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Foreword

This report contains material distributed at the Cellular Automata
'86 conference, held at MIT on June 16-18, 1986. It includes summaries
of posters and computer demonstrations given at the conference. The
sumimaries provide a characteristic sampling of current research on the
theory and applications of cellular automata.

CA’86 was an open conference, intended to bring together the diverse
group of people now working on cellular automata. A cellular automaton
is an array (typically one- or two-dimensional) of idendical finite-state
computing elements, evolving in time according to a uniform local rule.
Cellular automata have been studied from many viewpoints over the past
thirty years, and accordingly have known by a variety of names, includ-
ing tesselation automata, iterative arrays, interacting particle systems,
homogeneous computing media, and systolic arrays, among others. To-
day they are emerging as important models for distributed processes in
physics, biology and elsewhere, supplementing the classical approach of
partial differential equations. In addition they provide a model for paral-
lel computation which respects at least formally the finite dimensionality
of physical space. For an introduction to cellular automata, the reader
is referred to D. Farmer, T. Toffoli, and S. Wolfram (eds.), Cellular Au-
tomata, (North-Holland, Amsterdam, 1984), S. Wolfram(ed.), Theory and
Applications of Cellular Automata, (World Scientific, Singapore, 1986),
and T. Toffoli and M. Margolus Cellular Automaton Machines. (MIT
Press, to be published).

CA’86 had over 160 participants, drawn from physics, mathematics,
computer science, and biology, as well as other fields such as economics
and art. It was by many standards an unconventional conference. The
primary form of presentation was posters, of which there were about 50.
Summaries of these posters comprise the bulk of this report. In addition
to the posters, there were many computer demonstrations; at the peak
of the meeting, these drew over 60 amperes. Several tutorial talks and
discussion sections were also held. Full-length papers describing many of
the results presented at CA’S6 will appear in forthcoming issues of the

new journal Complez Systems. The papers will also be published in boolk
form.

Charles H. Bennett
Tommaso Toffoli
Stephen Wolfram

CA’86 organizers



Cellular Automata ’86

MIT, June 16-18, 1986

CA '86 was organized by:

Charles H. Bennett (IBM Research, Yorktown Heights)
Tommaso Toffoli (MIT Lab. for Computer Science)

Stephen Wolfram (Center for Complex Systems Research, University of Illinois at
Urbana-Champaign)

with administrative support from:

Gayle Fitzgerald (MIT Campus Information Services)
Tania Erlij
David Zaig

The conference was made possible by support from:

IBM

MIT Laboratory for Computer Science
National Science Foundation (to be confirmed)
Thinking Machines Corporation

The following kindly loaned equipment and other items:

Apollo Computer Corporation
Datacube Inc.

Kloss Video

Mercury Computer Systems
Ridge Computers

Sun Microsystems

Systems Concepts

MNote: This conference booklet will be available after the conference as an MIT
Laboratory for Computer Science Technical Report.



Cellular Automata ’86: Poster Presentations

(as of June 12)

Peter Albin (CUNY): Economic data structures

4. Axelrad, B. Giraud and C. Bemard (CHU Pitie Salpetriere): Realistic dynamics of neural net-
works models with discrete time iterations: restricted number of simultaneously “‘active’
elements

S, C. Baer: Problem solving cellular automata
B. Boghosian and D. Levermore (Livermore): A cellular automaton for the Burgers equation

T. Bohr (Oersted Inst.), G. Grinstein (IBM), Yu He and C. Jayaprakash (Ohio State University): Coher-
ence, chaos and broken symmetry in classical, many-body dvnamical systems

R. Brower, R. Giles (Boston University) and G. Vichniac (MIT): Oscillatory solutions in cellular
automata Ising models

David B. Brown (University of Toronto): Rule competition in cellular automata

Christopher Burges and Stephane Zaleski (MIT): Thermal effects in lattice fluids with nearest neigh-
bor interactions

Michael E. Colvin and Frank H. Eeckman (UC Berkeley): A cellular automaton model for the cere-
bral cortex

T. Cloney, E. Goles and G. Vichniac (MIT): Iterative integer functions as pseudo cellular automata:
the 3x+] example

1. P. Crutchfield (UC Berkeley) and N. H. Packard (University of Illinois): Bifurcations in discretized
spatially-extended systems

K. Culik T (University of Waterloo): On the power of undirectional and totalistic cellular automata
and the existence of a small universal CA

Jonathan Doner, Stuart Hinds and Jefferson Doner (University of Virginia): Organizational automata
Stephen W. Fosdick: Three dimensional displays of cellular automata

Peter Gacs (Boston University): Reliable computation in 3, 2 and 1 dimensions

David Griffeath (University of Wisconsin): Stochastic cellular automata

Gerhard Grossing and Anton Zeilinger (University of Vienna): Quantum cellular automata

Puhua Guan and Yu He (Ohio State University): Bound of short cycies of border decisive automata

H. Gutowitz, J. Victor and B. Knight (Rockefeller University): Local structure theory for cellular
automata

H. Hartman, W. Klein, P. Tamayo and G. Vichniac (MIT and Boston University): Statistical mechan-
ics of inhomogeneous cellular automata

B. Hasslacher and T. Shimomura (Los Alamos): Lattice gas hydrodynamics
M. 1. Hofmann (University of Toronto): A cellular automaton model based on cortical physiology

Lyman P. Hurd (Princeton University): Formal language characterizations of cellular automaton
limit sets



Poster presentations

Joel D. Isaacson (Southern Illinois University and IMI Corp.): Dialectical cellular automata for low-
level intelligent computing

Erica Jen (Los Alamos): Global properties of elementary cellular automata
Erica Jen (Los Alamos): Pattern recognition using cellular automata

Steven D. Kugelmass and Kenneth Steiglitz (Princeton University): Architectures for cellular auto-
mata machines

Christopher G. Langton (University of Michigan): Virtual state machines in cellular automata

Yann Le Cun (Ecole Superieure): Learning algorithms for multilaver networks of threshold auto-
mata

Myoung S. Lee and Gideon Frieder (University of Michigan): Configuration of defective cellular
array

Wentian Li (Columbia University) and Stephen Wolfram (University of Illinois): Cellular automata
spectra

Daniel G. Maeder (University of Geneva): The free energy concept in CA models of phase transi-
tions

N. Margolus (MIT): Partitioning cellular automata and other topics

G. McNamara and G. Zanett (University of Chicago): Direct measure of viscosity in a lattice gas
model

Bruce Nemnich (Thinking Machines) and Stephen Wolfram (University of Illinois): Cellular automa-
ton hydrodynamics

Andre J. Noest (Netherlands Inst. for Brain Research): New universality for stochastic CA-models of
disordered excitable media

A. Noullez (Universite Libre de Bruxelles), D, d'Humieres, P. Lallemand and Y. Pomeau (Ecole Nor-
male Superieure): 2-d lattice gas cellular automata compressible flows

M. H. Packard (University of Illinois): Deterministic lattice models for interface dynamics

Charles Platt (New School for Social Research): Simplified cellular-automaton software for the IBM
personal computers

Ken Porter (Systems Concepts), Norm Margolus and Tom Toffoli (MIT): CAM-6: a cellular automa-
ton machine

Jerome Rothstein (Ohio State University): Bus automata: cellular automata with global dynamic
variability in choice of effective neighbor sets for each cell

Jim Salem (Thinking Machines Corp.): Cellular automata on the Connection Machine: The cellular
automaton toolkit

Rob Shaw (Institute for Advanced Swmdy): Information density near a phase transition
Brian Silverman (Logo Computer Systems): Cellular automata circuits

Kim Strohbehn et al. (Johns Hopkins University): Demonstration of a pipelined VLSI based cellular
automaton processor

John Stamey and D. E. Stevenson (Clemson University): Time-varying cellular automata
Karl Svozil (Technical University Vienna): Evidence that quantum fields are no cellular automata

N. Tufillaro, J. Reilly (Bryn Mawr College) and R. Crandall (Reed College): Cellular automata as pop
art



Poster presentations

Gerard Y. Vichniac (MIT): Boolean calculus on cellular automata
Gerard Y. Vichniac (MIT): Learning physics with cellular automata
P. C. Williams (Brown University): Continuous time cellular automaton simulator

Stephen Wolfram (Thinking Machines and University of Nlinois): Minimal cellular automaton
approximations to continuum systems

David A. Young (Livermore): Simulation of biological and social systems with cellular automata



ECONOMIC DATA STRUCTURES -- Peter Albin, CUNY

The familiar characteristic diagrams of the time evolution of 1dCA's are
reminiscent of a common format for economic data -- rectangular arrays giving
cbservationa on firma (rows) over time, The resemblance is more than
superficial. There are several important classes of dynamic economic models in
which a firm’a expectationa and actiona are satrongly influenced by recent actiona
of ita economic neighbors: competing firme within an industry, suppliers,
customers. In many of theae models the relevant expectational information is
gualitative in nature and representable by state wvariables: Are firms in the
neighborhood now discounting a previously stable price? Do neighboring f£firms’

actions signal a {(weak, normal, strongl market?

After appropriately specifying economic "closeness” in the model topolegy, one
can employ the 1dCA aa an experimental framework for exploring the statistical
use such data. Appropriate contexts include: a) clustering bshavior in spatial
narkets -- e.g., "price wara" among gaacline stations with overlapping market
areas along a stretch of highway, also pollution and crowding effects; b}
stability in capital accumulation where the investment decisions of individual
firms are interactively based on expectations data; ¢) persistant inflationary
proceasesz, e.9., the diffusion of “petroleum shocks:" d) problems of stabilizing
Lne macro-economy with non selective policy inatruments.

The research tools are essentially those used by Wolfram to compile qualitative
aynamics and statistical properties. Among matters of interest to economists are
: 1) implications to forecastera of computation-irreducible data atructurea: 2)
relationships between firm decision criteria and the gualitative system dynamics
they induce; 3) effecta on aystem properties of complex within-industry
interactions such as oligopolistic price leadership; 4) qualitative effects when
firms ‘"adapt" their expectations:; 35) tendencies towards self-organization or
"sorting" as occurs in “racial tipping;" &) qualitative effects on system dynamics
of "atabilization" attempts.

The last situation is 1llustrated below for a 3-state model of capital
accumulation specifying a 5S-site neighborhood of firms. Grey, white, and black
represent below-normal, normal, and above-normal inveatment, reapectively {(values:
-1, WV, +1i}l. “Normal" investment is that level of firm investment which is
conslistent with suatainable economy-wide growth [Albin, 19861. The graph to the
left plots the algebraic sum of firm actions. After distributing an initial shock
to the ayatem, the model ia run for 20 perioda to eatablish ita dynamics. After
verioa Z1 the Federal Reserve; which is, in effect, a neighbor of each firm;
pasaes & control signal to the aystem according to whether the sum of asite values
i5 above or below an action threshold. The signal -- e.g., a change in interest
rates -- 18 perceived by each firm as the equivalent of an action by a firm in its
neignhbornood. As can be readily seen, the system trajectory is dramatically
aitered by the intervention ("countercyclical"™ in periods 21-40, “procyclical,"

tnereatfter). The 1dCA approach provides the first demonstration of a
long-suspected effect.
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REALISTIC DYNAMICS OF NEURAL NETWORK MODELS WITH DISCRETE TIME
ITERATIONS : RESTRICTED NUMBER OF SIMULTANEOUSLY "ACTIVE" ELEMENTS.

H. AXELRAD, B. GIRAUD & BERNARD C.
Lab. Physiol. - CHU Pitie-Salpetriere ; Paris 13 - France

Cellular automata and/or spin glass type mathematical treatements are now
commonly used to mimick and gain better understanding of such global problems
of CNS functionning as “memory" or "pattern recognition". In particular the
Little-Hopfield type models of formal neuron networks have recently allowed
much numerical as well as analytical progress. However these approaches tend
to underestimate the strenght of all the biological constraints with which

the CNS has to cope, as is apparent from morphological as well as physiologi-
cal data.

In particular, in the original McCulloch-Pitts theory and in von Neumann's
cellular automata the temporal coordinate is represented by a sequence of
discrete instants, with all changes in the activity of the network happening
between one instant and the other. Moreover, integration of Hebb's rule for
synaptic changes implies, in these networks, random sequences of excitatory
(+) and inhibitory (-) signs assigned to the elements, with essentially as
many (+)'s as (-)'s. In real neuronal structures physiological evidence indi-
cates, on the contrary, that at a discrete instant there are many more "silent"
neurons than "active" ones.

In order to assess the ratio of active elements to total number of elements we
have used a realistic dynamic modelisation of a network of cellular automata.
1- network size was in the range 50 to 500.

2- "activity" was implemented in each neuronal automat as a train of lmsec
duration spikes.

3- a random number generator driven by different functions (Gaussian, Poisson,..)
gave the instantaneous interspike interval (isi) with only the global mean

isi being fixed.

4- the fixed levels of mean isi's were in keeping with physiological data
recorded from different structures (40 ; 70 ; 100 msec.).

The calculation of the abovementionned ratio in these conditions shows that,
contrary to what is generally implied, only a fraction - in the order of 10% -
of the total number of elements are active at a discrete time instant.

It thus appears necessary to develop methods able to integrate such constraints
in existing models.



