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Abstract

Data sharing is fundamental to computer-supported
cooperative work: ‘people share information through
explicit communication channeis and through their
coordinated use of shared databases. Database
support tools are therefore critical to the effective
implementation of software for group work. This paper
suiveys data sharing requirements for group work,
highlighting new database technologies that are
especially likely to affect our ability to build computer
systems supporting group work.

1. Introduction

A central concemn in computer-supported
cooperative work (CSCW) is coordinated access to
snared information. Database management system
(DBMS) technology provides data modeling = and
transaction management well-suited to business data

processing but not adequate for applications such as.

computer-aided design or software development.
Group design applications, in particular, deal with
structured sets of data objects -- design drawings,

software modules -- and complex relationships among”

data, people, and schedules. Advanced programming
languages do provide excellent abstraction facilities for
these classes of data but with little support for data
storage and sharing. Application programmers write

their own data management functions in terms of files
and operating system calls.

The objective of this paper is to examine the data
management requirements of several cooperative work
systems. These include flexible object-oriented models
of data, maintenance of historical information, support
for conternt- and role-based access control, new
methods for dealing with concurrency, and techniques
for information sharing among distributed autonomous
systems. We will match these requirements with
current research projects in database and
orogramming technology such as "object-oriented
database systems"” and ‘“persistent programming
languages."”

In Section 2 of this paper, we describe three
cooperative work systems that we have built and their
storage management strategies. Section 3 identifies
common data management requirements, and Section
4 suggests supporting storage management
mechanisms.

2. Three Cooperative Work Systems

The three examples described in this section are
drawn from different application areas -- calendar
management and document preparation -- and span
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two modes of cooperative work -- real-time and
asynchronous meetings. Because of this diversity, we
feel confident that the requirements of these programs
are representative of the basic support requirements of
a wide range of cooperative work applications. Our
conclusions are supported as well by reports of similar
experiences in other research groups.

2.1. Calendar Management

MPCAL is a multi-person calendar system for meeting
scheduling and resource management. Each calendar
has a set of ro/e definitions and a specification of which
roles can be assumed by users. The system provides a
default set of role definitions so that the owner does
not have to describe all roles from scratch. These
defaults reflect some reasonabie expectation about
how an individual might wish to control access to his
calendar. The owner can modify the defaults and
define new roles, to reflect different preferences or a
different use of the calendar.

There are several types of calendars representing
schedules of a person, of a common resource (such as
a conference room), or of open events such as
seminars. The interfaces to all calendars are similar,
but they differ in their role definitions. For example, a
conference room reserved by a "sign-up sheet" is built
by using a "public” role that allows anyone to write a
confirmed appointment, but which allows no conflicting
appointments. Alternatively, a manager may have
secretary, team and public roles that enforce the
following:

ea "secretary” can confirm and cancel
appointments on his behalf,

= members of the "public" can only make

proposals for appointments; these
appointments must be confirmed (or
rejected) by either the manager or
secretary,

e the public can see only blocks of time
marked "BUSY,"

e members of the manager’s "team" can see
details of individual appointments. '

Meetings can be scheduled through MPCAL by

creating a "proposal” in a calendar. The proposal is
written as an unconfirmed meeting into calendars of
participants. (For each participating calendar, the
caller mus: be able to assume a role that permits him to
add proposals.) A participant receiving a proposal will
be notified when he next looks at his calendar. The
participant is expected to accept or reject the proposal
(which sets the meeting as confirmed in his calendar,
or deletes it), and his response is returned to the
meeting caller's calendar. The responses -- accept,
reject, hold, or no response -- are summarized for the
caller who may check the status at any time. If the
caller cancels or reschedules the meeting, the
participants are again notified.

2.2. Real-Time Conferencing
RTCAL is a real-time conferencing system in which
users share information from their personal calendars
in order to schedule a future meeting. Participants
speak to each other over a telephone connection and

use the computer display as a shared blackboard. A
“chairperson" invites participants and controls
conference activity. The shared workspace of the
conference includes a description of the meeting to be
scheduled, and a filtered view of participants’
calendars that shows only blocks of free and busy time.
Individual participants can see more detailed
information from their private calendars in a private
window. Only one participant at a time, designated by
the chairperson, can enter commands on the shared
workspace for browsing in the calendar and proposing
specific meeting times. Alternative proposals may be
made: participants vote on the alternatives and can
review the resuits. If one of the proposals is confirmed,
it is permanently installed in participants’ private
calendars.

