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Abstract

This paper raises a fundamental question, neglected so far in the literature: how
to make a distributed algorithm robust against input errors and wrong probabilistic
assumptions about the distribution of the inputs or of the link delays. We introduce a
notion of complezity-preserving protocol controller : this is an automatic procedure that
controls worst-case execution of any distributed algorithm. We then suggest a con-
troller with poly-logarithmic overhead. We show that the problem of designing con-
trollers is a special case of another problem, referred to as dynamic resource manage-
ment. We generalize our solution to solve the latter problem.

We believe that the techniques used are basic ones, and will be used to solve a
variety of unrelated network problems. Our solution seems to be very practical, since
the formal code of the protocol is very simple and thus easy to implement. The tech-
nique used in the solution appears to be interesting because a global resource is mani-
pulated locally. This somewhat resembles the "paralle]l prefix” technique used exten-

sively in parallel computing.
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1. Introduction

1.1. Motivation

Almost any piece of software, either in context of distributed or sequential algo-
rithms, has certain assumptions about its input. That is, if the input belongs to a cer-
tain admissible domain, then it is guaranteed that the output will be computed correctly
and the complexity of the algorithm will be small. Also, we may have certain assump-
tions about the probability distribution of the inputs. (We view the coins tosses used
in the algorithm as a part of its input.)

There are two things that could go wrong with the input to the algorithm. First,
the input could be outside of the admissible domain. Second, it may as well be that,
for one reason or another, our assumption about the probability distribution of the
input simply happens to be wrong, ie. input distribution is not uniform, and coin
tosses are neither random nor independent, etc.

Clearly, if something goes wrong, then we do not expect the algorithm to pro-
duce the correct output; however we still expect that the algorithm will not do any-
thing destructive, i.e. consume infinite amount of some valuable resources. That is, we
want an algorithm whose worst-case performance is almost as good as its expected (or
average) performance. Such algorithm always terminates fast. In most cases, it outputs
the right value. However, if something unexpected happens, we allow the algorithm to
terminate the computation without any output but with a declaration of error. If our
probabilistic assumptions are right, the latter would happen very rarely; otherwise we
should not have used that algorithm anyway. Such a algorithm is said to be controlled.

In case of sequential computing, it is very easy to control the worst-case execu-
tion of an algorithm, because time and space complexity of an execution are known at
any time during the execution. Thus, once an execution runs out of allowable time or
space, it is stopped with the declaration of a failure, i.e. the execution is timed-out

This paper raises a fundamental question, neglected so far in the literature: how fo
control worst-case performance of a distributed algorithm ? Unfortunately, while timing
out Is easy in case of sequential algorithms, it turns out to be a non-trivial task in case
of distributed computing. In distributed computing, some of the relevant complexity
measures, e.g. number of messages sent, or amount of buffer space used, are hard to
evaluate on-line during an execution, since, for example, a node does not know how
many messages have been been sent by other nodes.

While sequential algorithms are only sensitive to the input (including coin-
tosses), asynchronous network protocols are also sensitive to the behavior of the link
delays; some protocols make probabilistic assumptions about the distribution of the
link delays. Those link delays are controlled by data link protocols like HDLC [BS-83],
which ensure that messages come in the right order and no message gets lost. Those
protocols employ lower-level physical-layer protocols, which use coding schemes to
detect and correct the noise of the communication channel.
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Distributed network protocols are not, by any means, more robust than sequen-
tial algorithms since there are much more things that could potentially go wrong. In
fact, malfunctioning of one protocol could cause malfunctioning of many other proto-
cols, since network protocols are usually constructed in a modular way, the output of
one protocol being the input to another. Thus, once one protocol starts producing
wrong output, other protocols which receive their input from the former protocol will
get wrong input, and may behave in an unpredictable way. This means that the latter
protocol not only will produce incorrect output, but also will consume more network
resources than expected, ie. sending too many messages, occupying too much
memory, etc. As a result the network can get congested and may in fact collapse; [P-
83] shows how little it took to bring down the whole ARPANET in 1980.

There are various network algorithms, which happen to be very sensitive to their
input. For example, the Minimum Spanning Tree (MST) algorithm of [GHS-83]
assumes that edge weights are unique; under this assumption the unique MST is
found with O(E+VlogV) messages. However, if some edge weights happen to be ident-
ical, then not only does the algorithm of [GHS-83] fail to build a MST, but its com-
munication complexity is unbounded for such input. Another example is the
Bellman-Ford shortest-path algorithm. This algorithm is specified to work on con-
nected graphs which do not contain negative cycles. However, if the graph happens to
contain negative cycles, or is not connected, then a straight-forward distributed imple-
mentation of this algorithm in the style of the ARPANET routing protocol [JFR-78]
will send an unbounded number of messages. Yet another example is the routing
protocol, which attempts to forward messages along edges of a rooted tree towards the
root. The protocol is very simple: each message is forwarded from a node to its parent
in the tree until it reaches the root. The pointers to parents are produced by some
other protocol. The assumption is that those pointers indeed form a tree. Observe
that if the set of pointers contains a directed cycle, the messages may loop infinite
number of times in that cycle, making complexity of the protocol unbounded. Con-
trolling protocols is essential for adapting them to changing input and network topol-
ogy [A-87-C]. since the transient inputs are not necessarily coherent.