Problem Solving Cellular Automata S. C. Baer

A neural machine for association and problem solving is described in the cellular automaton
format, and results with its implementation on CAM 5 briefly discussed. In the past, many neural
network association machines have been proposed and simulated, but these have not dealt with
problem solving. In a typical neural association machine, containing time ordered Hebb synapses
(which strengthen when and only when postsynaptic activity follows presynaptic activity), the
presynaptic cell codes for events generally happening before events coded by the postsynaptic
cell, ie., their "causes.” Hebb synapses contain a synapse strengthening signal which travels
backward from postsynaplic cell {o synapse, and therefore (in the time ordered case) passes from
neural regions representing events to regions representing their causes.

Besides triggering synaptic strengthening, backward signals in the present machine search
for goal causes, like the backward chaining signals in Newell, Shaw, and Simon's General Problem
Solver. To tap the previously unused problem solving talent of Hebb backward signals, the
machine contains l)means synthesizing backward signals in cells representing current goals,
2)means extending the range of the backwanrd signals further than in Hebb synapse models (to
allow computed goal causes to search fortheir causes etc.) and 3)means transducing the
backward signals into "instant replay” of recent forward signals through a cell (to highlight
computed goal causes which are also in the immediate environment). Since spikes carry forward
information through the brain, the backward signals are called psikes.

In the present ca!-.Lular automaton implementation, each cell is characterized by five bits,

‘r’1 ;. \’5{1} Only Yy, a and Y 4 directly influence neighboring cells, and correspond to
prasynapnc spike nutput psike nutput and "output synaptic strength” respectively. Of the 8
nearest neighbors, the n (north) and sw neighbors supply excitatory spike input, nw supplies
inhibitory spike input, s and ne supply excitatory psike input, and se supplies inhibitory psike
input. Rules for innate and learned connections between cells were chosen to maintain
forward-backward reciprocity, so if spikes from cell A reach and excite cell B, in general, psikes
from B reach and excite A. Each cell also has a one bit "sensory input” line Z(t), a one bit "hunger
input” line, and and a one bit "reward input” line. Yj is the output of a rapidly decaying integrating
circuit "short term memoary” which monitors recent spuka input to the cell; its output both gates
psike conductivity and feedback regulates average spike output. Y, is the output of a slowly
decaying integrating circuit “long term memory” which monitors l‘ong term psike flow and
regulates "synaptic conductivity” for both spikes and psikes. Y5 is the output of a long term
integrator measuring correlation between reward and a cell's preaynapt:c spike output. The
transition rules for each cell are shown by the diagram below. The integrating circuit is shown in
detail; Py, and P are random binary variables of probabilities, for example, of 3/16 and 15/16
respacﬂv;ﬂy for Ihe short term integrator, and 1/16 and 255/256 for the long term integrators.

This machine, implemented on the CAM 5 in the MIT Lab. for Computer Science in
collaboration with Pablo Tamayo ( thanks to Tommaso Toffoli and David Zaig) has already
suggested "associative leaming.” Tests for its problem solving ability are underway.
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A Cellular Automaton for the Burgers Equation

Bruce Boghosian
M-Division, L-630

Dave Levermore
A-Division, L-16

Lawrence Livermore National Laboratory
Livermore, California 945850

Abstract

We study the approximation of solutions to the Burgers
equation

drp + Caylp - 1/2 p2) = vayyp (1)

by spatially averaging an automaton motivated by random walks
on a line. The game consists of moving "particles" on a
one-dimensional periodic lattice with speed one and in a random
direction subject to the exclusion principle that at most one
particle may move in a given direction from a given lattice
site, at a given time. The exclusion principle gives rise to
the nonlinearity in (1) and introduces correlations between the
particles which must be estimated to obtain statistical bounds
on the error. These bounds are obtained in two steps. The
first is showing that the ensemble average of the game is a
stable explicit finite differencing scheme of (1) over the
lattice with a second order convergence in the lattice

spacing. The numerical diffusion of this scheme plays an
important role in relating the automaton rules to (1). The
next step is showing that the spatial averaging of a single
game converges to the spatial averaging of the ensemble as
M-1/2 where M is the number of lattice sites averaged.
Calculations will be presented.



Coherence, Chaos, and Broken Symmetry in Classical,

Many-Body Dynamical Systems

T. Bohr
Oersted Institute

Copenhagen

G. Grinstein
IBM TJ Watson Research Center

Yu He and C. Jayaprakash
Department of Physics
The Ohio State University
174 West 18th Avenue
Columbus, Ohio 43210

Abstract

We have studied the effect on the non-stationary states of discrete
dynamical many-body systems of the fluctuations neglected in
zero-dimensional approximations. Our results have been derived in the
context of nolsy coupled maps on a d-dimensional lattice, though they
apply equally well to fully probablistic cellular automata. Analytical
arguments and numerical simulations are employed to deduce the phase
diagram in the space of noise amplitude and the control parameter of
the map. A noteworthy point is that there is no distinct chaotic
phase, i.e., no phase in which the time translation symmetry is
completely broken so that the average value varies chaotically in
time. The nature of the transitions have also been investigated.



Oscillatory Solutions in Cellular Automata
Ising Models

R. Brower
R. Giles
College of Engineering
Boston University

G. Vichniac
Laboratory for Computer Science
Massachussets Institute of Technology

The special case of nearest neighbor *“heat bath” algorithms imple-
mented in serial or parallel (i.e., as cellular automata) are realizations of
some of the ideas discussed by Grinstein, Jayaprakash, and He (Phys. Rev.
Lett. 55 (1985) 2527). In particular, the parallel Heat Bath Monte Carlo
dynamics can, by a remapping of variable labels, be shown to be equiva-
lent to a pair of interleaved non-interacting serially updated theories. This
example shows that, contrary to the expectations of Grinstein et al, there
can be Hamiltonian Systems with oscillatory behavior. Some observables
(e.g., the staggered magnetization) are not stationary. The oscillatory so-
lutions thus have a2 non-Boltzmann character, although they are regular
Perron-Froebenius eigenvectors of the Markov process. This rich behavior
is characteristic of cellular automata; it does not occur in standard statis-

tical mechanical models (cf. Bennett and Grinstein, Phys. Rev. Leit. 55
(1985) 567).



Rule Competition in Cellular Automata

by David B. Brown
Dept. of Zoology , University of Toronto

A fundamental mechanism in the evolution of biclogical
systems is competition. The competitors are individuals and
the fittest survive to dominate the population as a whole.
Each organism exhibits a complex range of behavior that is
selected as a single coupled behavioral set.

Competition and selection can be drawn into cellular
automata theory by introducing several automaton rules and
allowing them to compete for cellular space. Competition
takes place in regions where different rules are locally
adjacent and selection is based upon a master rule.

The pairwise competition between all k=2, r=2
totalistic rule' one dimensional cellular automaton rules is
examined. The class of master rules, used in the survey,
describe rule evolution over a ring solely on the basis of
site states and reduce to an identity mapping when only one
automata rule is present in a region. Rule choice by the
master rule class is limited to those rules found in the
neighborhood of a site.

Qutcomes of the pairwise competition were » in almost

all cases , independent of the specific master rule chosen
from this class of master rules.

Bibliography

1. Wolfram , S. Universality and complexity in Cellular
Automata, Physica 10D (1984) 1-35



THERMAL EFFECTS IN LATTICE FLUIDS WITH

NEAREST NEIGHEOR INTERACTICNS

Christopher Burges and Stephane Zaleski

Department of Mathematics, Massachussets Insititute
of Technology, Cambridge, Ma 02139

There has been much interest recently on the modelling of fluid

phenomena using lattice gas models that can be implemented as a cellular
automaton. In the models proposed so far, fictitious particles travel

on a regqular lattice, conserving momentum and particle number when

they collide.the velocity of the ficitious particel is always ocne or

zero, so that at each time step, a lattice node interacts only with

its nearest neighbors, allowing an easy implementation as a CA. The average
prfogberties of the fluid are now the same as those of an incompressible
fluid obeying the Navier Stokes equations.

To extend this model to other physical situtions in fluids would be

of great interest. An obvious improvement would be to add thermal

effects to the models. As they now stand, all particles have velocity

one and the temperature is fixed. A simple cure would be tc allow for

several velocities. This however implies that one allows particles

to hop to distant sites. The simplicity of the model with nearest neighbor
interactions is lost. We have investigated various ways of introducing thermal
effects while allowing particles to jump tof nearest neighbors only.

To model some thermal effects, it is iﬁﬁportant to notice that in many
flows of geophysical or technological importance, the thermal effects

come in only through a bt.f{ant force, and can be neglected altogether
ctherwise. Thus it is not necessary to use the equation of state of the
fluid but to derive the bucyant force. One thus cbtains the Boussinesqg
approximation te the Navier Stokes equations. We do the same approximation
for the lattice gas and introduce the buoyant force via an external force
field acting on charged partig8ls. The resulting equations are the

Navier Stokes equation for the mixture of the two type of charged particles
and the diffusion equation for the charge density. This exactly

the Boussinesq approximation, and it also applies to salt convection
effects.

The preliminary result we present include a derivation of the diffusion
equation for the charge, and a numerical check of the analytical expression
for the diffusion coefficient. The Chapman Enskog and Boltzman equation
approach yield very satisfactory results for this coefficient. This

in turn allows to predict the range of Rayleigh numbers realizable

with existing computing facilities. Methods for varying arbitrarily the
diffusion coefficient and viscosity are presented.



ITERATIVE INTEGER FUNCTIONS AS
PSEUDO CELLULAR AUTOMATA: THE 3x+1 EXAMPLE

T. Cloney, E. Goles,! and G. Vichniac

Laboratory for Computer Science
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

When the iterates of an integer function are tabulated in base 2, they may exibit
patterns similar to those of one-dimensional cellular automata. The bit patterns make

visible important features of the evolution of these iterates. The figure shows the first
751 iterates of the ‘3z+1’ function

3z+1 if zodd
z/2 if zeven

with an initial value of
235U + {ESDD = l}gm + 33&2400 i 275':-‘ e 2551:"

The well-known unproven conjecture® is that, for all initial conditions, the iterates
eventually enter a 4-2-1 cycle, i.e., the bit pattern shrinks to the left.

!Current address: Dept. Math. Esc. Ing., U. Chile, Casilla 170, Correo 3, Santiago, Chile.

25ee the recent reviews by B. Hayes (Sci. Am. 250:1 (Jan. 1984) 10-13), and by J. C. Lagarias (Am.
Math. Monthly 92 (Jan. 1985) 3-22).



A Cellular Autcmata Model for the Cerebral Cortex
Michael E. Colvin
Dept. of Chemistry, U.C. Berkeley, Berkeley, CA 94720

Frank H. Eeckman.
Dept. of Physielogy, U.C. Berkeley, Berkeley, CA 94720

We have constructed a general mathematical model for cortical
tissue. This model is based on a three state stochastiec cellular
automata with a hexagonal close packed array of cells. Each cell can
represent either a single neuron or a highly connected group of neurous.

We have implemented this model in a computer program capable of
using any specified interaction rule to update synchronously or
asynchronously a lattice of up to several hundred thousand cells. The
program incorporates a Hebb-type modification routine te allow continuous
modification of synaptic strengths. We have used this model to
investigate the emergent properties of a network of cells interacting via
an "inverse Laplacian" function. More precisely, each cell is connected
to its six nearest neighbors by an inhibitory synapse and to its twelve
next-nearest neighbors by an excitatory synapse. Such an interaction rule
has been suggested by the anatomical work of Ezentagathail and the
theoretical work of Falmz.

This system displays content addressable memory. Furthermore, this
system can support long lived, regular oscillations whose period and
amplitiude are determined by the initial activity patterns. The system
can tolerate a certain degree of asynchronicity in updating without
qualitative changes in the oscillations or the system's capability
to act as a content addressable memory.
lJ. Szentagothia, Proc. R. Soc. Lond. 201 219, 1978.

2G. Palm, Neural Assemblies (Berlin: Springer 1982).




Bifurcations in Discretized Spatially-Extended Systeme

1. P. Crutchfield N. H. Packard
Physics Department The Institute for Advanced Smdy
University of California Princeton, NJ 08540
Berkeley, CA 94720
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We examine the qualitative behavior of spatially-extended systems discretized in time and space with continuous
local variables, called lattice dynamical systems. When these systems are approximated using a finite number of states at
each site, the resulting system is a cellular automaton. The number of states per site, or resolution, can be thought of as
the arithmetic precision with which a continuous-state lattice dynamical system is simulated. As parameters are varied, a
continuous family of lattice dynamical systems is obtained. Qualitatively different behavior along this path is separated
by structurally unstable systems at bifurcation points. The discrete sequence of cellular automaton rules obtained by

discretization inherits the bifurcation structure of the one parameter family of lattice dynamical systems. In fact, we find
that bifurcation sequences are preserved even under radical discretization.

A typical bifurcation sequence is illustrated in the figure above. The dynamical rule giving the time evolution of
each site value g; is @ composition of two simple functions: first the discrete approximation of the diffusion operator is
implemented by taking the average of a site with its neighbors, d; = (a_+a+a;;)/3, and then this value is operated on by
a simple one dimensional map, a'; = fi(d;) = Ad(1-4)). The sequence illustrated is obtained by varying lambda: (a)
A=3.5, locally periodic behavior; (b) A=3.7, local chaos; (c) A=3.8, the transition to global chaos; (d) A=39 global chaos,

The bifurcation to global chaos (c) displays complex spacetime transients; in a cellular automaton finite-precision
approximation, these become propogating structures similar to those found in cellular automata proposed to be computa-

tion universal. Thus, we find that space-time structures of potential use in cellular automaton engineering are found in
systems at bifurcation points.

