heart diseases cause some kidney diseases. Furthermore, additional concepts, such as “diseases that
cause renal diseases” and “diseases that cause renal infarct” are all classified appropriately to form
the generalization hierarchy needed by a reasoner. Making this happen, though, is often difficult,
and achieving a representational design that causes the right relationships to be manifest in the

organ system hierarchy, etiologic hierarchy, temporal hierarchy, etc., will be a major task of our
design.

“There is some technical difficulty here with how ranges of numbers are represented, which is not fully demonstrated
in this example.
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5.1.2 Components of the Integrated Reasoning System

What are the components of an integrated medical reasoning system? From our retrospective
analysis of the parts of the medical systems whose capabilities we would like to bring together, we
have identified the following components that we intend to implement in the proposed system:

1. A data interpretation module transforms externally-reported data into the form used by the
rest of the system in its reasoning. Although every program must do this, our most extensive

experience with data interpretation as an explicit module is in the heart failure program,
which will serve as our initial model.

2. A module for hypothesis formation takes a set of initially-presented facts about a case and
produces the initial hypothesis structure that will drive the program’s reasoning. Examples of
such a module are the triggering mechanism in PIP, the EVOKER program currently being
developed, the special-purpose acid/base nomogram interpreter of ABEL, and Davidoff’s
GENERALIST. This one area in which there are many competing methods.

3. Hypothesis evaluation is the process of validating the predictions that arise from a hypothesis.
The two principal approaches to date have been to use a measure of likelihood derived from
a Bayesian or pseudo-probabilistic scoring function, or a measure of conceptual completeness
and consistency, implementing a version of Occam’s Razor—the simplest hypothesis that
accounts for the facts is best. How to figure out what hypotheses account for what facts is in
turn an interesting problem, that can be addressed by simply listing manifestations associated
with each known disease, calculating the list from a chain of causal possibilities, or simulating
the mechanism of the disease to predict its consequences. Categorical methods may also be

applicable, such as the confirmation of an hypothesis by verification of its one pathognomonic
finding.

4. Hypothesis revision suggests appropriate modifications of the hypotheses under consideration.
These may be based on purely internal reasoning (e.g., deciding that there is now enough
specific information known in a case so that aggregate hypotheses should be disaggregated
to allow differentiation among the more detailed alternatives), or on discrepancies arising in
hypothesis evaluation when new information fails to match what was predicted. Revision
of a set of hypotheses may involve restructuring of individual hypotheses, the aggregation of

several into one, the introduction of completely new hypotheses (by the methods of hypothesis
formation) and the deletion of existing hypotheses.

5. Data gathering is the active part of the hypothesis evaluation /revision cycle, suggesting new
facts that would be useful to help resolve remaining uncertainties. Strategies here can range
from the most simple—ask about the first piece of supporting evidence in favor of the lead-
ing hypothesis—to much more sophisticated—plan a sequence of tests that will yield the
most information at the least risk. This issue becomes even more complex when competing
hypotheses lead to competing and conflicting goals (see section D.5).

6. Explanation and justification concerns ways of describing what the program believes to its
users and convincing them that those beliefs are supported by valid underlying knowledge.
Strategies here range from means of translating the procedures and knowledge structures of
the program into English to the much more difficult task of fitting an explanation to what
the user is thought to know already.
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7. A causal reasoning module propagates logical causal and temporal consequences of what is

known within a network of cause/effect relationships. This is a sufficiently common com-
ponent of other modules that it should be separately broken out. Dependency maintenance

is also a component of this module. This capability will be useful in hypothesis formation,
evaluation, and explanation.

. Multi-level causal reasoning permits a system to deal with problems at various levels of detail,

from a “shallow” or associational to a “deep” physiological one. Only the ABEL program
(and, in design, Caduceus [Popl81]) has successfully exploited this capability thus far. We
propose to distill this out into a separate facility.

. Therapy planning and management involves the repeated evaluation of the patient’s state

and the recommendation of some action (e.g., provide therapy, re-think the diagnosis, simply
wait for further developments). This may be driven by the degree to which therapeutic
expectations are met (as in the Digitalis and Arrhythmia programs), by following carefully
laid-out contingency plans, or by decision analysis.

This list is not meant to be exhaustive, but represents currently-identified reasoning compo-

nents,

The next section discusses further details of various approaches that we propose to investigate

for each of these modules. To return to our hypothetical researcher at the beginning of this section,
our intent is that he or she will be able to interface with a number of these components to form a
complete, testable program. Further, comparative studies of alternative versions of any such module
will become easier, and this valuable form of critical research will be encouraged. Later sections
also discuss the codified medical knowledge base that should also be available to the researcher and
the panel of cases that will facilitate the testing of such new components.
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5.2 Components of Medical Reasoning

As introduced above, an integrated medical reasoning system must have a number of components
to deal with the various tasks that comprise the overall diagnostic or therapeutic task. This section
describes several approaches for these components, and the extensions we plan to investigate within
the framework of this project.

5.2.1 Data Interpretation

Data interpretation is the process of assessing the validity and meaning of raw input data in
the context of the individual case. This process functions as a separation of labor between the
tasks of assigning meaning to data and the tasks of using the data for diagnosis and management.
The data interpretation task can be divided into two parts. The first is assessing the validity
of the data. Consider some examples: Laboratory values are subject to both random variation
and not infrequent errors from mislabeling, contamination, and so forth. By knowing the possible
changes over time of the parameters being measured and the constraints on relationships between
parameters, a program can recognize many of the values as in error or likely to be so. Similarly,
the validity of a weight change can quickly be clarified by asking if the weight was taken on the
same scale as the previous weight. Physical examination findings, such as those from auscultation
are greatly dependent on the skill of the observer and the nature of the physical environment. For
example, the occurrence or lack of a gallop should have different significance if it comes from a
skilled observer listening in a quiet room rather than an intern listening in a noisy setting to a
patient on a respirator.

The second task of data interpretation is assigning meaning to the findings in the context of the
patient. Comparing findings to “normal” is not sufficient. Normal ranges are determined from the
statistics of a population. The population information about a parameter only tells the percentage
of the population for which a particular value would be abnormal, not whether it is abnormal
for the individual. Furthermore, disease states can change the appropriate values for a parameter
in the individual. For example, for a patient with a history of chronic hypertension, a blood
pressure of 140/85 may be too low. However, if the same individual suffers a severe myocardial
infarct, that same pressure of 140/85 may be too high. The problems of validity and meaning
are addressed to some extent for specific domains by ABEL and the heart failure programs. For
example, ABEL interprets electrolyte values in terms of the likelihood they are abnormal as well
as in the context of the other electrolytes. If one electrolyte value is changed, it may change the
assessment of another electrolyte because the overall picture is now more consistent with a different
interpretation. Similarly, the heart failure program uses the distance of a value from the normal
range to determine the strength of the evidence for an abnormal value and combines that with the
evidence of causes or effects from the physiclogical model to assess the value.

The exact boundary between data interpretation and medical reasoning is domain specific and
dependent on what form the data must be in for the medical reasoning. For example, the reasoning
module in the heart failure program requires the truth of the qualitative parameter values in the
model with associated time intervals, a certainty assessment, and severity. Until the data are in
that form, they cannot be interpreted. Thus, the interface between the data interpretation module
and the reasoning modules may require communication in both directions. Typical information
will consist of a priori likelihoods for values (determined from established causes or effects, for
example), and requests for data assessments in situations where many possible assessments could
be made.

The mechanisms mentioned above are only partial answers to the problem of data interpretation.
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For the general framework, we shall develop a more extensive set of mechanisms to handle the needs

that arise in medical domains. A partial list of the mechanisms that should be available for data
interpretation is as follows:

1. Mechanisms to handle validity constraints from physiology or other fixed bounds, constraints
from other parameter values, and the constraints of parameter value changes across time.

2. Mechanisms to handle possibly erroneous data.

3. Mechanisms to handle the correction of data (see [Long83a] in the appendix for a mechanism
for propagating the changes in data to those interpretations that depend on the value).

4. Mechanisms for providing derived values from the entered data. For example, the Henderson-
Hasselbalch Equation gives the pH in terms of the ratio of the HCO3 and the pCO;. The

user should be able to enter any two of these values and have the program reason with all
three.

5. Mechanisms for interpreting descriptive information. These would be domain specific inter-

pretation programs, such as a program to assign the likelihood of angina and other types of
pain from a description of chest pain.

6. Mechanisms for deciding what “otherwise normal® and other forms of missing information
mean in the context of the patient.

7. Parsimony, probability, certainty factor (etc.) based interpretation mechanisms incorporating
constraints on the likelihood measures [Yeh85].

Thus, the modules we will develop will support reasconing about the validity of data and about
the meaning of data, starting from the techniques we have used in other projects, reimplemented

to conform to the general framework, and extending to cover the other data interpretation require-
ments we have identified.

5.2.2 Hypothesis Formulation

One of the most fascinating observations from studies of clinical cognition was the discovery that
cognitive processes involved in diagnosis are very similar to those involved in scientific fields in
general, namely, that they are hypothetico-deductive. Clinicians generate a small number of specific
hypotheses, very early in the diagnostic process, which are continually evaluated, revised, and
elaborated during the process of diagnosis until adequate diagnostic understanding is achieved.
The experience in the Al in Medicine field also suggests that the hypothesis formulation activity
plays a central role in effective management of the large space of possible diagnoses that a clinician
(or a successful Al program) must deal with. A number of strategies have been tried in the past
such as the “triggering heuristic” in the Present Illness Program, the “evoking strength calculation”
in INTERNIST-1. To develop a better understanding of these techniques, an experimental study
was performed in which several of these strategies were implemented in the same domain (using
the same knowledge base). Based on the results of this study [Sher82|, a number of potentially
useful new strategies and combination of existing strategies were identified. In order to explore
these new strategies effectively, Kuipers has implemented a new program called EVOKER, which
provides meta-level support for rapid prototyping of these heuristic strategies. We propose to
use the EVOKER program in two ways: first, to evaluate triggering strategies to be used for
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program development, and second, to assist in protocol analysis by providing tool for simulating
the observations.

Although use of triggers and other “associative recall” mechanisms provide us with considerable
advantage by identifying only those pieces of information potentially relevant to the case, they alone
can not be relied on to reduce the space of possible hypotheses sufficiently for effective diagnostic
reasoning. Considerable thought must be given to structuring the space of possible hypotheses and
developing algorithms which can be used to group and reduce the number of these hypotheses to a
small and manageable size for effective diagnostic reasoning.

A number of programs, most notably INTERNIST-I, have attempted to solve this problem
through the use of a hierarchy of diagnostic hypotheses. However, the use of hierarchies in these
programs has failed to achieve the expected results. There are two main reasons underlying these
inadequacies. First, the inadequate and often overly restrictive semantic basis for defining the
hierarchy. For example, the disease hierarchy in INTERNIST-I requires that the manifestations
associated with an aggregate node must be those and only those which are common to all diseases
under it. As a result, the number of manifestations associated with an aggregate node decrease
rapidly as we move up the hierarchy, so much so, that aggregate nodes such as “liver disease” do
not have even the most characteristic finding such as “jaundice”. Thus, INTERNIST-I is deprived
from making effective use of the hierarchic organization. The second problem results from mixing
a number of different commonalities (or criteria) in organizing a hierarchy and the resulting a
priori selection of one of these commonalities in decomposing each of the aggregate node into its
sub-nodes. As a result, when this hierarchy is used during the process of hypothesis formulation,
either for grouping a number of similar hypotheses or for refining a hypotheses into a set of more
specific hypotheses, only commonality that was selected a priori in forming the hierarchy can be
used, which may or may not be suitable in the context of a given case.

We propose a new organization for structuring of the possible hypotheses which takes a much
broader view of the task. We believe that a substantially richer and more principled organization of
this knowledge is essential for advancing the state of art in medical diagnosis. Such a representation
will contain a number of hierarchies (in a spirit similar to that proposed in ABEL and CADUCEUS).
These hierarchies, however, would be used to organize different components of medical knowledge
where each hierarchy deals with only a single component. For example, one such hierarchy would
describe the functional anatomy, another to organize the specific eticlogies, and yet others to
describe homeostatic mechanisms, temporal characteristics etc. Because of the choice of a single
theme for each hierarchy, these hierarchies can be organized in a coherent and systematic fashion
such that they provide a smooth and organized progression of concepts as we move from one level
in the hierarchy to the next.

Each of these hierarchies will then be used to characterize the space of disease hypotheses. Thus,
for example, the disease of Acute Glomerulonephritis would be characterized as an “acute” disease
(temporal characteristic) involving “glomerulus” (anatomical site) caused by an “immune reaction”
(specific etiology), etc. Such explicit characterization of each disease hypothesis will permit us to
choose, at run time, one of the commeonalities which best suits the needs of the problem solver.

Furthermore, in the early phases of diagnostic process, when sufficient information is not avail-
able for effective generation of a small number of hypotheses, the same structure can also be used
to characterize the patient’s condition along each of these dimensions, and the problem solving
directed towards refining these characterizations, until sufficient information has been obtained to
clearly identify a small set of hypotheses. A program for formulating the differentiation problem
for the presenting complaint of pain based on detailed characterization of various components of
the pain (GENERALIST) was implemented by Frank Davidoff (while visiting our group). The
program was able to begin its questioning with only one or two presenting complaints and with
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only a few more questions was able to characterize the patient’s illness sufficiently to identify a
small and well defined differentiation problem. The mechanisms embodied in this program will be
useful for a variety of medical domains when packaged as part of a complete framework, although
the same form of analysis that it includes for pain will need to be undertaken for other common
presenting complaints.

One of the most difficult problems faced by diagnostic systems is the decision whether the
patient under consideration is suffering from single or multiple disorders. Making a single disease
assumption (as is done implicitly in PIP) considerably simplifies the diagnostic task by simplifying
the problem of properly accounting for findings. That is, under this assumption, a finding is either
explained by a disease or is not explained by a disease. A program based on these techniques may,
however, be misled in the presence of multiple disorders when the diseases interact with each other
by either aggregating some symptom or canceling the effects on others.

To deal with such difficult situations, a new approach must be taken which incorporates explicit
notions of severity, quantity, duration and onset of symptoms, and that has sufficient pathophysio-
logic knowledge to help sort out the potential interactions among co-occurring diseases, when such
interactions are suspected. Our ABEL program addresses these issues using three key new ideas.
First, a significantly more complex representation of the program’s hypotheses called “composite
hypotheses” are used. This new representation of a diagnostic alternative includes hypothesized
diseases, clinical states and relations which together form a complex that accounts for observed
findings from all aspects of the case. Furthermore, they clearly identify those that can not be
adequately accounted for and thus form a focus for further diagnostic problem-solving.

Second, it allows a disease to account for only that part of a finding that is justifiable, requiring
the remainder of the finding to be accounted for by other complicating factors in the complex.
Furthermore, when a complicating factor is suspected but not known, the same mechanism can be
used to determine the component of the finding that “remains to be accounted for” to direct its
search for the complicating factor.

Finally, ABEL tries to approach the problem of diagnosis at multiple levels of detail, from causal
knowledge of common clinical associations at the top to detailed knowledge of pathophysioclogy at
the bottom level. Such an approach allows us to exploit the clinical knowledge in proposing different
ways of extending a hypothesis (i.e. exploring the space of diagnostic alternatives) and proposing
possible relationships among the observed findings and clinical states, while the detailed knowledge
of pathophysiology allows us to verify the physiologic validity of each proposed relation, and to
determine the effects of co-occurring diseases in a systematic manner.

5.2.3 Hypothesis Evaluation

On of the major tasks in any diagnostic system is to evaluate competing hypotheses in terms of
the relative strength of our belief in the truth or perhaps in terms of the relative importance of

their pursuit. Two basic streams of hypothesis evaluation can be considered—probabilistic and
categorical.

Probabilistic evaluation The probabilistic evaluation of competing hypotheses is most often
based on the use of Bayes rule (when full knowledge of relevant conditional probability data is
available) or weaker scoring rules when information is incomplete. Formal Bayesian scoring, which
would involve specifying a full matrix of condition probabilities, is often replaced by a two state
world in which is diagnostic hypothesis is present of absent and in which the condition probability
of a finding with hypothesis absent is taken as a fixed number, independent of the distribution of
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other diseases within the disease category. We have examined that situation [Szol78] and delineated
the potential errors that such an approach might produce.

Clearly the Bayesian and pseudo-Bayesian approaches are best applied when the domain of
consideration has been sufficiently constrained. We shall experiment with the idea of using cate-
gorical techniques to restructure the domain of consideration into a form in which such techniques
might be applied. When such applications force the program into the “two state fallacy,” pointers
in the knowledge base will make the inference program aware of the potential problems and will
appropriately constrain the propagation of weak conclusions.

Causal consistency, minimum unexplained findings: coherence and parsimony An
alternative to calculating some approximation of the likelihood of hypotheses is to compare them
instead according to a different criterion, the quality of explanation provided by the hypothesis.
The quality of an hypothesis is based on the number of different causal explanations that are
necessary to explain observed findings, the number of findings that cannot be completely explained
and the number of possible etiologies that must be hypothesized to completely explain the observed
findings. A hypothesis which uses the smallest number of independent etiologies and leaves the least
number of unexplained findings is judged to be better that all the others. In the narrow domain
of the ABEL program, we have found that this approach works remarkably well in narrowing the
field of hypotheses because it requires that each hypothesis be a physiologically and clinically valid
explanation of the patient’s illness.

One special circumstance that permits relatively easy categorical decisions to be reached is
when a pathognomonic finding definitely indicates the presence of a disease. In addition, a program
can blur the distinction between truly pathognomonic and simply strongly indicative findings so
long as the resulting occasional errors can later be recognized and corrected. The use of underlying
reasoning mechanisms based on constraint propagation and dependency maintenance should permit
such aggressive evaluations to be made, recalling that they may need to be retracted if they fail to
hold up in further investigations of the case.

In conjunction with the hypothesis formation and evaluation process based on causal modeling
of the patient’s illness, we have also been working on reasoning techniques for projecting qualitative
causal models forward for identifying the prognosis based on each model (QSIM). Such qualita-
tive models can not only be used to predict the consequences of possible treatment/management
alternatives for the patient, but can also be used to evaluate the validity of a given hypothesis by
matching its predictions with the observations. Thus, if an hypothesis is correct, then the con-
sequences predicted by simulating the mechanism of the hypothesized disease should match those
seen in the patient.