There are also many examples of problem for which link delay distribution is
relevant. One of them is the average case performance of Breadth-First-Search (BFS)
protocols in a network. In most networks, the delay distribution of the links has the
property that its variance is much less than its expected value. Under this assum ption,
the Bellman-Ford shortest-path algorithm is the simplest and the most practical solu-
tion; the expected number of messages sent by it is upper-bounded by O(ElogE).
However, if the variance of the delay distribution happens to be large, then the
number of messages sent will reach O(E-V); in this case it is advantageous to use,
say, more sophisticated algorithms [AG-85], which require O(E'*¢) messages in the
worst case. Another and even more striking example is Spinelli’s topology update pro-
tocol [S-86],[BG-87]. Assuming link delays have small variance, the average number
of update messages sent is E per topological change. However, if link’s delays behave
"badly”, then the number of messages grows as E-2% where k is the number of
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changes. Still, Spinelli’s algorithm is believed to be very practical [BG-87].

It appears that controlling protocols is a fundamental problem. All the problems
with specific protocols can usually be patched with ad hoc methods, using some special
properties of those protocols. However, so far there has been no general methodology
that will enable us to treat different protocols in a homogeneous way. Such a methodol-
ogy seems to be vital for developing further the theory of communication networking.
Thus, it is natural to state the problem of finding a general methodology that will
enable to control worst case execution of an arbitrary protocol.

1.2. Contributions of this paper

One contribution of this paper is introducing the following of complexity-
preserving protocol controller. Another contribution is an efficient controllers, referred
to as Controller 1, which transforms arbitrary non-controlled protocol 7= with complex-
ity ¢, with v, participating nodes into an equivalent controlled protocol ¢ with bit
communication complexity Cy =0(c, + v,log?v,loglogv,).

We believe that, besides being a theoretical result, Controller 1 has also a practi-
cal value since it is very simple and easy to program; its code can be specified formally
on 1 page. Additional attractive features of Controller 1 are: it uses only those edges
traversed by the messages of the original protocol, it does not use unbounded
counters, it does not assume existence of node identities, it does not assume FIFO

regime on communication channels, and its memory requirements are O(loglogv,)
bits per edge.

We demonstrate that complexity-preserving protocol control is a special case of a
more general problem of resource management. The essence of the latter problem is to
devise protocols for each of several communicating asynchronous parallel processes to
control access to a shared pool of resources. A weaker version of the resource
management problem was stated in [LGFG-86], where a probabilistic solution is
given. Under certain probabilistic assumption, [LGFG-86] show that the average cost
of accessing a resource is only constant, independently of the size of the network.
However, without those probabilistic assumptions, the cost of accessing a resource
appears to be linear in the size of the network.

We show a simple and efficient solution to the resource management problem,
whose worst-case amortized bit complexity per share of the resource is only
O(logznloglogn), where n is the number of participating processes. The technique
used in the solution appears to be interesting because a global resource is manipulated

locally. This somewhat resembles the ”parallel prefix” technique used extensively in
parallel computing.

The above technique seems to be a fundamental one in distributed computing;
we predict that it will be used to solve a wide variety of apparently unrelated problems.
For example, it can be used to improve by O(log?V) factor the main result in [AS-
87]. Also, it appears that it can be used to solve the “name assignment” problem [P-
87], whose essence is to assign distinct names in a network of anonymous processors.



1.3. Organization of this paper

In Section 2, we state the model of the communication network, the complexity
measures used to evaluate protocols, and state the problem of controlling the worst-
case execution of a protocol. In Section 3, we describe Controller 1A, which is a
simplified and slightly less efficient version of Controller 1; In Section 4, we analyze
Controller 1A. In Section 5, we present the more efficient Controller 1. In section 6,
we present the the problem of dynamic resource management, and outline its solution.

2. Static Network and Protocols

2.1. Model of Static Network

We consider a point-to-point asynchronous communication network, described by
an undirected graph G(V,E) where the nodes, V represent computing units responsible
for communication and the links, E, represent bidirectional noninterfering communi-
cation channels operating neighboring nodes. No common memory or input/output
devices (e.g. common clock) are shared by the node’s processors. Each node is pre-
programmed to perform its part of the computation as well as to receive and send
messages to neighbors. These actions are assumed to be performed atomically, i.e. as
if performed in zero time. We confine ourselves only to event-driven algorithms,
which do not use time-outs, i.e. nodes cannot access a global clock in order to decide
what to do. Each message can carry only a constant number of bits. The space occu-
pied by the node program cannot exceed a fixed number of bits per adjacent network

link, i.e. is proportional to the degree of the node. The nodes do not have any identi-
ties.

