SN AP, MASSACHUSETTS
1Y INSTITUTE OF
Ll TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS/TM-332

FORMULATION OF TRADEOFFS
IN PLANNING
UNDER UNCERTAINTY

Michael P. Wellman

June 1987

345 TECHNOLOGY SQUARE, CAMBRIDGE. M ASSACHUSETTS 02139

Formulation of Tradeoffs in Planning
Under Uncertainty

A proposal for doctoral research at the Massachusetts Institute of Technology
Michael P. Wellman

June 1987

Abstract

Planning under uncertainty with multiple, competing objectives is impossible
when goals are represented as predicates and the effects of actions are modeled as
deterministic functions of situations. Decision-theoretic models, on the other hand,
do not address the problem of constructing strategies from more primitive represen-
tations of actions. In this proposal, I describe a method for formulating plans from
large knowledge bases that can accommodate uncertain and partial satisfaction of
goals. At the core of the planner is a dominance prover that derives admissibility
properties of plan classes. The representation for the effects of actions is based on
a qualitative formalism for asserting influences among variables. The planner makes
decisions “up to tradeoffs,” an intuitive description that seems to characterize the
power of a dominance prover based on the qualitative influence formalism.

Thesis Supervisor: Peter Szolovits

Keywords: planning, decision models, qualitative reasoning, uncertainty,
knowledge representation, dominance proving

This work was supported (in part) by National Institutes of Health Grant No.
RO1 LMO04493 from the National Library of Medicine.

Contents

1 Introduction
1T Owermlewr i : iisie case aix Srers =06 & dba SUEe wtecs e SoeE e e
1.2 Planning Under Uncertaintyo v v oo oo vn v v
153 Balated Work: ov: siiis 54 voesi eimn o wieli srnle sid & soe waeve siie
1.3.1 Engineering Away Uncertainty
1.3.2 Planning with Decision Theory
1.3.3 Formulating Decision Models
14 QGuidetotheProposal i oo ieeinssens
2 Planning and Dominance Proving
2% ‘ThePlan:Lattics: : o womep cn s ove smelie s 50 am siare b s 55 mis
2.2 Dominance in the Plan Lattice. « ¢ ¢ v v o v o v 0 v 0 o
D8 Planting v iie:d s soeis i ¥ e GTETE an o en SIEE S 8 |
2.4 An Extended Nlustration: Tweak
2.5 Classification and Dependency-Directed Search.
2.6 The Complexity of Subsumption.
2.7 Summary and Prospectus vov ven vs man was wan s
3 Knowledge Representations
i1 Plan Langus@e =i e oo s e seel e i w5 e s vEehe) s
32 ActiONB . . v conn s oo o0 sie 56 & ma aama pa w mow m s h E e e s
3.2.1 Levels of Abstraction of Actions and Plans
322 Effectsof Actions . . . v + v v v v v v 0 o 0 s 0 o o
3.3 Plan Constraint Language . . : . <« v oo vere vonv os & a5 w0 o
331 Specification« .t ottt et e e e e
3.3.2 Simplification and Subsumption
Bd BventB . . . o o« oo snie 5.8 s ae s 2w pnm mr now w b 8w H e b
B8 TIDe a4 % 008 SR b hasE SR e R WUESE B W ude wesdl

4 The Effects of Actions

41 Modulagity -« vcoe v simis smia e sy sar w s e pe o e om
4.1.1 Robustness to Modification
4.1.2 Combinatoricsof Expansion+ v oo e

4.2 QualitativeInfluences o i e
4.2.1 Example: The Digitalis Therapy Advisor
422 DPefnitlons, 25 5 a0 % W W9T S5 S SRR s
4.2.3 Justification for the Definitions
424 Conditional Influencesc000.n..
4285 FEXIenSionS . .occe s i fie easoh eie where €U NS ® Aoe swie e

4.3 Effect Representation and the STRIPS Assumption

4.4 Creating Observables ... c.v v vov viwe s v sun simim ot 5 s wwiw s

5 SUDO-Planner

51 Dominance PTOVINE . + « « ¢ s s v o o v sv o v.6 = o s sa o v 0 s s 0 s

5.2 Input Specification of a Planning Problem

5.3 Focus Justifications: Common Practice Cases

54 "Tradeoff Oracles::;: » o5 e @0 & 9% Ve 9§ &8 @50 Ba % o &

5.5 A Note on Knowledge Engineering

6 An Example: The Hepatoma/AAA Case
6.1 Action Hierarchy

6.2 CaseTopubs. 2o s o @8 %00 8% P90 yiaE o e aaie s G
6.3 Qualitative Influence Diagram
6.4 Plan Tattive 55 5aiw o4 6 ola @ilve v O Toaits & SR ERRNE iR
6.5 Comparison of Besulfs covv s woow sisis s w0 eos sowe somos
6.6 Hierarchical Plan Formulation

6.7 Discussion

7 Research Plan
7.1 Current Implementation State
7.2 Evaluation Criteria
7.3 Timetable

A Plan Class Algorithms
Bt BEABERERIION e winnm wn moeme dwow EOY ENSE wohm Xk mie Mwe
4.2 'Computing Plan Subsumption & .00 o o0 oo wiaid va ses sas

ii

Chapter 1

Introduction

1.1 Overview

This document proposes a program of research to develop theory and methodology
to support a new model of planning under uncertainty. The new model generalizes
the prevailing planning paradigm by replacing goal satisfaction with expected utility
maximization. Under this choice criterion planning resembles the formulation and
analysis of decision models.

The proposed planner converges on a strategy of action via a cycle that alternates

between the following steps:

1. Construct and refine a domain model to predict and evaluate the effects of

candidate plans.

2. Use the model to discover and propagate dominance relations among classes of

plans.

The method is developed within a planning model that abstracts from the particu-
lar criteria used to choose among plans. By casting previous research in the general
framework of searching the plan space with a dominance prover, we see how to salvage
some of the existing principles, representations, and techniques even in an environ-

ment of uncertainty and partially satisfiable objectives. In particular, theoretical

2 CHAPTER 1. INTRODUCTION

results constraining the possible completions of partial plans may be incorporated
directly into the dominance prover.

Feasibility of the approach is explored by designing a dominance prover and knowl-
edge representations to support formulation of decision models from a large medical
knowledge base. The size of the knowledge base places stringent modularity require-
ments on the representation, because we are not allowed to assume a narrow decision
context. The domains of interest may be an order of magnitude wider in scope than
today’s expert systems. Complete decision models—or even large fragments—tend
to be appropriate for only small classes of problems. Therefore, knowledge about the
effects of actions and associations among events must be encoded at a fine level of
granularity to satisfy these modularity requirements.

Actions and events in the knowledge base (as well as plans being constructed)
exist at multiple levels of abstraction. The refinement of plan classes and world
models that make up the planning cycle is directed along the axes of specialization
defining these levels. Statements about plans at high levels of abstraction correspond
to meta-planning rules that have been proposed by Al researchers.

The representation for the effects of actions and probabilistic relations among
events is based on continuing work on qualitative probabilistic networks [57,58]. Mod-
els that describe only qualitative influences among events and actions provide great
modularity advantages because while the precise magnitude of probabilistic relation-
ships varies significantly with context, the direction of influence is often constant.
Furthermore, the property of “impossible to resolve via qualitative influences alone”
is perhaps the best formal definition available for a tradeoff situation.

This work stops at formulation of tradeoffs because tradeoffs provide a sharp
competence boundary for the planner that serves to limit the scope of this project.
Nevertheless, the issue of resolving tradeoffs is important for connecting this work to
a larger body of complementary research in decision theory and artificial intelligence.
The formal device of a “tradeoff oracle” demonstrates the application of resolved
tradeoffs in succeeding cycles of plan formulation.