Ultimately, in situations where there are two or more acceptable explanations of the patient’s
illness, the program will be faced with the difficult problem of making decisions about its future
course of recommended action. In such situations, a probabilistic evaluation of the likelihood of
each alternative can provide an important bridge to the use decision analytic methods in selection
of appropriate management actions, and we shall need to develop some approximate methods for

making a posteriori probability estimates of complex hypotheses even if such probabilistic values
are not used earlier in the evaluation process.

5.2.4 Hypothesis Revision

The result of evaluating a set of current hypotheses is typically used either to revise the set of
hypotheses or to revise individual hypotheses within the set. The set is revised by adding new
hypotheses, deleting old ones or aggregating subsets. Individual hypotheses are revised by intro-
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ducing extensions to account for new data or newly-discovered discrepancies, or by some internal
re-organization to move toward simplicity or completeness.

The most interesting current work on hypothesis revision is that being pursued in the Ca-
duceus project [Popl82], where a uniform space of causal and taxonomic links is matched against
a small number of heuristic operators that dynamically re-organize the program’s knowledge into
new problem sets. Although the combinatorics of such an approach may make it too costly to
apply universally, we plan to incorporate that basic insight, limiting its application only to situa-
tions where the evaluation module reports some serious difficulties with the currently-formulated
hypotheses.

One dramatic form of hypothesis revision, which has been one focus of our own work recently,
is the decision whether the patient under consideration is suffering from a single disease or a
multiplicity of disorders. Although making the assumption of a single disease is an attractive
simplifying assumption made by many earlier programs, it is inappropriate for the types of serious
cases that would be most likely to come up for consultation. One key to recognizing that a single
disorder fails to adequately explain a case is if either no single disorder accounts for all the known
abnormal findings. Thus, it is not enough to downrate a hypothesis during evaluation for leaving
important facts unexplained; this may be just the clue that the hypothesis must be extended
with additional components. A second key is that many findings have quantitative and temporal
characteristics, and that although some hypothesis may be able to explain some form of that finding,
it may not be able to account for its degree of severity or its precise time of occurrence. Clearly, the
representation must support the statement of quantitative and temporal characteristics to make
this hypothesis revision strategy applicable. Given this ability, deficiencies identified in hypothesis
evaluation can be the clues that lead directly to the revision of hypotheses to account for those
additional findings or portions of findings. More subtly, this form of reasoning also applies to the
case of “the dog that didn’t bark,” in that failure to cbserve an expected finding may indicate that
it is being masked by some other abnormal process. We plan to include the types of quantitative
representations developed in ABEL in our knowledge representation, and to develop further revision
strategies based on the notion of hypotheses partially accounting for quantitative evidence.

5.2.5 Data Gathering

The diagnostic task is made up of two parts: one consists of hypothesis formation and revision to
interpret the known data and the other deals with data gathering to clarify difficulties remaining
with the hypotheses under consideration. Much of the research in Al in Medicine in the past
has focused on efficient means for hypothesis formation and evaluation with only a small fraction
of efforts going to improving data gathering strategies. For example, at one extreme, rule-based
programs such as MYCIN use a predetermined order in which to ask questions, and at the other
extreme, frame-based programs such as Internist and PIP, maintain very little control over the
data gathering process from one pre-packaged group of questions to another. In more recent years
programs such as ABEL have attempted to introduce the notion of planning to generate a data-
gathering plan which can be used to provide more efficient and coherent questioning of the user.
Another problem, quite common in areas such as clinical medicine where enormous amounts of
information must be handled routinely, is the possibility of errors in the data. Therefore, an ability
to identify questionable information and to challenge and to correct it quickly is an important
ingredient of clinical expertise. [See also the discussion in D.2.1 from the standpoint of data
interpretation.] This problem is handled in ABEL with the use of expectations about the possible
outcomes of the questioning process, and using these expectations to check whether the outcome
of the questioning (i.e., the data presented to the program) is consistent with currently held beliefs
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about the patient’s condition. If the data is inconsistent, an excuse finding mechanism is activated
which allows ABEL to pursue the questionable findings further before accepting them.

One of the limitations with the method developed in ABEL arises because ABEL alternately
generates information gathering plans and executes them. Thus, although the program can respond
to unexpected findings to a limited extent, the plan once generated is essentially executed to
completion before the process is repeated. However, based on the observation of clinicians, we have
noticed that the plan generated by the physicians differs from those generated by ABEL in the
following ways:

Physicians do not alternate between plan generation and evaluation. Rather, they seem contin-
uously to be augmenting and modify their plans in response to incoming information. Furthermore,
based on the expectations of possible cutcomes to some questions, they often develop plans for each
of the likely alternatives (contingency planning). Finally, while complete plans are generated by
the program, physicians generate only a partial plan for questioning, requiring that they have a
clear idea of only a limited future, choosing to leave the rest of the plan in partial development,
so the steps are only refined if and when that part of the plan is deployed. They also consciously
identify points in their plan where they would stop to re-evaluate the line of questioning, possi-
ble hypotheses, etc., based on how the questioning process corresponds to the expectations of the
clinicians.

For this project, we propose to conduct formal clinical protocol analysis to get a better un-
derstanding of this “expectation driven continuous contingency planning” process [the protocol
analysis process is discussed in depth in section D.5] used by the clinicians. Using the results of
this analysis, we will develop analogous approaches for the use of diagnostic programs.

5.2.6 Explanation and Justification

The Clinical Decision Making Group has provided many innovative ideas in the Al community in
research to give programs effective explanation capabilities. The work on explanations started with
methods for generating English explanations for the program code in the Digitalis Therapy Advisor
and has progressed to methods for explaining the underlying medical knowledge that justify the
procedural methods (as discussed in the Preliminary Studies section). An effective explanation
facility needs to be an integral part of any medical expert system for a number of reasons. First,
the information or advice provided by the system must be justified for the user in the same way
that an expert consultant provides not only a recommendation but, more importantly, the rational
basis for making the decision. Since the physician is ultimately responsible for the case, the reasons
are as important as the conclusion. Second, the knowledge in an expert system needs to be open to
review both for analyzing the reasoning process in individual cases, and also for critical assessment
by experts in the field. The explanation facility serves as a mechanism to make the knowledge
understandable to the computer naive expert and serves as a good debugging tool for the system
developers. Finally, in a complex medical domain many of the kinds of conclusions that should be
provided for the user represent complexes of interaction in the medical domain. For example, an
appropriate therapy recommendation in a coronary artery disease case may be:

“A beta-blocker is the first choice, but monitor the patient for the development of
bradycardia, CHF, or bronchospasm.”

Such a recommendation includes both the therapy and the plan to follow to make sure the ther-
apy will meet the expectations. Such plans in general will have to be generated in English from
the internal representation of the therapy plan from the PSM. That capability requires the same
technology as the explanations.
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The most important characteristic of an explanation facility is that it reflect the true state of
the knowledge base and the PSM. Thus, the explanations need to be generated from the structures
they are purporting to explain [Swar81]. The use of a flexible knowledge representation language
makes this possible. The language allows the designer to include with the knowledge structures
not only the information necessary for the performance aspects of reasoning but also information
to generate the appropriate English constructions as well as any other information that may prove
useful for other purposes in the expert system. The best example of the power of using a suitable
knowledge representation system is ABEL’s explanation system. It was actually developed for
the XPLAIN system, but both systems used the same language and the explanation system was
transferable.

For this project we will start with the basic English generation algorithms already developed
in the group, translated to operate on the target semantic representation. We will then continue
the development of these techniques by incorporating the ideas of Granville for condensing and
improving the English generation. There are a number important research issues in this area that
need to be addressed to make the explanations more effective. One is the tailoring of explanations
to the user’s needs. That is, producing explanations with detail where the user wants or needs
detail. This requires producing and using a model of the user’s needs [Clan83]. Another area
of research is the effective explanation of different kinds of processes. Humans have techniques
for explaining complex structures that provide the appropriate cues and emphasize the important
aspects to make the explanation understandable. It is important that we collect and analyze such
techniques to determine their applicability.

Thus, the goal is to produce an English generation module that operates on the representation
system and that has the flexibility to be used by a variety of expert systems to produce the kinds
of expressions of structure necessary for explanations, justifications, and recommendations.

5.2.7T Causal Reasoning

Reasoning from causal relationships is important in any domain where determining the mechanisms
underlying the patient’s condition is useful. This is the case whenever associational mechanisms are
insufficient to adequately characterize the situation. Thus, domains where there may be multiple
interacting diseases, multiple relationships between diseases, or where the simple clustering of
findings is inadequate to differentiate among the meaningful diagnostic and therapeutic entities are
all candidates for causal reasoning. Two domains we have worked on are prime examples. The
acid-base and electrolyte domain requires causal reasoning because of the interactions among the
physiological parameters. It is possible that two mechanisms operating at the same time will affect
a physiological parameter such as potassium in opposite directions resulting in a normal level that
would be inconsistent with either mechanism considered alone. In the heart failure domain, the
cardiovascular compensatory mechanisms result in a very similar patient presentation regardless of
the cause for the failure. That is, when the cardiac cutput does not meet the demand for output the
patient experiences fatigue, peripheral vasoconstriction, increased pressure and fluid accumulation
in the lungs and systemic circulation — the picture of heart failure. Thus, it is necessary to look
for the more subtle findings that indicate what the limiting factor or factors might be in the system
and hence to trace back to the primary reasons for the heart failure.

In developing medical consultation programs for these and other domains that require reasoning
from causality, we have developed mechanisms that will be useful in many domains. For example,
the heart failure program makes use of a representation of causality in the logical formalism of
a Truth Maintenance System (TMS) that provides automatic propagation of the implications of
causal relationships. That is, a fact such as “myocardial ischemia is caused by inadequate myocar-
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dial oxygen supply or excess myocardial demand” is captured by representing the implications of
the causality as a logical statement. In this case, if the effect is known to be true, then one or both
of the possible causes must be true. Thus, the following logical statement is in the data base:

myocardial ischemia => inadequate myocardial oxygen supply
or excess myocardial demand

The TMS maintains that statement by automatically asserting the logical consequences whenever
any of the terms are asserted to be true, false, or unknown. In the Heart Failure program we
have extended this mechanism to allow the system to reason about causal mechanisms for which
there is a significant delay between cause and effect. For example, fluid accumulation in the body
happens over a period of days. Thus, a cause for fluid accumulation could be present without any
evidence of excess fluid if insufficient time had passed or there could be fluid accumulation without
a presently existing cause. The extension of the causal reasoning mechanisms to account for such
problems of time of causation involve including time bounds for the causation and time bounds for
the disappearance of the effect [Long83b] (see the Appendix).

The development of ABEL has also contributed much to our understanding of the process of
reasoning with causal relationships. In that domain mechanisms were developed to reason with
quantitative relationships between parameters as well as a first order mechanism to reason about
the gradual effects of the homeostatic mechanisms operating in that domain.

These mechanisms for handling aspects of causal reasoning are independent of the medical
domains and represent inroads into the understanding and reasoning about causal mechanisms,
but there are many more mechanisms that need to be explored. For example, we need to develop a
taxonomy of the types of links between causal entities as well as the representation and reasoning
mechanisms for supporting the distinctions. These link types should support the types of causal
relations [Reig77] including continuous relations, one-shot events, threshold events, non-reversible
relations and so forth. The nature of these relations also needs to be studied more formally.
That is, some combination of the severity and duration of the cause or causes and the presence of
predisposing or precipitating factors determines the likelihood and severity of the effects, but these
mappings follow patterns and have properties that need study. There is also a hierarchy of relations
among the causal relationships with each relationship representing a summary of relationships below
it. To complicate matters, there is no ultimate base level of description and medical knowledge is
not consistently available at any one level. Thus, there need to be links representing associations
between entities or entity groupings for which precise causal relations are unknown. Also, there
need to be relations whose existence is dependent on the state of the patient to capture mechanisms
that are only important under certain conditions.

Given a more complete understanding of the nature of causal relationships, we also need a
better understanding of the appropriate ways to use those relationships in reasoning. This includes
mechanisms for highlighting the important mechanisms in the patient situation and ignoring the
unimportant relations. Similarly, we need better mechanisms for separating primary causal mecha-
nisms from secondary mechanisms and worsening factors. These issues are starting to be addressed
in the Heart Failure program, but research on these issues is needed in other domains.

To provide these methods for the general framework outlined in this proposal, it will be neces-
sary to integrate the representations of the causal nodes and links in the domain model with the
consistency and implicational support to be provided by such mechanisms as the TMS. Appro-
priate logical relationships for the causal representation in the Heart Failure program have been
developed, but each additional refinement of representation carries additional implications for the
relationships among nodes. Furthermore, it will be useful to provide mechanisms for maintaining
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context between the parts of the PSM and the medical reasoning mechanisms so high level pro-

cesses such as reasoning about hypotheses have adequate control over the propagation of causal
implication.

There are other kinds of reasoning, both about causality and about time, that will need to be
developed and integrated into the system. For example, temporal aggregation is the process of
taking multiple parameter values gathered over time and inferring time intervals over which the
parameter has values or trends meaningful to the reasoning mechanisms. This process is important
to data interpretation as well as being an important technique for identifying appropriate time
intervals for causal reasoning and matching the cause-effect relations mentioned above. As the
overall framework develops the addition of such mechanisms applicable in multiple parts of the
reasoning process will greatly enhance the flexibility of the system.

5.2.8 Multi-level Causal Descriptions

Medical knowledge about different diseases and their pathophysiology is understood to varying
degrees of detail. Our understanding of medical expert reasoning suggests that an expert physician
may use several levels of reasoning within a single case when dealing with a difficult and complex
case. For our program to reason at a sophisticated level of competence, it will also need to share
such a range of representations. For example, in order to be effective in exploring the space of
diagnostic alternatives the program must be able to describe the case in a brief and succinct way,
and yet be able to reason at great detail when such reasoning is necessary to sort out the effects
of various complicating factors. We have begun to address this problem by representing medical
and case-specific knowledge at a number of different levels of detail. Each level of the description
in this system is a network of causal relations between diseases and findings (and intermediate
clinical /pathophysiologic states). Associated with each node representing the state of a disease
or a finding is a set of attributes describing the severity, duration, the time of onset, etc. In
addition each node is associated with a causal network of nodes and links at the next more detailed
level, providing a more detailed description of the medical entity represented by that node. In an
analogous manner, each causal relation at some level is described using a chain of causal relations
that represent the next more detailed description of the mechanism responsible for the causal
relation among the cause and the effect node. Furthermore, the description of a node or a link at
some level is related to that of the next more detailed level through the use of focal links, which
serve as markers that help align the causal description at some level of detail to levels adjacent to
it. Furthermore, this formalism allows us to encode in a single system the clinical level experiential
knowledge necessary for effective diagnostic search, and detailed knowledge of pathophysioclogy
which is essential for dealing with multiple concomitant diseases. Finally, we have also developed
reasoning strategies that can move the inferences and conclusions drawn at one level of detail to
other levels in the context of the ABEL program [Pati81] (for further details see appendix).

Our intention is to generalize the multi-level operators we have developed to make them appli-
cable in other domains. The primary advance needed to make the operators more easily applicable
in other domains is the ability to define the levels according to the needs in each patient case, rather
than relying on fixed levels. To add this capability will require additional operators that will plan
the levels for the case by selecting from the knowledge base hierarchy the appropriate specializa-

tions of the physiological terms corresponding to the required reasoning level and connecting these
together to maintain consistency.
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5.2.9 Therapy Planning and Management

Therapy planning and management is at the forefront of our research and at the same time one
of the least explored areas of medical expert systems. Because of the strong interactions between
diagnostic reasoning and management reasoning, an integrated system, such as the one we are
proposing is needed to adequately face many of the issues of management reasoning. For example,
the work on the Digitalis Therapy Advisor, the first Al program to model iterative therapy man-
agement behavior, lead to our research on a program for the diagnosis and management of heart
failure because of the need to track the response of the patient’s heart failure to the drug.

QOur experience in therapy management comes from four programs. The Digitalis Therapy
Advisor loaded, adjusted, and maintained a patient on digitalis for either atrial arrhythmia or
heart failure over the course of a number of sessions. Thus, it encapsulated an iterative approach
to finding the patient specific dosage of a drug and made use of a mathematical model of drug
behavior. The Ventricular Arrhythmia Advisor extends this model to include deciding when a
drug has failed and drug effect assessment under uncertainty. ABET, a therapy program associated
with ABEL, approaches the problem of symptomatic therapy in electrolyte disorders. It provides a
simple mechanism for dealing with severity and urgency and shows how physiological interactions
and the expectations of therapy effect can be used to determine appropriate therapy levels. Finally,
the Heart Failure program integrates therapy management with the diagnostic reasoning. It uses
a causal physiologic model to find and assess therapies as well as diagnose the patient. (Most
of the decision analysis activity is also patient management, but we are concerned here with the
more mundane issues of therapy selection, planning, evaluation, and assessment that do not require
formal decision analysis.)

While it is clear that therapy planning depends to a large extent on the nature of the diagnostic
representation, there are aspects of the problem that are almost independent. We have thought
for a long time about the nature of general models for therapy management that would capture
the standard strategies for finding the patient specific therapies and dosages. The determination
of a therapy plan requires an assessment of the need for the therapy in terms of the risks of the
disease state or anticipated disease state, the risks and probability of the toxic potential of the
therapy, and the probability and potential for benefit from the therapy. It also requires a plan
to meet that need utilizing knowledge about the properties of the therapy and the available tools
for determining the level and effect of therapy. We have extracted this model from the examples
above, but need to provide the mechanism in the general framework we are proposing. This general
mechanism will have a number of components available for new domains including flexible and
informative implementations of standard pharmacokinetic models. That is, implementations that
answer questions about the likelihood of therapeutic and toxic levels, times of high and low drug
levels and so forth. Also, included will be mechanisms implementing typical strategies for balancing
the therapeutic and toxic risks, and mechanisms for planning adjustments to the therapy. There
are also issues of long term management that have not yet been addressed, such as anticipating and
testing for possible future problems by conducting drug trials, that need research in the context of
overall patient management strategy.

Many of the therapy planning issues are tied to the diagnostic representation. For example,
the selection of an appropriate therapy depends primarily on the causes of the patient state and
the conditions determining the response to therapies in the patient. We have been addressing
these problems in the Heart Failure program in ways that will be of more general applicability.
To determine a candidate therapy, the causal chains leading to the effects needing treatment are
examined. The therapies are selected to break those causal chains as near to the primary cause as
possible. The next step is to reason about the propagation of the expected changes from the therapy
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through the causal model. That is, adding the therapy will cause a change in some parameters
which will in turn cause changes in others. To handle this process properly, it is necessary to
deal with the addition of effects through different pathways, feedback through the homeostatic
mechanisms, uncertainty of response across causal pathways, and the variety of time delays in
causal relations. We have developed methods for most of these problems by modifying the results
of signal flow graph analysis to allow incremental reasoning along the pathways from cause to effect,
accounting for feedback loops appropriately, utilizing the typical kinds of knowledge available about
relationships between pathways. These methods require the use of links between the cause and effect
parameters rather than the causal relationships between parameter values used in diagnosis, but
the relationships between the alternate representations are clear.