Observe that in such network it is impossible for a node to know all the topology
of the network. As a result, nodes are forced to communicate with each other in

order to solve various network problems. Also, breaking symmetry in such network
may require randomization.

In a static network, each message sent over a network link arrives at the second
end after some finite but undetermined time, which is called link delay. The latter may
change with time arbitrarily subject to the FIFO rule, i.e. all messages arrive in the
same order as they have been sent. This model is fairly well understood and is rela-

tively convenient for the design of efficient algorithms [G-82],[GHS-83],[A-85],[CT-
86],[A-87].

2.2. Static-Network protocols

A protocol is characterized by a node algorithm, which is executed i'ndependent]y
by every node. The input and output of each node algorithm is generated at the node
itself on a special input (output) tape. The contents of node’s input tape is fixed and is

available at the start time of the node algorithm. The output tape is written only upon
termination of the algorithm.
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To simplify the basic techniques used in our solution, we assume the protocol has
a single initiator. The node algorithm at the initiator is started by a special start signal
from the outside world. The node algorithm at any other node is started by receiving
a message of the protocol.

We denote by &;; (8,4) the alphabet containing all possible inputs (outputs) at a
node. Let A;, =6 V! and A, =5 V! be the |V |-dimensional cartesian products of &,
and é,,. The global input I€A;, (output OEA,,) is the collection of all node inputs
(outputs) prior (after) the execution of the protocol.

Protocol 7 is associated with a set ', CA;, of admissible inputs. Any string
IeA,, I'4T,, is said to be a non-admissible input [A-87-E]. Also, 7 is associated with
an input/output relation p,, which contains all pairs (I,0), with I€T',, such that O is
one of possible global outputs that could be produced by = on global input I.

2.3. Complexity measures

In communication networks, the amount of communication performed is usually
far more significant than the amount of local computation performed by the nodes.

Consider the set of all possible executions of a static-network protocol 7 under
all admissible inputs and all possible link delay distributions. The admissible-input
worst-case communication complezity of 7, denoted by ¢, , is the maximum over all such
executions, of the total number of bits received during that execution. Another
relevant characterizations of the protocol 7 are the upper bounds on the maximal
number of edges e, and maximal number of nodes v, traversed by messages of the
protocol. (Clearly, e, <e¢,.)

Considering the set of all executions of a protocol under arbitrary inputs (admissi-
ble or non-admissible), with arbitrary link delays, we define similarly the arbitrary-input
worst-case communication complezity of =, denoted by C,, and the maximal number of
edges £, and maximal number of nodes V, traversed by messages of the protocol.

Given a probability space over admissible inputs and link delays, we can define
admissible-input average-case communication complexity ¢, and the average numbers
Ur, €; of nodes and edges traversed by messages of the protocol.

A crucial detail in our discussion is that the complexity parameters ¢, and v, are
known at every node. :

2.4. The Problem of Complexity-Preserving Extension

Definition: A protocol 7 is controlled w.r.t. admissible worst-case (average-case) if its
arbitrary-input worst-case communication complexity is within a constant factor of its
admissible-input worst-case (average-case) communication complexity.

To simplify the demonstration of the techniques used, in the rest of the paper we
restrict our attention to the problem of making protocols controlled w.r.t. admissible
worst-case. Our results can be easily generalized to achieve protocols which are con-
trolled w.r.t. admissible average-case. In the future, unless stated otherwise,
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“controlled” is a short-hand notation for ”controlled w.r.t. admissible worst-case”, and
“communication complexity” is a short-hand notation for "worst-case communication
complexity”.

Definition: A protocol ¢ is an extension of a protocol 7 if it performs same as 7
under admissible inputs of 7. Namely, upon receiving any input /€T, any execution
of ¢ produces an output O satisfying input-output relation of 7, i.e. (I,0)€Ep,.

A protocol controller is a protocol transformation, which receives as an input a

non-controlled protocol 7, and produces as an output a controlled protocol ¢, which is
an extension of 7.

3. Controller 1A

3.1. Outline

The basic principle of the controller is that before sending a message of the pro-
tocol, the node has to ask permission to do so. Clearly, asking the permission from
the initiator for every single message would lead to quadratic complexity. Since we
assume that the protocol has a single initiator, it is very easy to maintain a tree span-
ning all the nodes participating in the protocol. The father of each (non-initiator) node
in the tree is the neighbor from which the first message of the protocol was received.
The initiator is the root of the tree. Upon receiving the first message of the protocol
from its father, a node sets a parameter Height to be the Height of its father plus 1.
Thus, Height equals the the height of the node in the tree (distance to the root).

The technique used in our algorithm is similar to some of the techniques used in
[G-85], [AP-87], but yet is substantially different from them. It is also worth men-
tioning that the techniques of [AS-87,AP-86] may be used to detect that the protocol
sends high number of messages, but would not prevent this from happening. More-
over, the detection process in [AS-87] by uself would require O( Viog*V) messages,
which is obviously unacceptable for a ”local” protocol 7 (with ¢, << V). However,
the following elegant data structure of [AS-87] is useful in our algorithm.