Often, tradeoff resolutions are implicit in knowledge available to the program

or follow from heuristic assumptions. For example, assuming the optimality of the

1.2. PLANNING UNDER UNCERTAINTY 3

current treatment plan can drastically limit the space of new plans that need to be
considered upon an incremental change in information. The fact that a particular
course of action was already deemed best implicitly determines some tradeoffs that
might not have been directly resolvable by the planner. The role of this and other
assumptions (for example, “common practice axioms”) in plan formulation need to
be explored further.

The remainder of this proposal develops these ideas in greater detail. Sections 1.2
and 1.3 below respectively describe the problem of planning under uncertainty and
discuss related work on the problem. Those anxious to get to the “meat” would do

well to skip directly to Section 1.4, a guide to the remainder of this proposal.

1.2 Planning Under Uncertainty

Al robot planners solve problems by searching for a plan of action guaranteed to
transform the initial situation into one that satisfies some goal. Robots taking this
approach in the real world are likely to be defeated for two primary (and innumerable

secondary) reasons:

1. Knowledge of the world is imperfect; in practice it is not possible to guarantee

much about the result of performing actions in a given situation.
2. Predicates on world states cannot express reasonable goals for real-world agents.

Let us examine each of these in turn.

Categorical planners have the luxury of deductive inference. While it is impossible
to derive everything true about the result of applying an action in a situation, many
logical consequences of pre- and post-conditions can be easily derived. Valid plans
succeed with certainty, though robots do not always find valid plans—whether or not
they exist. Figure 1.1 diagrams this planning paradigm. I adopt terminology and
notation from the situation calculus of McCarthy and Hayes [33] because most work

on planning fits into their basic framework.

4 CHAPTER 1. INTRODUCTION

s; = initial situation

sy = result(robot, , 5;)

&
axioms
deductive theorems
inference =+ about sy
engine
plan (7)
axioms

Figure 1.1: Categorical planning. Situations and actions are described by axioms.
The task is to find a = that necessarily achieves the goal predicate G in the final

situation sjy.

As soon as we admit that the world is uncertain—at least from any robot’s
perspective—our picture is altered dramatically. Now, characteristics of the situ-
ation resulting from executing a plan can be predicted only probabilistically. We
see in Figure 1.2 that a probabilistic model is required to relate a given plan to the
likelihood that the goal is satisfied after its execution.

Sy
description
distribution over
probabilistic s situation
model descriptions for sy
plan (r)
description

Figure 1.2: Planning under uncertainty. A probabilistic model relates plans to out-
comes. There are at least two possible tasks: (1) Find a = such that Pr(G(sy)) 2
Pehreshold (satisficing), or (2) Compute 7 = arg max Pr(G(s;)) (optimizing).

1.2. PLANNING UNDER UNCERTAINTY 3

While research on categorical planning has produced representations that associate
all knowledge with individual actions, such encodings are more difficult to create for
the uncertain case. This is primarily a consequence of non-modularity inherent in
probabilistic models [21].

But for the nonce, let us assume that we can overcome these difficulties and
provide our problem solver with probabilistic models relating plans to goal satisfaction
likelihoods. The planner’s task reduces to optimization: finding the plan with the
greatest probability of success. This problem has a different flavor from the categorical
planning problem and undoubtedly calls for modified techniques. Unfortunately, the
real situation is worse. Rarely will the robot limit its cares to the probability of a
particular goal predicate being satisfied in the plan result state. Instead, the degree
to which a goal is satisfied may vary, or several objectives may be achieved in partial
measure. In this sense goal predicates are inadequate for expressing robot desires
(reason 2 above).

While it may have appeared possible to salvage much of the basic planning
paradigm while admitting uncertainty, the deficiency of goal predicates reaches down
to the fundamental structure of the methodology. Some actual planners have tried
to patch this hole in the framework by including heuristic rules to handle anticipated
planning decisions. McDermott’s NASL [34], for example, uses choice rules to arbi-
trate among alternative task reduction paths which arise in planning. He recognizes
that such an approach is vulnerable to harmful interactions with other eventualities
in the planning environment, as is any scheme that associates actions directly with
situations. The only way to cope with unanticipated choice contexts is to explicitly
predict the effects of actions and evaluate the outcomes with a more general decision
criterion.

At this point we might reconsider whether it makes sense to adopt the planning
paradigm at all. Indeed, it may seem that I have been setting up a straw man all
along; it should have been obvious from the start that traditional planning methods
are not up to the general task of planning under uncertainty with multiple objectives.

A decision criterion of the generality required is provided by Bayesian decision the-

ory [43]. Decision theory replaces the goal predicate with a utility function mapping

6 CHAPTER 1. INTRODUCTION

outcomes to real numbers (called utilities) and prescribes maximization of expected
utility for decision making. However, decision theory is silent about forming mod-
els from knowledge bases and generating utility functions appropriate for different
choices. Charniak and McDermott [8, page 523] say the following about decision
theory and planning:

One might think that an elegant theory of this kind would have been
assimilated into robot planners, but this has so far not been the case.
The issues addressed by the two approaches are complementary. Planning
research has focused on how plans are constructed; decision theory has

focused on how they are evaluated.

That the methodologies are complementary does not imply that they are indepen-
dent nor that they can be combined straightforwardly. There is no reason to expect
that techniques for constructing plans that work well under a goal-satisfaction cri-
terion will enjoy similar success under expected utility maximization. And it is not
surprising that decision theory does not answer the construction problem, because
any solution must depend entirely on the form and content of the knowledge bases
available to the robot. To date, decision-theoretic approaches have only been applied
using representations that directly encode probabilistic models and utility functions.
In other words, the decision model is the knowledge representation.

Unfortunately, decision models do not make good knowledge representations for
robot planners that are expected to work over a broad range of problems. The kind
of knowledge bases we are most concerned with are significantly wider in scope than
those of today’s expert systems, perhaps on the order of Lenat’s cYC project [28]. A
model covering more than a very narrow body of decision contexts is a poor one for
any particular planning problem because the extraneous features considered tend to
entail an unnecessary information-gathering burden and to obscure explanations of
the result. General models cannot take advantage of simplifying features that—while
present in any given decision problem—vary from case to case. Taking this inadequacy
as a premise, our problem is to build a planner that can construct decision models

from more reasonable knowledge representations. In the process, it will be necessary

1.3. RELATED WORK (§

to design reasonable representations capable of expressing the information necessary
to build good decision models.

Perhaps surprisingly, the decision-theoretic planner I am proposing borrows much
of the high-level structure of traditional categorical planners. Specifically, the view of
planning as theorem proving is retained. (This is perhaps the most important single
contribution of Al to the theory of robot planning.) The primary difference is that
the object of planning under uncertainty is to prove optimality properties of a plan,
rather than that it achieves the given goal. Naturally, it will not always be possible
to find a unique plan that provably maximizes expected utility. Instead, the planner
derives properties of the class of potentially optimal plans.

The theorem-proving architecture regards probabilities and utilities as objects
to be reasoned about.! The resulting plan classes are derived from partial decision
models. Details of the modeling and plan languages are provided in the body of the

proposal.

1.3 Related Work

Although much work has been performed on the problem of planning under uncer-
tainty, little of it bears any resemblance to the method described here. In this section,
I examine these past efforts to illustrate the motivations for the proposed approach

and to provide a basis for comparison of the techniques developed.

1.3.1 Engineering Away Uncertainty

The most common approach for handling uncertainty in planning is to remove explicit
reference to likelihood by engineering around the uncertainty. While many sorts of
evasive tactics have been tried, two major approaches stand out. First, it is possible
to incorporate uncertainty directly into the categorical planning framework by simply

weakening the conclusions drawn from actions. For example, in the framework for

!For a more general discussion of such an approach, and an elaboration of some of the arguments
of this section, see Wellman and Heckerman [59].