In addition to mechanisms such as these, the therapy management tools need to support rea-
soning about the changes occurring after therapy is applied and the implications of those changes
to the diagnosis and to future therapy. This is an area that will require much more research before
general mechanisms can be developed for the overall framework. Thus, even though therapy is
sometimes viewed as the last piece to be added to the program, there are many aspects of the

problem for which mechanisms can be generalized to provide tools for building therapy planning
tools for other domains.
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One of the major difficulties in integrating various components of medical reasoning systems has
been diversity of the pertinent knowledge versus the limited scope of the representations used in
these systems. This limited approach to representation of patient specific knowledge is understand-
able given the exploratory nature of these systems and the limited scope of their expertise. This
limitation however has resulted in systems which, although they perform like an expert in one
aspect of medical activity, have, unlike experts, a complete lack of understanding of other aspects
of medical care. Therefore, although they can give excellent advice on an isolated problem, they
cannot be expected to provide the best advice from the point of view of the patient management
taken in its entirety. Thus, for example, a diagnostic program which does not have an understand-
ing of the overall state of health of a patient is likely to treat an otherwise healthy patient with
chronic urinary tract infection in the same manner as an extremely sick patient with the same
complication.

To overcome this difficulty, we propose to develop an extensive representational capability for
the case specific information in a Patient Specific Model (PSM), further developing the idea that
has evolved through the Digitalis Therapy Advisor PSM and the ABEL PSM. The PSM we are
developing will act as the central repository for everything known to the system about the patient
including the raw description of the case material, the facts derived from that material, conclu-
sions drawn by the various mechanisms that make up the program, the set of possible composite
diagnoses, possible treatment plans, internal states of the reasoning program itself (goals, assump-
tions, plans, etc.) and whatever human cormnmentary is available about the case and the program’s
performance on it. By being in the central repository, the PSM, this information will be accessible
from every module in the program. Thus, the diagnostic program could examine the therapeutic
implications of each diagnostic alternative before selecting a specific differentiation problem. A
therapy evaluation module may look at the current set of diagnostic alternatives in evaluating the
overall merit of a treatment plan. Furthermore, the PSM organizes the case such that procedures
can analyze it and characterize it in whatever ways are needed to learn from it. The PSM also
constitutes a complete record of the past analysis of the case for each new session.

In the previous section we have presented a number of components of medical reasoning. Each
of these must operate from and contribute to the PSM. Thus, the PSM structure must be well
defined in the sense that each new requirement from a newly designed reasoning mechanism must
be considered an addition, rather than a change — upward compatibility analogous to that in the
knowledge base (see section D.2). The PSM structure can be considered a complex of instantiations
of the appropriate parts of the knowledge base. Each term in the PSM is a term in the KB
specialized by the patient and the role it plays in the PSM. Thus, the various structures in the
PSM are virtual copies of the corresponding parts of the KB, giving meaning to structures. Because
of this relation to the KB, all of the case independent knowledge is available directly from the case
specific structures and such functions as explanation cause no additional overhead. Many of the
reasoning mechanisms will also make heavy use of this relationship between the PSM and the KB.
One way to think about the structure is to consider the KB as supplying the medical templates
for the reasoning mechanisms and the PSM as supplying the slot fillers. This also implies that the
PSM and the KB are highly interrelated. As a result, the PSM must be constructed from a given
KB. Since all of the information is there, new PSMs can be constructed given a new KB, but it
must be recomputed.

There are a number of dimensions along which the PSM can be viewed. First, it contains the
raw description of the case as supplied by the user. It may be entered by the user interacting with
the program or be provided by protocol or other method of case entry. From this description it will
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always be possible to recreate the case. Therefore, the description must be sufficiently complete
to give the program essentially the same information about the patient as the physician would
have. It’s not possible to record everything because the machine is not able to see, touch, listen
to, and feel the patient and the environment. It is possible to record much of the significant detail
of the patient interactions (often left out of the charts) such as the times of actions and times that
information becomes available (e.g. the blood was drawn at 9:00AM and test results were reported
at 4:00PM). It would also include records of interactions with the user including requests for data
from the user, response of the user to each query as well as other information such as explanations
and possible recommendations.

Each level beyond the raw data involves some kind of processing of the case, either by the
reasoning mechanisms or by humans. One kind of interpretation is that by human observers.
These will include commentary on the case from expert opinion and from protocol analysis (see
section D.5). The protocol analysis will include both the raw text and the analyzed text integrated
into the KB in the same ways as the case description itself. There will also be commentary on the
program’s performance on the case. One of the important methods of determining incompleteness
and inconsistencies in the KB as well as overall system performance is by expert critique. These
critiques correspond to the case and can be linked to the case in such a way that decisions to change
the KB will have justifications from the critiques (see section D.6).

The parts of the PSM constructed by the reasoning mechanisms correspond to several dimen-
sions. For each session of the case, there will be complete state descriptions of the patient reflecting
the program’s conclusions from the patient data at the time of the session. In addition, there
may also be intermediate partial descriptions of the patient state reflecting statements in the case
such as “three days ago the patient was seen in the emergency room ...”. Not only are the states
important but the changes between sessions and significant time points are important and will
be represented in the PSM. Thus, along the time dimension there will be a complete picture of
the evolving case as determined from the case information. It should be noted that this does not
necessarily correspond to the actual evolution of the case. In fact parts of the state descriptions at
each session point will be causal reconstructions of how the disease state may have arrived at the
observed point (such reconstructions are a part of the causal reasoning process discussed in section
D.2.7).

Another component of the PSM is the set of disease hypotheses at each session. Each disease
hypothesis is a complex of the instantiated descriptors specifying the constituents, severity, tem-
poral relations and so forth (as discussed in section D.2.2). Each disease hypothesis is made up of
the diagnosis and all of the reasoning conclusions that the various mechanisms attach to it, includ-
ing data collection plans to refine the diagnosis, treatment plans, expectations for disease course
and therapy results, contingency plans, findings accounted for and not accounted for, discovered
inconsistencies, decision analyses, and so forth. Even with only a few diagnoses, this amount of
information would be overwhelming to determine for each one. However, not all diagnoses will
require all of the analysis and also there will be a great deal of overlap between diagnoses and the
common information will be available to each diagnosis that shares that portion of the PSM.

The treatment plan will contain pointers back to the disease hypotheses which it is intended
for, expectations about the possible response of the patient to the treatment, plans for routine
adjustment to treatment based on patient response and contingency plans for dealing with rare but
anticipatable reactions to the treatment.

The data gathering plan would plan the program’s interaction with the patient. This plan
would contain a set of questions to be asked and expected responses to these questions. It would
also contain additional hooks that would allow us to locally explore input data if discrepancies are
detected and finally for extending and modifying the data-gathering plan if unanticipated data are
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received and the discrepancies cannot be explained away easily.

The PSM at each session point will also include a plan describing overall patient management.
This plan would bring together the various diagnoses at that point and allow global decision making
about various clinical activities, e.g.., test, treat or wait (stated in a very simplified terms). A range
of alternative formalisms for representing and analyzing these patient management plans would be
investigated. In emergency situations or other situations that require immediate actions, a set of
data driven rules (demons) can be used to initiate an appropriate shift in the focus of the program’s
activity. In other situations, categorical rules may be sufficient to evaluate the alternatives and in
truly uncertain situations, a full-blown decision analysis may be necessary before ordering some
expensive test or initiating therapy in the face of significant uncertainty.

Finally, there is the dimension of the causal levels within the description of the diagnoses.
These range from the physiological level causal description of the case as cast in the diagnosis to
the clinical level description with as many levels in between as are appropriate for characterizing
the relationship between the case facts and the diagnosis. Again, these parts of the PSM have a
lot of overlap with the corresponding parts of other diagnoses.

The data structures for the representation of the PSM will be designed to promote as much
overlap as possible among the various structures to keep the search spaces relatively small as well
as to decrease the number of structures that must be build by the programs. One of the open
questions is how much copying of structures is actually necessary. A second important question
is how to provide mechanisms for enforcing consistency within the PSM. For example, the causal
relations at the various levels should be consistent with each other. While the mechanisms may
compute one level from analysis of the next level, there will also be constraints with other parts
of the PSM that the builder mechanisms may not check. This problem is actually closely related
to the problem of sharing structure because they both depend on the optimum use of the inherent
constraints in the structure. Part of the answer will be to include in the substrate facilities for
truth maintenance and dependency tracking, but the questions do not have easy answers.

Thus, the PSM is the structure that maintains the entire picture of the case. In the same way
as a Problem Oriented Medical Record [Weed71], the PSM is indexed by the semantic content of
the case, only with the PSM the indexing is along all of the dimensions that are available in the
medical knowledge base. As a result, the PSM also serves as the structure that other mechanisms
will use to extract the case characterizations for learning from the case and allowing recognition of
similarities between the case and others — case based learning.
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5.4 Knowledge Base for Coronary Artery Disease and Fluid and Electrolyte
Balance

At the center of the system we are proposing to build is a knowledge base (KB) which will be the
repository for all of the domain facts known by the system. We do not propose a KB to cover
the breadth of medicine, of internal medicine, or even of some subspecialty areas like cardiology or
nephrology in toto. Rather, we shall be developing a KB that will describe in depth the knowledge
necessary for handling a significant subset of cases and problems in the areas of coronary artery
disease and fluid and electrolyte balance. We have selected these topics because of their common
occurrence in medicine, the requirements for a diverse array of reasoning processes in dealing
with patients having these problems and reasoning in caring for patients with these problems and
because the are foci of interest and expertise among both the physicians and computer scientists
that constitute the group.

The purposes of the knowledge base are many. It will act as the source of medical knowledge
for all of the programs built from the mechanisms discussed and planned in section D.2.2, including
both the knowledge for performing the reasoning and the knowledge for explaining conclusions. It
will act as a repository for the case material to be collected in section D.6 in both the analyzed
and raw forms as well as the protocols and their analyses described in section D.5. Finally, it will
support our experiments in case-based learning and knowledge acquisition from literature.

The fundamental notion of a knowledge base is a highly structured, richly indexed representation
of all of the domain information available to any of the programs using the knowledge base. This
project, in which there will truly be multiple programs using the KB and multiple programs entering
new information into the KB, will test the concept of a meaningful flexible representation of the
knowledge. The driving motivation for such a KB (and therefore a test for success) is the ability to
use the knowledge in multiple ways, especially ways that were not anticipated when the knowledge
was entered in the KB.

The philosophy underlying much of this project is the incremental evolution of an integrated and
coherent system. This philosophy places additional constraints on the KB. First, the coverage and
complexity of the representation will be evolving as the mechanisms that use the KB evolve. At the
same time, the information being entered into the KB from the various sources (experts, protocols,
texts, cases, etc.) will gradually be accumulating. To ensure that the KB can always be brought
into a consistent state when new detail is added to the representation as well as preserving a trace
of the source of knowledge, the information will always be kept in a form from which all of the
content can be recovered as well as integrating the derived facts needed by the various mechanisms.
Second, the refinements of the representation must be viewed as additions and therefore upwardly
compatible with the previous forms of the KB. The reason is that all of the mechanisms that ran in
the simpler KB must continue to run. This statement is made with the understanding that as the
representations become more complex, properties of medical terms that were directly recorded as
properties may become derived or inherited properties of the term and associated terms accessible
through more complicated mechanisms. Thus, the process of retrieving the desired information
may change as the KB develops but not its accessibility.

Form of the Knowledge Base The knowledge base is constructed from structured terms and
roles with inheritance from multiple hierarchies and rules for semantics as discussed in section
D.1. The basic entities in the knowledge base are terms in the representation language with
connections into each of the hierarchies that provide generalizations of the terms and with properties
and characterizations that provide the information needed by different modules. For example,
the concept angina pectoris will be represented by a term in the KB. It is a specialization of
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the pain term, with the location specialized to indicate it is typically felt in the chest and with
specific temporal, severity, and descriptive properties. Pain in turn is a specialization of feeling
and therefore both angina pectoris and pain inherit all of the caveats of feelings — dependence on
the consciousness of the patient and so forth. Thus, angina pectoris fits into the hierarchy under
pain with role restrictions on the appropriate pain properties. It also is a symptom of myccardial
ischemia and therefore fills a symptom role to that physiclogical parameter with various properties
of likelihood and specificity. In addition it will have many other properties and serve in other roles
to encapsulate the available knowledge about angina pectoris. The various properties, likelihoods,
and other information will also have links to the sources of the knowledge.

The KB is made up of those kinds of information needed to do medical reasoning including
diseases, physiclogical parameters, causal links, therapies, anatomical relations, findings, descrip-
tive statements, abstractions, probabilities, common sense information, as well as the case data,
protocols, text book information and so forth. Each of these entities has appropriate properties
to hold the needed information. For example, physiological parameters as KB terms have values
to represent the specific properties of each meaningful value type, bounds to record the limits of
the parameter, measurements to provide links to the findings that give evidence of the value of
the parameter, volatility for information about how fast the parameter can change in the patient,
summarizes to specify the set of parameters and links for which this parameter acts as a summary
if this is a summary parameter, and so forth. In addition, the parameter is attached as part of
the KB to indicate what kind of physiclogic entity it is (pressure, flow rate, sound, ete.), what
anatomic entities it is associated with, how it should be explained to the user, and so forth. Net
all of these properties will be useful to all programs, but most will be useful to some.

Anocther kind of term is a causal link. From our experience with ABEL, Heart Failure, and other
programs, causal links have at least the following properties: cause parameter value the parameter
and value or range of values that activate the causal link, effect parameter value the parameter
value that may be caused through this link, cause conditions any conditions needed to enable the
causal relationship, causation type the nature of the causation (probabilistic, threshold, continucus,
precipitating, etc.), causation strength the mapping of severity of the cause to severity of the effect,
time to cause the range of time required for the cause to produce the effect, time to normalize the
range of time for the effect to dissipate once the cause ends, probability the probability of the effect
occurring, and summarizes to provide indexing to the nodes and links that this link summarizes (if
any).

The most difficult information to represent, but also some of the most important, is the summary
information. Often, the information available in the medical domain is information that is not at
the same level of detail as the KB. For example, the prevalence of MI with two-vessel coronary
artery disease is important information, but it is at a different level than the causal links betwesn
coronary restriction, reduced coronary flow, decreased myocardial supply, myocardial ischemia,
and myecardial infaret. This information is a property of a summary link fram the two-vessel
coronary restriction to the myocardial infarct. Similarly, there will be summarizations of pathways
of change among parameters to indicate known overall effects, summarizations of feedback loops to
name them and provide the appropriate characterizations, summary nodes and links to suppress
unneeded details (as a generalization of the multilevel descriptions used in ABEL), and nodes
that represent characterizations of other nodes. The problems of generating such summary terms
so they properly and ecompletely identify the portion of the KB summarized and providing the
mechanisms needed to find them in the KB when they provide needed facts for the programs will
provide a significant research challenge. Since at the same time it is necessary to be able to enter all
kinds of information into the KB, our approach will be to start with less restrictive representations
capable of at least holding everything that needs to be entered and as we gain understanding in
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how to consistently represent the details of the information, we will add those extensions to the
representation and the corresponding capabilities to the knowledge acquisition routines.

Many of the kinds of information normally included in a medical text are examples of summary
information. The clinical features of a disease are links from the summary node representing the
node or nodes that constitute the disease to the observable ultimate effects that have a significant
probability of occurring under some assumptions about the disease. The clinical course of the
disease is the summary of the causal links with delays that represent significant changes in the
observables caused by the disease. The prognosis is the summeary of alternate clinical courses with
characterizations of their outcomes. Similarly, differential diagnosis, etiology, treatment, and so
forth provide summary information. Thus, each of these will undergo an evolution in representation
as the KB becomes more sophisticated.

Additional information about various possible tests will be provided. This knowledge-base
would describe the effectiveness of the test procedure in terms of its specificity and selectivity, its
error rates, its cost in terms of pain and morbidity, possible complications, dollar cost, the time
delay before the results of the test are available, clinical situations when this test is possibly relevant
and situations in which it iz generally recommended.

The information included for treatments would be information similar to that developed for
describing diseases, in that various physiclogic processes through which a treatment cures a disease
or blocks the undesirable conditions resulting from diseases can be described using the anatomic
and physiologic knowledge developed for describing disease processes. Similarly, the cost and effec-
tiveness of a treatment can be described using representations developed for describing treatment.
Additional information describing the cost /utility of treatment and its possible adverse side-effects
and their probabilities will also be stored for the purposes of decision analysis.

There will also have to be some special kinds of KB representations developed for particular
problemn solving mechanisms. An example is the knowledge needed to determine the probable
lecation of an MI from the pattern of ECG changes it produces. This is in fact a pattern recognition
problem similar to recognizing a shape from intensity information but simpler. Thus the KB needs
to represent the information to drive a pattern recognition algorithm, but in a form that is alsa
usable for explanation when the user wants to know what the ST changes in V4 say about the
location of the MI. Another example is the representation of decision analysis trees. Not only
must the decision peints and links be represented, but the characteristics of the curves (symmetry,

abrupt changes, slope, etc.) and the properties of the model must be represented (see discussion
in section D.T).

Scope of the Medical Coverage The KB will cover a subset of two rather narrow medical
areas: Auid and electrolyte balance and coronary artery diseamse. In both of these aress we will
start by acquiring general knewledge from text material in the area and supplement this with case
material and the additional general material to cover the cases.

For the general material in fluid and electrolytes, we propose to begin by incorporating the
knowledge about salt and water balance, the acid-base balance, and regulation of potassium and
caleium ions. In each of these cases, the knowledge base would contain the homeostatic mechanism
responsible for the regulation of these electrolytes, and pathophysiclogy of errors of regulation of
them. We would also develop a framework for describing general medical knowledge of anatomy,
physiclogy, specific etiologies ete. In particular, when describing anatomical knowledge, we would
include knowledge of various components of kidney and their funetions, knowledge of different Auid
compartments such as ECF, ICF and various joint spaces etc., knowledge about pathways for Auid
flow, i.e., the glomerule is connected to the tubule which is connected to the collecting duct etc.,
knowledge about the relative locations of each organ in relation to other body organs, e.g., cranial
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cavity is above cardio-thoracie cavity. Such relational information could be used, for example, in
reasoning about the presentation of pedal edema in a comatose patient. Knowing that comatose
patients are unlikely to be in erect posture for any significant amount of time to allow the edematous
Huid to accumulate in the legs of the patient, the program should itself suggest that the observation
of pedal edemna is not likely in patient even if he has severe nephrotic syndrome.