Let status of a node is defined as the maximum power of 2 which divides its
Height. That is, status=1 if Height is odd, status=2 if Height is even, but is not divisi-
ble by 4, status=4 if Height is divisible by 4 but not by 8, etc.

The main algorithmic idea here is the following. If a node attempts to send 2*
messages, then this will be authorized by a certain ancestor node of status 2%-p,
located at distance of e(p-Qk) away, where p is some constant, which is a power of 2.
This technique, which originates from [G-85], is also used in [AP-86].

Each node of status 2, [ >p, is initially authorized to permit 2‘-p~1 message
transmissions. A node can be either full or empty. Initially, before giving out any per-
mits, each such node is full. Once node gives out 2‘-p~! permits, it becomes empty.
Whenever such an empty node is asked to give another 2'-p~1 permits, it tries to bor-
row 2-2/-p~1 permits from an ancestor node of higher status. If this attempt succeeds,
the node authorizes the required 2'-p~! message transmissions and becomes full again.
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The constant p is selected as follows. Suppose 277! < ¢, < 27 for some integer
7, l.e. y==logzc,. Then, p as a power of 2, satisfying 4-v < p < 8.

3.2. Controller 1A: technical description

The messages that are awaiting to be transmitted by a node are kept in a local
Queue, until their transmission is authorized. Each time a node processes its Queue, it
generates a special REQUEST message of weight 1 and sends it towards the root. A
node which has forwarded such a message “blocks” all incoming REQUEST messages,
storing them in special buffers Buffer(e), kept for each adjacent edge e. The variable
Owner may point to one of the sons in the tree, such that REQUEST which arrived
from that son was forwarded to the father. Owner=self indicates that the last such
REQUEST was generated by the node itself. Owner—nal indicates that each REQUEST
which has ever arrived has already been authorized.

Whenever a node 7 wants to authorize 2% message transmissions, it waits until
Owner=ndl holds at ¢. At that time, it generates a REQUEST message of weight 2%,
and sends it towards the root. Any REQUEST is required to traverse, starting from its
originator, a path of length p-2¥, (where 2% is its weight) at least until it is handled.
The length of the traversed path is represented by an additional "length” counter. A
node receiving such message over an edge e stores it in Buffer(e) in case that
Ownerz£nil; otherwise it sets Owner:—e and checks whether the length counter is not
less than its status, and that its status is 2 =p-2¥. If at least one of those conditions

is not satisfied, then the length counter is incremented by 1 and REQUEST is for-
warded towards the root.

If the root is reached prior to traversing the required length, then the message is
handled at the root as follows. If the root has received requests for less than ¢, mes-
sages, then it sends an ACK message back to ¢; else the REQUEST message is simply
ignored. Another possibility is that after traversing a path of length 2/ =p-2% at least,
the REQUEST message above reaches thru an edge e a node j of status 2, which
handles it as follows. If j is full, then it becomes empty and sends ACK back to ¢. Oth-
erwise, if 7 is empty, then it (tentatively) becomes full, sets Owner :— e, generates new
REQUEST of weight 2“1 message with initial length counter 0, and sends it towards
the root. This new REQUEST will eventually be handled in similar way either at the
root or at some ancestor node of status 2/*!, Eventually, some successor request
either gets handled at a node which is full, or gets blocked. In former case, an ACK
message is sent back, tracing the whole path of the REQUEST, then tracing the path

of its predecessor, etc., until it comes to the node which generated the original
request.

Every node which propagates an ACK sets Owner:=nil and then attempts to pro-
cess the blocked REQUEST messages, stored in some Buffer(e). If all those buffers are
empty, it processes its Queue, trying to get authorizations for its own awalting mes-
sages. Eventually, ACK arrives at the node with Owner=self which originated the
REQUEST. This node sends the message stored at the top of the Queue, deletes it
from Queue, and then processes its buffers and Queue as above.
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This process continues until either the algorithm terminates, or all REQUEST

messages become permanently blocked, as no node can authorize any additional mes-
sage transmissions. In the latter case, the algorithm does not produce a correct output.

3.3. Formal Presentation of Controller 1A

3.3.1. Declarations of procedures, variables and messages

Node Variables
Height= Height of the node in the tree.
Status= Status of the node; this is the maximal power of 2 that divides Height.

In-edge= Edge from which the first message of the protocol has arrived. Points to
the father of the node in the tree. Initially, In-edge = nil.

State—= Receives values {full,empty}. Operation reverse changes State from emply
to full and from full to empty. Initially, State = full.

Recewed— Total weight of all REQUEST messages which have been processes so
far at the root. Initially, Received = 0.

Owner= A node who is waiting for ACK. Initially, Owner=nil.

Buffer(k)=  Buffer kept for every k. Contains the REQUEST messages which wait
for acknowledgement. Initially, Buffer(k)=# .

Queue= Queue containing messages which are waiting for permission to be sent.
Initially, Queue=0 .

Messages

REQUEST(z,d)J= message containing z requests that have traveled distance of d.