The displays of the private and share:j workspaces
are next to each other on the screen so that as
participants browse in the shared space, their private
calendar displays change to show the same time
period. A participant may leave and rejoin the
conferencc at any time and may updale his private
calendar while away from the conference. When he
rejoins the conference, the participant's display is
brought up-to-date with the other participants, and the



shared workspace is updated to reflect changes made
to the participant’s private calendar.

2.3. Collaborative Document Editing

CES [21] is a Collaborative Editing System for a
group of co-authors working asynchronously on a
shared document. Storage of CES documents is
determined by the co-authoring arrangements: primary
authors of individual sections store their sections on
their own workstations but a document outline is
maintained at all sites. All co-authors can always get
access to the shared outline of the document.
Individual sections can be read by people who have
appropriate access rights.

Authors may work independently cn separate
sections of the document. If two or more authors try to
write in the same section at the same time, one of them
will be granted a "lock" and the others will be informed
of who holds the lock. The lock is obtained implicitly
when an author starts editing and is held as long as
some editing activity continues: the lock will be
released to a new co-author after an idle period. These
"tickle" locks are most useful in applications in which a
user may forget to release a lock when he stops
working. |If a co-author tries to edit while the current
lock-holder is idle, the lock will be released. In
anticipation of this event, small editing changes are
recorded on permanent storage on a regular basis
while the document is locked: if the lock is released
without the explicit consent of the author, his
committed changes will still be incorporated in the
document.

CES allows users to read text that is being modified.
If someone else is writing a section, the reader’s view
will be refreshed periodically as the section is updated.
While CES does not explicitly support real-time
conferencing, that functionality can be approximated
by multiple users viewing the same section and taking
turns updating.

2.4. Implementation Notes :
MPCAL and RTCAL were both implemented in CLU
[13], a language in which users can define new data

abstractions. CES was implemented in Argus [12];

which supports distributed programming using atomic
transactions and retains the data abstraction facilities
of CLU. The ability to define application-spccific
abstract object types contributed to the rapid and
reliable development of all three systems.

Interfacing with the file system for permanent storage
had several problems. First, since calendar objects
were stored in files, whole calendars had to be written
to files in order to record even small changes tc
individual appointments. Second, unlike most daia
bases which make it easy to add new fields to records,
CLU routines for mapping objects to files represent
data in a fixed way that rules out later changes to the
type. In anticipation of later data structure changes we
transiated from abstract objects into our own
extensible record structures for disk storage. Finally,
protection of files did not match with the access rights
needed in our applications. In order to realize the
desired behavior, it was necessary to leave files {2.q.,
MPCAL calendars) completely unprotected at the
operating system level. This solution would not be
acceptablz for a production system involving storage
of sensitive data in files since it leaves open the
possibility that users could access or modify files by
means other than the application program.

Concurrency centrol was dealt with in applicaticn
code in each of our programs. In MPCAL we took an
approach that maximizes concurrency at the risk of
having to back out of actions. If two users accidentally
enter appointments in the same time slot they will be
notified of the conflict and may then choose to take
compensating action such as rescheduling one or the
other appointment.

Even though CES was buiilt on a system that includes
locking and atomic transactions (as do many database
systems), it was necessary to implement additional
facilities at the application level; the built in locks did
not allow enough concurrency to users accessing
multiple versions. (See [9] for a full discussion of the
Argus impiementation.)

3. Data Abstraction Requirements
The example applications have many common



requirements for modeling and management of data,
which we describe in this section. Some of these
requirements are met in DBMSs, others in "object-
oriented" programming languages and systems.
Researchers in both areas are beginning to
incorporate features from the other (14, 17]; these
"object oriented database systems" (OODBS) are likely
to be the choice for building CSCwW applications of the
future.

3.1. Types, Relationships, and Inheritance
Conventional CBMSs typically support large
collections of objects of very regular structure, and
provide efficient associative access to objects based
on their properties and relationships. They are less
useful for storage and retrieval of unstructured
information such as chunks of text. Many group
applications require a synthesis of such unstructured
information with the more structured information
supported by DBMS. Object class hierarchies offer an
appropriate mechanism for integrating the two: less
Structured objects are members of classes close to the
root of the hierarchy, while objects with more regular
structure appear in object classes deeper in the
hierarchy. The Information Lens system [15] is an
example of a system that uses this principle to classify

electronic messages.