"Permanent address: The Center for Complex Systems Research and the Physics Department, University of Illinois, Champaign, IL.



On the Power of Undirectional and Totalistic
Cellular Automata and the Existence of a Small Universal CA

K. Culik IT
University of Waterloo
Waterioo, Ontario, Canada

S. Wolfram calls a cellular automaton totalistic if the states of its cells are integers and the next state of
each cell is a function of the sum of the states in its neighbourhood. D. Gordon [G] has shown that
every Turing machine can be simulated by a totalistic linear cellular automaton. It is also easy to show
that every CA can be simulated by a totalistic one (which implies the former). We generalize the latter
result to every (finite or infinite) “‘regular” systolic network, with a very broad meaning of regularity.

A unidirectional (one-way) CA is a linear cellular automaton in which the neighbourhood for each cell is
B0, As a second “normal form™ result we show that each CA can be simulated by twice slower unidirec-
tional one. This is perhaps surprising, but quite easy to show using the “topological transformations of
unrollings” (see [CF], [CY]). Finally, we strengthen the result of Smith [S], that there exists a computa-
tionally universal CA with 18 states, i.e. a CA which given a description of a Turing machine M and
input x simulates the computation of M on x. We give a universal CA with 16 states which can simulate
every other CA with any initial configuration (see problem 15 in [W]). Moreover, if we are willing to
increase the number of states we can use the above normal form results and make our universal CA total-
istic and unidirectional. However, the construction of our universal CA uses the above normal forms
even if we do not want to make it unidirectional and totalistic.
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Organizational Automata
Jonathan Doner, Stuart Hinda & Jefferseon Doner

Dept. Biomedical Engineering, University of Virginia
Charlottesville, VA 22908

Cellular automata (CA) are arrays of elements which compute global
functions on the basia of local transition rules. In most recent work
cn CA (e.g., see 1), automsta tranaitiona are governed by deterministic
counting rulea over the Moore or Von Neumann neighborhooda. We preaent
results concerning a different claas of CA that are stochastic func-
tions of variably structured neigborhoods. Our intereat in this class
of CA derives from our modelling of reorganization processes in neural
eenory driven by random decay.

Consider an NxM array, 2, of cellular automata. Each CA, can take
on any of three posaible atates., State transitions in Z are determined
by a atochaatic proceas such that asutomata randomly change state over
time (random decay). The transition of any given CA, however, isa
inhibited as a function of & decay parameter and the gquentitative
organization of the local neighborhood of the cell. In other worda,
generally, the more organized the neighborhood of &an automaton the
lower the probability that it will undergoe state tranaition.

Each CA computes organization for one or more neighborhoods con-
sisting of some configuration of four adjacent cella. Organization is
deternmined on the basis of both local and global propertiea of Z. A
detailed explanation of the organizational function ia given in (2).
We have examined & number of characterizations of the transition
function. In the results discussed below, state transitions are
nodulated relative to an organizational threshold. The probability of
transition goes to zerc aa the local organization approaches the
threahold value,

Results indicate that random initial patterna can self-orgaenize as
a function of the structure of the local neighborhood and the thresh-
hold value, Examples of organized patterns for varying neighborhoods
are shown in the accompanying figures. Succesive incrementing of the

threshold increases organization up to a critical limit. Beyond this
limit organization rapidly destablizes and undergoes random £luc-
tuation. Self-organization involves two stages. In the first, organi-

zation is triggered by a select class of subpatterns in the array. The
second stage is marked by the segregation of subpatterns into high and
low {frequency componenta. A further result is that competition among
neighborhoods of different configurations can modify organization.

We are extending this approach
interaction of multiple arrays of CA.

to processes involving the
Thia work has application to

theories of memory and the understanding of organizational complexity.
In addition, it may aid in the development of fault-tolerant memory
systems.

tl} Wolfram, 5., Farmer, J.D. & Toffoli, T.
ceedings of an Interdisciplinary Workshop.

Cellular Automata: Pro-
hysica D, 1584, 10.
(2) Doner, J.

Pattern Organization. Under revision for publication.
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THREE DIMENSIONAL DISPLAYS of CELLULAR AUTOMATA
by
STEPHEN W. FOSDICK

The primary methods for displaying cellular-sutomation models have been computer Iir!e
printers and video terminals. This has enabled studies to be made in two dimensions, typically
line by line, on & printer or a screen at 8 time on & terminal.

The motivation to view the output from calculations producing deta in a three dimensional
spatial domain necessated the need to construct a relatively low cost display capable of
producing real images in three dimensions.

The costs for treditional, real-time, three dimensional displays heve been beyond the means of
many researchers, Real-time display is only important when the output needs to be viewed by &
researcher at & rate within human techistoscopic bandwidth. In many cases, the final display is
the end result of many high speed calculations. If the only compromise is to the real-time
parameters of the display, then the following method described will produce high resolution,
three dimensional cellular sutomata at low cost.

The method consists of having relative motion between a camera and a computer video
terminal. In the interest of moving the smallest mass, the camera was selected to be the moving
element. The camera is placed on a linear slide, driven by a stepping motor, controlled from &
computer that moves the camera closer or away from the computer screen. The video terminal
produces an image one screen at a time in X" and Y™ .The camera moves in the “Z" direction. By
photographing sequential screens, a three dimensional image is created as one would view slices
of bread in a semi-transparent loaf. Cell density is adjusted for better viewing of internal aress.
Stereoscopic viewing of cellular sutomata is possible by substituting a stereo camera for &
single lens camera.

The above technigue can be utilized in an additional manner by substituting the video screen
with two stepping motor's that can move a light source in concentric spheres. Motor "A"fs
mounted at a right angle on the shaft of motor "B~. The light source is mounted on the motor “A”
shaft end hes provision for adjusting the radius from the “A™ motor shaft.

The conclusion of the work demonstrate that three dimensional analysis of cellular sutomatons
can be performed at relatively low cost, or at lower cost than previous methods, thereby
expending the field of investigation to more researchers.



Reliable computation in 3, 2 and 1 dimensions

Péter Gacs
Boston University

Cellular arrays give, for several reasons, the appropriate formalism for building arbitrarily large com-
puting devices from unreliable elementary components. A related problem is whether, in a large homogenous
probabilistic systemn with no prohibited transitions, structures of arbitrary sophistication can arise.

1. The first known (infinite) cellular array (medium) capable to remember a bit of information reliably
was constructed in [T 74]. It was conjectured by statistical physicists that no such one-dimensional medium
exists. In [G 85], John Reif and the author applied Toom’s construction in [T 78] for the three-dimensional
real-time reliable simulation of an arbitrary one-dimensional medium. Just as Toom's rule, the three-
dimensional medium is simple. Each bit of information is encoded in a two-dimensional array (torus) whose
size is logarithmic in the size of the computation (space - time]. Within each torus, Toom’s rule is performed.
The proof method used (the so-called k-sparsity technique) seems to seems to be a powerful one, applicable
to different kinds of stochastic homogenous media.

2. A three-dimensional error-correcting medium is not realizable physically, since each component
produces heat at a constant rate. A fwo-dimensional medium is possible, sacrificing some simplicity. To
initialize the work of this medium, cells must be organized into a hierarchy of blocks. Each block has a
program (the same for all blocks) that the individual cells (subblocks) consult during & working period of
error-correction.

Three kinds of error can be distinguished (relative to a particular level) in such organizations: informa-
tion errors, structure errors and program errors. A program or structure error on some level of the hierarchy,
will be simply seen as a group of information errors from the viewpoint of lower levels.

Information errors are the ones correctable by traditional encoding-decoding and repetition techniques.

Strueture errors affect the parameters of the error-correcting mechanism. This structure can be kept
simple and homogenous on each level, so that Toom's rule (applied on each level) suffices for its correction.

A program error occurs if the program of a block is damaged. A procedure can restore it, using Toom's
rule, from the neighbor blocks, but—-a subtlety—this procedure must be administered by the program of the
individual cells (subblocks) in the block. As an alternative, the cells may simply know the program of the
block they are in. This séems to happen in complex biological systems: each cell contains the genetic code
of the whole organism.

3. It is possible to build a one-dimensional error-correcting medium, refuting the conjecture mentioned
in 1., as is done in |G 83], using some ideas from the “philosophical” paper [K 78). Structure correction
must be done in = m~r= ~ mplicated way since there is nothing like Toom’s rule in one dimension.

The space redundancy in 2. and 3. can be reduced to a constant factor. However, the simulation is no

more real-time: a logarithmic delay is introduced, since repetition is used for the correction of information
errors.



Stochastic Cellular Automata

David Griffeath (Mathematics Department, University of Wisconsin)

The mathematical theory of stochastic cellular automata, known to
professional probabilists as interacting particle systems, has been a subject
of vigourous research over the past 20 years. The recent book by T.M.
Liggett, Interacting Particle Systems (Springer, 1985) provides an excellent
overview of the subject. Almost all of this theory deals with systems which
have two states per site (on/off, infected/healthy, pro/fcon, occupied/vacant
or whatever). I am currently initiating a major project which investigates
systems with more than two possible states (colers, say) per site, perhaps a
very large finite number, or even infinitely many. Such models are usually
less tractable than the 2 state systems which are bad enough to begin with.
But one can always simulate, hope to find interesting new types of ergodic

behavior, and perhaps discover some mathematically tractable results.

For simplicity I am locking at a small but very rich class of dynamics for
models in the plane. Namely, each site waits a random amount of time and then
"eats" a neighboring site (i.e. replaces the color at that site with its own
color). The waiting times are determined by an appetite rule. Models of this
variety display varied and interesting behaviors depending on the appetite
rule. As a result one gets some intriguing complex computer graphics which
explore the interface between order and chaos from the chaotic side. My
demonstration will discuss three particularly colorful examples:

1) the classical stepping stone model of population genetics, which
exhibits exchangeable clustering among 32,000 colors, say;

2) a ecyclic model which seems to exhibit a phase transition in the number
of colors -- for small numbers of colors the model clusters, but for large
numbers of colors it gets stuck in a final (random) state;

3) a homogeneous smoothing process which clusters in such a way as to form
a smooth field of color transitions.

All of these examples are unbiased -- no color has an advantage over any
other. For biased systems one can ask which color takes over the world., The

results are sometimes paradoxical,



QUANTUM CELLULAR AUTOMATA
Gerhard Grdssing and Anton Zeilinger

Atominstitut der Usterreichischen Universititen
Schiittelstr. 115, A=1020 Vienna, Austria

It is evident, that in order to become faster, cellular automaton
machines have to get increasingly smaller in size. Therefore a
regime will be entered where guantum effects cannot be neglected
and ultimately these quantum effects may very well be dominant.
Consequently one will not be able anymore to know for certainty
whether the value at a given site is 0 or 1 at a given instant

of time. Quantum mechanically this fact is described by introducing
probability amplitudes. We report results obtained by studying the
evolution of one-dimensional cellular automata governed by quantum
mechanical rules in such a way that superposition of probability
amplitudes is permitted.

The present investigations focus on strictly local (i.e. nearest
neighbor) interaction and on unitary evolution. We will present

the results in the form of probability maps. These clearly exhibit
typical guantum features like constructive and destructive inter-
ference, beats and the like. These maps will be classified according
to the arising patterns.



Bound of Short Cycles of Border Decisive Automata
and
Exact Results for Automata with Additive Rules

Puhua Guan and Yu He

Department of Mathematics, The Ohio State University, Columbus, OH 43210
Department of Physics, The Ohio State University, Columbus, OH 43210

A cellular automata rule is called border decisive if the rule of the automata
is linear in the wvariable corresponding to the farthest neighbor. If the number of
the neighbors is r, the number of possible states at each site is g, then the number
of the stable states of any border decisive automata is bounded by gqf~!. The num-
ber of cycles with length ¢ is bounded by q°(™1. Among qqr automata with r

. -1 -2 :
neighbors, there are E{qﬁl}q‘lr - {q—l}zqqr automata that are border decisive.

A cellular automata rule is additive if the rule is linear in each variable.
Complete state transition diagrams for finite additive CA of any order and in any
dimension can be computed in a time polynomial in the number of sites. The state
transition diagrams consist entirely of identical trees rooted on cycles. Conditions
on the rules which make them reversible are obtained. General formulae for cycle

lengths and multiplicities are given.



Loeal Structure Theory for Cellular Automata, Gutowitz, H., Victor, J., Knight, B.
Rockeleller U, 1230 York Ave., Box 179, N.Y., N.Y,, 10021-8389

The local structure theory is a generalization of the mean-field theory for cellular
automata(Wolfram 1983, Schulman and Seiden 1978). The mean-field theory is 2 model of cellu-
lar evolution which makes the assumption that iterative application of the rule does not intro-
duce correlations between the states of cells in different positions. This assumption allows the
derivation of a simple formula for the limit density of each possible state of a cell. The most
striking feature of cellular automata is that they may well generate correlations between the
states of cells as they evolve. The local structure theory takes the generation of correlation expli-
citly into account. It thus has the potential to describe statistical characteristics in detail.