ACK= acknowledgement for the REQUEST message.
M(h)= message M of protocol m, which carries Height of the sender in
the field h.
Procedures
Process(e)= procedure which processes the message stored in Buffer(e)
buffer.

Originate= procedure which creates REQUEST messages.



3.4. Controller 1A: Node Algorithm

Upon receiving message M(h) of the protocol 7 on edge e
if In-edge = nil then

In-edge := ¢

Height := h+1

Status := maximal power of 2 which divides Height
State := full

Owner := nil

Queue := § |,

Buffer(e) := @ for all e.

Upon request to send a message M to neighbor k
add (M ,k) to Queue /*wait for authorization */
if Owner = nil then Call Procedure Originate

Procedure Originate /*Called when Owner= nil, Buffer(e)=0 for all ¢, Queue£p f1%/
send REQUEST(1,0) on In-edge
Owner := self

Upon receiving REQUEST(x,d) from k /*z is the weight; d is the traversed distance */
if Height = O then /this is the root */
Received := Received + x
if Received < ¢, then send ACK to k /*authorization */
else /*non-root node */
if Owner 5% nil then put REQUEST(x,d) to Buffer(k) /*block the request */
else /* Owner = nil ; process the request */
Owner := k
if x-p =Status < d then /*must handle this request */
reverse State /xfrom “full’ to "empty’ or vice versa */
if State = empty then
send ACK to Owner /i has been authorized */
Owner := nil
else send REQUEST(2x,0) on In-edge /*new request */
else send REQUEST(x,d+ 1) on In-edge /*dumping it on some ancestor */

Upon receiving ACK /*authorization to send messages */

if Owner 3£ Self then send ACK to Owner

else /*you are the originator of the request */
send M to k where (M, k) be the contents of the top of Queue
delete top of Queue

Owner := nil

if there is an edge e with Buffer(e) 20 ’ then Call Process(e)

else if Queues£0 then Call Procedure Originate

Procedure Process(e) /*processes Request stored on edge e, when Owner = nil */

act as if REQUEST(x,d) has arrived on e, where (x,d) is the contents of Buffer(e)
Buffer(e) := 0

4. Analysis

Theorem 1A: The protocol ¢ resulting from application of Controller 1A to a pro-
tocol 7 is an extension of 7. For any input, admissible or non-admissible, bit com-
munication  complexity of any execution of ¢ is bounded by

C4=0(c,log*c,logloge,).
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Proof: given below.

Definitions: Consider node i of status p-2’. Let node J be the ancestor of 7 in the
tree of status p-2*! that handles REQUEST messages originated by 7. We define Bal-
ance at node 7 at certain time ¢ as follows.

1) If the node 7 is emply at ¢, then Balance=2'.

2) If the node ¢ is full at £, and the last REQUEST message originated by i was
received and handled (not just stored in the Buffer !) by node j by time ¢, then Bal-
ance=>0.

2) If node 7 is full, and the last REQUEST originated by ¢ either has not yet arrived at
J, or has not yet been extracted by j from a Buffer, then Balance=2'*1,

Comments: The Balance of such node i represents the number of message author-
izations that this node has been responsible for in the past. Recall that a node ¢ of
status {-p handles only REQUEST messages of weight 2¢. This is captured in part 1) of
the definition above. Also, by communicating with higher status nodes, a node can
”shift” its responsibility to higher status nodes. This is captured in parts 2),3) of the
definition. Namely, at the time node j handles a REQUEST originated by i, the Bal-
ance at ¢ drops by 2/, and the Balance at J raises by the same amount. Observe that a

node does not know its Balance; this parameter is introduced only to simplify the

analysis.

Notations: Let M; denote the total number of authorized protocol messages nodes by
time ¢. Let /V; denote the total number of nodes that entered the protocol by time ¢.
We call a node “active” by a certain time if that node has handled at least one request
by that time. Let N,(!) denote the total number of active nodes of status ! by time ¢,

and let By(!) denote the total balance of all the nodes of status I by time ¢. Here
By(~) is the balance of the root.

Claim A: At any time ¢, N, <M, < B,.

Proof: Clearly, N, < M,, since a node can enter the protocol only in response to a

message, that was sent earlier. On the other hand, M, < By since transmission of every

message must be authorized. o

Claim B: At any time,
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(1) The Balance of a node of status I < p is 0.
(2) The Balance of a non-root node of status v > [ > p is at most 2-1-p7 L.
(3) The Balance of the root, B,(7), never exceeds c, .