The knowledge for coronary artery disease will be similar to that discussed above. It will include
chronic coronary disease, the various treatments (medical, surgical, angioplasty, and so forth), and
meore acute results of coronary artery such as angina, unstable angina, and myocardial infarct. We
do not plan to go past the diagneosis phase of infarct management, however, the management of
those cases that involve some degree of heart failure are already within the scope of the Heart
Failure grant.

The knowledge of diseases, tests and treatments will be limited to only those which are relevant
to the area of application namely, fluids and electrolyte and coronary artery diseases. For example,
the disease knowledge in the knowledge base would be limited to those diseases that are directly
related to this field and those aspects of diseases from other specialties which influence considera-

tions in this area e.g., effects of brain injury on respiratory gases, the effects of portal hypertension
in causing cardiomegaly.

Knowledge Base Acquisition The first step in building the knowledge base is to refine the
framework described above, work out the details of the representation for the kinds of knowledge we
know we will need and start to develop the tools needed to transform information into the required
representation and tools for editing the knowledge base. This effort will require approximately the
first six months of the project.

The second step is to develop the initial taxonomies of medical terms and concepts for the data
base. We have already had considerable experience in this effort in ABEL and the Digitalis Therapy
Advisor. We plan to use available resources in this endeaver as much as possible. For exarmple, we
would investigate the possibility of using the computer readable text of SNOMED, to develop an
initial data base of medical terms. Development of such an extensive structured terminology will
help us establish a common vocabulary which can be shared by all the modules in the knowledge
base. It will also be useful for the process of integrating case material into the knowledge base.

We will then hand craft small portions of this knowledge base and start using it to develop
knowledge editing tools which will allow moderately sophisticated residents and fellows to edit the
knowledge base without the aid of their knowledge engineer counterparts. These editing tools will
include explanation routines which will be used to rephrase the facts entered and explain their
consequences and relations to other facts in the knowledge base. This hand ecrafted knowledge
base will also allow us to begin our projects in medical reasoning and decision analysis using this
integrated (but small) knowledge base and provide early input in the evolution of the knowledge
representation.

We will continue to explore and develop knowledge acquisition tools, which will attempt to
acquire knowledge in the context of a ecase. If for example, while running the case a clinician finds
some error in the program, he will be able to examine the logic of the program’s inferences and
based on it be able to augment or modify the programs knowledge base (without having to know
the syntax of the programming language or the knowledge representation language).

In addition to these relatively straight-forward approaches to building the knowledge base, we
will explore several more visionary approaches. These include expert opinion, protocol analysis,
case based reasoning, and literature. The simplest is the use of expert opinion. That is, we will
enter the algorithms, rules, relationships, and reasoning mechanisms of experts with references to
the expert so reasoning mechanisms that take into account alternate opiniens can be developed.
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One of the classic techniques for probing the knowledge base of the expert is to present specific
cases in a fact by fact format and to ask the expert to introspect and reflect about his current
case formulation and what he would do next. Although the knowledge derived from such activities
can be used to generate rules, relations, rubrics and facts, the format in which they are provided
can be quite different. Therefore, we plan to represent both the physician’s protocol response and
the translation of that emission into a rule in our data base. Of course, appropriate links for
backtracking and stylistic analysis will be created and the facts will be segregated into a private
database for the particular physician subject until the knowledge has been reviewed and deemed
to be of relevance to the broader data base and sufficiently correct for release to that data base.
The rules so derived will also be linked to the particular case from which they were derived because
when a rule is found to malfunction it will be important to know why that rule was created so that
the concepts and the particular situation it tried to address are not lost in the revision.

One of the relatively new ideas we hope to explore in this research is something we have called
“case based reasoning,” something akin to reasoning by analogy. As we have reflected on our own
behavier and those of colleagues, we are struck with their regular reliance on the similarity of a
new patient to as specific previous patient. They often anchor their reasoning about diagnosis and
therapy for the new patient to the actions they took and the results achieved in this specific prior
encounter. Although this could be a human foible necessitated by the weak indexing techniques
available to human reasoning and perhaps it leads to errors (e.g., the classic excess reliance on
the last case seen or the errors generated by using an availability heuristic [Tver74] to estimate
likelihoods. On the other hand, the technique is so broadly used in expert reasoning that we
must wonder whether its representation in our knowledge base will be important. Even if it is not
important in antegrade reasoning {(and we doubt this), it may be quite important in providing the
coherent retrograde reasoning used in explanation.

The central issues for the representation of case based reasoning will be the development of a
formalism for strueturing the information, indexing the cases and parts of cases according to the
features that make them “interesting”, and the identification of the parts of the case that must
be mapped for analogical reasoning. One of the purposes of the protocol analyses we shall be
describing in section D.5 will be to identify how often this type of reasoning is used and how it is
integrated into expert behavior,

Another important mechanism for incremental knowledge base and process development is to
observe performance to a variety of specific cases (i.e., probes), to identify instances and patterns
of poor performance and then to modify or add to the process or the knowledge base or both. This
is much of the rationale for Section D.6 (see below) of our proposal in which we shall be building
a panel of such probes, somewhat analogous to the panels of antibodies and antigens used by our
immunologically oriented ecolleagues. We therefore need to represent both the cases themselves
(see Section D.6) and the performance of the system when presented with the cases. The analysis
of that performance will be done manually by the investigators, but as specific instances of poor
performance lead to modifications in the knowledge base, we need to index those additions to the
cases and the performances upon which they were based. This indexing will allow us to be sure that
such corrections are maintained when the knowledge base is expanded and modified because we
shall then know what situations must be covered. This indexing scheme may also help the system
evolve in a more coherent manner. For example, if “bell-and-whistle F21" was required to provide
correct performance because “fact Q25" was in the data base but then “fact Q25" was modified or
removed, then “bell-and-whistle F21” might no longer be required. If the indexing scheme did not
identify this situation, then there would be a tendency to add “bell-and-whistle J5367" do undo
the effects of “bell-and-whistle F21® which was no longer required.

Once a system has been constructed and the major task becomes updating it as new knowledge
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is acquired, the medical literature will become a major source of new knowledge. In the earliest
phases of creation of a knowledge base, the expert is used to create, overview, and to interpret the
literature. Soon thereafter, however, when the sheer burden of the quantity of knowledge becomes
an important factor (as the demain of interest expands even slightly as a result of the case material),
it will become convenient to use the literature, either short summaries in textbooks or more specific
surnimaries in journal article abstracts. In certain situations, well chosen review articles from the
literature might be a better approach to a specific area then would be textbook descriptions. Thus,
we plan to use the literature, even early in this project.

We would also like to be able to read medical text directly and extract the knowledge from it.
This experiment will take place in phases, First, we will identify a small amount of textual material
and rely on the one-to-one collaboration between a computer scientist and a physician to code that
textual material (all of it, not some of it) in the knowledge base. Next we will use a parser (such
as Martin’s) to process similar text and develop methods for relating the new facts to the facts in
the KB. We should at least be able to determine the feasibility of developing automated knowledge
extraction methodelogy in a medical domain where there already exists a detailed KB.

Within the narrow subdomain for which we codify very detailed knowledge, we hope to generate
a standardized MEDLINE search strategy to identify relevant new articles in the literature. Those
articles will be reviewed by the physicians to insure their relevance to the knowledge base and
will then be either hand coded or translated into stilted pseudotext for automatic parsing. It is
conceivable, if all goes extremely well, that both a parser and limited areas of the knowledge base
will be sufficiently well developed to allew articles from certain on-line full text journals to be
incorporated into the knowledge base.

Completeness and Consistency Given all of the different kinds of properties and relationships
among terms in the KB and the variety of methods of knowledge acquisition, there iz a need to
determine whether the KB is complete and consistent with respect to the information needs of
the various mechanisms to be used in programs. To meet these needs, we will develop tools tao
compute derivable facts from the KB, to check the consistency of a node with the information on
its summary nodes and the nodes that it summarizes, and to check the completeness of the needed
information across the medical domain. In most cases that is not as big a jeb as it sounds. For
example, in the Heart Failure program, the causal links between nodes are only explicitly stated in
the KB in one direction. A simple procedure goes over the KB before the program runs to add the
missing properties to the nodes and verify that are consistent for the computational requirements
of the program. Sirilarly in this KB, it will be the responsibility of the developers of the reasoning
mechanisms to establish the criteria for the information their mechanism needs, the conditions for
consistency, and the procedures to enforce those conditions from the KB structure.

Another type of consistency that is important in 2 KB such as this is the consistency of the facts,
For example, the facts from the texts may not be consistent with derived facts from protocols or
entered expert opinions. The function of the KB support is to identify those kinds of inconsistencies
so they can be resolved manually (or flagged as alternate opinions with appropriate attribution).
The representation language of the KB should make it possible to uncover many inconsistencies
of this type by entering the facts into the data base in such a way that the procedure entering
the second fact will discover the first and notice the inconsistency. Of course the limitation is the
ability to determine the logical implications of facts. The second approach is simply providing
the explanation facilities to generate English descriptions of the facts and relations in the KB for
humans to search for inconsistencies.

Within a large complex general KB, the search for the information needed by the particular
mechanisms in a consultation program may be time consuming. In addition, the desired medical
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bounds of individual medical programs may be more restricted than the KB as a whole. For these
reasons, we expect that the KB for particular medical programs will, in a sense, be derived from the
whole KB. That is, the properties needed by the mechanisms in the program will be precomputed
from the general KB and added if they are not already explicitly on the KB terms. This will speed
the program while still giving it full access to the KB for such purposes as explanation. Also, the
domain bounds for the program will be added as properties in the KB. For example, the program
may want to consider lesser causes of something as “other causes” or some disease entity as a
primary cause even though the KB knows about further causes. The ability to do this will also be

useful for spinning off programs for other purposes (medical education and so forth) as described
in section D.9.
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B K

5.5 Planning Patient Management in Complex Medical Problems

5.5.1 Imtroduction

Purpose FProtocol analysis is a powerful data gathering tool that we have used to garner insights
into a physician’s diagnostic and therapeutic processes. In this subproject we propose to use
protoceol analysis in a directed fashion to gather information about how physicians plan patient
management. In particular, we will investigate how physicians reason about clinical situations that
evolve over time and what strategies they use to deal with the tradecffs of competing goals in
planning clinical management. Clearly, the ultimate formulation of goal-directed planning is to
make the patient well, usually requiring a diagnosis. However, this global view of the physician's
activities is really quite removed from the details of his activities. His reasoning and planning really
occur from a more local viewpoint, where the global objectives are not always explicitly considered.

We propose to examine a small set of clinical situations in which the physician is attempting
to establish a diagnosis while simnultanecusly providing therapy (curative or supportive), a circum-
stance in which the immediate goals may be in direct competition and where the priority of acticns
is not always clear. Even if we accept (in a decision analytic framework) a consistent set of goals
(e.g., establish diagnosis in order to optimize therapy in order to provide the best outcome), in
the real clinical arena the physician must often move back and forth among separate goal streams
because they rarely occur in neat sequential packages. Theoretically, the physician would like to
establish the diagnosis before initiating therapy, because the therapy is then more likely to be
correct and efficacious (e.g., find the source of the infection and identify the organism before be-
ginning therapy), or because the therapy may interfere with the diagnosis (e.g., it may be hard to
interpret a renal biopsy if the renal disease is partially treated by steroids). But the urgency of
a life-threatening situation, the practicality of patient or physician convenience, limited time and
resources, or concerns about costs often push the physician toward early intervention.

Thus, planning a simultanecus diagnostic and therapeutic workup must involve a set of partially
satisfied goals in which the best approach for each goal changes with time and the evolving clinical
picture. Such partial satisfactions of a changing array of goals develops because the evolving health
state of the patient changes the relative importance or feasibility of achieving each goal and its
associated subgoals. For example, at first, diagnosis is paramount but then enough is known about
the diagnosis that an emergent situation requiring therapy has been identified. At that point,
diagnosis gets put on hold (but of course, the patient’s response to therapy provides additional
diagnostic clues) and a therapeutic plan is initiated. In addition to conflicts between diagnostic
pursuits and therapy, conflicts can occur between different therapeutic goals when several disease
processes coexist and similarly between different diagnostic goals when the manifestations of several
discase entities are present.

One of the most interesting aspects of efficient planning in the medical domain is that it may
be possible to select among different subgoal paths leading toward a common goal. In this context,
one might almost view each goal to be a separate attribute of a multiattribute utility function.
Furthermeore, it may be the case that different, or even conflicting goals may share a cornmon set
of subgoals if certain paths (not necessarily the most efficient path for achieving the subgoals in
isolation) allowed movement toward the simultanecus satisfaction of saveral goals, The strategy of
planning a sequence of actions in such settings requires a far richer set of planning tools than found
in any Al planners currently implemented in other domains. Separate goals must be maintained
and the evaluation function (er cther heuristic criterion) for choosing among various “next steps”
must be capable of multiattribute evaluation. Furthermore, as the clinical picture evolves over
time the physician planner must consider abandoning certain goals or perhaps putting them on
hold because other problems become more immediate. For example, working up the eticlogy of
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chest pain may need to be deferred if the patient becomes hypotensive and his hemodynamic status
must be assessed immediately to allow the institution of life-saving therapy.

In this project, we propose to use protocol analysis to examine a small array of such complex,
commeonly encountered and probably acute clinical situations. Our plan here is not to evolve a
computer program capable of practicing acute care medicine, but rather to use the rapid changes
and urgency of such clinical situations to highlight the physician’s ability to reason about an
evolving process and to organize (and reorganize) conflicting goals.

We shall develop a set of programs capable of planning among conflicting ebjectives. Such plans
will elearly invelve multiattribute utility evaluation or heuristics, whether numeric or symbolic. We
shall then examine the behavior of these limited planners in narrow contexts to develop a better
understanding of their behavior. These planning modules will be constructed in a fashion to allow
their ready interface with the integrated medical reasoning system.

Patient Management and Planning Over the last year and a half, we have been studying
the reasoning processes of physicians making decisions under uncertainty. Our methods involve
a formal analysis of the verbatim transcripts of physicians solving difficult patient management
problems aloud [Kuip84b]. This work has allowed us to make a detailed comparison between
formal decision analysis and the behavior of expert physicians in selecting among alternatives in a
difficult case. In the course of our studies we have observed evidence of the planning process used by
expert physicians to formulate a plan combining invasive and noninvasive testing with therapeutic
measures. This planning process has characteristics well beyond the scope of current planners in the
Al literature. For example, we have observed clinical experts to use contingency planning in which
the later stages of plans were conditioned on specific test results, patient progress, or responses to
intervention.

Another planning feature demonstrated by clinical experts is the use of embedded planning
operations, in which provisions are made to reconsider a strategy at a specific time in the future,
estimating that the state of knowledge at that point in time will allow the construction of a better
plan. Such “deferred planning® is an essential requirement for planning medical management. For
example a strategy often encountered in the care of patients with the acute onset of abdominal
pain is to re-evaluate the patient’s status after several hours and to perform surgery if the signs and
symptoms are significantly worse. The ability to reason about changes of the state of the patient
over time is essential to patient management. Without this capability, systems will be unable
to capture the sense of urgency that underlies the decision to seek more invasive interventions in
compromised patients,

Physicians use a variety of techniques to deal with the uncertainty about the state of the patient
in planning their care. One common strategy is to construct planning actions that will cover a broad
range of hypotheses. The strategy of broad spectrum antibistic coverage for sepsis of undetermined
etiology is one such strategy.

Physicians routinely select a plan or approach to a patient based on their experiences with
other patients who presented in a similar fashion. While this “case based” reasoning can introduce
a systematic bias when estimating prevalence or perferming probabilistic reasoning, it nonetheless
serves an important role in planning patient care. These experiences can serve as fragments for
building specific patient management strategies.

Expert clinicians do construct sophisticated clinical management plans, many invelving com-
peting goals and plan modification over time, and we know very little about how they do it. It is
this gap in our understanding that we propose to investigate.
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Project Goals We are proposing an empirically based study of medical management in difficult
medical problems. The project goals are:

1. To gain further insight into the methods employed by physicians in planning patient man-
agement

2. To build on these insights in developing the planning methodology, terminology and utility
assessment techniques required for an artificial intelligence system to perform the complex
task of planning clinical management.

3. To design a set of computer programs for planning ameong conflicting objectives and allow for
their interface with an integrated medical reasoning system.

The two prongs of the study are:

1. Formal protocol analysis of verbatim transcripts of physicians planning the management of
complex patients

2. Design and implementation of a general planning program that will use a variety of planning
strategies and will be based on empirical chservations from the protocol analysis and on our
on-going work in utility assessment.

5.5.2 Frotocol Analysis

Methodologic Foundations for Protocol Analysis We recently published a detailed re-
view on the research methodology in clinical cognition [Kuip84b]. In that article we discuss the
knowledge-based nature of expertise, the need for extremely rich experimental data to investigate
the structure of knowledge, the collection of verbatim “thinking aloud” transcripts to collect such
data and the need to avoid retrospective theorizing on the part of the subject. Recent thearetical
work on the analysis of verbal data [Eric80] supports our approach to the study of clinical problem-
solving. The rational for use of protocol analysis is discussed in detail earlier in this proposal
(preliminary studies),

Case Material For this project we shall select a small array of acutely evolving clinical situations
(e.g., unstable angina, possible pulmonary embolus, gastro-intestinal bleeding, acidosis, sepsis) and
shall develop protocels for presentation to experienced clinicians. These protocols will emphasize
changing situations, conflicting diagnostic and therapeutic goals, possibly conflicts between short
term and long term geals, tradeoffs among morbidities and mortalities, and resource constraints.
Physicians will be presented with these cases broken into small sections and asked to formulate
plans. We shall develop a notation for expressing which goals and subgoal paths have been specified
and which are active.

The two cases that we have selected (see appendix) were drawn from patients seen by members
of our division at the New England Medical Center. Both are difficult but not uncormmeon examples
that illustrate the management of acute medical problems. The first case involves the management
of a patient with bacterial endocarditis complicated by cerebral emboli. The second case iz a patient
with unstable angina and severe cerebrovascular disease. Both cases evolve over a relatively short
period of time (1 - 2 weeks) and require prompt, decisive and life saving actions. Subsequent cases
will be selected to deal with specific topics in cardiovascular disease and possibly other medical
domains in the later years of this project.