The basic assumption of the local structure theory is that though correlation may be generated
by cellular automaton evolution, this correlation decays with distance. This assumption allows
the derivation of formulas for the estimation of the probability of large blocks of states in terms
of the probability of smaller blocks of states. Given the probabilities of blocks of size n, probabili-
ties may be assigned to blocks of arbitrary size such that these probability assignments satisfy the
Kolmegoror consistency conditions(Denker 1976) and hence may be used to define 2 measure on
the set of all possible (infinite) configurations. We call the class of measures defined in this way
finite (or n-) block measures. An arbitrary measure may be approximated to any degree of accura-
ey by a finite block measure. A function called the scramble operator of order n maps a measure
to an approximating n-block measure.

The action of a cellular automaton on configurations induces an action on measures on the set
of all configurations(Lind 1984). We combine the scramble operator with the cellular automaton
map on measures to form the local structure operator. The local structure operator of order n
maps the set of n-block measures into itselfl. We hypothesize that the local structure operator
applied to n-block measures approximates the rule itself on general measures, and does so increas-
ingly well as n increases. The fundamental advantage of the local structure operator is that its ac-
tion is explicitly computable from a fini*2 system of rational recursion equations.

Empirical study of a number of cellular automaton rules demonstrates the potential of the local
structure theory to describe the statistical features of cellular automata. The behavior of some
particularly simple rules is derived analytically. These rules serve as useful checks for the empiri-
cal methods employed. Other rules have more complex behavior. Even for these rules, the local
structure theory yields an accurate portrait of both small and large time statistics. We undertake
a classification study of cellular automata using the local structure theory. Rules which differ in
construction may nonetheless lead to the same local structure approximation. It is argued that
this provides a useful classification scheme for cellular automata,

References: Denker, M., Lec. Not. Math. 6527; Grassberger, P. Physica D 10:52-58. (1984);
Lind, D., Physica D. 10:33-44 (1984); Schulman, L., and Seiden, P., J. Stat. Phys. 10:293-314.
(1978); Wolfram, S., Rev. Mod. Phys. 55:601-544.(1983).

Figure: The invariant measure of r=1,k=2 rule 22. 16-blocks are mapped to the unit square
following Grassberger (1984), The probability of each block is proportional to the size of the sym-
bol placed at the block coordinates, Left: Monte Carlo sampling: Right: order 11 theory.
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STATISTICAL MECHANICS OF
INHOMOGENEOUS CELLULAR AUTOMATA

H. Hartman', W. Klein?, P. Tamayo®*, G. Vichniac®.

We consider an inhomogeneous cellular automaton which consists of two planes,
one of which (the back plane) contains the transition rules or programs and the
other (the front plane) the evolving data. The data consists of zeroes and ones and
the program consists of the XOR and AND rules distributed in 2 manner described
below.

Several cases are considered in both one and two dimensions. The rules can be
distributed at random or with correlation and can be either quenched or annealed. By
quenched we mean that the rules on the back plane are held fixed during the evolution
of the data on the front plane; the dynamics is deterministic, the randomness being
inherited from the initial conditions. By annealed we mean that the rules on the
back plane are updated as the same rate as the data on the front plane. Clearly
interpolations between these two extremes are also possible.

One method for distributing the rules with correlation is to assign the 4-input XOR
rule to a down spin and the 4-input AND rule to an up spin in an Ising model which is
allowed to evolve with either Glauber or Kawasaki dynamics. The Ising Hamiltonian
—BH =4 2i; Jijsis; controls the distribution of the rules on the back plane. Here
the s; are zero or one and £ is the inverse temperature. The interactions between the
rules (spins) are arbitrary and can be taken to be, e.g., ferromagnetic (J;; > 0 for all
t and j) anti-ferromagnetic ( Ji; < 0 for all # and j) or a mixture such as a spin-glass
(the sign of J;; chosen at random). In one dimension we use the phenomenological
classification of Wolfram. We observe that:

a) the quenched case gives periodic behavior (class 2);

b) the annealed case gives a mapping into phase transitions (see E. Domany and
W. Kinzel, Phys. Rev. Lett. 53 (1984) 311-314);

c) a characterization of localized complex behavior (class 4) as a critical slowing down
at the second order phase transition was conjectured (stochastic version of the halting
problem).

In two dimensions the quenched case is much more complicated due to feedback.
We get XOR dynamics on a percolation cluster. We observe a “necking” phenomena
due to destructive interference. With Glauber dynamics on the back plane and a
single 1 on the front plane we get a spread of the ones on the front plane as the
clusters of XOR interact. This can be studied as a function of temperature and its
behavior at the critical point monitored. The spread of ones on the front plane is at
the “speed of light.” In the spin-glass case the spread is slowed down.

!Department EAPS, MIT, Cambridge MA 02139,

2Center for Polymer Studies and Department of Physics, Boston University, Boston MA 02215,
3Laboratoty for Computer Science, MIT, Cambridge MA 02139,

4Department of Physics, Boston University, Boston MA 02215.



A CELLULAR AUTOMATON MODEL BASED ON CORTICAL PHYSIOLOGY
M. I. Hofmann
Department of Zoology, University of Toronto

Despite the complexity of the brain, there is a certain regularity

in the structure. The primary sensory areas are urgaqized into
"hypercolumns® [1]1. Most of the connections of a neuron are ?Lth neurons
in the same or a neighbouring “hypercolumn®. Given this kind of

structure we may attempt to model some aspects of cortical function
using a cellular automaton type of model.

In the basic model each cell corresponds to a small local group
("module=) of neurons. The procedure for calculating the next generation

is based on cortical function. First, the weighted sum of a given cell
and its three nearest neighbours is taken. A thresholded stimulus-
response (input-output) function is then applied to this sum to obtain
the next state of the cell. The weights used may be positive or
negative, but only sums that meet or excede threshold (a positive
integer) will produce a non-zero next state. This combined with the

fact that the weights used are symmetrical means that only "legal”™ [2]
cellular automata will result.

Two basic types of stimulus-response functions have been studied.
The first 1is based on the logistic curve, this in general produces
stable or at most period 2 oscillatory behaviour, depending on the
weights used. The second is based on a Gaussian curve, this can produce
more complicated oscillatory, chaotic or apparently Wolfram's [2] Class
IV types of behaviour. The transition from Class III (chaotic) to Class
IV behaviour is generally a function of the threshcld value used in the
stimulus-response function. Increasing threshold leads from chaotic to
Class IV behaviour and eventually te universal death.

There do not appear to be any gqualitative differences between
behaviaur in 1 or 2 dimensions. Extensions to the basic model include
use of constant (time invariant) forcing function, corresponding to
input from a different level of the nervous system and asynchronous
calculation of the next generation. These extensions provide the basis
for a more realistic model of cortical function.

The parameters used to define a rule in this model have close
physiological correlates. The weights correspond to the strengths of
connection between two “"modules”. The threshold is the threshold for
excitation of a "module®. The stimulus-response function represents the
input-output relation of a “"module® and depends on the internal
organization of a "module®. B wide range of behaviour is cbserved Iin
this model. In general the weights affect the spatial structure of the
array of cells. These are presumably relatively constant in the short
term, but may be altered by learning. Transitions from one type of
behavicur to another are generally effected by varying the stimulus-
response function or to a lesser extent the threshold. In terms of
physiclogy these may correspond to dynamically variable parameters of
the nervous system that may be related to arousal states (asleep, awake,

attentive, relazxed etc.) or pathological conditions (e.g. epilepsy,
hallucinations).

{11 Hubel, D. H. and Wiesel, T. N., Receptive fields, binocular
interaction and functional architecture in the cat’s visual cortex.
J. Physiol., 160, 106-154, (1962).

(2] Wolfram, S., Universality and complexity in cellular automata,
Physica 10D, 1-35, (1984).



Formal Language Characterizations of Cellular Automaton Limit Sets

Lyman P. Hurd

Mathematica Deparimeni, Princeton Universily, Princelon NJ 085{4.

Infinite strings generated by one dimensional cellular antomata, are determined by
their finite substrings. This correspondence allows the application of formal language
theory to sets of configurations. Wolfram has shown’ that the language reached by a cel-
lular automaton in finite time can be described by a regular grammar. This presentation
extends his result by defining analogs of more complicated grammars for CA configuration
sets, and illustrating CA whose limit languages exhibit increasing levels of complexity.
The final example gives a cellular antomaton whose limit set corresponds to a non-
recursive language.

A rule whore limil language cannof be described by s contezt-free grammar
RerW I L WR r || L I
RrW { L W R r Wi L i
ReW | L W R r WIL I
RrWi L W R r Wi L !
RrWIL W R r WIL [
LIWrR w R rWi L )
[ Wr R W ReWIL i
I W r R W LIWrR I
[ W r R W L I Wr R i
W r RW L I W r R
W r RW L I W r RI
W r RW L I W r RI
w r RWL | W rRI
W r RWL I W rR1
W r RWL [ W rRI
W rRWL I W rR1
W r RWL i W rR1
W rRWL | W rR1
W rRWL | W rRI
Blanks denote the symbol o

* Stephens Wolfram, “Compuatation Theory of Cellular Antomata®, Communications of Mathematical Phmia
98 15-57 (1084)



Dialectical Cellular Automata
for
Low-LevelIntelligent Computing

Joel D. Isaacson

Southern Illinois University at Edwardsville &
I MI Corporation

2@ Crestwood Drive, St. Louis, Missouri 63185

Summary

To be "dialectical®™, cellular automata have to be constrained by
two conditions: (1) rules are "differential®™, and (2) boundary
conditions are fixed, with a distinect "background® state. In
differential rules a new state at a given site is dependent only on
the difference/sameness of the site's present state w.r.t. each of
its neighhors' states. Natural sensory or perceptual elements
(i.e., the retina) are known to operate under differential rules,
which motivates the present interest in this particular class of
CA, as opposed to the more common CA having totalistic rules [1] or
other types of algebraic or logical rules. Those two conditions
typically drive a CA into classical dialectical behavior, yielding
certain types of novel intelligent computing. A 1-D 4-state nearest-
neighbor dialectical CA (k=4, r=1) is discussed and its unexpected
behavior described [2]. The
instant CA is shown to be subsumed

under Post's monogenic normal
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GLOBAL PROPERTIES OF ELEMENTARY CELLULAR AUTOMATA

Erica Jen
Los Alamos National Laboratory

“Elementary” cellular automata are defined to be one-dimensional automata
with binary site values depending only on nearest-neighbor interactions. The
diversity of behavior generated by such rules has been widely noted, and a
phenomenological classification scheme proposed by Wolfram [1].

An approach has been developed [2] that relies on analysis of the local struc-
ture of elementary rules to provide rigorous results characterizing their global
behavior. For instance, conditions have been obtained defining the classes of ele-
mentary rules for which arbitrary finite initial conditions (i) evolve to a homo-
geneous state; (ii) generate at least one constant temporal sequence; (iii) generate
infinitely many aperiodic temporal sequences. The result on the aperiodicity of
temporal sequences generated by certain cellular automata supports a conjecture

by Wolfram [3] that these systems may serve as efficient pseudo-random number
generators.

A major component of the approach used to obtain the above results is the
study of the distinct “deterministic structures” exhibited by cellular automata
rules. It is certainly explicit in all elementary rules that the value of a site is
determined by the values of its nearest neighbors at the previous time step. It is
possible, however, that specific rules may be defined in such a way as to induce a
determinism operating along a path other than the time-increasing one. For
example, for a certain class of elementary automata, it can be shown that that
the values of any two adjacent temporal sequences determine the value of the
temporal sequence to their right. Rules belonging to this class can thus be viewed

as possessing a deterministic structure in addition to that shared by all cellular
automata systems.

The existence of additional deterministic structures for an automaton rule
can be shown to be a direct consequence of the many-to-one, versus one-to-one,
nature of the rule restricted to certain well-defined subsets. The results describ-
ing the global behavior of automata rules are then consistent with intuitive
notions of differences between one-to-one and many-to-one mappings.
Specifically, it has been shown that both evolution to a homogeneous state and
generation of constant temporal sequences require that the underlying automaton
rule be two-to-one in a particular sense. On the other hand, rules that are one-
to-one in that same sense generate aperiodic behavior.

REFERENCES

1. S. Wolfram, “Statistical mechanics of cellular automata,” Rev. Mod. Phys. 55
(1983), p. 601.

2. E. Jen, “Global properties of cellular automata,® J. Stat. Phys. 43 (1986),
p.219.

3. S. Wolfram, “Random sequence generation by cellular automata,” (to appear
in Advances in Appl. Math.)



PATTERN RECOGNITION USING CELLULAR AUTOMATA

Erica Jen
Los Alamos National Laboratory

Certain cellular automata can be shown to possess “invariant strings” (analo-
gous to fixed points). Mathematical results characterizing these invariant strings
have been obtained, and their applications to a problem in pattern recognition
explored.

An invariant string of a one-dimensional cellular automaton rule is defined
to be a finite spatial sequence of site values that remains invariant under the rule,
independent of the sequence’s spatial position or the values of its neighboring
sites. The rules for which invariant strings exist have been characterized [1],
together with the set of invariant strings associated with each such rule. Further-
more, given an arbitrary string P, a simple procedure can be used to construct
the automata rules under which P is invariant. In particular, it has been shown
that a rule of minimum neighborhood size can be defined for which P is the
unique invariant string. This rule has the property that arbitrary initial condi-
tions evolve to spatial sequences consisting essentially of concatenations of P.

Thus, spatial sequences of this form constitute the only attractors of such auto-
mata.