8 CHAPTER 1. INTRODUCTION

robot motion planning advocated by Lozano-Pérez et al. [30], all of the uncertainty
is captured in error tolerances added to intended motions. A planner may be able to
find a plan for which it can prove that, say, the peg will end up in the hole so long
as all motions are within their specified tolerances. Unfortunately, this methodology
says nothing about what to do if no such plan exists or how to choose among several
satisfactory plans. And, of course, not all uncertainty can be reasonably captured in
something like tolerance.

The second important method for finessing the uncertainty problem is ezecution
monitoring. Under an extreme version of this approach, the robot plans as though the
effect of actions were known with certainty, then replans when the observed effects
differ from the expected. This “trial and error” technique is obviously limited to
domains with acceptable error costs. While it may be appropriate for some facets
of robot assembly tasks, execution monitoring is inadequate when actions such as

transplant-kidney are available.

1.3.2 Planning with Decision Theory

Feldman and Sproull [15] argue for the use of decision theory in robot planning by
demonstrating that a few simple techniques based on numeric utilities and proba-
bilities can enhance the performance of a robot facing an extension of the famous
monkey and bananas problem. The methods provided for illustration, however, are
specific to unreasonably simple decision models and planning algorithms. For exam-
ple, their branch-and-bound search pruning strongly depends on utility functions that
are additive on steps in the plan and on a planning procedure that assembles plans
by sequentially adjoining steps. While it is undoubtedly possible to generalize and
extend their methods somewhat, the authors provide little gnidance for doing so. The
“hungry monkey” serves as evidence of the limitations of ignoring uncertainty and
tradeoffs but falls far short of a general framework for incorporating decision-theoretic
criteria in robot planners.

An architecture for planning with decision theory is proposed by Langlotz et al.
[27] and illustrated by ONYX, a program for planning cancer therapy. ONYX fits the

1.3. RELATED WORK 9

view of Charniak and McDermott noted above in that it clearly separates the plan
construction and evaluation phases. As shown in Figure 1.3, the generation module
forms candidate plans from a domain level description of the problem. The candidates
are then pumped through first a probabilistic model to predict the effect of the plans,

then a utility model to complete the decision-theoretic evaluation.

problem

i plan; {outcome; . {EU;}
description plan {plani} probabilistic ; utility
generator model function

Figure 1.3: The architecture of ONYX.

The major limitation of this architecture lies precisely in its detachment of plan
construction and evaluation. Within this framework knowledge used to evaluate
strategies can play no role in generating the strategies in the first place. And the
model for predicting the outcome of plans cannot be tailored to specific choice sets.
These unfortunate separations are necessitated by the incompatibility of the knowl-
edge representations employed in the respective modules. As a consequence, the sys-
tem embodies considerable redundancy. Further, modifications or extensions to any
of the modules generally require corresponding changes to all others. For the program
to work at all, the probabilistic model must be able to generate outcome distributions
for any plan, and these outcomes must be described in terms of attributes understood
by the utility model. For the program to work well, the knowledge implicit in the plan
generator must keep pace with the knowledge reflected in the probabilistic model. In
this sense, the system contains fwo knowledge acquisition bottlenecks.

As argued elsewhere, a probabilistic model is an unreasonably limited represen-
tation for knowledge about the effects of actions. The ONYX architecture may be
suitable for problems of the size undertaken by current expert systems but should
not be considered a model for planners that have more comprehensive knowledge

bases.

10 CHAPTER 1. INTRODUCTION

1.3.3 Formulating Decision Models

A few projects have specifically addressed themselves to knowledge-based formulation
of decision models. In developing specifications for a new formulator, it is instructive
to examine the shortcomings of previous attempts.

Rutherford et al. [40] describe a program for Hodgkins disease that is more flexible
than typical decision analysis systems because it separates the decision tree interpreter
(inference engine) from the specification of diagnostic tests and treatments (knowledge
base). A decision model is dynamically constructed and evaluated by the program
at consultation time. The flexibility lies in the possibility of modifying the set of
available tests and treatments on a case-specific basis.

Hollenberg’s Decision Tree Builder (DTB) [22] also generates decision trees using a
medical knowledge base of diseases and interventions (tests and treatments). Unlike
the Hodgkins program, DTB is intended to handle a broad range of medical decision
problems. Consequently, its representations are considerably more general, and its
tree generation, correspondingly more flexible. A disease may be parameterized by
attributes, which in turn may influence the applicability of various interventions as
well as probabilities and utilities in the model. Tests and treatments may indicate
or modify the values of disease attributes. A simple control structure directs tree
construction, employing a model of patient states for bookkeeping purposes.

The problem with this kind of generation approach is that it is extremely difficult
to avoid an exhaustive consideration of a combinatorial space of plans and events. The
programs must construct strategies that include every action identified as potentially
beneficial, and model every event identified as potentially relevant. It is only pessible
to rule out subsets of the syntactic combinations by identifying avoidable patterns
ahead of time or by applying generally unjustified heuristics, such as “do not consider
strategies with three or more major surgeries.”

In Holtzman’s “intelligent decision systems” [23], the domain knowledge is pri-
marily in the form of a general decision model, encoded as an influence diagram
with assessment functions for each node of the graph. Constructing a model for a

particular decision is largely a matter of reducing the template model that is built

1.4, GUIDE TO THE PROPOSAL 11

into the program. Note the contrast between this and the tree building approach
described above, where models are constructed by combining primitive components
in a controlled fashion. The combinatorics of unconstrained generation are avoided
at the cost of limiting the applicability of the knowledge base to a well-defined class

of decisions.

1.4 Guide to the Proposal

We begin in Chapter 2 with a description of the abstract model of planning with a
dominance prover.? The planner maintains a lattice of plan classes formed by posting
constraints on the set of all plans. A dominance relation is introduced to character-
ize the admissibility of plan classes. Dominance results are spread throughout the
lattice based on some simple propagation rules. The lattice is consolidated by classi-
fying the plans as they are introduced, in the same way that concepts are classified
in KL-ONE [44]. This operation highlights the role of subsumption computation in
this variety of planning. The structures are illustrated by a recasting of Chapman’s
TWEAK [7] in this framework.

The rest of the proposal describes the design of SUDO-PLANNER (SUbsumption-
and Dominance-Oriented Planner), a particular instance of the planning framework
described in Chapter 2. Chapter 3 presents SUDO-PLANNER's languages for plans and
plan classes and some features of its knowledge representations for actions and events.
A partial algorithm for computing subsumption among plan classes is presented and
analvzed. Some central design decisions in the encoding of actions and events are
discussed, with special attention to the utility of representations at multiple levels of
abstraction.

Chapter 4 provides a more detailed description of the representation for the effects
of actions and relations among events, based on qualitative influences. Qualitative in-
fluences constitute the basic probabilistic modeling facility of the knowledge represen-

tation, providing a decision-theoretic basis for SUDO-PLANNER's dominance-proving

?Chapter 2 is a slightly revised version of [56].

12 CHAPTER 1. INTRODUCTION

component. I show how the definition for qualitative influences follows from basic
computational desiderata, and consider other consequences of the representation.
Some loose ends in the specification of SUDO-PLANNER are tied together in Chap-
ter 5. Properties of the dominance prover, input module, and mechanisms for focus
of attention are explored.
Chapter 6 illustrates the preceding ideas with a detailed planning scenario for a
real medical decision example. A list of outstanding tasks and a set of evaluation

criteria make up the research plan of Chapter 7.

Chapter 2
Planning and Dominance Proving

The plan formulation process as envisioned here consists of a successive refinement of
the set of candidate plans. In this chapter, I discuss a framework for planning with
partially satisfiable objectives that integrates a dominance prover into the formulation
process. The framework is presented here in its most abstract form; the particular
representations and dominance proving techniques employed by SUDO-PLANNER are

developed in subsequent chapters.