Proof: Immediate. o

Lemma 1: At any time, and forall 0 < I < v, N(I) < i—;f—
Proof: Recall the "distance requirement” imposed in the protocol, according to which a
node of status 2/ handles only those requests which traversed a path of length 2¢ at
least. This requirement guarantees that a node of status 2’ becomes active only after
its depth (in terms of distance to a tree leaf) reaches 2' at least; otherwise none of the
requests arriving at that node could have traversed the required 2' distance. (Similar
argument has been used in [AS-87].) It follows that for every active node of status 2,
there exists a path in the tree of length 2’ and all those pathes are node-disjoint (for

same /). Thus, the invariant preserved at any time thruout the algorithm, is that by

time ¢ the ”active” nodes of status 2* constitute at most "21T fraction of the total

number of nodes that entered the protocol by time ¢. o

Lemma 2: For any ¢,
(1) for all I <~, B,(I) < N,-2-p~ L.
N,
(2) Bt S Cp+ —2t—
(3) MI S 2'C,r.
Proof:
Statement (1): follows from Lemma 1 and Statement (2) of Claim B.
Statement (2): Summing up the Statement (1) over all I <+, we see that the total bal-
N,
ance of all non-root nodes is at most -2—t; by Statement (3) of Claim B, the balance of

the root is at most c,.

Statement (8): follows from Statement (2) and Claim A.

Comment: Statement (3) of Lemma 2 above implies that the number of protocol mes-
sages is small. However, the controller also sends additional messages, namely

REQUEST and ACK messages. To complete the proof of the Theorem, it remains to
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show that the number of those messages is small as well.

Lemma 3: The number of REQUEST and ACK messages sent is at most
O( ¢, log%c,).

Proof: We ignore ACK messages since they can at most double the total cost. We
count separately REQUEST messages are never acknowledged and messages that are
eventually acknowledged. There are at most N, <2-c, messages in the former
category, as the pathes traversed by requests that will never been acknowledged are all

node-disjoint. Now, we concentrate on REQUEST messages that are eventually ack-

nowledged.

2-c
Clearly, the number of such REQUEST messages of weight 2’ is at most —2?;,

as each such message is responsible for transmission of p-2' protocol messages. The

transmission cost of each such message is at most 3-2, ie. the total communication

cost of REQUEST messages of weight 2/ is O(2/

2-¢,p
—) =0(cz'p) =0(cyloge,).

Summing up over all / introduces additional factor of «, bringing total complexity to

O(c,log?c,). Similar argument is used in [AP-87]. Since the "weight” of each request

is a power of 2, it is easy to modify the algorithm so that each message will carry only
O(logloge,) bits.

This completes the proof of the Theorem 1A.

5. Adaptor 1

5.1. Outline

We now sketch how to reduce the number of messages from O(c,log%c,) to to
O(c,.,—l-v,logsz]. First, we notice that we can control the number of nodes in the
same way as we control the number of messages transmitted, thus guarantying that

the number of ”authorized” nodes is O(v,). Next, we ”scale” down the messages, ie.

Cﬂ . . .
allow every node to send b, =—— without any need for external authorization. How-
vﬂ
ever, once b, non-authorized messages have been sent, the node should ask for per-
mission for the next message. In a sense, messages are organized in "blocks” of size

b,; each new block needs to be authorized.
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5.2. Implementation

All the messages that a node has requested in the past to be transmitted are kept
in array Queue[d/ at that node. The variables Requested (Acked) represent the number
of messages that have been requested to transmit (authorized for transmission). First
Acked entries of the Queue contain messages that have been actually transmitted; the
remaining Requested— Acked entries contain messages that await authorization to be
transmitted. Each REQUEST message originated by the node corresponds to a con-
secutive block of b, messages in Queue. For each arriving ACK message, Acked is

increased by b,, and the next block of b, messages from the Queue is transmitted.

In order to control the number of nodes together with controlling the number of
message transmissions, we use the following somewhat counter-intuitive trick: we
require each node to send b, dummy messages to itself, at the time it joins the proto-
col. The number of dum-my messages should not exceed 2-¢,, since each one of at
most 2-v, nodes generates b, dummy messages. Those messages will be accounted
together with regular protocol messages; this guarantees that the number of nodes that
enter the protocol will not exceed 2-v,. Thus, the total number of messages (regular

or dummy) sent in a correct execution cannot exceed 3-c,. The total number of

blocks of messages can reach 3-v,.

Thus, we tune the threshold at the root to 4-v,. We also update p and ~ as fol-
lows. Suppose 27! < v, < 27 for some integer 7, i.e. v~logyv,. Then, p as a power

of 2, satisfying 44 < p <8-y. The resulting protocol is called Controller 1. Its formal

presentation is given in the following sub-sections.

Theorem 1: The protocol ¢ resulting from application of Controller 1 to a proto-
col 7 is an extension of m. For any input, its bit communication complexity is
bounded by Cy=0(c, + v,log?v,loglogv,).

Proof: similar to the Proof of Theorem 1A.

Comment: It is fairly straight-forward to extend this method to the case of multi-
ple initiators, using the methods of [GHS-83] under assumption that some node iden-
tities are available; otherwise such identities can be generated by flipping coins. We

can use the techniques of [GHS-83] in order to merge together trees rooted at

different initiators.
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5.3. Formal Presentation of Controller 1

5.3.1. Declarations of procedures, variables and messages

Node Variables
Height= Height of the node in the tree.

Status— Status of the node; this is the maximal power of 2 that divides Height.
In-edge= Edge from which the first message of the protocol has arrived. Points to
the father of the node in the tree. Initially, In-edge = nil.