The results on invariant strings have direct implications for the use of cellu-
lar automata for pattern recognition. Suppose the problem is to choose a cellular
automaton that will “recognize” a particular pattern in an arbitrary input
sequence; i.e., to choose an automaton under whose temporal evolution, the
desired string is “preserved,” and all others “annihilated.” The advantage of a
cellular automaton approach in this context is that the processing is performed in
parallel, and thus could be significantly more efficient than conventional serial
searches for problems involving large amounts of input data. The rule of
minimum neighborhood size for which a string P is the unique invariant string is
then the optimally efficient rule that possesses the desired quality of preserving P
and annihilating all other patterns. Moreover, the number of steps required for
this rule to perform the recognition task is bounded above by a quantity depend-
ing only on P, and thus is independent of the length of the input data.

The analysis described above has been extended [2] to provide algorithms
based on cellular automata for the recognition of multiple distinet and/or “noisy”
patterns. Applications include the recognition of “crossovers” (i.e., exchanges)
between two sequences, and the simulation of “hetero-associative” memory
requiring the mapping of specific patterns A; to other patterns B;.

REFERENCES

1. E. Jen, “Invariant strings and pattern-recognizing capabilities of one-
dimensional cellular automata,” J. Stat. Phys. 43 (1986), p.243.

2. E. Jen, “Cellular automata for general pattern recognition,” (Los Alamos
National Laboratory preprint).



Architectures for Cellular Automata Machines
Steven D. Kugelmass
Kenneth Steiglitz
Department of Computer Science
Princeton University
Princeton, NJ 08544

There has been a recent flurry of activity in applications of cellular auto-
mata (CA). They appear to provide an alternate approach to the solution of
certain classes of problems including, but not limited to, fluid turbulence, lattice
spin systems, lattice quantum field theories, n-body problems, and number
theory. [1]

The hope is that these new cellular-automata based techniques will make it

possible to build more highly parallel hardware, and thereby surpass the perfor-

mance of conventional numerical methods, even on parallel arithmetic-based
machines.

We need machines capable of performing many site updates per second on
huge lattices of cells, typically on the order of 10° Updates of Lattice Points per
Second (GULPS). Supercomputers like the Cray XMP-48 can provide on the
order of 1 GULP, but at a cost of many millions of dollars. The Thinking
Machines Incorporated’s Connection Machine provides sTmilar performance at a
lower cost because of its greater parallelism, but still costs more than a million
dollars. Margolus, et. al., [2] have proposed special purpose machines to per-
form high speed CA updates but the cost of such machines may also be high.

It appears that when the algorithm is very simple and likely to be fixed, a
custom VLSI implementation can provide a good price/performance ratio, and
give the individual user a useful machine at nominal cost. The major problem

is the inevitable difficulty of matching memory and processor bandwidths, and
making effective use of silicon area.

We will describe three systolic system architectures for the two-dimensional
problem: series, parallel, and series/parallel. We then analyze the choice of criti-

cal parameters, and derive the relationships between throughput rate and area
for each choice.

We also deseribe preliminary designs for series and series/parallel proto-
type boards for a SUN-3.

1.  Stephen Wolfram, “Scientific Computation With the Connection Machine,” Unpublished
Manuseript (March 1985).

Norman Margolus, Tommaso Toffoli, and Gerard Vichniac, “Cellular Automata Super-
computers for Fluid Dynamics Modeling,” Technical Memo LCS-TM-296, MIT Laboratory
For Computer Science, Cambridge, MA (December 1985).
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Virtual State Machines in Cellular Automata

Christopher G. Langton
EECS Department
The University of Michigan
Ann Arbor MI 48109

One of the most interesting properties of cellular automata is their capacity to
support propagating structures, such as the familiar “glider” of Conway’s game of
life. These propagating structures can be viewed as virtual automata: automata
that are embedded in the very “tape” upon which they compute and that are
constituted of the very symbols which they use to “write” on the tape in the
course of their computation. These virtual automata, or virtual state machines
(VSM’s), can be viewed as either processes or data, and can create, modify, or
erase other such VSM's. Thus, VSM’s can support a dynamic, distributed logic
based on interactions between semi-autonomous, free-ranging automata; a logic
whose operators can also be operands.

Propagating structures in cellular automata are the discrete analogues of soli-
tary waves or solitons in physical systems. They also behave much in the manner
of enzymes, the active agents in biological cells. When viewed as systems of inter-
acting automata, one may begin to separate the logic of such naturally occurring
phenomena from the details of their particular physical implementation, bringing
them within the purview of formal automata theory. In turn, such natural phe-
nomena can serve as the basis for new models of massively parallel computation.
Thus, VSM’s seem to be particularly important structures, for both theoretical
and practical reasons.

It turns out that systems dominated by interacting VSM’s arise naturally in
certain classes of cellular automata. In particular, as one varies a parameter con-
trolling the “reactivity” of the individual cells over a certain range, one observes
the emergence of more and more complex systems of interacting VSM's. These
systems show the full spectrum of fixed-point, periodic, and chaotic behavior
known from the study of dynamical systems. The most interesting of these “nat-
urally occurring” systems of VSM’s seem to be found at the onset of chaotic
behavior. ;

This presentation will include demonstrations of interacting systems of VSM’s
using a cellular automaton simulator running on an APOLLO DN660 color work-
station. These demonstrations will include some which should be of interest to
physicists and others which should be of interest to biologists. For example, I
will demonstrate systems that exhibit dendritic growth, systems that reproduce
themselves, and systems that simulate the dynamics of an insect colony.



LEARNING ALGORITHMS FOR MULTILAYER NETWORKS OF THRESHOLD AUTOMATA

YANN LE CUN : Ecole Supérieure d’Ingénieurs en Electrotechnique
et Electronique, 89, rue Falguidre 75015 Paris.
and
Laboratoire de Dynamique des Réseaux
1, rue Descartes 75005 Paris.

We present some theoretical and experimental works on a learning
procedure for multilayer threshold networks, recently proposed by
several authors independently [1][2]. This procedure has been
originally designed for multilayer feed-forward threshold networks, but
is easily extensible to cross-connected networks.

Threshold networks are made of interconnected threshold automata (TA)
which compute a weighted sum of their inputs, and produce a +l1 output
value if the sum exceeds zero and -1 otherwise. Several algorithms are
known that find the weights of a single TA, given examples of desired
input-output pairs. however, since the percentage of boolean functions
in n variables that are computable by a TA tends rapidly toward zero as
n  increases, most learning TA networks have a very limited
computational power. Extensive studies have shown the consequences of
this limitation when the network has only one layer of automata with
modifiable weights [3]. This limitation applies =also to most
cross-connected TA networks, including one proposed by Hopfield [4] for
modeling associative memorization.

Multilayer feed-forward networks do not have this limitation. They are
composed of several groups of TA, the first group is the input layer
whose state is clamped externally, it is followed by one or several
layers of ‘'hidden' TA. The last group is the output layer.
Connections between TA are allowed only from lower layers to higher
layers. When an input vector is given to the network, the output is
computed by propagating through the successive layers. The learning
procedure iteratively computes a set of weights which minimizes the
average error between the actual output of the network and the desired
output given by the teacher for every input pattern. This procedure
uses a back-propagation process that computes a ’desired state’
associated to each hidden automaton, It requires only local information
exchanges between the automata. The learning algorithm has been used
for modeling the biological process which recognizes introns from exons
in the DNA. It has been applied to medical diagnosis of abdominal
pains, and achieves the same performances as a classical expert systems
without requiring months for designing the knowledge base. Some
variations of the original algorithm are presented. It is shown that
the complete behaviour of the network, including the evolution of the
weights, can be described using the Lagrangian formalism.

[1] Le Cun Y.: ‘’Learning processes in an asymmetric threshold network’
in Fogelman F., Bienenstock E., Weisbuch G., (eds) "Disordered systems
and biological organization” Springer 1986. [2] Rumelhart D., Hinton
G., Williams R.: ’Learning internal representations by error
propagation’ in Rumelhart D., McClelland J. (eds) YParallel
distributed processing” MIT Press, Cambridge 1986. [3] Minsky M.,
Papert S.:  'Perceptrons’ MIT Press 1968. [4] Hopfield J.: P. Nat.
Acad. Sci USA, Nov 1982.



Configuration of Defective Cellnlar Array

Myoung 5. Lee, Gideon Frieder
Electrical Engineering and Computer Science
University of Michigan

Cellular array machines built in the past are SIMD ma-
chines with a small number of cells like ILLIAC, or with
medium number of simple bit-processors like CLIP, DAP,
MPP. With the progress in VLS5I technology, MIMD cellular
machines with many powerful cells began to appear. When
we build a massive cellular array, many cells may be defective.
With the adeguate computing power in each cell, working
cells will be able to configure themselves into desired patterns
in spite of defective cells. This paper presents the configu-
ration of cells on the defective cellular array. We proposed
an architecture of massively foull-tolerant cellular array, and
devised self-configuration algorithms. Configuration of cells
into linear arrays, binary trees, and two-dimensional arrays
are presented. Efficiency of configuration and communication
delays have been measured.

Massively Fault-tolerant Cellular Array

The maossively fault-tolerant cellular array iz an array
of identical cells which are connected to neighboring cells in
various topologies. The cells and the connections with other
cells may be defective with high probabilities. Each cell can
function as a processing element, as a memory, or as a switch-
ing element that connects to other cells. Input and output
terminals are connected only at the boundaries of the array.

The three regular interconnection patterns shown in Fig-
ure 1 are proposed for the cellular array. The three arrays
with the three interconnection patterns of Figure 1 are called
square array, heragonal array, and octal array respectively.
Figure 2 shows a square array with defective cells and de-
fective connections. Note that although the initial array is
regular, the ensuing array is not (see Figure 2), as the faults
cause breakdown in the regularity of the array.

The computations that the array is intended to perform
will determine how the working cells are configured. The log-
ical interconnection of cells for any particular computation
can be represented by a graph, called a computation graph
in this paper. The configuration of cells into a computation
graph in the defective array is represented by a graph, called
a connection graph. For example, the tree in Figure 3(a) is a
computation graph; Figure 3(b) shows a configuration of cells
into a tree on the defective square array; Figure 3(c) is the
connection graph of the configuration. Note that cells repre-
sented by dots on the connection graph function as switches,

Configuration of Working Cells

Since our computation model is an array of cells con-
nected only to the immediate neighbors, signals from a cell
should be relayed by intervening working cells to a destina-
tion cell. For this computation model to be useful, a big
cluster of working cells should be formed on the defective ar-
ray. We used percolation theory to study the sise and shape
of the cluster as the defect density varies. We could guaran-
tee that a big cluster of working cells with adequate number

of boundary cells appears on the defective array when the
defect density is less than some critical value, The critical
value depends on the interconnection pattern of cells,

We devised self-configuration algorithms to configure the
working cells into linear arrays, trees, and two-dimensional
arrays of cells. We measured the efficiency of the configura-
tion with various defect densities on square, hexagonal, and

octal array. The efficiency of the configuration into a graph
G, e, is defined as

number of cells used as computation cells
number of working cells in the cluster

&g = » 100,
Figure 4 shows the efficiency of the self-configurations on 120
by 120 array. The self-configuration algorithms, extensive
simulation data, and details of the architecture can be found
in the reference.

Reference

*Massively Fault-tolerant Cellular Array,” Myoung Lee and
Gideon Frieder, Proc. 1986 Int’l Conf. on Parallel Processing.

(2} souars aray {b) hexagonal amay

Figure 1. Interconnection patterns of the cellular array

Figure 2. A defective square cellular array
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Figure 3. A computation graph, its configuration, and a
connection graph
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Spectra of Cellular Automata

Wentian Li (Physics Dept., Columbia University)
and
Stephen Wolfram (Center for Complex Systems Research, University of Hlinois)

The power spectra of one-dimensional cellular automaton configurations have been investigated. The
sequence of site values in a CA configuration is considered as a *‘signal’, whose power spectrum is
found by a Fourier transform, The spectrum is related to correlation functions between site values.

Disordered configurations, in which sites take on all possible values with independent, equal, probabili-
ties, give “‘white’’, frequency-independent, spectra. Irreversible cellular automaton evolution can lead to
the development of structure in the spectra.

An extreme case is a “‘perfect crystal’’, consisting of an infinite periodic repetition of a fixed unit ele-
ment. Such configurations lead to discrete, delta function, spectra.

Many cellular automata evolve to configurations which can be considered to be made up of a sequence
of “‘domains’’, Some of these domains may show perfect crystalline order, while others, after suitable
blocking transformations, are completely disordered. Many cellular automaton spectra show peaks
corresponding to crystalline phases, with widths governed by domain sizes. Usually these peaks are
superimposed on a continuous background. In some cases, the background has a roughly Brownian
form, with 1jf* frequency dependence. In a few cases, there is some evidence for a 1/f component.

Some features of cellular automaton spectra may be obtained by a Markovian approximation. Formal
language methods yield minimal finite graphs which represent sets of configurations reached afier many
time steps. Different phases may be identified as paths through subgraphs. Crystalline phases correspond
to purely cyclic subgraphs, whose periods yield the characteristic length scales of the phases. (The set
of such periodicities may be related to the zeta function for the system.)

For class 1 and 2 cellular automata, the spectra obtained depend on the statistical properties of the ini-
tial configurations chosen. For chaotic cellular automata, it appears that an “‘equilibrium’’ is reached
whose statistical properties are essentially independent of any details of the initial conditions.