Through our experience in preparing cases for problem solving sessions, we will follow these
general criteria in selecting cases:
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= The case should be rich in history, physical findings and laboratory data.

# The case should not involve the interpretation of image data or physiologic signals but should
include the report of the data when applicable.

= The case should not demand obscure information or virtucso performance by the clinician,
but rather competent application of knowledge, experience and skill.

Specific case material prerequisites for the present study are

* The cases must involve multiple conflicting goals.

= Clinical insights and management plans must evalve over time.
Other possible clinical problems to be selected include:

e Acute atrial Autter/fibrillation. Management considerations: 1) Extent of work-up 2) Need
for cardioversion 3) Need for anticoagulation.

* Syncope. Management considerations: 1) Extent of work-up (e.g. electrophysiclogic studies
|[EP and EEG] and cerebrovascular studies) 2) Whether to initiate treatment in light of the
possibility of obscuring the diagnosis (e.g., anticonvulsants for seizures and antiarrhythmics
for archythmias).

e Acute Dyspnea. Management considerations: 1) Extent of work-up (e.g. bronchoscopy and
pulmonary angiography) 2) Therapeutic considerations: Anticoagulation (possibly throm-
bolytic agents) for possible pulmonary embolus may interfere with invasive work-up.

The Selection of Subjects Recognizing that expert performance is highly dependent on domain
knowledge, we will be studying the behavior of academic subspecialists in cardiclogy and possibly
in other subspecialty areas of internal medicine, as they solve patient management problems of
coronary artery disease and other acute medical problems respectively.

Informed Comnsent See section E (Human Subjects) of this grant proposal.

Collection of the Data Thinking Aloud Experiment. After the subject has been given a pre-
liminary explanation and instructions, the case is presented on a series of cards. Each card holds
one paragraph from the case description (see appendix). The subject is asked to think aloud about
his decision-making process after each piece of information is presented. Once presented, cards are
available for the subject to refer back to. The interviewer intervenes only to prompt the subject to
keep thinking aloud.

Active probing: After the subject responds to a case without active probing, the interviewer
follows a prepared interview schedule. Questioning begins with gentle, undirective probing of the
decision, progressing to a more directive probe with specific questions about the management plans
formulated by the subject. The segments are ordered so that the directive questions are last and
do not influence the response to earlier undirective probing.

The interviews are tape-recorded and the analysis is performed from verbatim transcripts. The
transcriptions do not include any identification of the subject.
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L651 One is:

LE52 what do you think the patient has?

L6&53 If you think the patient has a disease

LE54 which the p::.l.hulé%i_s_:ﬁan properly diagnose on a fragment of tissue
Less because the pathology is classical :

LE&56 and readily recognizable,

L&5T Or you think jt will be diagnosable

LE&E58 because a microorganism will be identifiable

L&59 which will have readily identifiable morphological characteristics
Lesn and one would recormnmend a transbronchescopic lung biopsy
Les1 as the first approach.

Figure 1: A sample transcript segment. Phrases the refer to the domain objects and their attributes
are underlined.

Amnalysis of the Data (protocols) The steps in the analysis are outlined below. Detailed
examples of each stage of this process can be found in [Kuip85] and the appendix.

Step 1: Segmenting the transeript. The transcript is segmented into line sized fragments and
paragraph-sized chunks which facilitate the subsequent content analysis. A cne-hour interview
yields approximately 1000 segmented lines. Figure 1 depicts a sample transcript excerpt.

Step 2: Characterizing the types of reasoning seen in the transeript. In this step of the analysis,
the transcript is reviewed to identify the knowledge referred to or reasoning taking place in each
chunk. The types of reasoning and categories of knowledge to be recognized are drawn from the wide
range of knowledge representations and inference mechanisms developed in artificial intelligence
research [Wins84, Nils80]. The list below is by no means complete, but characterize some of the
more commonly found types of medical reasoning.

= Reasoning in a hypothetical context
+ Deducing causal antecedents

» Deducing causal consequences

* Describing a dependency

= HReasoning with quantities

= Enumerating a list

e Absence of knowledge

From this analysis, we hope to determine what types of knowledge are actually used by the
clinician in making his decisions, when he has abstracted away from the full detail available, when
he has “compiled” his decision in advance to focus on only a few factors, what heuristics he applies
to manipulate complex information, and how he reasons within hypothetical contexts.

Step 3: Referring phrase analysis

The purpose of this step in the analysis is to capture both the content of the knowledge being
used by the subject and the reasoning process that is employed.
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objects = Disease, Patient, Pathology, Microorganism, Morphology, Biopsy-Sample

Patient. Disease-hypotheses = get of Diseases
Disease.Pathology ::= Pathology
Classical(Pathology) ii= true false (1-place predicate)
Recognizable(Pathology, Biopsy- Samp]c} = true — false (2-place predicate)
Biopsy-Sample 2= Tissue-Fragment — ...
Dizease Microorganism ::z= Microorganism
Microorganism.Morphology 1= Morphology
Recognizable{Morphology) i:= true — false (1-place predicate)
recommend(Actionl,Action2) ::= assertion of preference between Actions
Rulel: LE853-656
IF: for-all D in Patient.Disease-hypotheses,
Classical(D.Pathology)
and

Recognizable(D.Pathology, Tissue-Fragment)
THEN: recommend(TBBx,any)

RuleZ2: L&s57-660
IF: for-all D in Patient.Disease-hypotheses,

Recognizable(D.Microorganism.Morphology)
THEN: recommend(TEBx,any)

Figure 2: The particular domain objects and their attributes referred to in this section of the

transcript. Included are two rules which capture the physician’s reasoning about those objects (out
of context).

Each line of the transcript is examined to identify the domain object being referenced. These
object phrases are distinct from the wording used to refer to them. Each line of the transcript is then
reviewed to identify the assertions made about each domain object. We assume that the content of
these assertions constitutes at least some of the knowledge employed by the expert physician. With
the transcript analyzed in terms of domain objects, their attributes and relationships, the progress
of the decisions that the subject focused on are then analyzed. Figure 2 shows the objects identified
by the subject in the transcript segment of figure 1, some of their associated attributes, and rules
that capture the reasoning observed. The products of this analysis can then be structured in an
appropriate knowledge representation.

Step 4: Developing a script of the argument structure of the subject’s explanations. This part
of the analysis locks at the progress of the management plan and the overall control structure of
the planning process.

With reasoning characterized by types, each of the paragraph-sized chunks are examined on a
sentence-by-sentence basis, addressing the following questions:

= What points are being raised?
= Why is each point raised and what clairn does it support?

= How is each point justified?

e ———————
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Patient has unspecified infection (LO01-L0OO3Z)
pulmonary infiltrates
=+ consider congestive heart failure (L0O04-L014)
=~ generalize to consider other non-infectious processes (L0O15-L0O16)
if can’t find non-infectious etiology,
return to problem of identity of infection (LO17-L019)

MNeed to decide whether to do invasive test (LOZ0-L024)
appearance of sputum unknown, but probably not helpful (L025-L0320)

do wet prep of sputum before more invasive test
because occasionally it might yield helpful information (L031-L042)

Urgency of decision could be worse: (L043-L.049)
patient has been stable for 48 hours;
if patient had been deteriorating, urgency would be worse.

Decision: broncheoscopy va open lung biopsy (LO50-L056, LOG7-L069)
percutaneous needle biopsy is not an option (L0O57-L059)
(risk of pneumnocthoracies)
transtracheal aspiration is not an option (LOG0-LOGE)
(not productive)

Figure 3: Script analysis of selected section of the transeript

= What triggered each consideration in the argument?

* What are the dangling threads of the argument?

= What underlying common knowledge does the explanation presurmne?
= What change is made to the evolving plan?

* What type of action, if any, are added to the plan?

The results of this analysis are a description of the types of actions that can be incorporated into
a plan, the types of criticiams that an evolving plan is subjected to, the way possible plan elements
and critics are triggered, and the overall control structure of the planning process. Figure 3 shows
a small fragment of a script analysis taken from a protocol (not the same one used for the previous
examples).

Validation of the protocol analysis We will assess the protocol analysis on two levels:

= Internal Consistency - Is there a single consistent descriptive scheme that handles everything
in the extract under focus? Does the analysis as a whole cover all that is seen in the protocol?

» External Validation - Can our observations about planning patient management be formulated
into the specifications for a computer program that will run and accomplish the same planning
tasks?
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5.5.3 Developing the Planners

We will be testing our observations about patient management expertise by constructing computer
programs to perform the same planning task. Our programs will be organized within the Al
planning paradigm, where the task is to specify a sequence of actions intended to achieve a goal.
As we have already noted, the patient management task is considerably more complex than the
usual planning domains explored by traditional Al programs, and therefore will force us to explore
several issues that have not been adequately addressed by current Al planning technology.

State of the Art in Planning The greatest part of traditional Al planning research has focused
on simple goal satisfaction in deterministic domains. Consequently, planners to date have illustrated
approaches to these central issues, and provide a starting point for locking at some of the tougher
problems that arise in patient management (as well as most other realistic planning situations).

Over the last 15 years, planners have improved over the original STRIPS [Fike71] implementation,
while remaining basically within the STRIPS planning paradigm. Some of the main innovations have
been hierarchic planning (ABSTRIPS [Sace74]), constraint posting (NOAH, MOLGEN [Stef81a]),
along with a variety of methods for satisfying constraints and dealing with interactions among
conjunctive goals (NOAH, MOLGEN, SIPE [Wilk84]). Other research has added to the body of
tactics employed by state-of-the-art planners. Recently, Chapman [Chap85] has examined these
nonlinear planners and has developed a simple algorithm (TWEAK) that purports to completely
capture the workings of this class of planning programs. His work serves to define the realm of
applicability of existing planners. The planning behaviors described in the introduction above are
among those activities that are fundamentally beyond the state-of-the-art. In particular, current
planners have no means to reason about partial or uncertain satisfaction of goals, much less to
explicitly consider tradeoffs in choosing planning steps. Such issues clearly dominate decisions
arising in the management of a sick patient, where diagnosis and the effects of therapy are uncertain,
and the health state is constantly evolving. The following is the outline of a research program aimed
at developing planners that can address these issues.

The Proposed Planning Tool The first step of our planning research will be to develop a
tool for defining planning programs. This tool will consist of facilities for manipulating generic
plan objects (operators, states, domain objects), provided in a metarule language for defining
planning strategies. The planning program will be a simple metarule interpreter, operating on
a knowledge base of domain-independent planning strategy rules (such as the sort described by
Wilensky [Wile80] or Stefik [Stef81b]), and another knowledge base of domain-specific plan object
specifications. The idea is that we should be able to implement a wide range of different planners
by defining different bodies of domain-independent plan strategy rules. An early test of the tool
will be to define an existing planning program (perhaps TWEAK) and try it on a simple problem
dorain.

The Hexibility of this tool is a great asset in experimenting with different planning ideas. This
Hexibility can only be achieved by including powerful primitives in the metarule language, including
low-level access to plan objects and parts of the planning process. Primitives of the plan represen-
tation (such as the split and join operators of NOAH) will be considered first-class plan objects. In
addition, we must provide facilities for changing the representation of plan objects without requir-
ing radical changes to plan strategy rules. Flexibility should be enhanced by our use of a high-level
knowledge representation language (NIKL) and the medical knowledge base shared with the rest of
the project.
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Incrementally Evolving Planners Our research strategy will be to evolve planners incremen-
tally, based on insights into planning behavior gleaned from protocol analysis. Development will be
part of an iterative process, cycling between computer implementation and protocol studies. New
planning mechanisms and representations will be incorporated one at a time, to isolate specific
behavior issues.

The first few iterations will be geared toward the planning behaviors we have already observed
in our previous analyses. The planning tool will include facilities for representing contingencies,
uncertain multiatiributed outcomes, embedded planning operations, and tradeoff formulations,
though the form of these objects will be subject to change throughout the project (we suspect that
the first pass representation will not be very specific or powerful).

Initially, uncertainty will be represented in purely qualitative termms. That is, it will be possible
to state gross relations among events (e.g., A supports B, A and B are exclusive, A is irrelevant
te B, A is more likely than B, A is certain), but no numeric likelihoods will be employed. While
this representation will clearly not support precise probabilistic reasoning, it is quite useful for
tradeoff formulation and simple dominance testing. Yeh's work [Yeh83] on partial specification of
probabilistic knowledge may provide the basis for a qualitative probability reasoner.

The ability to embed an operator to perform further planning is an advance over traditional
execution monitoring approaches (as described by Wilkins, for example). In execution monitor-
ing, planners constantly make observations about the actual results of their operators and revise
their plans when certain distinguished events occur, such as the negation of a precondition to some
action. We will try to take advantage of the possibility that domain knowledge will indicate the
specific points and /or unexpected events that would trigger plan revision (and perhaps what sorts
of revisions to consider) at the time of original plan construction. Because in patient management
events rarely turn out exactly as expected (indeed, we may not expect any precise course), com-
plete execution monitoring may not be feasible. Embedded planning operators provide a valuable
focusing mechanism.

To support case-based reasoning (use of experiential knowledge), the planning tool must pro-

vide access to plan fragments as first-class objects. These structures may resemble skeletal plans
(MOLGEN) or Schank’s scripts.

Preferences and Tradeoff Formulations One major emphasis of the planning work will be
to develop a mechanism for representing and reasoning about choices in situations of multiple,
competing objectives. This is an extension of our previous (and ongoing) work en URP (the Utility
Reasoning Package), a program that reasons about utility-theoretic preference models [Wellg5a).
URP employs utility-theoretic knowledge and gqualitative remsoning techniques to determine the
mathematical structure of a multiattribute utility model based on qualitative assertions about an
individual’s preferences for the different attributes. Based on this structure, it is often possible to
determine preferences for specific multiattribute outcomes, or to focus further questions to resolve
the problem.

From the point of view of this project, URP is a vehicle for exploring the set of useful assertions
to make about preferences and how to reason about them. Currently, URP supports assertions
about the interactions of preferences for different attributes (independence conditions), and about
the gross behavior of the utility for a single attribute (for example, monotonicity or risk aversion).
Different combinations of these types of assertions result in a wide range of different preference
model structures.

In the planner, it will be necessary to define a vocabulary (or caleulus) for describing preferences
for multiattributed cutcomes. This vocabulary will be a subset of URP’s (evolving as URF does),
made up of the most useful gualitative preference properties. We will also develop a separate
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knowledge base of health-preference knowledge, mapping concepts from the planning domain to
concepts in URP’s technical vocabulary. The benefits of this extra level of mapping are described
in a recent paper [Well85h].

The planner will combine the qualitative preference and likelihood knowledge to formulate
tradeoffs which arise in selecting actions (e.g., invasive testing procedures or treatments). Because
this formulation step iz based only on facts of likelihood and preference we are not committed to
any particular resolution technique. We hope to employ powerful dominance testing procedures
whenever possible; in other cases we would resort to heuristics, experiential knowledge, or decision-
analytic techniques requiring more precise data. In any case, the ability for formulation alone would
be a substantial advance in Al planning technology.
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5.6 DPFPanel of Specific Cases

As any decision support system develops, it is impertant to test inerementally any extensions of
that system to insure consistency and validity. In the context of the systems we shall be developing,
this incremental testing will take two forms: checking consistency within the knowledge base and
validating performance against a panel of cases.

The first check for consistency relates to examining the updated knowledge base for syntactic
and semantic errors. The second phase is to insure that the new knowledge is consistent with other
knowledge in the knowledge base. The next phase is to examine the implications, both consequent
and antecedent, of the new knowledge and insure that inconsistencies are not implied. In both of the
last two phases, the identification of an inconsistency does not imply whether the new knowledge or
whether the existing knowledge base is in error. In fact one might look at the addition of knowledge
as a probe of the existing knowledge base.

Since each addition of knowledge is actually a refinement of the knowledge, one might view the
process as introducing a refinement in a consistent manner. The first step in refining a knowledge
base is to compare the assumptions of the knowledge base with the assumptions of the new knowl-
edge. A common situation is the introduction of knowledge that uses specializations of entities in
the data base. For example, in the coronary artery disease domain if the existing knowledge base
does not differentiate the areas of the heart where the coronary insufficiency exists, adding new
knowledge that is specific to an area will require refinement of the existing knowledge to appropri-
ately specialize the knowledge in situations where the areas of the heart make a difference. The
knowledge base, no matter how complex, makes simplifying assumptions and encodes the implica-
tions of those assumptions in ways such as the likelihood measures on associations. As refinements
are introduced to the knowledge base, some of those encodings are no longer appropriate and the
underlying knowledge needs to be distributed among the refined structures. But, of course, the
previous level of summarization was useful when it was generated and may well be useful as a sum-
marization for reasoning or explanation at a later time. Thus, we plan to keep both representations
(appropriately linked) in our knowledge base, rather than choosing to generate such summarization
de novo each time it is needed. Of course, detailed consistency checks will be required because then
specific organization of medical hypotheses that were active when the summary was generated may
not hold at a specific instance when the knowledge need be applied.

The second kind of consistency check is to examine the knowledge base or appropriate subset
from perspectives that were not used in the design of the new knowledge to lock for unexpected
implications. Often the implications are entirely appropriate, but these views give a good indication
of relative consistency between old and new knowledge. An example of this approach would be
computing the lists of primary diseases (or therapies or tests or whatever is appropriate) that could
or could not cause a newly introduced entity. A third approach is to design “cases” that will
exercise the new knowledge. This approach is useful because it shows how the knowledge will fit
into the existing case reasoning. It is not a complete test because the implementors tend to design
cases that are similar to the examples that were used to develop the new knowledge in the first
place.

Thus, another kind of check we shall perform after updating the knowledge base will involve
reprocessing a panel of interactions with the data base. That panel will be comprised of cases
submitted for diagnosis, cases submitted for therapeutic management and physician requests for
explanation of program and model performance. For such incremental verification to be feasible
we shall need to develop a formalism for representing this panel of cases and physician requests.
The advantage of this approach is that the cases, since they are collected independent of the new
knowledge development, are likely to test uses of the knowledge that were not considered.

R
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To as great an extent as possible, we shall try to express these cases as instantiations of portions
of the knowledge base. The rationale for using this type of representation is straightforward: it
should minimize the effort required to interpret case specific data because those data should already
have been expressed in the language and syntax of the knowledge base. In addition, the description
of these specific cases should provide additional opportunity to expand the knowledge base because
the need for additions to the knowledge base will surely arise as that base is instantiated with
specific cases,

We shall continue our basic philosophy of using actual clinical cases—complete with all their
warts and wrinkles. If we were to use generically (hyper-)simplified cases, the temptation would be
all too great to make the simplifications in a manner most consistent with the existing knowledge
base. Such bias in case development would tend to make the programs appear to perform better
but would not foster the rapid expansion of the knowledge base.