2.1 The Plan Lattice

Let £ be the planning language, or equivalently, the set of all syntactically valid plans.
For example, if A = {a;,...,a,} is an alphabet of primitive actions, then £ = A" is
the language of linear plans. The language of nonlinear plans is similar, extended by
an encoding for partial orders. A plan class is any set of plans, P C L. P is also
called a partial plan when it is represented as a set of constraints which incompletely
specifies a plan we are concerned about.

We can view the planning process as one of adding constraints to candidate plan
classes incrementally until some problem is solved regarding the plan to be executed.
In traditional planning the problem is to identify a plan that satisfies the given goal.
With a more versatile evaluation criterion, the problem is to find the best plan. But

except for some special cases where convenient optimization techniques are applicable,

13

14 CHAPTER 2. PLANNING AND DOMINANCE PROVING

it is not possible to determine whether a given plan is optimal by examining it in
isolation. It may be more reasonable to answer questions about the optimal plan,
without necessarily constructing a complete description.

The partial plans generated during the planning process can be organized in a
specialization lattice according to the subset relation. An example of a plan spe-
cialization lattice appears in Figure 2.1. The node in the graph marked “A®a; A™"
denotes the set of all plans with at least one instance of action a;. The set of plans
starting with a, forms a subclass, as does the set of plans with an a, followed by an
as.

L
Ata A™ Aa A” ATaz A=
a A® A%aya, A° Ataaz A" Atazas A*

Figure 2.1: A plan specialization lattice.

The plan lattice representation of a search space supports a constraint-posting ap-
proach to planning. A constraint-posting planner—illustrated best by Stefik’s MOL-
GEN [48]—can be more efficient than a planner that only evaluates complete plans.
Flexibility is gained by allowing many forms of constraints, rather than, for instance,
just adding actions to a sequence or specifying exact bindings for variables. However,
these advantages depend on having some justifications for the constraints based on
properties of the partial plan. For example, MOLGEN knows that for a screen op-
eration to be useful, it must select the appropriate bacteria. Thus, when adding a
screen step to a plan, MOLGEN is justified in posting a constraint of the form (resists
antibiotic-1 bacterium-4). Constraining the antibiotic to a particular chemical agent
would be unjustifiably specific at this stage.

By adding only the constraints that have the best justifications, a planner imple-
ments a least commitment strategy. An extreme form of least commitment propagates

only provable properties of admissible plans. In practice, however, real planners like

2.2. DOMINANCE IN THE PLAN LATTICE 15

MOLGEN have to make guesses when no provable constraints are available. The least
commitment heuristic tends to minimize both the likelihood of wrong guesses and
the extent of backtracking required to recover from such mistakes. A policy of work-
ing on plan classes at high levels of abstraction is simply a particular form of least

commitment strategy.

2.2 Dominance in the Plan Lattice

To speak meaningfully of dominance among plan classes, we need to introduce a
preference relation, -, over plans. In categorical planning, for example, one plan is
preferred to another if it achieves the goal and the other does not. To state this in

terms of the situation calculus [33], we write:
71 > 72 & G(result(robot, my, s;)) A =G(result(robot, 72, 5;)) (2.1)

G is the goal predicate, defined on situations resulting from the robot performing a
plan in a given situation. Here s; denotes the initial situation. Two plans that both
achieve or do not achieve the goal are equally preferred, or indifferent, denoted by ~.
The expression m; >= m; means that m; is preferred or indifferent to ;.

The preference relation characterizes the choice criterion employed by the planner.

A planner based on expected utility takes
7 = 72 & E[u(m)] > E [u(72)] (2.2)

The discussion of dominance that follows does not depend on any particular criterion
for plan choice. Although we do need to assume that = is a total order on plans, we
do not insist that the planner be given a complete or even an explicit description of
the preference relation.

We say that a class of plans dominates another if for any plan in the second
class, some plan in the first is preferred or indifferent. It should be emphasized that
it is possible to prove dominance without identifying the superior plan—otherwise

this approach provides no advantage over branch-and-bound search. The dominance

16 CHAPTER 2. PLANNING AND DOMINANCE PROVING

relation, I, is defined as follows:
D(Pr, Pa) - Vo€ PaIm eEPrm =72 [2.3}

The strict version of dominance, I)', is defined similarly, except that here a particular

plan in the first class is better than any in the second.!
D'(P,Py) % 3t € PLVm € Prr - 2 (24)

Strict dominance implies dominance. In addition, the properties below follow easily

from the definitions:

D is reflexive, transitive, and complete. (2.5)

D' is anti-reflexive, transitive, and asymmetric. (2.6)
D(Py,P3) & =D'(P2, P1) (2.7)

P, C Py = D(P,Pa) (2.8)

D(Py,P2) A D(P3,Py) = D(PLUP;, P, UPy) (2.9)
D(Py,P3) V D(P2, P3) & D(Py U P2, Pa) (2.10)
D'(Py,P2) A D(P2,Ps) = D'(P1, Ps) (2.11)

These properties serve as dominance propagation rules within the plan lattice.
By (2.8) and the transitivity of D, dominance by a particular class is inherited in
the plan lattice. Strict dominance is also inherited, by (2.11) and weak dominance
inheritance. Thus, markers or links indicating dominance relations need only be
stored at the upper envelope of classes to which they apply. Dominance is propagated
upwards in the lattice by application of the union properties (2.9 and 2.10), which
also hold for IV,

YThis difference is required by the possibility of infinite plan classes with no maximal elements.
If (2.4) were exactly a strict version of (2.3), then such a class would strictly dominate itself. For the
same reason, a definition of weak dominance which merely substituted = for = in (2.4) would not

entail the reflexive property. Assuming that every plan class has a maximal plan is unreasonable,
even if it is appropriate to require that £ does.

2.2. DOMINANCE IN THE PLAN LATTICE 17

A plan class is restricted by asserting that it is weakly dominated by one of its
subsets. In the MOLGEN example given above, if P; is the class of plans that include
the screen operation, and P; is the subclass that includes the resists relation as well,
then D(P,,P;) asserts that (resists antibiotic-1 bacterium-{) is a valid constraint.
The new dominance assertion represents progress because it lets us focus our attention
on a smaller set of plans. Thus, deriving these restrictions is an important task of
the dominance prover.

Constraints might be posted to explore the search space even though the domi-
nance relation does not provably hold. Often, such constraints are justified by identi-
fiable assumptions that imply dominance. We can express this case by asserting the

conditional dominance relation, Dg, for S an assumption proposition
Ds(P1,P2) € S = D(P1, Pa). (2.12)

Normal dominance is just Dirye. As an example of conditional dominance, sup-
pose that we are uncertain about the identity of the organism of interest: it could be
bacterium-2 or bacterium-3. For i = 2 and 3, let S; be the proposition “Bacterium-
is the organism of interest” and P; the plan class that restricts P; to those plans
in which the resists relation holds between antibiotic-1 and bacterium-i. Then we
have Ds, (P2, P1), Ds,(Pa,P1), and S; V S3. By the definition of conditional domi-
nance (2.12), we get D(P3,P;) V D(Ps,P1). Application of property 2.10 yields the
result D(P; U Ps, P1).

Of particular value are conditional dominance relations where S itsell contains
dominance assertions. For example, if $' = D(P;, L), then Dg/(P;,P1) asserts that
given the optimal plan is in P; we can further confine attention to 7. This is one
way to derive the restrictions mentioned above. In fact, this is precisely the strategy
employed by both Pednault [38] and Chapman [6] to limit the search space of their
planners. We will see how this works for the latter example in Section 2.4 below.