The ability to define relationships among objects is
important both within an application and to permit
integration across applications. For example, MPCAL
provided very little support (a text "comments"” field)
for unstructured discussion among the participants of
a meeting. It would have been considerably more
useful to be able to link calendar objects and mail
messages, so as to take advantage of both the
calendar tool and the mail systems when trying to
schedule a meeting. Systems that support structured
documents (such as Augment [6] and Intermedia {2ej)
typically provide one kind of "link" between objects
and allow the users to supply their own interpretations.
In DBMSs, on the other hand, relationships among
objects are classified into disjoint types and users are
forced to name the relationship type they wish to
access. If relationships can be treated as objects and
classified into a hierarchy of types, this would provide a

means for integrating the two ideas. An example in the
group work setting is the classification of link types in
TEXTNET [25]. The general ciass of "Argument” links
is used to relate a piece of text to a piece of supporting
text. Depending on the nature of the supportive
argument, an Argument link can be further classified as
"A-deduction,” "A-induction,"” "A-analogy,” or "A-
intuition.” A user browsing a text network can then ask
to see general support by following all Argument links,
or one specific kind of reasoning by following, e.g. A-
deduction links only.

3.2. Persistent and Transient Objects

Support for long-lived or "persistent” data (in a file
system or DBMS) is typically very different from the
support provided by a programming language for
short-lived or '"transient” data within a program’s
address space. This leads to problems in mapping
data between the two, as described in Section 2.4. In
addition, it is becoming clear that similar features are
often needed for managing both kinds of data. For
example, triggering reevaluation of derived data when
any of the underlying data has changed is needed both
in DBMSs and in systems displaying transient graphical
views of data [18]. Similarly, copies of replicated data
need to be coordinated in both long-lived distributed
systems (such as the outlines in CES) and in real-time
meeting support systems (such as RTCAL and Colab
[23]).

The integration of persistent and transient objects is
addressed in “persistent programming" projects such
as [1]. The uniform treatment of both kinds of data will
relieve th: application programmer from most storage
management coding.

3.3. Views

Most applications require access to information that
is derived or computed from other information, e.g., the
set of appointments falling on a given day in MPCAL.
In DBMSs, these are referred to as views. By allowing
users to treat views as full-fledged objects, the system
can insulate them from the details of how the view is
computed and whether or not it is stored to avoid
repeated reevaluation. Current DBMS view definition
capabilities do not include important functions such as



recursive traversal of hierarchical structures and
networks of links between objects; object-oriented
database systems are beginning to incorporate such
facilities [19].

3.4. Access Control

Qur application programming experience has shown
that constraints on group interactions are not easily
expressed in terms of traditional file system access
rights such as “"read"” and "write” for “"owner",
"group"” and “public”. Instead. more sophisticated
controls are needed, which take into account factors
such as the following:

* The operation being performed, which may
be an abstract operation other than read or

write.

e The "role" of the user performing the
operation.

e The relationship between the user’s

identity (or role) and object properties
whose values are user (or role) identifiers.
For example, an MPCAL calendar may
choose to allow only the user who created
a meeting object (and the calendar owner)
to modify or cancel the meeting.

= The contents of the database. In MPCAL,

it is possible to prevent users within a

given role to enter meetings that conflict

with existing meetings.
MPCAL’s role-based access control facilities included
the above capabilities, but using an ad hoc mechanism.
The ability to permit or deny access base i on arbitrary
database predicates is provided in sorne DBMSs; what
is needed to meet the above requirements is the
inciusion of roles and of abstract operations.

3.5. Meta-Data

In addition to representing and manipulating
application data (e.g., objects and relationships), a
system will also need to represent and manipulate
various kinds of "meta-data" about the system itself.
An example is a view description. If view descriptions
were made accessible to users. then they could easily
change the way they examine data, or change the ways
that data will appear to others. In MPCAL we built an

ad hoc roles definition facility with a special user
interface. To the extent that meta-data can be
represented using the same object model as
application data, users will only need to learn a single
interface for accessing all data.