One advantage of a knowledge representation language is that the cases can be represented in
more detail than the reasoning knowledge is able to utilize and the knowledge can still operate
on the generalizations, characterizations, or attributes that are needed by the knowledge. As
the knowledge base is developed, the program can use the aspects of the description that are
appropriate. For example, a typical chest pain description might be:

*Chest pain, brought on by exertion, had sccurred during the past 3 months, and was
relieved by rest and nitroglycerin.”

This would be represented in the knowledge representation by a form resembling the following:

[({chest pain) patient-1) specializes (chest pain)
roles: initiation (typically exertion)
time-interval (end (at-least <now>))
(begin <3 months before now>)
relief (typically (or (rest therapy) (nitroglycerin therapy)))
characterizations: ((anginal pain) history)]

At one level, this description is adequately captured by the characterization “history of angina”
{added by some interpretation process), yet there is much more information in the deseription that
might be needed by a reasoning strategy that utilizes the consistency of the patient’s history, or
by knowledge that assesses the likelihood of different causes of chest pain. As long as the whole
description is represented, the various knowledge bases can use the aspects of the description that
are needed.

We shall develop a pseudo-natural language interface, using the same technologies originally
developed by Martin in the OWL system, and applied to medical decision making by Swartout
and Long in their implementations of the digitalis therapy advisor. Our purpose in developing this
parsing scheme will not be to accept arbitrary case descriptions. Rather we shall be using this
procedure to encourage additions to the growing knowledge base. Thus, we shall initially adopt
a rather stilted grammatical form that will rely heavily on nouns, adjectives and wverbs but which
will deal largely with simple declarative sentences. We shall eschew complex sentence structure,
dependent clauses and the extensive use of pronouns. In fact we may even develop a stilted form
of declaration. For example, we shall employ a form like

Chest pain (CP-2) accurred after exertion (EXERT-1). Either that exertion (EXERT-1)
was walking on level ground for 2 blocks or EXERT-1 was climbing stairs for one flight.
Chest pain (CP-2) had duration of 10 minutes without therapy. CP-2 had duration 2
minutes after sublingual nitroglycerin.
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rather than a form like

The patient experienced exertional chest pain, provoked by walking several blocks on
level ground or climbing a single flight of stairs. That pain lasted about 10 minutes
unless the patient took a sublingual nitroglycerin. In that case, the pain was relieved
after 2 minutes.

Note that the stilted form aveids many problems in reference ( “patient experienced pain”), in semi-
quantitative description (“several blocks"), in conditioning (“unless ..."), and in clause reference
(“in that case™). We have had experience in using this simplified language in the heart failure
praject. The use of real cases will rapidly develop an expanding vocabulary and set of modifiers
used to describe concepts.

We shall use the same simplified syntax when physicians request explanations about specific
cases, regions of the knowledge base, or rational of inference. In this way, physicians requests for
explanation will be stored in a form quite analogous to the representation of patients in the panel.
This consistency should make explanation models more responsive to growth in the knowledge base
and will allow the questions that physicians ask of the program to most efficiently push knowledge
base expansion.

The test panel will be stored primarily in this stilted language, but that language will be used
to generate machine representations of specific cases as instantiations of connected regions of the
knowledge network. Each time the knowledge base is modified, the entire panel of test cases will be
reprocessed and any differences in internal representation generated will be flagged for examination
by the investigators.

With this uniform mechanism for case representation available, we shall go one step further. We
shall ask the experienced clinicians in the research team to develop their own diagnoses, explana-
tions, and answers to questions posed by users. These expert but biased and unblinded responses
will be phrased in the same simplified natural language and will be parsed by an only slightly
modified front end. The purpose of this exercise will be both to compare program output to ex-
pert behavior and, more importantly, to insure that the concepts used by experts in their own
explanations are at least available in the knowledge network.

Underlying this experiment is an interesting assumption. We believe that the reasoning that
experts expose when they are asked for explanations (hindsight explanation, if you will) is often
quite different than the reasoning the use in prospective inference. We further believe that this
alternative form of reasoning is an important part of their expertise and should be available in
the knowledge base. Explanations generated by this approach will sometimes be analogous to the
backward chaining explanations generated by rule based production systermns because those rules of
inference are often generated by experts operating in their explanation meode.

Cne of the more difficult problems in developing our knowledge base will be the representation
of disease processes that evolve or at least change over time. We believe that by using specific
patients we shall push the representation of such temporal relations. We believe that inference
mechanisms sometimes drive representation, but that more often specific representations both
allew and lead to certain natural mechanisms of reasoning. The language used by experienced
physicians in describing patients that change over time is likely a product of their mechanisms for
temporal reasoning. Thus we believe that by developing a scheme for representing specific patient
descriptions with temporal disease evolution we shall be provide the substrate used by experienced
physicians in their temporal reasoning.
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5.7 Decision Analysis System

To this point in the application we have proposed to develop an integrated set of patient man-
agement modules, employing a framework based largely on categorical reasoning, with the ability
to use probabilistic reasoning, quantitative modeling and techniques of sensitivity analysis, when
appropriate. In the remainder of the application we take the inverse view of the integration of these
two streams of work. We shall be dealing primarily with medical domains in which the Bayesian
reasoning of the formal decision theorist has seemed the most natural approach to decision suppeort.
These domains will typically be addressing well-focused questions of patient management—topics
closer to the narrow end of the funnel view of medicine proposed by Blois [Bloig80].

Although the formalism of decision theory offers a comfortable framework for reasoning in nar-
row domains, its suecessful applications have been limited to the relatively few groups that are quite
experienced with the technology. Ever since the technique was proposed for application to medicine
(by Lusted in the 1960s and more extensively by Gorry, et. al), criticism has focused on certain
obvious problems—the lack of available data, problems in quantifying utilities, the possibility of
over-simplification of complex problems, the computational burden of a complex technique, the
interpretation of basically quantitative results in a basically qualitative world and the related issue
of deciding when a result is significant. These complaints have evoked both philesophic and practi-
cal responses from the clinical decision analysis community. The data requirements are no greater
than for any form of reasoning: the physician must only admit where knowledge stops and where
subjective estimation begins and perform sensitivity analyses to cover her tracks. Utilities can be
assessed from either physicians or patients, and formal assessments avoid certain logical limitations
of informal reasoning about relative worth. Technical innovations have developed: micro-computer
and mini-computer based systems for performing sensitivity analyses; bedside techniques and sum-
mary graphs of generic or commeon problems; new graphical techniques for expressing the results
of analysis.

QOur group has perhaps the broadest experience in using these techniques in individual pa-
tient settings. We strongly advocate their use and train students and physicians to apply them to
medicine. However, in reflecting about our efficacy in helping the technique diffuse, we are struck
by a basic problem. Formal decision theory is far more than a mechanical engine for inference. Its
application is complex. It takes many months of hard work before a Aledgling fellow becomes compe-
tent in the technique and before his results can be trusted. Even then fellows generally work within
a relatively restricted paradigm of decision analysis (i.e. using the most convenient models, follow-
ing the traditional practices of the Division that the current software supports). Why? Because
decision theory is, in a way, not an inference engine but merely a technique for exploring models
that conform to certain structure. Although far more general, its mathematical place is medicine
may be no greater than that of specific mathematical models—ecalculating the pharmacokinetics of
specific drugs in patients with renal insufficiency, locating the patient on an acid-base nomogram,
calculating the wvalve area in a patient subjected to cardiac catheterization. We believe that the
argurnent for using all such meodels is that they allow the physician to explore the implications
of certain observations, to prognosticate about the effects of interventions or the effects of future
data, or to cogitate about the implications of alternative underlying data—performing sensitivity
analyses, if you will. How do models facilitate these activities? They make an analopy between
the real-world and a well-understood formal system. Powerful techniques from mathematics are
employed to manipulate this formal system; the results may then be transferred by the inverse
analogy back to the real-world case, hopefully without too much distortion.

The real limitation in the application of decision theory to medicine is that the technique does
not encompass the categorical side of medical inference and offers little except formal advice about



5.7 Decision Analysis System BT

how useful models can be manipulated. In fact, it is a trivial task to teach a student to “fold back”
or evaluate a decision tree, to calculate a Bayesian probability revision, to perform a sensitivity
analysis, or even to use a seemingly complex computer program to perform these tasks. The true
impediments to using this technique lie not in the formal skills we can teach but in the informal skills
of model construction, revision and interpretation that we rarely teach explicitly. In many ways, we
have fallen prey to the same behavior patterns for which we have so loudly criticized our mentors—
rather than teaching how to structure and interpret decision models, we offer our colleagues and
students an apprenticeship in which they can observe and be criticized by experienced analysts.

Reflecting on our experience in teaching these formal techniques, we are drawn to consider four
basic activities in which categorical reasoning—perhaps even in which expertise and experience-
are reflected: 1) the structuring of a decision problem, 2) the de-bugging or validation of a decision
model, 3) the interpretation of the results of an analysis, and 4) the application of clinical judgment
or common sense to ascertain that the conclusions are reasonable. In this subproject, we propose to
bring the techniques of artificial intelligence that encompass categorical reasoning to bear on these
activities. We believe that this systemn will contain components of both frame-based and rule-based
reasoning and that a knowledge base will be required on two levels. At level one, basic knowledge
of the medical domain will be required. This knowledge will be represented in and drawn from
the same uniform knowledge base proposed earlier in this application. Level two consists of meta-
level knowledge about modeling: what represents coherent tree structure and consistent modeling
techniques (emphasizing such basic principles as symmetry in tree structure, the use of subtrees
and the linkage of related quantitative expressions to underlying shared processes, implications of
node orderings on the required probabilities and on conditional dependencies, and assumptions
about parameters (probabilistic) imnplied by different structures), for example.

In the meta-level domain, we also need to encode knowledge of the expected behavior of certain
kinds of models and knowledge of how certain observed behaviors of a model subjected to sensitivity
analyses might indicate specific errors in the underlying problem structure. The first step required
to represent this high level expert knowledge will be the development of a flexible representation
scheme from which inferences about model structure and behavier might be drawn.

Our existing computer programs are 1) a Pascal compiled program that interprets trees (DECI-
SION MAKERY), 2) an alternative tree folding program (written in IQLISP) that produces BASIC
code which is then passed to a standard BASIC compiler to generate a compiled form of the tree
model, and 2) a relatively new implementation in compiled Pascal that again interprets tree struc-
ture but which includes more saphisticated graphies and modeling of Markov processes. Each of
these program represents the tree model as a set of isolated nodes with various attributes specifying
conditions for connecting nodes. There is no meta-level knowledge contained within the programs
about how the physician should build a decision tree to represent a specific problem. Each program
ia & computational engine to explore the tree model and present results in graphical or tabular form.

A prototype expert system has been developed to construct decision trees on an IBM PC. The
program employs a frame-based knowledge representation of disease processes, diagnostic tests, and
therapeutic interventions coupled to a control structure containing heuristics for node expansion.
The system constructs trees by considering all tests, treatments, and outcomes in its knowledge
base, which is currently limited to a small subset of diseases. A knowledge acquisition module
allews the rapid creation and archiving of any additional frames. The combinatorial explosion
of tree structure is limited by rules contained in the knowledge frames and by the automatic
recognition of subtrees. The program is capable of generating both classical decision trees and
Markov processes. Although the systemn cannot assess actual numerical probabilities and utilities,
it can describe the required conditional probabilities and generate multiattribute utility vectors for
each outcome state. The user supplies the baseline values of these quantities and can then use the
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program to evaluate the tree either numerically or symbaolically. The program can then suggest to
the user which sensitivity analyses might be most fruitfully examined.

5.T.1 Structuring the Model

We propose to develop a knowledge base for tree construction on two levels. The medical domain-
specific knowledge (e.g., what tests and treatments are available, what are the constraints imposed
on data gathering, how test or prognostic results can be interpreted, what prognoses might be
expected under alternative treatment plans) will be maintained in the uniform knowledge base as
frames, rules and associations. The surface representation of this data will again be in a limited
natural language. During the tree creation phase, the evolving decision tree and its parameters will
be displayed in graphic form. The physician will have the option of describing options (such as the
duplication of sections of the evolving model as subtrees) in the same simplified language but will
also be able to point to regions of the tree with a mouse.

The decision tree itself will also be represented in the knowledge base. The simplest way to
represent such a tree is in terms of concepts that represent each choice, chance and sutcome node,
and other concepts that represent the links between them. This provides a natural network repre-
sentation, so that subtrees can be simply handled. In addition, because links are also represented
as concepts, additional information about the links is stated simply as additional roles of their cor-
responding concepts. In addition, a representation of binding contexts will be needed, to complete
the representation of the computational abilities of DECISION MAKER. This does not, however,
capture the useful relationships between different decision trees. What we need to develop are
taxonomic organizing principles for classifying decision trees. As a result, each tree would be “close
to” trees with similar properties in some meaningful sense. It is likely that there will be several
organizing principles capturing the important criteria for comparison of trees and thus several hier-
archies in which to locate the trees. These organizing principles might be the nature of the primary
decision (fixed, time of choice, cyclic, etc.), the type of the model, and so forth. The important
characteristic of the tree representation is that it simplify the problem of finding other trees needed
by the Decision Analysis system for comparison, debugging, and explanation. This requirement
arises even within the context of a single large tree, where it is important to find homologous
subtrees,

For example, a simple interaction between a particular represented tree and other knowledge
in the overall knowledge base might be:

In a patient with angina [specifying a link into the knowledge base], consider the option
of whether or not [decision node] to perform coronary arteriography [pointer to test
concept]. The angina is disabling [pointing to a potential utility model in the knowl-
edge base| and persists despite maximum medical therapy. The patient has already
undergone exercise stress testing [pointing to a Bayesian and diseriminant model in
the knowledge base which will estirmate the probability of various severities of coronary
disease| and developed angina and 2Zmm ST depression after 2 minutes of stage IT work
[test result which produces a revised probability].

Mote that we are not, at least initially, proposing to parse text of this nature. Rather, we want to
be sure that each of these descriptors is represented in the knowledge base. This patient problem
description will produce a decision tree based on a region of the knowledge base. Presumably
the program will interrogate the user about relevant areas on the surface of the patient-problem
description, that is, places in which there is additional potential clinical information (represented
in the knowledge base) or concepts that the physician might or might not wish to consider. For
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example, the program would examine the data elements that estimate the probability and severity of
coronary artery disease and discover that the patient’s smoking history, blood pressure patterns and
serum lipid levels are all relevant—indicating that the program should perhaps generate questions
about these data elements. As the program generates tree structure, the model and generated data
(e.g., that the probability of coronary artery disease is 0.9) would be revealed to the physician.

The program would enforce proper habits in problem representation. For example, although it
might allow the physician to model prognosis based on coronary anatomy after catheterization and
based on overall data (without reference to revealed anatomy) in the “no catheterization” part of
the model, it would warn the physician that this violation of symmetry would produce improper
results if the clinician attempts to perform a sensitivity analysis on the probability of left main
coronary artery obstruction. [To understand the rationale underlying this problem, realize that
prognosis is poorer with or without surgery if anatomic lesions are more severe. Thus, increasing
the probability of left main disease should wersen prognosis in both surgically and medically treated
cohorts. However, if the underlying coronary anatomy is not modeled in the “no catheterization™
branch, then there would be no way for the increased probability of left main disease to affect the
prognosis of patients treated conservatively.] We would accomplish this by explicitly representing
that the overall result in the “no cath™ branch depends on anatomy, even though the precise form
of the dependency has not been described. Thus, we can realize that performing a sensitivity
analysis on probability of left main obstruction will viclate this assumption. In general, most of
our eritiquing power will come from explicitly recording dependency on assumptions such as this.
If the physician requested such an analysis later, the program would again provide warning and
might refuse to provide the analytic results until proper tree structure was provided. Thus, as
the tree is being structured and as analyses are being requested from the computational engine we
envision the program critiquing [Miller83] the proposed model.

As Miller has shown, the requirements for an artificial intelligence system to provide useful crit-
icism of a management plan is a far simpler task than de nove plan generation. The knowledge base
necessary for such activities is more limited and can even apply a set of heuristics for evaluations
because one may be relieved of the vast burden of providing a usable “legal move generator.” We
therefore expect to be able to provide useful criticism of decision trees suggested by human analysts
or even perhaps our present rather simple tree-building program.

We presume that evolving tree structure will be represented in an internal form that will allow
the program to hypothesize that certain areas of a large decision tree are actually common subtrees
and bring that hypothesis to the attention of the analyst. Such identification will be a far more
complex task in an evolving decision tree than the simple commeon subexpression analysis technique
used by our present tree compiler. The knowledge base surrounding a given decision region will
include not only the information needed to construct a decision tree de nove, but will also contain
links to related trees constructed for prior patients and perhaps even template decision trees for
common problems,

Additional issues of interest in structuring the decision space include choosing which sensitivity
anal¥ses to perform. The nature of the decision model may limit the ability to perform certain
analyses and can render the results of other analyses invalid. And even in a moderately-sized
model, there are too many possible parameter combinations to perform every conceivable sensitivity
analysis. With a little expertise (meta-knowledge once again, or medical knowledge of what the
parameters are and how confident we are about them), the program may provide advice about such
selections.

Another feature of model construction is the choice of a utility structure which provides reason-
able information in a balanced way. The inappropriate choice of a utility scale can bias an analysis
or render important differences tiny. A knowledge-base of utility models may indicate which scales
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or attributes are most feasible. It would be a simple matter to decide when to use quality adjust-
ments, how to model life expectancy (e.g. DEALE), or when to use simpler scales. We would also
plan to develop a limited knowledge base of published health status indexes from which an analyst
could make reasonable selections.

5.7.2 Debugging the Model

Having introduced the concept of providing advice and critiquing a decision meodel as it is being
built, let us now pass on to the next phase of clinical decision analysis in which categorical reasoning
and expertise appear both important and poorly understood by naive analysts—the importance
of debugging a decision model. First, we believe that the purpose of a decision model is not to
provide an simple answer to the question “What strategy of management is best? Rather, we
believe that the purpose of a decision model is to allow the physician to explore hypotheses about
what would be best under alternative assumptions, i.e_, to allow the analyst to perform sensitivity
analysis. However, a problem arises: 1) few physician have the experience to understand the
expected behavior of a specific model under extreme circumstances or when near a threshold point;
and 2) most decision models initially contain errors, i.e., they have bugs, just as most computer
programs do.