Reasoning about conditional dominance can be implemented straightforwardly via

any mechanism for reason maintenance [11,32]. The interesting task for the domi-

2In categorical planning, Ds is the same as D (that is, Ds:/(P1,P;) & D(P1,Pz)) due to the
binary nature of the preference relation (2.1).

18 CHAPTER 2. PLANNING AND DOMINANCE PROVING

nance prover is to come up with meaningful conditions that imply useful dominance

relations.

2.3 Planning

How do the plan lattice and dominance relations support planning? A planner op-
erates on these structures by repeatedly performing the following steps (not in any

particular order):
o Cenerate new plan classes by adding constraints to undominated classes.
o Construct and refine the prediction/evaluation part of the world model.

e Derive and propagate dominance relations. Strengthen conditional dominance

relations.

We will say that a program performing these tasks is planning. It is important to
note here that in this view planning is not a search for a single plan to execute, but
an exploration of properties of admissible plans. A planner performs useful work by
refining the plan lattice, even if the lowest-level classes are never reduced to singleton
sets. If after much computation the planner has narrowed the admissible plans to a
set that contains 10%%° or even an uncountable infinity of plans, this may seem like
little progress. But if we can determine that all of them contain, for instance, an
appendectomy, we solve a significant problem.?

The prevailing view of planning as construction of a completely specified course of
action is never totally accurate. Planners devote their resources to isolated decisions,
as in whether or not to perform an appendectomy, without specifying all other features
of the plan. A plan to obtain some bananas is complete only with respect to a have-

bananas goal; in the larger context of satisfying all physical and emotional needs

*Plan classes with such huge cardinalities should be the norm, not exceptions. If the plan language
includes real-valued parameters, then all but the tightest constraints still leave an uncountable set
of candidate plans. The plan class “Administer a dose of drug X within the next minute” includes
individual plans where the time the drug is given is any point in the 60-second interval.

2.3. PLANNING 19

forever, the agent never stops planning. Figuring out how to get the bananas is a
small act of refinement on THE BIG PLAN.

The framework presented so far should be regarded as an abstract model of plan-
ning with partially satisfiable objectives. It generalizes the case of goal predicates and
applies to uncertain situations. Rather than prove that a plan necessarily achieves a
goal, as in traditional Al planning, the planner tries to prove properties of the optimal
plan. These properties define the class of admissible plans.

To instantiate the abstract model to a particular planning mechanism, one needs

to specify:
¢ The plan language, L.
o A constraint language (representation for partial plans).

o A domain modeling language, including a way to describe the effects of actions

and a representation for the preference relation, .

¢ A dominance prover.

The structures described earlier—the plan lattice and dominance relations—serve
mainly as theoretical machinery for analysis of this class of planners. Specifying the
languages and dominance prover is the real work in designing a planner.

As a simple illustration, consider mathematical optimization techniques as plan-
ners from this perspective. Optimization is a special case of dominance proving where
the program tries to find a singleton dominator, often in one step. For example, if our
plan language is ®" and the domain model consists of a linear objective function and a
set of linear constraints among the elements of the vector, then our dominance prover
should be a linear programming algorithm. In this case there are no partial plans.
Branch-and-bound integer programming is an example of an optimization procedure
that does make use of partial plans and explicit dominance proving.

In the development of the planning model up to now, we have paid little attention
to efficiency. The computational value of planners in this framework depends on a
judicious choice of the languages and algorithms that define it. Although it is difficult

20 CHAPTER 2. PLANNING AND DOMINANCE PROVING

to characterize efficiency at the present level of generality, there are a few high-level
issues which can be identified at this point. First, the addition of constraints during
lattice refinement cannot be arbitrary. The planner must generate constraints that
relate to the problem at hand and are meaningful to the dominance prover. Unless
the prover can establish dominance relations on the lattice, refinement is irrelevant.
Second, it is important to consolidate the plan lattice to avoid redundancy and further
the propagation of dominance relations. We will examine this topic further in Sections
2.5 and 2.6 below.

2.4 An Extended Illustration: Tweak

In the Introduction, I suggested that existing planning work can be recast in the
framework described here. In this section, I examine Chapman’s TWEAK [5,6], a
nonlinear planner that captures much of the state-of-the-art in a neat algorithm.
Though TWEAK belongs to the mainstream planning tradition in considering only
goal predicates, its main ideas can be expressed clearly in terms of the plan lattice
and dominance relation.

As described in the previous section, the way to instantiate this planning frame-
work is to define the various representations appearing in and operations performed
on the plan lattice. The plan language for TWEAK is particularly simple. A plan
is a sequence of steps, each specifying an action applied to some objects. The term
“nonlinear” refers not to plans, but to the representation for incomplete plans, or
plan classes.® A plan class is nonlinear if it specifies only a partial order on its steps.
There are two other sources of incompleteness in TWEAK: steps may be missing, and
steps may refer to variables rather than constant objects. Thus any partial plan in
TWEAK may be specified by the steps it includes, the ordering constraints on the
steps, and the constraints on the designations of variables in the steps.

The domain modeling language is also quite simple. The effects of actions are
completely described by finite sets of pre- and post-conditions on each step. A world

4 A planner with a parallel execution capability (for example, a multi-agent planner) could actually
have a nonlinear plan language. The constraint language for such a planner would be more complex.

2.4. AN EXTENDED ILLUSTRATION: TWEAK 21

model corresponding to each plan class records the status of goal and condition propo-
sitions in a propositional database. Finally, = is defined by the categorical planning
preference relation (2.1). In TWEAK, G is simply a conjunction of propositions.

The interesting part of TWEAK is not these representation languages, but the
dominance properties that are applied. The power of the planning algorithm derives
from the fact that, given a partial plan, we need to consider only a few types of con-
straints to guarantee that if a satisfactory completion of the partial plan exists, one
also exists among its constrained subclasses. Constraints are posted via plan modi-
fication operators. For our purposes, it helps to regard these operators as functions
that return constrained plan classes given a starting plan class and possibly some

other arguments. We need five plan modification operators:

o addstep(P,t)

order(P, s,t)

codesignate(P, z,y)

e noncodesignate(P,z,y)

ifeodesignate(P,z,y, z, w)

Each returns the set of elements of P that satisfy the indicated constraint. Addstep
constrains the partial plan to include an instance of step t. Order confines P to those
plans in which step s is applied before step t. Note that if this (or the result of any
modification operation) is a contradiction, then the function returns the empty plan
class. Analogously, if the constraint is already implied, the operator is the identity
function on P. The codesignate (abbreviated cod) and noncodesignate (ncod) func-
tions add the appropriate constraints to the elements indicated. In general, there may
be several ways to implement a codesignation among complex elements (such as pred-
icate instances) in terms of their primitive constituents. Finally, the i fcodesignate
(i fecod) function constrains z and w to codesignate if z and y do.

TWEAK is defined by a nondeterministic procedure that achieves a goal by ap-

plying combinations of these operators to a partial plan. Chapman presents the

22 CHAPTER 2. PLANNING AND DOMINANCE PROVING

procedure as a simple graph ([5, page 1024], [6, page 11]) where the paths from start
to end exhaust the possible sequences of plan modifications that can restrict a partial
plan P to achieve a goal proposition p at step s. A completely analogous description
in our functional notation is the expression appearing in Figure 2.2. This complicated
expression, consisting of a combination of plan classes formed by various modifica-
tions on P, represents the set of plans nondeterministically explored by Chapman’s
algorithm.

N Uiee N order(addstep(P,t),t,s)
Useeonseq(ry cod(addstep(P,t),u, p)
Neec U order(P, s, c)
Nyeconseq(e) U neod(P, p, q)
Uwew N order(addstep(P,w),c, w)
order(addstep(P,w), w, s)
Ureconseqtw) fcod(addstep(P,w), p,q,7,p)

Figure 2.2: The TWEAK algorithm.