4. Data Management Support

CSCW data management requirements can be met at
many levels of system architecture. Some features
requiring efficient storage techniques or high-speed
performance must be built into the storage
management system. Others that provide generic
abstractions for tailoring to application needs, may be
provided by data management tools that reside on top
of a storage management system. Most of the
requirements we discussed in the previous section can
be met through high-level abstractions written in
object-oriented programming languages and
underlying OODBS. In this section we consider
additional features that should be incorporated in the
storage management system for an OODBS. We
discuss them first for single logical "databases"
without regard to physical distribution of data; Section
4.4 covers distributed systems consisting of multiple
autonomous databases.

4.1. Versions

A DBMS is usually designed to represent current
data; but past data is used regularly in group work for
accountability, recovery and exploration of
alternatives. Many design applications require explicit
access to different "versions™ or "configurations" of
the same logical abstraction such as a manufactured
part or a software product. Automatic storagec of linear
sequences of versions is offered in many file systems.
More advanced version support systems (such as [11]
have extended this idea to include objects with
complex substructure (some of which may be shared
among versions), and multiple branching
"alternatives” or "layers". User interface facilities for
viewing “differences” between versions have also
been developed [5, 3].

In group work it is often useful to record how an
object was derived from versions of other objects. This
derivation can be represented by links among the



objects involved; the ability to link objects is a sufficient
base for constructing version support tools. In
addition, sfficiency dictates that information common
to multiple versions (of the "same" or "different”
objects) not be duplicated in storage. An example
system that provides this storage efficiency, and allows
applicatioris complete flexibility in constructing version
relationships, is the storage manager for the EXODUS
object-oriented database system [2].

In a multi-user system, it is important to record more
than the content of object versions: contextual
information such as who created an object version and
when will ailow object versions to be selected based on
properties of group interaction. In many applications, it
may be important to record not only the identity of the
user but also the role that the user was playing when
performing a given action (e.g., creating a given object
version). Computer conferencing systems need to
record what objects (or messages) a user has read.
Similarly, MPCAL keeps track of whether the calendar
owner has seen changes made by other users (e.g., a
secretary) to a given appointment. Most file systems
and DBMSs record a fixed set of such attributes. In
groups where people’'s working relationships may
change, it will be necessary to occasionally change the
properties on which to track versions. The ability to
define triggers on cperations can provide this flexibility.

4.2. Triggers

A trigger specifies an action to be taken automatically
when an event or condition is detected. (These are
conceptually similar to the rules used in knowledge-
based systems.) The event may be one of the
following, or a combination:

e The passage of time, past a specified
deadline.

* A predicate on the contents of the
database becoming true.

+« The invocation of a specified operation
(which may be the reading of an object);
the trigger may take into account the
identity of the user performing the
operation and his "role". (This form of
trigger was supported by MPCAL.)

Triggers support user notifications, as well as
automatic initiation of validation or ~ompensation
procedures. Ad hoc triggering mechanisms appear in
many systems, usually built into the application code.
For examplé, RTCAL will scroll participants’ private
windows when the shared workspace is scrolied, to
keep the two in unison, and will update the shared
workspace whenever a participant’s private calendar is
updated. MPCAL supported user-defined defined
triggers of a limited form, for notifications and
recording historical information. General-purpose
trigger mechanisms have begun to appear in DBMSs
such as POSTGRES[24] and Sybase Inc.’s
DataServer '™,

4.3. Updates and Concurrency

The conventional approach to ensuring datavbase
consistency in the face of concurrent access is to
ensure that each transaction on its own preserves
consistency, and that the effect of running multiple
transactions must be the same as if they had been
executed one at a time. The latter property is referred
to as transaction serializability. Transaction
serializability can be ensured using concurrency
centrol methods such as locking and timestamps. An
underlying premise ‘is that transactions will be short
and conflicts resolved quickly. If long user interactions
are managed in the same way, they can impose severe
limits on concurrency. For example, a user who holds
locks during an editing session will prevent other users
from accessing the same data. (This problem can te
particularly severe if there is a crash or network
partition in a distributed system such that it is
impossible to determine whether a transaction
committed or aborted and thereby release its locks.)

Several approaches have been developed to allew for
more concurrency, usually at the cost of a larger
number of transaction aborts. Most such approaches
either weaken or completely eliminate the ""read locks"
set on the possibly large amount of data that a user is
viewing. This can be done using "breakable" read
locks [7] that inform the transaction whenever the data
read has been changed. Or, read iocks can be
eliminated if the user agent remembers the version
identifiers of data that was read and. at the time of



committing the user's changes, verifies that none of the
data has changed. The Whiteboards system [4] uses
this method for multiple transactions, extending across
program invocations and system crashes, in effect
providing "long-lived" read locks.