The spectra of two-dimensional cellular automata are expected to show some novel features. In particu-

lar, certain two-dimensional cellular automata should yield invariant configurations which show quasi-
crystalline order.
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Power spectra of some k=2, rel cellular sutomata (plotted against frequency on a linear scale). The peak in the spectrum for rule

73 pocurs at a wavelength of 6 sites; the first peak in the rule 110 spectrum occurs at a wavelength of 14 sites.

Regular language graph for invarant configurations under rule
73. The length 6 cycle in this graph coresponds 1o the "'crystal-
line phase'* responsible for the peak in the power speclrum.




THE FREE ENERGY CONCEPT IN CA MODELS OF PHASE TRANSITIONS
By Daniel G.Maeder, University of Geneva Physics Section, CH-1211 GENEVE4

SUMMARY : The ultimate goal of this work is the simulation of solid-solid
phase transitions such as, for example, the thermoelastic martensitic
transformation of shape memory alloys. In order to describe their characte-
ristic features of mechanical and thermal hysteresis, & cellular automaton
model must take care of external variables, in particular the temperature
T and one or several applied stress components XS. Current phenomenclogical
theories of the martensitic transformation are based on the concept of free
energy F(e,T) being a function of a continuous varlable e called "order pa-
rameter™, representing the transformation strain. As shown by FALK [1],even
a one-dimensional model of this kind explains global behaviour of martensi-
tes quite satisfactorily although microscopic aspects (phase boundaries!)
are neglected. It is hoped that a CA approach may stimulate understanding
the mechanism of discrete domain formation and disappearence. In fact, the
nucleation problem is still a matter of discussion ameng experts [2].
Locally, the strain does not vary continuously but can only switch bet-
ween a few well-defined values, say ei. This suggests a CA model represen-
ting the isotropic (or "austenite”) phase by the zeroc cell state, and the
differently strained martensitic variants by cells in nonzero states. ldeal-

CD:rserststt bt AALT LS ly, the CA computer should produce output re-
CCD:tisreatstAABD: 2 sembling directly the physical patterns seen
CCCD::zz::::tAABBDD:: in the microscopejthe figure to the left dis-
tCCCDz:::::AABB::DD: plays a hypothetical example showing the dif-
:t:CCCD::::AABBAC::DD ferent directions of interfaces in &ll mar-
:::CCCD: : AABBAACC::D tensite twins (AB,AC,etec.) as well as between

::::CCCD: ABBAAACCC::
:1:1:::CCCDBBAAAACCCC:
1:::::tCCCCACDDDBEEE
t:1:CCC::CDDBBEB!
::::CCC::CDBB:

the 4 martensite variants and austenite, fol-
lowing ref.[31. This figure corresponds to an
intermediate temperature; the CA must perform
the transitions to"all austenite”™ or%all mar-
tensite™ states at high and low temperatures,
......... respectively. The particular pattern depends
ttr2ertttCCC21Ce e on the presence of lattice defects, so-called
"germ™ cells, and must be approximately reproduced in successive thermal
cycles, with increasing hysteresis at lower temperatures where the patterns
should tend to simplify. Furthermore, the CA must respond to applied stres-
ses (X51,XS2,...) by changing the equilibrium between A,B,C,D cells.

So far,suitable transition rules were established for 3-state CA only,
modelling either the AB or the AC martensite twins in an austenitic majori-
ty environment. The basic considerations were presented- apparently for the
first time - at the Lissabon Workshop [4], with emphasis on analogies with
LANDAU-type theories. For a cell in state X(=-1,0,1),the free energy analog
is F(X,T)=1X!1%#T+> {Interface energies} + Xx(Yix> X -XS) + [(XixY2#> X
where the first sum is over the neighbor cells, the other sums are over the
whole lattice, and Y1,Y2 are adjustable positive constants. F 1s evaluated
for X=-1,0,1, and X producing the lowest F is adopted as the new cell sta-
te value. For the AB model, reasonable results can be obtained even from a
i-dim CA, in which case the construction of the transition rules involves
only 3 independent iInterface energy parameters (additional terms, not used
in ref.[4], are then required to produce the correct hysteresis).

Demonstration programs running on any IBM-compatible PC are available,
allowing the following points to be studied:

¥ the checkerboard problem and various solutions to it
# the nucleation potential of different germ configurations
¥ rule checking: place test cell at different sites, change Its state
¥ parameter adjusting: watch effect of changes on pattern evolution; etc.
(11 F.FALK,Acta Met.Vol.28,1773-80(18B0);J.de Phys.,C4-3,suppl.12/43(1982)
[2) G.GUENIN and P.F.GOBIN, Metallurgical Trans.Vol.13A,1127-34(10882)
[31 T.SABURI and S.NENND,"Shape Memory Effect and Related Phenomena":Froc.
of an int.conf.on Solid-Solid Phase Transformations,Pittsburgh 1881
[4] D.G.MAEDER, "CA Representation of LANDAU-Type Fhase Transform.Theories”
Workshop on Cellular Automata, Inst.de Fis.e Mat.,Lisboa,16-18 Dec. 1885
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PARTITIONING CELLULAR AUTOMATA

Norman Margolus
MIT Lab for Computer Science

In order to constrnct a reversible, particle-conserving automaton that
simulates Fredkin's billiard-ball model of computation, the idea of a par-
titioning CAl1] was developed. This idea has proved uscful in a number
of contexts ranging from hydrodynamics|2] and optics modeling, to rules
which support compact digital logic simulations.

CA are usually described by giving the new state of a center cell as a
function of its nearby ncigbbors. An alternative approach is to make the
new state of a group of cells be a function of those cells. We partition
the space into small groups of neighboring cells in a uniform manner, and
then apply the same rule to all groups. We partition the cells into different
groups, and apply another rule everywhere. After going through some cycle
of partitions, we start the process over again.

We will describe some interesting CA systems based on 2 partition-
ing into 2 x 2 blocks. Properities snch as scale invariance (of @ particular
type) rotating 2 rule through 2 45 degree angle, reversiblity, conservation
jaws, sources and sinks, shnulating gases and wave phenomena, simulat-
ing digital logic, and the development of noneguilibrium structures will be
demonstrated.

OTHER TOPICS

The end of the world (coliapse of a false vacuum) and other amusements
involvine second-order reversible CA vill be demonsirated. Also 2 way 1o
rotate o configuration in n-dimensions through a 90 degree angle In log time
(in the size of the space) using CA ruies on CAM-like machines.

[1] N. Margolus, ‘Physics-like models of computation,” Physica 10D
(1084), 81-95.

b3

| K. Margolus, T. Toffeli, G. Vichniac, “Cellular-automata supercom-
a4 =3 B -
puters for finié-dynamics modeling,” Phys. Rev. Lett. 56 (1986)
1G604-1G9EC. :
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Direct measure of viscosity in a lattice gas model.

. McNamara
The Enrico Fermi Institute, The University of Chicago
. Zanewi
The James Franck Institute, The University of Chicago

We present a method for the direct measure of viscosity in the 2-D F.H.P. lattice gas model.!

Our “‘instrument”” is essentially a 2-D Poiseuille viscometer, except that instead of using a pressure gra-
dient to drive the fluid through the channel we use the equivalent, for the c.a. gas, of a uniform body force.
This allows periodic boundary conditions along the direction of flow and, together with a way to handle no-slip
boundary conditions particularly adapted to this kind of simulation geometry, it permits us to obtain a reasonable
measure of viscosity even with systems of very small size (after averaging in space and time to smooth the velo-
city profile),

The results that can be obtained in this way are good, provided that the Reynolds number and Mach
number are kept in reasonable ranges. The velocity profile is parabolic and the density is uniform in the system.
In fig. 1 we show the velocity profile obtained from a simulation on a small system. In fig. 2 we demonstrate a
comparison between the dependence of the viscosity on the density predicted by the kinetic theory? (solid line)
and the values directly computed from simulations. One of the interesting possible applications of this method
is in the study of the theoretically predicted® divergence of viscosity with the size of the system.

This work was supported by ONR and by a donation of computer equipment by IBM. We wish to thank
Profs. A. Crewe and L. Kadanoff for helpful advice,

Fig. 2
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! U. Frisch, B. Hasslacher and Y. Pomesn "Lattice ges sutomata for the N.S. eg” PRL 56 1505 (1986)
2 I.P. Rivet, U, Frisch CR. Acad Sci Paris IT 302 267 (1986)
3 D. Forster, D. Nelson, M. Stephen Phys. Rev. A 16 732 (1977)



Cellular Automaton Hydrodynamics

Bruce Nemnich (Thinking Machines Corporation)
and
Stephen Wolfram (Center for Complex Systems Research, University of Illinois)

The theory and phenomenclogy of cellular automaton fluids have been studied. Simulatons of two-
dimensional cellular automaton fluids have been carried out on a 65536 processor Connection Machine
computer. Flows at Reynolds numbers of a few hundred have been obtained. Detailed studies are under-
way of flows in channels, and flows past simple geometrical objects, such as circular cylinders. Prelim-
inary results indicate good agreement with experiments and existing calculations. At the highest Rey-
nolds numbers investigated, flows past cylinders are observed to make a transition to aperiodicity,
corresponding to weak turbulence.

Velocity profile at equilibrium for 2 cellular automaton
fluid in & channel. The smooth curve gives a parabolic
fit

TP T
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Velocity field around a cylinder moving in a cellular
automaton fluid. A 4096x4096 site lattice is used;
each velocity vector is obtained by averaging over a
100100 site region. The overall flow corresponds o
the beginning of a vorlex streel.

Velocity as a function of time for flow behind 2
cylinder in a- cellular automaton fluid. The successive
graphs are for increasing Reynolds numbers. The first
thres cases comespond o regular vortex sireets; in the
fourth case, aperiodic flow is cbserved




New Universality for Stochastic CA-models of Disordered Excitable Media.

Andre J. Noest, Netherlands Institute for Brain Research,
Meibergdreef 33, NL-1105 AZ Amsterdam, The Netherlands.

—— Problem background:

Examples of excitable media occur in a variety of natural systems, ranging
from hartmuscle or neural membranes to infections or star formation. One
important question is when and how excitation propagates through the medium.
With local interactions and an effectively stochastic dynamics, one finds
that the propagation under marginal conditions shows non-trivial collective
fluctuations, just like in ecritical behavior of statistical physics systems.

== SCA models:
The analogy can be made explicit by writing down a family of Stochastic
Cellular Automata models with 2 local states 515{0,1] v 2 short-range

couplings Eij}u and time-invariant, local state transition probabilities
P(si(t+1j = Fi( %: :ij-sj{t} ), with Fi{xﬁﬂ) = 0 and 0< Fi{x>ﬂ) <1 .

The restrictions on F(x) represent the single deterministic rule causing
the "vacuum" {sinﬂ ¥i) to be the unique absorbing state of the process.

-= Special cases reduce to known models:

Imposing i-independence and i-j symmetry yields models that, when specified
in D dimensions, generate clusters of 1’s in (D+1l)-spacetime that are exactly
equivalent to those of Directed Percolation on (D+l)-lattices. Thus, known
universal exponents describe the critical behavior in the restricted models.

-- MNew universality, multicriticality and slow phases:

In contrast, the general models have quenched spatial disorder specified by
Fi{x) and cij depending randomly on i and j, modelling inhomogeneous media.
&4 Harris-type argument shows that the diserder is incompatible with DP-class
exponents. In fact, Monte Carlo-simulations in D=1 and 2 of many SCA models
in this family show the existence of a new universality class, characterized
by exponents that are quite different from the DP-values. In addition, with
"dilution"-type disorder, the phase diagram contains a multieritical point
and the SCA-analog of a Griffiths-phase having non-exponential relaxation.



22— LATTICE GAS CELLULAR AUTOMATA COMPRESSIHLE FLOWS

A. MHoullez, Facultd des Sciences CP 231, Université Libre de Bruxelles
1050 Bruxelles Belgium

D. d'Humiéres, P, Lallemand, ¥. Pomeau — Ecole MNormale Supérisure
24 rue Lhomond 75231 Paris Cedex 05 France

We have used the Frisch-Hasslacher-Pomeau (FHP) cellular automaton to
compUute mﬁcr'ancupit hydredynamia flows for typical Esometric
configurations, In the FHP model, “particles” move with unis velocity
in any of the &ix directiens of o triangular lattice and collida
elastically when they mest At a lattice nods. The collision rules
guerantes particls number conservation mnd total momentus conservaticn
and cbey the exclusion principle that twe particles with the same
veloclty cannot occupy the same node. With these simplifications, the
atate of the lattice can be represented by an array of Boolean variables
ildentifying the presence of particles on the links between nodes, and
mll flow calculations are reduced te unit displacements in memory and
logical operations at the lattice nodes. Hydrodynamic quantities are
ebtalned by averaging particle number and valocities over a few tens
adjacent nodes | they are found to obey Navier—Stokes equationa for low
speeds.