Let P’ denote this plan class. In the figure, E is the set of establishers; that is,
actions that can possibly assert the goal proposition. C and W are the potential clob-
berers (actions that negate the goal) and white knights (actions that re-establish the
goal), respectively. The function conseq on steps returns the consequent propositions,
or postconditions, of the action. The fact that there is a plan in P’ that achieves the
goal if there is one in P can be captured by asserting D(P’, P). This is a restriction,
because each of the components of the P’ expression is itself a subset of P.

That’s all there is to it, theoretically. TWEAK refines P by adding constraints
until it finds a partial plan that necessarily achieves the goal (equivalently, a class
provably containing only goal-achieving plans). How does the theoretical framework
we have developed help to understand this process?

Each term in the expression of Figure 2.2 corresponds to a plan class which is

a subset of P. These distinguished plan classes serve as intermediate structure in

2.4. AN EXTENDED ILLUSTRATION: TWEAK 23

the plan lattice depicted in Figure 2.3. This lattice reflects a decomposition of the
search space based on the TWEAK algorithm. The plan classes with subscripts denote

parameterized classes; a complete diagram of this lattice would include, for instance,

an A, for every t € E. For the directed links, the plan class pointed to is defined by
the boxed set operation applied to the others. Thus, K, < BN A and I, i My Ze,o-

All connections indicate specialization of plan classes from higher to lower levels.

A = order(addstep(P,t),1,s) E.. = order(addstep(P,w),c,w)
B.. = cod(addstep(P,t),u,p) Fo = order(addstep(P,w),w,s)
C. = order(P,s,c) Gour = i feod(addstep(P,w), p,q,7,p)

D, = ncad(??,p,q}

Figure 2.3: The plan lattice corresponding to the space searched by the TWEAK
algorithm.

Because it would be difficult for the planner to generate a description for P’ di-
rectly from the definition of Figure 2.2, in practice it is necessary to manipulate
representations of these intermediate classes. The TWEAK search procedure nonde-
terministically chooses intermediate plan classes to instantiate and combine until it
finds a subset of P’ which necessarily achieves p at s. In the process, the algorithm

recursively invokes itself, taking one of the intermediate classes as P and forming the

24 CHAPTER 2. PLANNING AND DOMINANCE PROVING

structure of Figure 2.3 beneath it.

2.5 Classification and Dependency-Directed Search

It is possible that a recursive invocation of the TWEAK dominance relation would re-
veal that some intermediate plan classes at one level are dominated by more restricted
classes at lower levels. More generally, propagation via properties 2.8 through 2.11
may uncover dominance conditions within or between levels which can be exploited
to reduce the search space.

These possibilities suggest an addition to the planning steps listed at the beginning
of Section 2.3. When partial plans are generated they are classified by finding their
greatest lower and least upper bounds in the plan lattice.” Classification serves to
consolidate the lattice, resulting in a maximal propagation of the known dominance
conditions.

The dominance relation provides us with a class of nogood sets to be used in
pruning the search space. Planners without a notion of dominance can only consider
contradictory plans (that is, empty plan classes) to be nogood; other pruning criteria
must be built in to the control mechanism. The discussion above illustrates this by
showing that though TWEAK’s search procedure implicitly takes advantage of the fact
D(P’,P), it cannot exploit the dominance consequences for intermediate plan classes.

Consolidating the plan lattice through classification prevents redundancy in plan
space search. Notice, for example, that the plan class D, only depends on ¢, even
though its position in the expression for P’ is within the scope of ¢. A chronologically
backtracking search would generate this class for every (¢, ¢) pair encountered during
the iteration, resulting in a duplication of effort if clobberers share consequents.

A simple dependency-recording mechanism would most likely avoid this and sim-
ilar redundancies. A clever enough scheme might even recognize that 4; and F,
are the same when ¢ = w. However, it is doubtful that any of the standard depen-

dency maintenance mechanisms would catch the more subtle relationships that hold

5The term classified is used here in the same sense that concepts are classified in KL-oNE [4].

i

2.5. CLASSIFICATION AND DEPENDENCY-DIRECTED SEARCH 2

between classes created on successive recursive invocations of the planning algorithm.
A precise characterization of the sorts of redundancies that are avoidable is rarely
offered in descriptions of planners.

Following the terminology used by de Kleer in describing his assumption-based
scheme for truth maintenance [11], each plan class is an assumption context repre-
sented by the plan modification operators defining it. The plan specialization lattice
corresponds to the context lattice of the ATMS with context subset replaced by plan
subsumption. Indeed, an implementation using an ATMS would be just as powerful
as the classification scheme presented here provided that we could construct a propo-
sitional interface [12] capable of communicating the relevant implications of partial
plans. In our case, though, this does not appear feasible. A mapping of partial plans
to sets of propositions would force us to create distinctions (in unique identifiers for
steps, for instance) that would fail to preserve isomorphism characteristics.

Like the assumption-based approach, the plan lattice structure facilitates the ex-
ploration of multiple consistent contexts simultaneously.® But contrary to the ATMS
view, we are not interested in finding all solutions (the class of all plans that achieve
the goal). Therefore we can restrict the domain of assumption sets that need to be
considered to those explicitly created as plan classes by the planning algorithm.

To recap, the scheme presented here offers two sources of benefits with respect to
plan search efficiency. First, the dominance relation provides a major new class of
nogoods which may potentially shrink the search space. Second, consolidation of the
lattice through classification of partial plans takes advantage of dependencies that
might be obscured by an interface with a propositional TMS.

6This contrasts with the dependency-directed backtracking employed by TWEAK. The design
of sSCHEMER [63,64]—a dependency-directed interpreter for a non-deterministic LisP—illustrates
this difference and highlights the issues in constructing a propositional interface for arbitrary
dependencies.

26 CHAPTER 2. PLANNING AND DOMINANCE PROVING

2.6 The Complexity of Subsumption

As for knowledge representation mechanisms, the key operation in plan classification
is the computation of subsumption relations [3]. We saw above that classifying plans
as they are generated minimizes the search space.” Conversely, a perfect dependency
mechanism is in effect computing these subsumptions.

Unfortunately, nonlinear plan subsumption is NP-complete.® This is true even
for plan classes derived exclusively from addstep and order operators, that is, partial
orders on steps. The exponential potential of subsumption lies in the combinatorial
number of possible mappings between the steps of the two plan classes. If however,
we can specify the correspondences between steps (for example, which put-on in P,
corresponds to which in ;) then subsumption is at worst quadratic. In practice we
will not generally have complete correspondences, but typically the possible mappings
between steps will be highly constrained. Actions may only map to others of the same
type, therefore the computation will not be prohibitive as long as plan classes do not
contain many steps of a single type. Codesignation constraints also help to restrict the
possible mappings, as do explicit identifications among steps that may be provided
by the planner when introducing steps in several partial plans at once. Finally, we
might consider restricting the constraint language so that subsumption is tractable,
perhaps to tree-shaped partial orders.

The effect on subsumption complexity of proposed extensions to the constraint
language should also be considered. For example, we could allow actions themselves
to be expressed at multiple levels of abstraction (as in the sequence low-dose steroid

therapy is-a steroid therapy is-a drug therapy) without significant cost in complexity,

For true optimality we must also determine the most general plan class that is dominated. This
corresponds to extracting the minimal nogood assumption set, which is not generally feasible. Note
also that minimality is only with respect to a particular constraint language; slight changes may have
dramatic effects on the dominance prover’s ability to derive nogood sets at high levels of generality.
For example, Pednault [38] achieves stronger dominance results by including protected conditions
as constraints on plans.

5The proof, by reduction from EXACT COVER BY 3-SETS, was provided by Ronald L. Rivest,
personal communication.