If transaction serializability is to be preserved, a
transaction must be aborted if it is determined (by a
notification or when checking version identifiers) that
anything that the transaction read has changed. This
can be a severe problem if, as in many design
applications, it is desired to have “long transactions"
ihat last for days or weeks. To support long
transactions, it is necessary to reexamine the
serializability requirement, which was developed for
database systems in the interest of preserving integrity
constrainis. In many applications it is possible for
users to tolerate seeing inconsistent data [11]; they
may even want to share intermediate and possibly
inconsistent results with their colleagues. Thus, it is
necessary to support "composite' transactions that
are long-fived and may invclve multiple users. Such a
transacticn will be composed of short atomic
transacticns, which are still needed for preserving the
structural invariants of stored data, but the composite
transaction may not be atorﬁic as a whole. If
concurrent execution of such transactions leads to
inconsistencies, users (or automatically triggered
programs) can ''compensate” for the inconsistency at
their convenience. The methods described above
(such as weak read locks and version-checking) can
be important in knowing when compensation is
needed, but the effect of a change in a transaction’s
read-set should not force the transaction to abort. In
the object server described by [22], a transaction can
set "notify" locks on an object that it reads. If the
transaction receives a message indicating that the
object has been changed, it can react in any way it
chooses. e.g.. it may warn the user of the change “or
reevaluate its actions. A similar mechanism is also
used to implement triggers. In POSTGRES [24], a "T-
lock" is set on all data referred to in a trigger condition.
The lock notifies the DBMS to reevaluzte the trigger
condition if there is any change to the data. -

In [20], we presented a generalization of these locks
called reservations. A reservation associates an action

with an object. The action is triggered whenever the
object is accessed concurrently. For example, the
action can be a warning message stating that somecne
else is working on the same data and suggesting that
the user not update this data. Alternatively (or in
addition), a reservation may lock out concurrent
updates for a limited period of time only. The
expiraticn time for a reservation might be fixed, or
some mechanism for extending or renewing it (as in
CES tickle locks) might be provided. Reservations
open up a wider range of strategies by making it easy
to trigger user-defined routines to avoid conflict.

4.4. Autonomy and Multiple Databases

DBMSs support sharing by providing the logical view
of a single repository of information (which may be
physically distributed). Mail and massage-based
systems assume autonomous storage in mailboxes and
support transfer of data among these data bases.
Group data sharing involves a combination of access

to shared artifacts (designs, documents) and
communication among autonomous data bases
(private calendars, mailboxes). Group data
management systems must accommodate both

concepts and let the users control and modify the
tradeoff between the two. Users in RTCAL and CES

had autonomous control over their private databases.
but the sharing permitted across databascs was fixed
by the respective programs. MPCAL provided more
flexible control over autonomy and sharing, through its
role definitions.

The federated architecture of Heimbigner and
MclLeod [10] supports cooperation among autonomous
systems by allowing an individual database to
dynamically determine the "schema" of the data neld
by other databases. Systems negotiate for permission
to perform a given class of query or update operations
on another system. Replication can be supported by
permitting one system to maintain a copy of an object
from another system. Naming conventions (usually
some form of unique identifier) must be established to
allow update messages to refer to replicated objects.

Coordinated update to multiple databases can be
complicated by the fact that autonomous data bases
may not all be accessible at the same time. MPCAL



meetings could only be placed in a calendar if it was
available for update at the time the caller created the
meeting proposal. The system should provide
background processing that can monritor availability
and complete the full set of updates whenever
possible. Gifford and Donahue’s "persistent actions"
[8] or the "suspense file" of Tandem’s distriblted
database system [16] provide this functionality.

5. Conclusions

In summary, our experiences with several prototype
systems for cooperative work reveal unsupported
requirements for flexible data modeling consistent with
those addressed in OODBs and object-oriented
programming languages. Data management support
can be provided at many different levels of a software
architecture. Some capabilities such as memory
sharing for efficient version management should be
provided as part of the underlying storage
managemant system. Others, such as role-specific
views of object versions, may be provided in a
"toolbox" for cooperative work applications. The
impiementation of cooperative work tools at this levet
will be simplified once the proper low-level, generic
facilities are made available with acceptable
performance. Object-oriented data base systems offer
the potential for meeting these needs.
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