Linear hydrodynamic properties of the medel system have beon studied
by measuring the response of the system to a periodic perturbaticn to
determine the scund welocity and the fluid viscosities. Flows arcund
ocbstacles have been studied for various ebsthcle shapes. Obstacles are
represented by decomposing their boundary 4inte lattice 1links a@nd
imposing special collision rules on the corresponding nodes so that the
cemponent of the velocity norsal to the boundary be zero. We have
computed flows behind plates, inte air intakes, arcund cylinders and
wings and obtoined boundary layer profiles. Flowa 4in a pipe with a
sudden expansion have also beesn measured. A constant flow is obtained
by imposing m nof-zers =ean flux of particles at the input and the
output of the pipe while ensuring total flux senservation. The Reynolds
nusber of the problem is fiwed by the atep height and the flow welocity.
At msoderate Reynolds numbers, & stationary vortex forss behind the
expension wall. We measured the flow Feattachment point on the boundary
(defined by zero mean longitudinal spoed) for wvarious pgeometries and
several Reynolda numbers. At the initial time, the flow has a
Fotseullls veloocity profile and the fluid behind the wall is at restc
(fig.1}. The system then evolves Bccording o the cellular autommton
rules. When stationarity has established, longitudinal and transveros
velocity profiles are measured by averaging over layers m fow nodes
wide. Pressure maps desmonstrate the compressible nature of the flow.
The results are “ompared with experimental and other numerical data and
will be presented in Eraphical Tform, A ctyplcal example is shown in
Fig.2. -
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Deterministic Lattice Models for
Interface Dynamics

N. H. Packard”
The Institute for Advanced Study
Princeton, N1 08540

We present a new model for the temporal evolution of interfaces in two dimensions, The model interface
may represent many different physical phenomena, including fluid interface dynamics (in the Hele-Shaw
configuration), solidification, and diffusion limited aggregation. The model is a hybrid that uses both discrete
and continuous elements. The state space of the model is the space of configurations of two variables over a
two dimensional lattice: a continuous variable that evolves in time according to a numerically stable approxima-
tion o the continuum diffusion equation, and a discrete variable that evolves according 10 a simple rule that
couples nearby site values and the contivum field,

Ilostrated is a sequence of macroscopic forms for an interface, obtained by applying the dynamical rule to
a small random initial seed. The diffusion length, a parameter in the model, is varied to obtain the sequence.
{a) Large diffusion length: a form that shows no anisotropy, and that has a fractal dimension between 1.6-1.8.
(b} Intermediate diffusion length: a form that shows weak anistropic effects, and that has a dimension of 2.0,
(c) Short diffusion length: a form that shows strong anistropic effects, with a stable parabolic tp growing at
constant velocity and shedding sidebranches periodically.

“Permanent address: The Center for Complex Systems Research and the Physics Department, University of 1llincis, Champaign, IL.
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How does the behavior of a binary,

Los Alamos MNational Laboratory
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one-dimensional,

GLOBAL PROPERTIES OF FINITE CELLULAR AUTOMATA

nearest—

neighbor cellular automaton change with as register size changes?
Does behavior approach an asymptote as size becomes large?

A computer program was used to investigate the global behavieor of all

256 passible simple CA rules within a regester of finite width W,
The cycle and transient structure was
and some fundamental properties plotted

N ranging between 3 and 16.
calculated for each rule,

as a function of HN.
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The cycle structure is plotted as a state transition diagram,
and a transient leading to that cycle
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SIMPLIFIED CELLULAR-AUTOMATON SOFTWARE FOR IEM PERSONAL COMPUTERS

By Charles FPlatt
Computer Inatruction Center
The New Scheol for Social Research, 64 Fifth Avenue, New York, NY 10011

Most software for generating cellular sutomata is not "user-friendly" and may require
special equipment or large amounts of computer memory. I have developed new software for
educational purpoaesa, which satiafies the following criteria:

1. Simple. Can be used by the novice or student with ne prior
knowledge of cellular automata.

2. Flexible. Offers a wide variety of algorithms for generating 1_
linear (and other) celiular automata, in high or low resclutiorn.

5. Fast., Directly addreases video memory for rapid update of
patterns Iup te 13,000 displayed pixels per second in color).

4. Convenient. Highly refined user interface allows
modification of patterns with & minimum of keyatrokes and
figuring. All parameters are displayed visually as well
as numerically. They can be stored in disk files,
retrieved, and edited (about 100 files per 5" disk).

5. Standard equipment. Only a regular IBM graphicas card
{or equivelent) is required. No special monitor. Only 128K
memary needed. Works on all IBM clones; even the PCjr. Using
an Epson or IBM or compatible printer, automata can be dumpead
directly from screen, simulating three coloras and black.

6. Easily modified. Annotated source code available.

The Conway "Came of Life" is offered, plus eight additional
variants of the usual formula. Ten different colora can
appear on the screen simultaneously. The field size can
be varied from 9 x 9 to 39 x 39. The largeat field size
is updated several times per second (depending on the
computer's clock speed). The "seed” for each pattern
can be stored separately from the pattern itaelf. More
than 100 sample patterna are included on the disk.

Linear Cellular Automata can be generated using two to
four colors, selected from a range of seven. High-res
(320 x 192 pixels) or low-res (80 x 4B) can be smelected.
Growth can be finite or pseudo-infinite. On some printers,
an "endlesa"” printout can be generated in syne with the
pattern asa it acrolls up the screen. In summing the
states of surrounding cells, the center cell may be
included or omitted. The initisl pattern, and the
resaulting growth, can be astored under a file-name.
Sixty sample patterna are included on the disk.
In "auto™ mode, the program randemly selects
and displays automata from ita library.

The intention of thia software is to
make cellular automata availsble
and comprehensible to the
widest possible audiesnce.




Jerome Rothstein
Department of Computer and Information Science
The Ohio State University
Columbus, OH 43210-1277

Bus automata (BA's) generalize cellular autornata (CA's) by providing a modular global
interconnection network, each module controlled by its local automaton, in place of the fixed
patterns of nearest neighbor communication characteristic of conventional CA's. Each cell receives
or sends information over links with its nearest neighbors and has the option of connecting any of its
input links to any of its output links through an internal channel. Any pattermn of connected links and
channels is a bus; BA algorithms are implemented via dynamic BA architecture changes (successive
bus configurations). We have used BA's to explore some ultimate limits of parallel/distributed
processing, achieving immediate” recognition of many complex languages and pattems, and to model
visual/nervous systems. Recent work has led to near cbliteration of the distinction between BA
hardware description languages and the corresponding distributed programming languages, as well
as to development of generative grammars for patterns in the plane. Recognition is immediate for
many pattemns produced thereby (including fractals), and the general case (non-immediate) goes
over to full Turing machine generality with parallel speed-up.

Beferences

1. Rothstein, J. (1976a). On the Ultimate Limitations of Parallel Processing. Proceedings of the 1976
International Conference on Parallel processing, 206-212. IEEE Catalog No. 76CH1127-0C. Best Paper
Award.

2. Rothstein J. and Weiman, C. (1876b). Parallel and Sequential Specification of a Context Sensitive
Language for Straight Lines on Grids, Computer Graphics and Image Processing 5. 106-124.

3. Moshell, J. M. and Rothstein, J. {1979). Bus Automata and Immediate Languages. Information and Contral
40, 88-121.

4. Rothstein, J. (1977a). Toward an Arithmetic for Parallel Processing. Proceedings of the 1977 International
Conference on Parallel Processing, 224-233. |EEE Catalog No. 77CH1253-4C. Best Paper Award.

5. Rothstein, J. (1977b). Transitive Closure, Parallelism, and the Modeling of Skill Acquisition. Proceedings
of the International Conference on Cybernetics and Society, 1977, 232-236. IEEE Catalog No.
F7CH1259-1 AMC.

6. Rothstein, J. (1978). Topclogical Pattern Recognition in Parallel and Neural Models on Bus
Automata. Proceedings of the 1978 International Conference on Parallel Processing, 92-107.
|IEEE Catalog No. 78CH1321-9C.

7. Rothstein, J. and Davis, A. (1979). Parallel Recognition of Parabolic and Conic Patterns by Bus
Automata. Proceedings of the 1979 Interrmatioral Conference on Parallel Processing, 288-297.
IEEE Catalog No. 78CH1433-2C,

8. Rothstein, J. (1982). Toward Pattern-Recognizing Visual Prostheses, Proc. IFAC Symposium
"Control Aspects of Prosthetics and Orthotics,” Columbus, OH, 7-9 May 1982, pp. 87-95,
Pergamon Press.



Cellular Automata with the Connection Machine
The Cellular Automata Toolkit

Jim Salem

Thinking Machines Corporation

The Connection Machine (CM) has proven 1o be a powerful, general purpose cellular automata
machine. The CM has been successfully used to simulate many different types of cellular automata of
various dimensions. This poster describes work on the CM in three areas @ fluid flow simulations, sim-
ple one dimensional CA, and CA with dimension > 2. More generally, it describes the Cellular Auto-
mata Toolkit developed by the author at Thinking Machines.

The Cellular Automata Toolkit is a CA researcher’s toolbox. It contains utilities for creating CA
of arbitrary size and topologies and moving them into and out of the CM. CA rules may described
using a special user-interface window or may be expressed in SIMPL, a variant of the LISP language
developed for the Connection Machine. The CA programmer has available many data collection,
analysis and display utilities.

The Toolkit is based on the CONFIGS virtual processing system. This system allows even small
Connection Machine Systems to simulate millions of cellular automaton cells, When running the CON-
FIGS system, a CM can store many different CA configurations at once.

CA with arbirary interconnections are easily simulated using the CM's high-speed parallel rout-
ing network. Topologies simulated on the CM include: grids of any number of dimensions and hexago-
nal lattices. The CM's boolean processors fit the CA cell size exactly, Thus no computation is wasted
on leftover bits as when running CA on computers with long word lengths.

In addition to simulating cellular automata, the CM is also powerful in data collection, display
and analysis of CA results. Iis parallel processing has been used to gather statistics, area average
results, time average results, render 3D CA in meaningful ways, and image enhance results.

The CM has performed well in simulating fluid flow using CA techniques. The CM attains
speeds of about 1 billion site updates per second on a 4000 x 4000 hexagonal lattice. We have
observed vortex streets and aperiodic flow around arbitrarily shaped objects.



Information PDensity Near a Phase Transition

Rob Shaw
Insctictute for Advanced Study
Princeton, NJ 08540

Spatial mutual information measures are used to characterize
the degree of structure in the spin patterns of the two-dimensional
Ising model near its critieal point. The "information density' is
seen to be equivalent to a thermodynamiec quantity, the difference
between the single-spin entropy and the full thermodynamic entropy
per spin, I = H(1l) - 5. Any correlations in the spin pattern
reduce the thermodynamic entropy from the maximum it could have
with no nearest neighbor interactions. This measure displays a
sharp but finite maximum at the phase transition. Shown superposed
on the figure below are the exact thermodynamie curwve, obtainable
from the analytic solutions of Onsager and Yang, and the spatial
mutual information wvalues, computed from average local conditional
probabilicy distributions. The average information density in a
two-dimensional geometry is given by I(ABICD), the mutual information
between two sides of the elementary lattice square ABCD.

Te
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Temperature
Lattice dynamics were provided by a deterministic cellular
automaton rule rather than monte-carlo updates. As shown by Creutsz,

a suitable deterministic rule with hidden momentum wvariables can
give accurate thermodynamic spin statistics without the necessity
of generating random numbers.

The information density is a '"'stored information' type of
statistic, providing an upper bound to the amount of information
that can reliably be transmitted into the future using the system
as a medium. It is hoped that this statistiec will be useful in
characterizing the degree of order in spatially extended systems
where there is no conserved energy, such as reaction-diffusion
equations. Also, this result in the thermodynamic context gives
perhaps some credence to the speculation that systems in general
have greater information storage capacity near phase transitions.



Cellular Automata Circuits
Brian Silverman
Logo Computer Systems Inc.

It is well known that some celluar automata are computationally
universal. This has been proven with several different rules. However, the
rules used in these proofs lead to "computers” that are quite large and
counterintuitive. There are other rules where logic gates can be built in a
rather straightforward way.

The picture above, for example is an binary serial adder in a 7 state per
site automata. Two of the states are used to define the signal paths. Four
more are compontents of trivial gliders that move along these paths. The
seventh is the background.

There are a lot of other ways to build logic circuits using cellular

automata. A rule that supports gliders can often use them to transmit
information. Stable structures can be used to construct gates. Several
examples will be given inlcuding Conway's Life Game and others that allow
for much higher logic densities.



Demonstration of a Pipelined VLSI Based
Cellular Automaton Processor

Kim Strohbehn et al. (Applied Physics Lab., Johns Hopkins)

A simple and cheap Cellular Automaton Processor has been developed
as a coprocessor board for the IBM P.C.. The processor handles
cellular legic transformations on a 9-bit neighborhood of a single bit,
256x256 array at about 240 array transformations per second in a
pipelined mode. Twelve identical custom VLSI chips, each performing a
sequential transformation, form the pipeline stages.

We propose a demonstration of cellular automaton processing
using this coprocessor. We will demonstrate Conway's Game of Life,
time-reversible operators, the Abingdon cross image processing bench-
mark, and simulated percolation processes ( See Figure 1). Interested

observers will have the opportunity to implement algorithms of partic-
ular interest to them on the APL coprocessor.

Figure 1. Intermediate image in a percolation simulation.



TIME VARYING CELLULAR AUTOMATA

John Stamey
D, E. Stevenson
Department of Computer Science
Clemson Universily
Clemson, 5.C. 29681-2806

The motivation for our work is the meodeling of systems which have

hierarchical control structures. An example of such a system is the metabolic
control in cells,

We define a new class of cellular automata called time varying cellular
aufornata [TVCA). TVCA contain the class of elementary cellular
automata (ECA) investigated by Wolfram in 1983. The basic idea of TV C A
i= to let the ECA rules vary with each clock step, under some form of control
rule. TV A exhibit a richer class of behaviors than ECA while exhibiting a
number of important decidability characteristics. Among the TVCA is an
important subclass called periodic lime varying cellular automate

fFTVCA). In this subclass, the set of control rules varies periodically with
time.