2.7. SUMMARY AND PROSPECTUS 27

as long as action subsumption itself is not expensive.? Extending the plan modifica-
tion operators to include union and intersection, as suggested by Figure 2.3, is not
as benign. Intersection (conjunction) presents no problem because the plan modifica-
tion operators commute, but computing subsumption among classes that are unions

(disjunctions) of other classes appears to be substantially more difficult.

2.7 Summary and Prospectus

In this chapter I have introduced and applied some analytical tools for studying and
designing constraint-posting planners. The main components of this framework are
a specialization lattice and a dominance relation defined over plan classes. These
concepts were motivated with simple examples from MOLGEN and a more detailed
account of TWEAK. The power of the TWEAK algorithm was shown to reside in a
central dominance result which allows the planner to restrict attention to a small
subset of the possible completions of a partial plan. Explicit characterization of the
dominance relation allows the planner to recognize that certain plan classes need
not be explored, even though they might contain a valid plan. Although standard
dependency-directed backtracking methods improve search efficiency, the only way
to ensure complete lack of redundancy is to classify the partial plans in the lattice
by computing subsumption among plan classes. This problem is NP-complete for
nonlinear planning, but constraints commonly arising in practice may render the
computation tractable. Recognizing the centrality of subsumption suggests a novel
approach to analyzing the complexity implications of plan constraint languages.
However, the real test of this point of view will be how well it supports tasks that
require planning in the presence of uncertainty and partially satisfiable objectives.
The remaining chapters develop a planner for the task of formulating decision models
from a large knowledge base. The development follows the instantiation procedure

mentioned on page 19: we define plan and constraint languages, knowledge repre-

®Given a static action lattice, action subsumption takes logarithmic time. If actions are de-
scribed more flexibly—perhaps as dynamically generated KL-ONE concepts—then subsumption is
more complex [3].

28 CHAPTER 2. PLANNING AND DOMINANCE PROVING

sentations for the effect of actions and the preference relation, and a procedure for

determining and propagating dominance relations among classes of candidate plans.

Chapter 3
Knowledge Representations

In this section I introduce the representations and mechanisms employed in instanti-
ating the basic planning framework for the formulation of decision models. Remember
that this constitutes only a particular instantiation; limitations of the particular struc-
tures presented here are not necessarily inherent in the framework of Chapter 2. My
goal here is to demonstrate novel capabilities on a class of interesting tasks, not to

produce a universally adequate planning engine.

3.1 Plan Language

A plan consists of a collection of actions with conditionals. Actions—more generally,
sub-plans—may be conditioned on specially designated predicates called observables.
The plan language is roughly defined by this simple grammar:

PLAN — ¢ | PLAN ACTION | PLAN (if OBS (PLAN) (PLAN))

Although this production rule produces sequences of actions, plans with the same
actions in different orders are considered identical. The only ordering constraint is
that actions creating observables must not be conditional on the observables they

create (see Section 4.4). Of course, the lack of even simple sequencing makes this an

30 CHAPTER 3. KNOWLEDGE REPRESENTATIONS

extremely impoverished plan language—we cannot even hope to stack blocks!"
It is clear from this description that many of the difficult representational issues

are pushed off to the specification for actions. Section 3.2 begins a discussion of these.

3.2 Actions

The knowledge base of actions will be implemented in NIKL [52], a terminological
knowledge representation language based on KL-ONE [4]. Classes of actions are NIKL
concepts, defined by their position in the concept lattice and the structure of their
roles, or associated features.?

The action representation influences two components of the specification for the
planner. The mechanisms for abstracting classes of actions partially define the lan-
guage of constraints on plan classes. And the facilities for representing the effects of

actions account for much of the world model part of the planning system.

3.2.1 Levels of Abstraction of Actions and Plans

We deal first with the constraint language. The NIKL lattice of action concepts
specifies a multilevel description of actions that may be included in plans. Let A
be the class of all actions, also called the universal plan class. In the NIKL concept
lattice, A is a superconcept of every other action concept A;. Clearly, one way to
specialize partial plans in the plan lattice is to specialize individual actions included
in that plan class. If P; includes action A4, </ “give drug,” the class of plans Pip
which replace A; with Ap & “give drug D" is a specialization.

!Some would argue that without sequencing we should not even call this activity planning. My
view is that the essence of planning is the assembly of separately described actions and whether
the result is a sequence or just a collection is secondary. Labels aside, I hope to demonstrate that
progress on some other planning issues is orthogonal to temporal representation. Further discussion

of this design decision appears in Section 3.5 below.
?For alternate plan language representations implemented in NIKL, see Swartout and Neches [50]

and Macaisa and Sidner [31]. In both of these, plans as well as actions are represented as NIKL
concepts.

3.2. ACTIONS 31

The dimension of specialization in the example above corresponded to the drug
role of action A;. Further specializations might specify the drug (perhaps D is a
family of drugs) or may include other information, such as dosage or method of
administration.® In a realistic knowledge base the number of axes of specialization
would be enormous.

This abstraction scheme is used in MOLGEN [48]. Although MOLGEN has a fairly
simple two-level hierarchy of actions (lab operators), the combination of these op-
erators with the hierarchy of lab objects in their domain forms a rich, multiply hi-
erarchical action structure. In this view the lab objects are merely further axes for
specializing the lab operators.

As Tenenberg points out [51], this form of abstraction is orthogonal to the step-
components type of hierarchy used in NOAH [42]. In NOAH actions may be decomposed
into sequences of lower-level actions, effectively viewing each action as a sub-plan.
Actions are associated in this fashion in a “part-of” rather than an “is-a” relation. In
terms of the plan specialization lattice, we can mimic this behavior by first creating
plan classes that by assertion achieve particular subgoals and then searching for an
instantiation of that class.

Another distinct kind of abstraction is the precondition hierarchy of plan spaces
introduced by Sacerdoti in ABSTRIPS [41]. Ordering the preconditions imposes struc-
ture on the search space rather than on the actions or plans themselves.

Basing the knowledge representation on a terminological reasoner like NIKL has
an important advantage. An action lattice based on NIKL definitions does not have
to be a static predefined structure. New action classes may be created at planning
time by adding constraints to, specifying new features of, or combining existing action
classes. These new actions often can be automatically classified; that is, an algorithm
can determine the precise place for the new class in the existing lattice. This is

important because

1. an action’s place in the lattice determines the properties it inherits from and

3As in planning, this specialization process never ends. Actions only exist in the knowledge base
as classes; “action individuals” can be said to exist only if the planner really has end-effectors and
an execution capability.

32 CHAPTER 3. KNOWLEDGE REPRESENTATIONS

supplies to other action types, and

9. action subsumption is employed by the constraint language subsumption algo-

rithm of Section 3.3 to generate the plan lattice.

As noted above, planning at abstract levels is a form of least-commitment strategy
for improving efficiency. If we can rule out a plan (by proving it is dominated) based
on properties of a high-level action class, we save the great deal of work required to
explore the more specific variants of that action. One claim that I intend to defend in
this thesis is that the advantages attributed to meta-planning rules proposed in the
literature (see Wilensky, for example [61]) can be achieved by planning at sufficiently
high levels of abstraction. Further discussion of this point here would be premature;

I present it now as the motivation for paying so much attention to abstraction.

3.2.2 Effects of Actions

In terms of our planning system components, defining the representation for an ac-
tion’s effects serves to specify part of the world modeling mechanisms of the planner.
In the planner, there are two types of effects that we need to capture. First and
most obviously, actions may influence events. We would not plan if our actions could
not change the world. Second, actions may create new observables. That is, as a
result of performing an action the robot may be able to condition future actions on
a particular event.