State= Receives values {full,empty}. Operation reverse changes State from empty
to full and from full to empty. Initially, State = full.

Recewwed— Total weight of all REQUEST messages which have been processes so
far at the root. Initially, Receiwed = 0.

Owner— A node who is waiting for ACK. Initially, Owner=nil.

Buffer(k)=  Buffer kept for every k. Contains the REQUEST messages which wait
for acknowledgement. Initially, Buffer(k)=0

Queuefij= Array, containing all messages which have been requested to send by
the original protocol. Initially, Queue contains dummy elements
(nil,self) forall 1 <i<b,.

Requested= The number of non-empty elements of the Queue array. Initially,
Requested=b .

Acked= The number of messages that have already been authorized and
transmitted. Initially, Acked=0.

Messages

REQUEST(z,d)= message containing z requests that have traveled distance of d.

ACK=
M(h)=

Procedures

Process(e)=

Originate—

acknowledgement for the REQUEST message.

message M of protocol m, which carries Height of the sender in
the field h.

procedure which processes the message stored in Buffer(e)
buffer.

procedure which creates REQUEST messages.
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5.4. Controller 1: Node Algorithm

Upon receiving message M(h) of the protocol  on edge e
if In-edge = nil then
In-edge := e
Height :== h+1
Status := maximal power of 2 which divides Height

State := full
Owner := nil
Queue ;= §

put dummy entries into first b, elements of the Queue
Requested := b,

Acked :=0

Call Procedure Originate

Buffer(e) := @ for all e.

Upon request to send a message M to neighbor k
Requested := Requested + 1
Insert (M,k) to Queue [Requested]
if Requested - Acked < b, then send the message to k
else if Owner = nil then Call Procedure Originate

Procedure Originate /*Called when Owner= nil, Buffer(e)=0 for all e, Queues£p f1%/
send REQUEST(1,0) on In-edge
Owner := self

Upon receiving REQUEST(x,d) from k /*z is the weight; d és the traversed distance */
if Height = O then /*thisis the root */
Received := Received + x
if Received < 4-v, then send ACK to k /*authorization */
else /*non-root node */
if Owner > nil then put REQUEST(x,d) to Buffer(k) /*block the request */
else /* Owner = nil ; process the request */
Owner :=k
if x-p =Status < d then /*must handle this request *
reverse State /*from “full’ to "empty’ or vice versa *
if State = empty then
send ACK to Owner /+it has been authorized */
Owner := nil
else send REQUEST(2x,0) on In-edge /*new request */
else send REQUEST(x,d+ 1) on In-edge /*dumping it on some ancestor */

Upon receiving ACK /*authorization to send messages */

if Owner 3£ Self then send ACK to Owner

else /*you are the originator of the request */
send messages stored in Queue[i], for all Acked < i < Acked + b,
Acked := Acked + b,

Owner := nil

if there is an edge e with Buffer(e) 540 then Call Process(e)

else if Queues£) then Call Procedure Originate

Procedure Process%e) T/(*processes Request stored on edge e, when Owner = nil *
S

act as if REQU x,d) has arrived on e, where (x,d) is the contents of uffer(e)
Buffer(e) := 0
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6. Dynamic Resource Management

6.1. The Problem

Informally, the dynamic resource management problem can be stated as follows.
Consider managing a big banking system which owes a lot of money to its clients, but
has few money in reserves. (Most of the clients money has been invested into third
world countries, used to pay gambling debts of the bank directors, etc.). The only way

that the system can give back money to its clients is if some other clients will deposit

that money first.

In fact, the resources may represent money funds, network bandwidth, available
buffer space, line printers, tape drives, etc. In the course of their operation, processes
may need to use some resources from the pool. For that purpose, processes will try to
withdraw required amount of resources from the pool and will deposit them back to the
pool after using them. If withdrawal request exceeds the current balance, then the

algorithm terminates with declaration of bankruptcy. Until then, every withdrawal or

deposit request is granted.

More formally, there exists a communication network G=<V,E) and a request
protocol which operates in that network. Each node can enter and leave the request
protocol many times. In general, a node is active if it currently participates in the pro-
tocol, and passive otherwise. The set of active nodes can change arbitrarily with time;

however at any point of time this set of nodes is a connected subset of the communi-
cation graph (V,E).

The request protocol generates at participating nodes requests withdraw(z) which
means: "withdraw z resources from the pool” or deposit(z), which means: "deposit z
resources to the pool”. The weight of a request withdraw(z) is — z, and the weight of a
request deposil(z) is z.

Another protocol that is operating in the network is the granting protocol which
attempts to satisfy the requests above. For every withdrawal or deposit request at a
node, the granting protocol may generated signal granted at the node which generated
the request. At this time, the corresponding request is said to be granted. For a given
time, the global balance at that time is the sum of weights of all granted resources plus
some initial balance. The normalized weight of a request is the ratio of the amount of

resources withdrawn or deposit by the request, and the global balance at the time the

request is made.
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We say that granting protocol satisfies validity if the global balance is always non-
negative, and when the balance reaches 0, a special bankruptcy message is delivered to
all nodes. We say that granting protocol satisfies liveness if either every deposit request

is granted or the bankruptey is eventually declared.