Our poster demonstration will provide examples of TV CA4 and PTVCA and
will exhibit the following results:

1. Equivalence classes of TVCA with ECA. This demonstrates the fact
that many different control strategies give rise to identical behavior. An
example of thisis ECA[(80), the elementary cellular automata under the
Rule of 90, which is found to be equivalent to PTVCA(Z;:x,y), the
periodic time wvarying cellular automata of period 2 with x being a
member of the set of EC A rules (18, 50, 90, 122, 146, 178, 218, 250), and
¥ being a member of the set of EC A rules (18, 90, 146, 218).

2. Definition of PTVCA in terms of formal rewriting systems. Matrix
grammar and control grammar rewriting schemes establish a well defined
procedure by which larger classes of legal configurations may be
described. The relationship between linear bounded cellular automata,
normal forms of productions in grammars and hierarchical control
structures is explored.

3. Algebraic properties of PT V C A relating to category theory.



Evidence that quantum fields are no cellular
automata — summary

Karl Svozil
Institute for Theoretical Physics
Technical University Vienna
Karlsplatz 13/136; A-1040 Vienna, Austria

1. From a topological point of view, cellular automata are equivalent to their associated
dual lattices. The dual lattice is gained by shrinking a cell to peoint size, while keeping its
connections with surrounding cells. In that way, results from lattice theory can be applied
to cellular automata theory and wice versa.

2. A no-go theorem' states, that for quite general classes of local lattice models with

[locally defined] point charges, there can be no unitary, invariant theory on the lattice
without equal numbers of left— and righthanded fermions for each combination of quantum
numbers. This is not the phenomenology seen; for instance in the weak interactions, there

is no right— and lefthanded symmetry associated with the hypercharge states ¥(eg) = 1
and Y(eg) = %.

3. There may be ways to circumvent the dilemma stated by the no—go theorem; three of
those are listed below:

(i) to give up locality of the transition law?, such that non-neighboring cells contribute.
This can be discussed in the framework of the theory of finite elements:

(ii) to give up the local definition of quantum numbers, which then appear as “smeared
out” charge sources etc.;3

(iii) *“dimensional shadowing™, a technique for projecting higherdimensional manifolds
onto lowerdimensional ones.*

4. The topological equivalence between cellular automata on the one hand, and their dual
lattices on the other hand, allows application of theorems established for either one of those
to the other one. For instance, it can be inferred that a wide class of local field theories

on the lattice [those with more than one states in two space dimensions| are universal
computers.

The author acknowledges discussions with Anton Zeilinger. This work was supported by
BMWF, project number 19.153/3-26/85.
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Cellular Automata as Pop Art

N. Tufillaro, J. Reilly. Physics Department,
Bryn Mawr College, Bryn Mawr, PA. 19010, and
A. Crandall. Heed College, Portland, Oregon.

Weolfram recently suggested that CA is
a fertile medium for pop art. CA's most striking
feature is the ease with which the user can
create a myriad of unigue, intriguing and
captivating patterns. We developed a popular
CA program -- AUTOMATA -- that features a
simple user interface and allows the artist
to expleore rules and initial conditions by
pointing and clicking. The design and user—
interface of Automata will be described with
an eye towards defining standards for the
user interface and core function calls of
future CA systems designed for the general
public.
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BOOLEAN CALCULUS ON CELLULAR AUTOMATA

Gérard Y. Vichniac

Laboratory for Computer Science
Massachusetis Institute of Technology, Cambridge, Massachusetts 02189

This poster presents applications of the Boolean derivative® to cellular automata.

A Booclean cellular automaton with N cells is a fully discrete dynamical system
whose evolution is given by the iterations of a global mapping F

F:{0,1}" — {0,1}".

The homogeneity and the locality of cellular automata permit a compact definition of
F in terms of 2 local transition rule f

f:{0,1}" — {0,1}

that maps the occupancies of the neighborhood (of size n, with n = N) to the next
value of the center cell. Since the rule f is fully described by a table look-up of length
. all its properties can be readily obiazined by simple inspection of this table.

Deriving properties of F from those of f is in general a difficult prebiem. The
Boolean derivative /' of f is 2 nontrival property that can be used for characterizing F.
Indeed, the Boolean derivative F' of F can be defined as the NV x N matrix

G 0
gse [ € £9

o
L)
where f' is the 1 x n row matrix f' = (£L,..., £L), defined® with

3F
‘E_:-r = f'[zi““':*.e11'"':ﬂ}@I(Ilr*-“\:h*-+xn]

where the ='s are the cell values (0 or 1).

A matrix element FJ; is one if varying site 7 at time ¢ affects site ¢ at time ¢t+1, it
is zero otherwise (cf. the 0's away from the diagonal). The matrix F' has the following
“good"” properties that one can expect from = derivative:

- F' vanishes if the rule f is constant;

- F' = F if F is linear (i.e., f is the Exclusive OR of some neighbors). Hence F'
extracts the linear part of 2 general nonlinear global mapping F;

- The Jacobian det|F'| does not vanish if the rule is invertible (inverse function
theorem on cellular automata).

The notion of Boolean derivative thus permits the construction of an elementary
Boolean caiculus on cellular automata; it should lead to fruitful connections between
cellular automata and continuous systems.

See e.g., the books by A. Thayse [Springer, 1981) and by F. Robert (Springer, 1986).



LEARNING PHYSICS WITH CELLULAR AUTOMATA

Gérard Y. Vichniac

Laboratory for Computer Science
Massachusetts Institute of Technology, Cambridge, Massachusetts 02189

Fully discrete models lend themselves to exact simulation by digital commputers. By
avoiding the usual detour through caleulus and numerical analysis, these meodels can
focus on deep principles and subtle effects with very economical conceptual means.

Cellular automata are a type of fully discrete dynamical systems with physics-like

behaviors. They provide an interactive environment by which one can experiment with
notions such as:

- Micoscopic irreversibility and self~organization (prebictic evolution), where entropy
decreases, in contrast with

- The second law of thermodynamics, where microscopic reversibilty entails macro-
scopic irreversibilty (the arrow of time). There, the detailed entropy is constant, but the
measurable coarse-grained entropy increases. Cellular automata dynamics offers easy
and spectacular implementations of the paradexes of Loschmidt (reverse all velocities)
and of Zermelo (make a smaller synthetic universe, with a shorter Poincaré recurrence
time).

- “Advanced” concepts of ergodic theory, e.g., ergodic surface, metric transitivity,
microcanonical ensemble, order parameter. Cellular autemata can alse show how some
physical systems (e.g., amorphous hard alloys, glasses, spin-glasses) are not ergodic.

- Long survival of metastable phases (supercocled vapor, superheated liquid), a phe-

nomenon relevant to phase-transitions via nucleation, Wilson and bubble chambers, fog,
and how a tea-kettle works.

- Light-cone and causality principle in relativity (these occur in physics and in cel-
lular automata models for the same reason: information propagates at finite speed).
Supralumimal propagation of noncausal waves (phase-velocity vs. group-velocity).



Continuous time cellular automaton simulator P.C.Williams

Box 4279

Brown University
Prov. Rl 02812
401/863-3910

| plan to
demonstrate the operation of a 6X9 continuous time array and present a
poster review of the same. The array is programmed via a suitably
interfaced IBM-PC. Neighborhoods are octal, and all mappings take this
eight element neighborhood vector to a scalar at the central site. The
average rate of bit transition over the array is 250 KHz.

Rules which yield isotropic time average behavior will be demonstrated.
Such rules yield periodic, quasi-periodic, and chaotic time domain
activity. This activity is analyzed with a Nicolet Instruments 50
nanosecond digital analyzer available through Brown University. With it,
exact time domain display of chaotic behavior is facilitated. In addition,
the Nicolet is capable of computing and displaying power spectra.

Average values on the lattice when boundary conditions are actively
impressed are displayed in real-time on an oscilloscope. The impressed
boundary condition is variable in both frequency and average value, and
the effect of changing these parameters is easily seen. Since spatial
gradients in this value fit exponential functions nicely, this
demonstration should be of particular interest to the physical scientists.

The poster will discuss the order and chaos seen on the array and the
prospects for the dynamic modeling of analytic functions. It will also

extend formalism to the demonstration. Of course, it will push the merit
of continuous time processes.



Minimal Cellular Automaton Approximations to Continuum Systems

Stephen Wolfram (Thinking Machines Corporation and
Center for Complex Systems Research, University af [llinois)

Cellular automata can show continuum behaviour for much the same reasons as physical systems con-
sisting of discrete elements such as particles do. It is necessary that additive conservation laws exist, 50
that macroscopic quantities such as density can be defined. In addition, it is necessary that the micros-
copic details of configurations become random on a short time scale, so that statistical averages are
accurate. This second condition corresponds to the validity of the Second Law of thermodynamics.

For both theoretical and practical purposes, it is worthwhile to seek the simplest cellular automaton rule
whose large scale behaviour has a particular continuum form. It appears that such a rule is best found
not by construction, but by explicit searching or by an iterative or adaptive procedure.

I have searched for the simplest cellular automaton which reproduces the diffusion equation in one
dimension. The result is a k=3 rule, in which the mapping at each time step depends only on pairs of
adjacent sites. The rule is invertible, and conserves the number of binary bits in each configuration.
Although the rule is entirely deterministic, it appears to act as a good pseudorandom sequence genera-
tor, and to yield *"particle trajectories’’ which are effectively random walks.

W IHINT

!
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Microscopic diffusion at two densities in the minimal cellular sulomaton spproximation to the one-dimensional diffusion equation.

Panemn of differences produced by a single site imitial change.
The microscopic configumtion of the system is unstable Lo small
porturbations.

Randomization of the microscopic configuration, n.u-:_ing from a
simple initial condition, together with the corresponding coarse-
grained entropy increase.
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SIMULATION OF BIOLOGICAL AND SOCIAL SYSTEMS WITH CELLULAR AUTOMATA

David A. Young
Lawrence Livermore MNational Laboratory
Livermore, California 94550

Simulating the Color Patterns on Vertebrate Skin

Diffusion processes are believed responsible for biological patterns.
Complex patterns can be generated by giving cells both activation and
inhibition properties.

The diffusion equations can be simplified to a non-nearest neighbor
cellular automaton.

Variation of the ratico of inhibition to activation strengths yields a
transition from spot to stripe patterns.

Directional striping can be obtained from non-circular activation and
inhibition zones.

CA models thus mimic closely real biological systems and praovide an
impetus for new experimental and theoretical research.

Simulating the Growth of Cities

aj

b)

c)

d)

e)

Cities grow by an accretionary process at their boundaries, as well as

a densifying process at their centers.

Cities also develop different kinds of structures, for example residential,
industrial, government, etc.

CA models allow one to test simple algorithms for the growth process and
to compare the results of simulations with actual city plans.
Nearest-neighbor CA models in fact show many of the features of city
Structure.

These models may be used to suggest useful ideas about the origins of
the earliest cities, and to generate hypotheses about collective human
behavior.



Cellular Automata *86: Provisional Program

Posters, computer demonstrations and other presentations will be set up throughout the conference. Each
posrl::r will carry two cards which give dmes when the poster authors should be on hand to discuss their
work.

Warious tutorials and discussions have been amanged. It is expected that each one will be of interest
only to a fraction of conference participants. Additional discussions, talks, etc. should be arranged by
conference participants. There is a board near the entrance to the main conference area on which
announcements of such events should be posted. See the “*Notes on Discussions®*.

Most of the tutorials and discussions scheduled so far will be held in the main conference lecture room
fand can be watched on closed-circuit TV in the main conference area). Additional meeting rooms for
smaller groups are available upstairs.

Sunday, June 15

6:30 pm Meeting area opens for preparation of presentations
Monday, June 16

8:30 am Registration begins

Q:00 Coffes

10:00 Tutarial: History and background of CA (Tom Toffoli)

11:15 Tutorial: Basic CA science (Stephen Waolfram)

12:30 CA "86 group photograph

1:00 pm Lunch

2:30 Discussion: CA models for pattern formation

3:00 Tea

3:30 Discussion: CA models for fluids

4:30 Discussion: CA simulation software

6:00-8:00 Barbeque at Thinking Machines Corporation (245 First St, Cambridge) (See map
and other information on separate page.) Including Connection Machine demonstra-

Hons.
Tuesday, June 17
&:30 am Coffee
S:00 Tutorial: CA as dynamical systems (Doug Lind)
10:00 Dizcussion: CA mathematics
11:00 Discussion: CA models of the brain
12:00 [To be announced]
1:00 pm Lunch
2:15 Tutorial: Statistical physics and CA (Charles Bennett)
3:00 Tutorial: Computation in probabilistic CA (Peter Gacs)
3:30 Tea
3:45 Discussion: Probabilistic CA
4:45 Discussion: CA for ant and design
5:45 Discussion: CA in education

7:00 Banquet in McDermott Court (see map).



Program

Wednesday, June 18

E:30 am
9:00
0:45
10:45
11:45
1:00 pm
2:30
4:00

Coffes

Tutorial: Parallel computation (Danny Hillis)
Discussion: CA computer architectures

Discussion: Pattern recognition with CA

[To be announced]

Lunch

Discussion: Future directions and plans for CA 87
Conference closes (material must be removed by 7 pm)