Thus, an interesting problem arises. When a model is explored—pushed to its limit—and when
anomalous or poorly understood behavior is observed, is that a bug in the model or an insight into
the medical domain? Given our current state of understanding about clinical decision analysis, the
distinction between these two possibilities is an art form and is often made based on the experience
of having seen similar behavior or having constructed a similar model before. We plan to use the
nature of the model and knowledge about the problem domain available in the knowledge base
by locking at the nodes that are generalizations of the clinical problem and generalizations of the
model. These nodes in turn will provide access to the similar models that will provide expectations
about behavior.

To allow the program to reason about the behavior of a decision model we shall need to develop
a structure for representing a model’s performance as its inputs are varied. In a way, this represen-
tation problem should be analogous to representing the temporal evolution of a pathophysiclogic
process, not as a series of snapshots or a stack of plates, but as a stream of states where one reasons
about the nature of the stream (i.e., slowly developing congestive heart failure versus the sudden
development of “fash” pulmonary edema, where the former suggests fluid and sodium overload
or a chronic process and where the latter suggest pulmonary embeoli, ischemia, papillary musecle
dysfunction, chordal rupture and the like). Thus, we shall need to develop a representation for both
univariate and multivariate sensitivity analyses. At this point, one recognizes behavior patterns by
the shape of various graphical summaries of such analyses. We shall develop a representation for
describing the output of models so that performance can be classified and linked into a relevant
region of the knowledge base. Perhaps qualitative sensitivity analysis deseriptions might take a
form such as:

1. Increases in parameter p bias towards strategy A
2. Increases in parameter p result in increases in parameter q
3. If p increases and q does not, then r will increase (multivariate)

4. Increases in p increase the difference in expected utility between A and B, but at a decreasing
marginal rate
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5. Changes in p, q, and r will never result in B being dominant, unless s is much higher than
the baseline.

At this point it would be well to pause for a morment and reflect on the knowledge base to which
we continually refer and in which we plan to represent a wide variety of diverse information. If we
atternpted to build such a uniform knowledge base for broad domains in medicine (for example, for
the whole field of internal medicine addressed by INTERNIST or CADUCEUS), the task would be
unmanageable. That is not our plan. We shall be addressing several narrow but somewhat related
domains—specific aspects of cardiclogy and nephrology, not a global view of the entire specialty.
In a way, this is a kind of depth-first representation scheme. The domains will be quite narrow and
the knowledge will be represented with multiple levels of detail but there will also be extraordinary
breadth in the kind of knowledge applicable to each narrow domain.

In additional te the gualitative reasoning about model performance described above, we often
reason about subtle changes in quantitative performance. For example, certain parameters are
often linked, modeling a dependency on a common factor or a modulated behavior ascribed to
therapy, e.g., the concept of drug efficacy. We can recall many models in which a subtle bug was
identified by either cbserving or failing to observe an expected relation, sometimes with the *funny”
behavior occurring in the third significant figure and being passed off, by an inexperienced fellow,
as “round off error.” Sometimes such minute errors are signposts to failures of the model. For
example, we constructed a model to explore prognosis in patients with a patient with cancer using
the declining exponential approximation of life expectancy and found inconsistencies because the
cohort that develops cancer was not receiving “eredit” for its survival prior to recurrence.

5.7.3 Interpreting the Results

Model interpretation is the next large domain of clinical decision analysis in which eategorical
reasoning should have impact. It is not uncomrmon to see an inexperienced analyst describe a
model purely in terms of its surface behavior, e.g., “empiric therapy is better than performing
a diagnostic test and the threshold sensitivity for the test is 0.98, a value higher than can be
reasonable expected.” The real issue might be the slope of the line describing the relation, e.g.,
the strength of the relation between sensitivity and outcome or, perhaps, the fact that over the
entire range of reasonable values for test sensitivity, the difference between the expected utility of
empiric therapy and that of testing never exceeds 3 days—the decision is a “close call.” Of course,
the definition of a close call depends on the setting and perhaps on patient preference—3 days may
be more salient in some situations than in others. We anticipate that our program should be able
to properly identify such situations and provide enhanced understanding to the physician.

Of course, one of the greatest difficulties with using a formal model is that its cutput is basically
quantitative and the physician basically reasons qualitatively. Thus, the analyst must be able to
“understand” the performance of the model to trust its result. What is really meant by understand
is to find a gualitative scenario which is compatible with the model’s performance. In this regard,
the problem is characteristic of expert reasoning in many other demains—the mechanisms used for
antegrade inference often are sharply at variance with the concepts used for retrospective explana-
tion, but both must be present for the expert advice to be properly understood and used. In the
same way, we shall develop the ability for the expert program to support its basically quantitative
conclusions with explanations that utilize basic pathophysiclogic principles and associational data
that will be available in the knowledge base.

Furthermore, we anticipate the availability of multi-level explanations, much like the analogy
of peeling an onion. We would hope that explanations of surface behavior should be expressible
in terms of hypotheses about the categorical reasons for that behavior based on well established
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data or basic pathophysiology. This multi-level explanation should be in the spirit of backtracking
explanation as done by Davis in the MYCIN project and by Swartout in the explainable digitalis
therapy advisor. It also falls squarely in the traditions of multi-level models and inference nets
begun by CASNET and extended in the ABEL program. Besides multiple levels, we will also
provide explanations tailored to different aspects of the model. For example, why are certain
things included or not included (medical relevance)? Why were particular structures chosen?
What exactly does a certain parameter encompass? What simplifying assumptions were made
along the way? Note that all of these are questions about the model construction, not the results.
The explanation of results will draw on the qualitative description of sensitivity analyses described
above, as well as medical interpretation of the events in the model. Although the task will be
complex, we would like the program to recognize what the crucial factors in the model were, and
present them to the physician with some medical interpretation.

5.T.4 Applying Common Sense Clinical Judgment

One of the major problems with most probabilistic reasoning schemes—and decision analysis is a
prototypical example—is that they can produce conclusions that totally miss the mark. Such gross
errors can only be detected if one steps back and looks at the analysis in the context of the total
patient. Most programs and certainly almost all probabilistic programs are incapable of taking such
an overview. In fact, when we teach students and physicians the applications of clinical decision
analysis as a special instance of medical informatics, we take great care to assure them that the
physician will always have a role and must always step back and ask “Is that reasonable?”

We propose to use our integrated knowledge base and layered program to step back a level
from its decision analysis and use categorical reasoning to balance the interpretation of the model’s
cutput against an overview of the problem domain. Clearly, we shall not be able to offer a general
solution to the problem of clinical judgment and commeon sense as it applies to providing and
expert overview of an analysis, but we believe that we shall be able to encode sufficient knowledge
in several specific problem domains to allow this process to proceed. Thus, we shall be focusing
this work on some of the specific repetitive template analyses offered below.

5.7.5 Specific Models

In this part of our research plan we shall broaden our horizons slightly from coronary artery disease
and fluid and electrolyte therapy to encompass some interesting and recurrent clinical problems
in which a well developed analytic model might be tested. Obvicusly the management of patients
with both stable and unstable coronary artery disease with respect to pharmacologic therapy and
possible surgery or angioplasty is such a medical domain. We also believe that the proper timing
of valve replacement surgery in patients with valvular heart disease is another cardiclogic problem
of potentially great interest because of the deep physiclogic reasoning available both for model
building and for the generation of coherent explanations.

One of the most common problems referred for clinical decision analysis is the management of
patients with actual thrombo-embaolic disease or at high risk for thrombo-emboli, particularly in
the setting of an increased risk for standard anti-coagulant therapy, e.g., in an elderly patient or a
patient with a hemorrhagic diathesis. Because such problems are both common and can addressed
by a relatively uniform set of models, we hope to develop a fairly rich knowledge base for modeling
in that area. Furthermore, the underlying physiclogy of coagulation is sufficiently well-understood
to allow deep reasoning.

We shall also be developing a set of prototypical analyszes for various aspects of nephrology, often
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with the common thread of whether to subject a patient to a biopsy or to begin empiric therapy that
carries some real risk itself. We also plan to develop a knowledge base, including template trees,
for the selection of therapy for chromnic renal failure (i.e., transplantation [cadaveric versus living
related donor] and dialysis [center and home dialysis, peritoneal dialysis]) and the use of nephrotoxic
drugs in patients with a renal allograft (i.e., whether or not to continue cyclosporine in to prevent
rejection in a patient developing nephrotoxicity on that drug). We shall also be developing a model
for the treatment of patients with rapidly progressive glomerulonephritis, a severe type of renal
disease that most often leads to end stage renal disease, despite vigorous therapy with toxic drugs,
such as immunosuppressive agents. The issue here is whether to risk that therapy, with its low
likelihood of success, or whether to allow end stage renal renal disease to (safely) and inexorably
develop, assuming that new therapies render that state tolerable. We shall also consider specific
analyses in nephrology involving the decision of whether or not to obtain a renal arteriogram, e.g.,
in an elderly patient with a small kidney and moderate renal insufficiency who might have renal
artery stenosis.

Finally, in the later years of this investigation once regions of the decision analytic knowledge
base are well-developed, we shall attempt to develop a limited ability for a program that can use a
parser and the existing knowledge base to examine a limited area of full text articles retrieved from
MEDLINE by using a hand-tuned search strategy to update the knowledge base recurrently in a
relatively automatic fashion. Until an adequate parser is available, such parsing might be performed
by a student with little knowledge of the problem dormain. The purpose of this subproject is to gain
experience in the maintenance of a detailed knowledge base and the recognition and management
of inconsistencies between new and existing knowledge. In general, knowledge bases developed
for AIM projects have continued to expand (e.g., the INTERNIST project) but relatively little
attention has been devoted to knowledge substitution as motivated by new, often guantitative,
facts, e.g., the results of a clinical trial.

s
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5.8 A Categorical Approach to Reasoning About Utilities

Perhaps the loudest objections to the application of decision analysis to medicine arise around
the problem of utility assessment or patient values. Among the basic steps of clinical decision
analysis, the gquantification of attitudes toward alternative outcomes is the least familiar to and
most challenging of physicians. The mechanics of decision theory are quantitative; decision making
is approached by separating probabilities from values, combining the two, and then manipulating
the result. The underlying model of reasoning is quantitative and each aspect is addressed by
mathematical techniques. One might argue, however, that utilities are the embodiment of human
values and that those values are basically qualitative; therein lies the conflict.

In this aspect of cur research we propose to examine the necessity of and alternatives to the
quantitative specification of values. We shall be relying on the integrated meodular philosophy
behind our evolving medical reasoning system. In particular we shall be focusing on decision an-
alytic models using two different utility formulations: 1) the classic utility function based on a
fixed mathematical model parameterized by responses to traditional lottery questions, and 2) a
partially specified model based on qualitative preference assertions and orderings on hypothetical
outcomes. The approach we shall develop will be equally applicable to unidimensional and multiat-
tribute domains. We hypothesize that the qualitative utility model will have different performance
characteristics and may imply either different decisions or provide different insights to the decision
maker than will the usual numerical approach. We plan to apply both utility models to an array
of fairly standardized decision situations (usually represented as a template decision tree) and to
examine both system performance and user comfort with the result. In particular, we believe that
the categorical utility models may be better able to provide explanations to physician and patient.

The optimal setting for utility assessment involves fairly immediate feedback to the utility
source (e.g., the patient or the physician) based on an examination of the assessee’s responses for
inconsistency and based on the implications of the resulting utility structure (in our case, either a
set of constraints or a parameterized model) in the relevant medical problem space. Because we
would like to explore our alternatives in such an optimal setting, we shall often constrain this aspect
of our research to a well-formulated decision problem that has been instantiated as a working (and
debugged) decision tree and which corresponds to a well-delineated neighborhood of our knowledge
base so that adequate explanations can be generated.

Prior work on developing computer programs for utility assessment rely on the assessee to
specify a functional form for the utility function (e.g., multiplicative or additive decompositions
{multiattribute), linear or exponential unidimensional forms) and then lead the user through a fixed
pattern of questions designed to determine the relevant parameters of the utility function [Schl71,
Keen76|. These programs calculate the parameters of the utility function based on users’ responses
to the lottery questions. They typically provide a fixed set of functional forms, with associated
algorithms for generating questions to elicit the parameters. Some programs (e.g. Keeney and
Sicherman’s MUFCAP [Keen78| for multiattribute assessment) alse provide for some structuring
by the user and verification procedures to validate the underlying assumptions. However, these
programs are fundamentally inflexible, in that they cannot accommodate data that are not directly
part of the elicitation algorithm. For example, they usually ask for lotteries bounded by extreme
values, since this reduces the number of questions necessary to completely specify the utility func-
tion. These programs also rely on certainly equivalents, rather than arbitrary inequalities between
lotteries.

Although such programs have proved useful to some decision sciences consultants, placing the
burden of model selection on the user is particularly serious for those who are not expert in utility
theory (e.g. physicians or patients). It is unlikely that such programs could be used routinely
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in medicine, where neither physician nor patient would have the background to choose a relevant
utility function nor te understand inconsistencies that might arize. Most medical applications have
taken a far more simplistic view of utility assessment—using either simple lotteries, categorical
scales, or time tradeoffs. There has been little work addressed to providing feedback during utility
assessment.

We have developed a fairly standard utility assessment instrument that employs a set of flip
cards to guide a trained interviewer or physician through an assessment task. A limited number of
gross inconsistencies can be identified but there is no mechanism for iteratively refining the spec-
ified utility function. We have successfully applied this technique to two echorts of patients in a
randomized prospective drug trial and have been able to identify changes in “guality of life” with
greater sensitivity than certain general health status measures. We have also applied modifications
of this instrument (to appropriately adapt the underlying scenarios) to patients with angina wheo
were candidates for coronary bypass surgery, to patients with chronic renal failure who were candi-
dates for transplantation, and most recently to patients with breast masses who may be candidates
for alternative treatments for breast cancer. Those studies show the feasibility of assessing utilities
and have identified consistent discrepancies among different assessment techniques, but have not
been integrated into a decision support system.

The assessment of utilities depends on the presentation of a set of oversimplified choices from
which preferences curves can be derived. It might be more reasonable, however, to ask the user
a set of general questions (e.g., is more always better [i.e., is the function monotonic]) to help
select an array of potential functions. The same set of tradeoff questions should then be used, to
whatever extent is possible, to constrain the parameters of these alternative models of preference.
The implications of these models will then be provided to the user both in terms of hypothetical
oversimplified choices and in terms of choices in the decision problem being addressed. We shall
perform some of these evaluations with patients using either a microcomputer or a lisp machine with
appropriate graphics to provide relevant feedback. It will be difficult to impossible to incorporate all
these ideas below in a microcomputer implementation. It makes more sense to use a lisp machine
to implement the overall framework, transferring a subset of the results to the microcomputer
environment. For this reason we may well need two lisp machines at the NEMC, but this hospital
has promised to help fund one of them from contributions to a research development campaign.

5.8.1 AT Technigues For Reasoning About Utility Functions

We shall develop a utility reasoning package that will provide for more fexible utility assessment.
The following section outlines some of our approaches, and their implications for a utility assessment
tool. Note that while the “assessment tool” will be designed for a multiattribute framework, its
methods apply directly to single-attribute utilities.

The central object of our assessment procedure is a preference model. In its most general
form, a preference model is an arbitrary collection of assertions about an individual's preferences.
These assertions can be gualitative preference properties (e.g., independence or limited dependence
of preference for different attributes, qualitative behavior of single-attribute functions—meonotonic,
risk averse), or hypothetical preference choices. Preference choices (certainty equivalents of lotteries,
for example) are usually the only form of input to utility assessment tools, and current tools typically
can accept only restricted sequences of choice data. The ultimate geal for our program is to be able
to make maximal use of any collection of such data but to allow other less constrained forms of
preference assertion. Consistent with developments in other parts of this application, the qualitative
utility assertions (e.g., “I'd rather not be dead;” “Life the way I am now isn’t worth living.”) and
guantitative comparisons (e.g., “Six years of life with angina are scarcely better than three years the
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way I used to be”) will be expressed in a stilted language that will be parsed (initially by hand) into
our qualitative preference representation. For example, notions about preference for life years over
various health states will be represented by assertions about conditional utility functions. We might
say in this case that the utility for life years under good health is moneotonically increasing, while
it is constant or even decreasing in certain morbid states. Note that ocur preference representation
forms just one part of the overall patient specific model described elsewhere in this proposal.

5.8.2 Incompletely Specified Utility Functions

The reason we are willing to view preference models as arbitrary collections of assertions is that
we will not require utility functions to be completely specified. Hemoving this restriction adds a
great degree of Aexibility to the assessment system. If we are able to derive sufficient constraint
(perhaps to determine a decision for a particular case) before specification is complete, then we
have escaped with significantly less assessment effort. We may feel more confident in the result,
because it depends on fewer and weaker assumptions. These weaker assumptions may represent
the use of mathematically complex models for which a complete assessment would be intractable.

Even under the most simplifying of assumptions, the task of assessing a utility function in
complete detail can be tedicus, painful, and subject to serious cognitive biases. Noting that com-
pleteness is generally not necessary for decisions, Winkler suggests that the development of utility
assessment aids that use less than complete information is one of the most promising research topics
[Wink82] in utility analysis.

Given a probabilistic model of the decision (represented as a decision tree), we can transform the
incomplete preference model into a symbaolic expression of expected utility for each strategy. The
model’s parameters may be described by an arbitrary constraint netweork. If instead of a typical
probability tree we employ a categorical representation of the decision problem (described else-
where in the proposal), our expected utilities are derived from a combination of the two constraint
representations.

Detecting cases where incomplete assessment is sufficient is an interesting and difficult task in
itself. Symbolic and qualitative reasoning techniques developed by Al researchers fit in well with
our framework, and provide a wealth of mechanisms for establishing dominance in such partially
specified domains. In particular, we expect to make substantial use of the qualitative mathematics
package being developed by Sacks [Sack84] for analysis of symbolic representations of expected
utility. We have already been using this system for analysis of qualitative properties (direction,
risk aversion, higher order risk properties) of single-attribute functional forms.