The Communication Complezity of a granting protocol is the amortized communi-
cation complexity per share of the the resource pool. More formally, let
8 =[ry,ry, - - - 1] be a sequence of k requests thruout the life-time of the system.

Suppose request r; has weight w;, and arrives at the time at which the global balance is

E |,
b;. The flux f, of a sequence s is defined as f, =Y o | That is, flux of s is the
i=1 O

total number of “"shares-changes” in s. Let M, be the number of messages sent in

order to handle those requests. Then, the amortized complexity m, of sequence s is

m, = f3 , Le. total number of messages divided by the flux. The amortized complex-
8

ity of the granting protocol is defined as a maximum value of m,, over all finite or

infinite sequences s, and over all delay distributions in the network.

Remark 1: It can be easily seen that for any integer f, there exist sequences s
with flux f, =f such the amount of messages that any granting protocol sends while

handling sequence s is Q (f). Thus, it makes sense to define amortized complexity as

above.

Remark 2: Clearly, controlling communication complexity of a protocol is a spe-
cial case of dynamic resource management problem, in which resource withdrawal is
transmission of messages over communication channels, resource in this case being
the communication bandwidth. Here, resources can be withdrawn, but are never
deposit back after being used. Saying that the number of messages sent should never
exceed worst-case complexity of the protocol under admissible input is the same as
prohibiting simultaneous withdrawal of too many resources. Similarly, controlling

total space requirements of a communication protocol falls in the same category; here

resource withdrawal is writing into local memory.

6.2. Solution of the dynamic resource management problem

Now, we sketch how to modify Controller 1 to treat the problem of dynamic
resource management. Suppose first that the set of nodes involved in the protocol is

fixed, and that the number of participating nodes is N.
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All nodes will maintain special variable G, which is the estimate of the global bal-

ance; this estimate is accurate within a constant factor. Thus, ¢ =—4—g— is the estimate

of a "quarter” of a global share. Every node has a personal fund, containing g¢
resources. The total amount of resources directly withdrawn (deposit) by the node
should never exceed g. In order to deposit or withdraw sums that are integer multi-

ples of ¢, the node ask for authorizations, as in the Controller 1 algorithm.

The main idea is that we handle withdrawals similarly to deposits, by creating
requests of negative size. The deposits and withdrawals from the same node cancel
each other. When the estimate of the root on the global balance or on the number of
participating nodes changes by a constant factor, message is broadcast over the whole
tree, updating variables G,q; all other operations are suspended while this message is

broadcast. When the root estimate hits 0, a bankruptcy message is broadcast to all

participating nodes.

Now, we extend this procedure to handle cases when the set of participating
nodes is dynamic. The main idea here is to handle nodes as resources. Namely, every
node will have an estimate /N on the number of participating nodes, which is accurate
up to a constant factor. When nodes join or leave, the corresponding positive or nega-
tive updates are created. Once the estimate of the root on the number of participating
nodes changes by a constant factor, then appropriate message is broadcast over the

whole tree, updating variables N,q; all other operations are suspended while this mes-

sage is broadcast.

Recall that we assume that the tree over which updates are performed is con-
structed automatically during the run of the protocol. The father of a node in the tree
is a neighbor from which the first message of the protocol has arrived. If the father
becomes passive before its sons, then it simply relays update messages forwarded by
its sons to the root. If the number of passive nodes in the tree significantly exceeds
the total number of active nodes, then this strategy becomes too expensive. At this
point it becomes worthwhile to rebuild the whole tree, purging out all passive nodes.
With this strategy, passive nodes increase the communication cost of updates only by a

constant factor. (This fact was pointed out by S.Plotkin [P-87].)

To rebuild the tree, the root broadcasts a message over the sub-network spanned
by the active nodes. Observe that in order to broadcast a message over the sub-

network of active nodes, we must know which edges belong to the sub-network.
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Towards that goal, whenever a node becomes passive, it notifies all its neighbors in
the sub-network about this fact. Thus, when the tree is rebuilt, each node knows

which ones of the incident edges lead to active nodes.
The resulting protocol is referred to as Manager 1.

Theorem 2: The Manager 1 constitutes a solution to the dynamic resource
management problem, with amortized communication complexity of O(logznloglogn)
bits for each resource share and for each protocol message sent in the request proto-

col. Here n is the upper bound on the number of active nodes.

Proof Sketch: Arguing as in the analysis of Controller 1A, we see that at all times, the
amount of deposits or withdrawals that have not been reported to the root constitutes
at most a constant fraction of the global balance. Thus, the root is in control of the
flow of the resources regardless of whether the global balance increases or decreases.
Consequently, the balance estimate at each node is accurate up to a constant factor.

The rest of the proof is similar to the analysis of Controller 1A and thus is omitted. o
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