5.8.3 Automatic Maintenance of Assumptions and Structural Sensitivity Amnalysis

All assumptions underlying the structure of the utility model will be explicitly represented in the
assessment tool. A truth maintenance system [McAl82] will handle modular assertion and retraction
of these assumptions, constructing new mathematical structures as the premises are changed. Since
these assumptions are fairly fine-grained, the range of combinations of assumptions represent a wide
continuum of possible mathematical structures, and should vary smoothly in complexity.
Hypothetical preference choices will also be treated as assertions. This contrasts with tra-
ditional assessment tools, where the input data is immediately interpreted with respect to the
particular mathematical model employed for the utility function. Since our system will change
model structures dynamically, we need to represent the data in a meodel-independent fashion.
Employing these mechanisms, we can expect our assessment tool to be capable of structural
sensitivity analysis, whereby we can test the robustness of the result to changes in the model’s form.
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This is often a far more satisfying test than traditional parameter-tweaking sensitivity analysis.
Farquhar [Farq83] stresses the value of structural sensitivity analysis, and laments the inadequacies
of current facilities.

5.8.4 Formalization of Utility-Theoretic Knowledge

A knowledge-based approach to utility assessment has the additional benefits accruing from explicit
encoding of knowledge of utility theory. The multiattribute decomposition knowledge base already
compiled encompasses a broad range of the important results developed by utility theorists over the
years, and the existing theorem language should support incorporation of many others. Collection
of these results into a uniform (executable) representation should provide an interesting opportunity
to compare and combine different decomposition approaches in a wide variety of problems.

Yet another aspect of utility theory that will be a candidate for formalization is stochastic dom-
inance [Whit78, Bawa82]. Researchers (particularly in finance) have developed a set of algorithms
that test for the dominance of alternatives under progressively more restrictive assumptions about
the utility function. For example, first-order dominance is appropriate for any monotonic utility
function; a much meore powerful algorithm may be used when decreasing absolute risk aversion may
be assumed. Given our flexible framework for representing these sorts of assumptions about utility

structure, a knowledge base associating the algorithms with the qualitative properties would be
quite useful.

5.8.5 Using and Explaining Categorical Ttility Models

Having developed the alternative representations for expressed preferences, we shall develop mech-
anisms for evaluating the “expected utility” of such models. Because any formal tree structure can
be reduced to normal form by moving the embedded decision nodes “up front,” we can translate
cach strategy into a probability distribution over the cutcomes on the leaf nodes. Combined with
cur incompletely specified utility function, we get a representation for expected utility consisting of
a probability weighted set of constraint models. A straightforward generalization of this would be
to allow incompletely specified probabilistic models, resulting in the same form of expected utility
representation. Comparing expected utilities described by constraints on symbolic expressions will
require symbaolic and qualitative reasoning techniques, including those provided by Sacks’ QMR
[Sacksad].

Recall that two of the major motivations for developing a decision model are to allow exploration
(i.e., a set of “what if” questions) and to provide insight into the problem structure. Because
coherent explanations are more likely to be qualitative, it may well be that a constraint based
utility model may have more explanatory power. The qualitative representation maintains a greater
amount of problem structure, since it does not reduce all preferences to a flat quantitative scale,

Decision-analytic models which do not maintain ties between quantitative constructs and their
qualitative justifications are notoriously cpaque. Since cur preference models will be based on
qualitative assertions and we explicitly represent the utility-theoretic knowledge that determines
the mathematical structures, these ties are a fundamental part of our system. Furthermore, partial
specification may allow us to eliminate some of the dependence on numerical input that contributes
to difficulties with explanation. Our utility model will be a part of & uniformly evolving knowl-
edge base so that explanations will be couched in terms of the specific problemn domain under
consideration.
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5.8.6 Interpretation Based on Descriptive Models of Preference Choice

Psychologists and economists have identified numerous biases in preference choice which may lead
to violations of utility theory. This has disturbing consequences for the validity of utility assessment
and has been sufficient argument for many to abandon formal decision analysis altogether. The
framework we are proposing, however, may provide an opportunity to exploit these psychological
results in an assessment tool.

Since we will be using partially specified functions and model-independent representations of
preference choices, we should be able to de-couple ocur interpretation of an individual’s stated
choices and our prescriptive model of decision making. In other words, ocur systern may employ any
psychological theory of how the subject makes preference choices in assessment, while still using
the data to generate a classical expected utility function.

As a special case, we could implement the usual assumption that the assessor is maximizing
expected utility. The other cases are more interesting, however. For example, suppose we assume
that the assessor is making choices according to prospect theory [Kahn79]. In that case we would
adjust the lottery according to the editing procedures described by Kahnerman and Tversky, and fit
the result to their model (in this case a formula with value funetions and an additional parameter
to transform the probabilities). Since prospect theory has more parameters than utility theory, the
conclusions we can draw are strictly weaker (although they do assume risk properties which may
give us additional constraint). Still, these results may still go a long way in constraining the utility
function in assessment.

MNaturally, we can only use descriptive theories that we can relate to utility in some way. Though
this criterion rules out some possibilities, there are still quite a few candidates in the literature, such
as Bell’s regret theory [Bell82]. An assessment tocl that could switch between alternate deseriptive
theories of preference choice would be a valuable tool for psychological resource, and may provide
a novel form of sensitivity analysis for decision making.
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5.9 Dissemination of Modeling Techniques into Practice and Education

In prior sections of this application we proposed to develop an integrated artificial intelligence
management systermn which includes the application of decision-analytic and other probabilistic
techniques and to bring categorical reasoning techniques from artificial intelligence to bear on yet
unsolved problems in clinical decision analysis. In this final section we propose to extend existing
and implement new personal computer programs for building and analyzing decision models and
for communicating the results of such analyses to experienced elinicians., Our group has spent the
past several years developing and extending a decision analysis program (DECISION MAKER)
which took its first form in Fortran on a PDP11/03. Owur natural requirements for recursive
procedures and easy access to a variety of personal computers led to an implementation in Pascal
which has been available on the IBM, Apple, and Heath/Zenith computer line. Because of the
initially small address space on these machines (64K segments), we used an interpreted Pascal
(UCSD P-code). Several attempts to generate an overlayed machine code version, for increased
spead, failed in the small memory environment. The standard IBM and Microsoft Pascals available
in IBM's 8088 environment did not allow the user access to the full 640K of address space in any
convenient manner. This problem was alleviated with the appearance of Turbo Pascal, which has
now become almost an accepted standard. We were able to re-implement DECISION MAKER in
that environment with approximately a ten-fold gain in speed.

Over the past year our group has developed a second very similar tree folding program (SML-
TREE) which relies heavily on the screen characteristics of the IBM PC’s color-graphics card and
which provides a2 more standardized tree representation for input and display. In that program,
we have also used windowing techniques to allow the analyst to capture a snapshot of the decision
tree folded back to various levels.

Beside the technical provision of convenient tree evaluation, our research in this area has pro-
duced certain basic extensions to the decision-analytic formalism which allow it to model more
complex processes. We can discuss these developments under four main topics: subtrees, Boolean
nodes, Markov cycle trees and dual utility representations.

A subtree has the same role in representing decision models as does the subroutine in repre-
senting computational processes. It is a region of common tree structure which can be linked to
(i.e., can be called by a variety of parent nodes). During tree evaluations after a subtree is called, it
returns a value which is then passed to the calling node. For a subtree to return a call-specifiec value,
there must be some mechanism for specifying its arguments. In our system, a subtree does not have
arguments explicitly (that is, all its variables are global), but it is possible to specialize the global
environment to produce a local one. Such local environments are created by adding arguments to
a LIFO binding stack of variables and values. Thus, the specification of local bindings prior to
linking to the subtree is quite analogous to the use of local variables to create an environment in
a subroutine. The use of subtree notation has three main advantages: 1) it emphasizes areas of
symmetry among regions of the tree, thus minimizing the chance of leaving out considerations in
one instance while including them in another; 2) it allows fairly complex trees to be represented
in a smaller number of nodes, roughly decreasing tree size by & log order of magnitude; and 3) it
emphasizes links among parameter values so that the models are more physiologically reasonable.

A Boolean node is a control structure which allows testing to occur during tree evaluation.
Essentially, it permits the analyst to create dynamically changing tree structure. Trees that use
such structure can be used to model recursive decisions (i.e., try one therapy first and if it fails
move on to choosing another) in very compact form. It also allows the analyst to create a unified
model that can be evaluated in different levels of detail or with different structural assumptions.

Markov cycle trees are used to model Markov processes within a classic decision tree. A cycle
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tree may be viewed as a special kind of terminal node—one in which the utility is calculated by
a process rather than by an equation or a variable look up. The Markov node contains arbitrary
internal structure which is in essence a probability tree leading from each potential state defined
in the process to all its possible next states after single transitions. In such a probability tree,
the terminal position (or state node) simply indicates where members of the cohort following a
particular path in a particular cyele should be collected. The process runs until a termination
eriterion is met—either an arbitrary number of cycles, a minimum cchort size is reached or until
the accumulating utility fails to change. Because the probabilities on the chance nodes of the
probability tree and the incremental utilities assigned to each state are specified by mathematical
expression, they can vary with the environment in which the Markov process is evaluated and
with the clock cycle of the Markov process. Special expressions can be used to describe the tail
effects of the processes. Because these tail effects can refer to other structures in an arbitrary tree,
Markov processes can be patched into arbitrary places within a decision tree. It iz even possible
to structure one Markov process to run within another Markov process. Although such models
impose a heavy computational burden, they are occasionally necessary. For exarmple, if one were
using a Markov process to model prognosis in a cohort of patients who received a prosthetic device,
if the failure rates of that valve depend on how long it has been implanted, and if secondary and
tertiary replacements are possible, then embedded Markov processes may be needed to accurately
model prognosis,

One of the major problems in decision analysis is the commensuration of basically incommensu-
rable quantities. In policy analyses, this recognition has led to cost-effectiveness analysis, in which
dollars and health cutcomes are kept separately. Of course such separation of attributes need not
be limited to dollars. We have structured a number of problems where health effects are best kept
separate. A recent one that comes to mind is the case of a pregnant woman who presents early in
her third trimester with leaking amniotic fluid. Management strategies that tend to delay delivery
will increase the probability of a live born child but will also increase the chance of maternal mor-
bidity secondary to infection. We found it useful to express those results in terms of mothers lost
per additional healthy baby gained. In an analysis of the management of patients with possible
temporal arteritis, Chang and Fineberg found it useful to express their analytic results as steroid
side effects encountered per case of blindness averted. Certain problems arise, however, in analyzing
complex decision trees with separate utility structures. If trees have embedded decision points or
logical control points (Boolean nodes) that are evaluated on the fly, the analyst must be certain
that all the switches or choices point the same way during both evaluations. Furthermore, the cal-
culation of all probabilities and control values is duplicated. We have begun to develop a different
approach to this problem, initially with dual utility structures, but eventually with n-dimensional
structures. This model proposes that a utility is no longer a value that is multiplied by a set of
path probabilities during tree evaluation, but rather that it iz a vector of values with each attribute
being separately maintained.

We hope to use this approach to help physicians begin to address the issue of constrained
resources in their decision making processes. The technology of applying such multiattributed
analyses (of which cost-effectiveness analysis is but one) to the individual patient have only been
considered in the broadest terms, but it is clear that physicians will need to fold such considerations
into their clinical logic. At the NEMC we have the advantage of a powerful management information
system (to which members of the Division of Clinical Decision Making have access) which can
provide very good estimates of at least the near-term resource costs of alternative therapeutic
plans. We hope to begin to use that database to develop an approach to patient management in
settings of constrained rescurces.

Unfortunately, some of these enhancements have evolved in separate implementations of the
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program, partially because increasing complexity has limited program size. We believe, however,
that larger memory sizes are becoming sufficiently commonplace in personal computing that the
time has come to combine many of these features into a single, user-friendly program that provides
good graphics and can use the newer mouse-technologies, when appropriate, for tree input and
editing.

Although its use would be limited to physicians with experience in model building or with
access to a library of template analyses (which we shall be developing), we view this revision of
our existing software as the development of a productivity tool. We hope to develop a format
of communication that will allow the analysts to move back and forth between the tree analysis
program, a word-processor, a standard database (in which the physician might keep references to
and facts summarized from the literature), a spreadsheet program and possibly a graphics package.
Obviously, we are not proposing to develop an integrated package such as Symphony, Framework
or Encore. We merely hope to develop a decision analytic module that might interact successfully
with one or more of those packages, or which will take the philosophy of Sidekick as an overlay that
could be called for calculation while the other software was active,

We expect that the artificial intelligence based systems developed in other aspects of this pro-
posal will not find immediate application in practice because it will be several years before machines
with excellent Lisp environments or even Lisp machines themselves will be widely available in med-
ical environments. Thus, we believe that there will be an ongoing need to identify pieces of the
integrated system that might be trimmed into stand-alone programs that could function in the
present microcomputer environment, be it the 8088/8086 line (IBM and its clones) or be it the
68000 line (Apple MacIntosh/Lisa) because these lines will soon become the de facto standard in
medical education.

Furthermore, we believe that there will be a growing and almest immediate need for good
educational software for medical students in the very near future. We helieve that such educational
uses will in the short run be based on micro-computer/personal workstation technology and that
there will scon develop a community of medical schools with that eapacity. Ewven if the schools
themselves do not force their students in that direction, we believe that medical students will arise
from college environments where owning a person computer is as commonplace and as necessary
as owning a typewriter. These medical students and schools will be losking for relevant software.

As aspects of the knowledge base evolve, we believe that it will be pessible to spin off a variety
of programs for such a microcomputer environment, Those programs might help communicate the
facts in the knowledge base, might teach the student certain processes or approaches to clinical
problems, or might even be an interesting array of case material with expert commentary about
reasoning. The process of spinning off the relevant sections of the primary knowledge base will be
similar to the process of generating derived facts for knowledge base consistency. Therefore, the
same kinds of knowledge base tools should make this process relatively painless [see section D.4].

The Tufts University School of Medicine will be moving into the area of medical informatics
and education about information sciences for all our students over the next several years. The
investigators involved in this application will be playing a major role in that educational program.
Thus, we shall have the cpportunity to place the educational scientists who will be developing
that curriculum in contact with the computer scientists and clinical researchers developing this
knowledge base. We believe that the timing of that effort will dovetail nicely with the completion
of the improved integrated version of our microcomputer system and that the availability of an

avenue for such collaboration and communication will help ensure the diffusion of our research into
medical education.
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Appendix: Case Material for Protocol Analysis CASE 1

The patient is a 45 year old woman, mother of two and wife of a malpractice attorney,
who presented to a community hospital emergency ward with fever and malaise,

Her work-up included a CBC, chest xray and urine analysis, which were all reported
to be normal. The patient was sent home with the tentative diagnosis of viral illness and
she was instructed to stay in bed, drink fluids and take aspirin as needed.

Her symptoms of fever and malaise progressed over the next week and she sought
medical attention at the same emergency ward.

The patient was admitted to the hospital and started on tetracycline and erythromycin.
Several days later she began to develop symptoms of lethargy, paresis and dysesthesia in
her right upper extremity.

A CT scan of the head was interpreted as being consistent with encephalitis.

At this point she was transferred to a tertiary care hospital. On admission there she
was found to have a temperature of 38C with other vital signs noted to be stable. SKIN
- was without rashes, LUNGS - were clear, HEART - revealed a systolic ejection murmur
» no clicks, gallops or rubs, ABDOMEN - soft, nontender and without organomegaly,
EXTREMITY - no edema. NEURO - was within normal limits. Laboratory Data: HCT
35, WEC 13,000 with normal differential cell count.

A neurologist was consulted and an arteriogram was performed.

The carotid arteriogram showed no evidence of intracranial vasculitis. A repeat CT
scan of her head revealed evidence of four small cerebral emboli (compared to the CT scan
obtained 5 days previously) over the cerebellum, left and right cerebral hemispheres.

An echocardiogram was obtained which revealed a 5 mm vegetation on the anterior
leaflet of her mitral valve.

A cardiclogist noted a murmur of mitral regurgitation, with no gallops and clear lungs
on physical exam. He also noted a palpable spleen tip and several splinter hemorrhages.

Note: At this point the dilemma ¢s whether to collect more diagnostic information (i.e.,
stop antibiotics and obtain blood cultures) or to proceed directly to mitral valve replacement.
While it would be optimal to culture the patient off antibiotics and complete a course of
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antibiotices for which the offending organism is sensitive, the prior course of antibiotics
limnits the likelihood of obtaining a positive blood culture and the patient will remain at risk
for another cerebral embolus. Performing a mitral valve replacement now will remove the
source of emboli, but without completing a course of antibiotics, the prosthetic valve may
becorne infected with the same organism, which is very likely to be still present.
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CASE 2

The patient is a 63 year old woman, retired social worker, with a 5 yvear history of
coronary artery disease, who was seen by her family doctor because episodes of chest pain
occurring with increased frequency after minimal exertion.

Her doctor admitted her to the cardiac care unit of a community hespital. On physical
exam he noted: Bp 130/85, NECK- left carotid bruit, LUNGS - clear , HEART - Regular
rhythm, prominent 84, no 53, no murmurs, ABDOMEN - soft nontender, no ergancmegaly,
EXTREMITIES - without edema. EKG: Sinus Rhythm, normal conduction times, normal
axis, minimal st segment depression in the inferior leads, but not significantly changed
from her prior tracings.

She was continued on propranolol (40 mg Qid), isosorbide dinitrate (20 mg qid) and
was started on diltiazem (60mg tid).

The patient had one episode of chest pain in the hospital which was associated with
1.5 mm of 8T segment depression in V1 to V4.

The patient responded to sublingual nitroglycerine, and her ST segments returned to
baseline. Her dose of diltiazem was increased to 80 mg tid. Two sets of cardiac enzyImes

at that point (36 hours) were negative for infarction. Plans were made to send the patient
to a university hospital for further evaluation.

After transfer, the patient was pain-free for 36 hours, without EKG or cardiac enEyme
evidence of infarction.

Cardiac catheterization was performed which revealed a 50 percent stenosis of the left
main coronary artery, a 70 percent occlusion of the proximal LAD, a 60 percent occlusion
of the obtuse marginal branch of the circumflex, and an 80 percent stenosis of the right
coronary artery. There was good distal run off in the LAD and right coronary arteries.

A cardiothoracic surgeon was concerned about the left carotid bruit because of a history
of a stroke 12 vears before

Noninvasive carotid artery studies suggested tight carotid stenosis of the internal carotid
arteries bilaterally.

A four vessel aortic arch arteriogram revealed a 70 percent occlusion of the left common

carotid artery, with an ulcerating plague, and the right internal carotid was totally (100
percent) occluded.

MNote: The dilermnma at this point is which procedure(s) should be done, and in what
order. Among the many options are:

s Left carotid endarterectomy first followed within a few weeks by coronary artery bypass
graft surgery,
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e Coronary artery bypass surgery followed in a few weeks by left carotid endarterectomy.
s Simultaneously perform both procedures.

Each of these options has its risks and benefits.