Representing the effect of actions on a world model is usually the hardest task
in designing categorical planners. Much of the difficulty arises from the frame prob-
lem [33]—computational and notational complexity due to the necessity of describing
the possible change in status of every proposition for each action. Actual planners
circumvent these difficulties by applying some variant of an assumption first applied
in STRIPS [16], thereby restricting attention to propositions explicitly mentioned in
action specifications. Characterizing such policies in a formal logic has proven to be

a difficult task for Al theorists [20].

With uncertainty, the solutions to these problems will be similar in both form

3.3. PLAN CONSTRAINT LANGUAGE 33

and adequacy. Actions are presumed to affect directly only those propositions ex-
plicitly referred to in the specifications. Of course, the uncertain nature of effects
require representations quite different from those of categorical planners, and non-
effects likewise require a probabilistic interpretation. While add and delete lists that
specify the propositions changing truth value as a result of an action are sufficient for
categorical planning, actions with uncertain effects must describe changes in proba-
bilistic relations that occur when the action is performed. The corresponding STRIPS
assumption for planning under uncertainty is that events not mentioned in an action’s
representation are assumed to be conditionally independent of that action, given the
direct effects and the rest of the plan.

In general, the effect of actions will be conditional on the rest of the plan and some
other uncertain events. Placing conditions on effect assertions is analogous to the use
of preconditions on actions in traditional Al planning. Rather than saying an action
cannot be performed unless the conditions are met, we could specify that it does not
have particular effects (usually the desired ones) unless the conditions hold. Under
this interpretation, the planner can apply put-on(a,b) in any situation, but the result
on(a, b) is conditional on cleartop(a) and cleartop(b). Otherwise, put-on is a no-op.
By placing the conditions on effects rather than on the action, we can employ actions
that may have many contingent effects. In addition, the planner is free to introduce
such actions into the plan without guaranteeing that the preconditions are satisfied.

Because the mechanisms for describing and reasoning about probabilistic relations
among actions and events is itself a major component of this research effort, I defer
further discussion of the subject to Chapter 4. The purpose of this section has been
to draw parallels between action representation issues in categorical and probabilistic
planning. The important conclusion emerging thus far is simply that, as in categorical

planning, an action’s effects need to be associated locally with that action.

3.3 Plan Constraint Language

The plan constraint language defines the space of partial plans that can be repre-
sented.

34 CHAPTER 3. KNOWLEDGE REPRESENTATIONS

3.3.1 Specification

The language for partial plans (P-PLANs) is somewhat more complicated than the
plan language.

P-PLAN —s ¢ | [ACTS, ACTS] | CP-PLAN | P-PLAN P-PLAN
CP-PLAN —s (if OBS (P-PLAN) (P-PLAN))
ACTS —» P-ACTION"

The pair of lists enclosed in brackets denote the actions unconditionally in and out
of the plan, respectively. For example the plan class P

P = [ArAs A Ay, Az Ay (3.1)

unconditionally contains at least one instance of action .4,, at least two of .4,, none
of Aa, and ezactly one of A;. The interpretation is that the first string of actions (the
IN actions) are asserted to be in the plan without conditions and the second string
(of OUT actions) asserts that no further instances of those actions are allowed. Note
that while the /N list may contain multiple copies of the same action or actions that
subsume each other, such repetition is superfluous for OUT lists.

Partial plans embedded in conditionals specify further constraints on plans given

the state of observables. Therefore the plan class expression

P = [As1, € (if 01 ([A1Az, €]) ([Ar14s,])) (3:2)

specifies that P unconditionally contains an instance of .4; and includes in addition
an A, or an A; depending on the state of ¢;. Note that the plan classes specified
within the if clause must be subclasses of the unconditional plan in the outer scope.

Note that although the P-ACTIONs may be action classes (as described in Sec-
tion 3.2 above), all observables must be completely specified predicates.

3.3.2 Simplification and Subsumption

Partial plan descriptions can be simplified to facilitate subsumption computation.

Rewriting plan classes to reveal common constraints within conditionals, for example,

3.4. EVENTS 35

decreases the amount of case analysis that need be performed by the subsumption
algorithm.

Details of the simplification techniques are presented in Appendix A, which also
includes the description of a sound but incomplete polynomial algorithm for deriving

subsumption relations among simplified plan classes.

3.4 Events

The representational structures denoting events in the knowledge base will be very
much like those for actions. Differences are in access to the planner and the types of
relationships they may participate in. Unlike actions, the planner does not directly
control events. Instead, events are influenced by other events and actions. Like
actions, events are arranged in the knowledge base at multiple levels of abstraction.
It is probably helpful to view events as structured predicates which can sometimes
be ordered by generality.

Many details of these representations, including some central design considera-
tions, are yet to be worked out. Capturing the relevant features of the world in
these events may prove to be a monumental knowledge engineering task. We almost
certainly will need some special facilities to represent non-propositional parameters,
such as quantity variables, with mechanisms for mapping the parameters to the space
of events they implicitly define.

A more immediate problem is to develop a mechanism for handling references to
events within action and event roles. The reference scheme must handle changes in
abstraction appropriately and must ensure that the right equivalences are established
among events referenced from several places. This and other problems will be attacked

more vigorously in the implementation stage of the project.

3.5 Time

No theory of planning is complete without an adequate treatment of temporal rela-

tions among actions and events. The plan representation I have described is atemporal

36 CHAPTER 3. KNOWLEDGE REPRESENTATIONS

except for consistency-checking of observable sequencing. Failing to deal with time
will be one of the major shortcomings of SUDO-PLANNER.

Most planners handle simple sequencing among actions. For the medical problems
I am interested in, such a mechanism is not nearly adequate and barely provides an
advantage over no temporal reasoning at all. Instead, I intend to address temporal is-
sues as best as possible within the action and event representation without providing
time a special role in the planner. For example, in patients presenting with symptoms
of appendicitis, there is a tradeoff between performing an appendectomy immediately
or waiting and observing the patient to better establish the diagnosis. Waiting avoids
some unnecessary surgeries while increasing the risk of untreated disease. This deci-
sion can be represented by including a time-of-surgery role in the specification of the
appendectomy action. The filler for that role is a time variable whose effects may be
captured via the mechanisms described in Chapter 4.

But even a rich set of representation hacks like that described above is no substi-
tute for an explicit uniform treatment of time within the planner and the semantics
for effects of actions. Failing to recognize that the time-of-surgery role of appen-
dectomy is related to other temporal measures in the plan will undoubtedly lead to
missed inference opportunities and inability to identify some meaningful distinctions.

An interesting area for study where temporal issues are central is in describing the
outcome of a plan. By outcome, I mean the result by which plans may be evaluated
and compared. Elsewhere | have described a scheme for outcome representation which
is organized around a taxonomy of temporal patterns [55]. 1 believe that this or a
similar mechanism can be grounded in a temporal semantics like that of Allen [1].
Ideally, a dominance prover would support utility models that adequately address
aspects of the temporal resolution of uncertainty [26]. Conditions corresponding to
stochastic dominance of atemporal utility defined by Cox [10] may prove useful in
this regard.

Chapter 4

The Effects of Actions

Consider an event space determined by a set of random variables. A domain model
is a representation of the probabilistic relations among these random variables. With
respect to domain models, actions are merely special kinds of events which the plan-
ner can directly control. To describe the effects of actions, we need to specify how
the choice of particular values for the action variables influences the probability dis-
tribution over the remaining event variables. The knowledge representation issues we
face are how to encode these specifications to provide for computational tractability,
knowledge base integrity, and decision-making power. In this chapter [present a
representation that addresses the first two objectives by maximizing modularity and

supports the third by providing for decision-making “up to tradeoffs.”

4.1 Modularity

In Section 3.2.2 I argued that as in categorical planning, the first requirement of a
representation for the effects of actions is locality. Locality is the basis for heuristics
for attacking the frame problem and supports modularity by delimiting the implica-
tions of modifications to the knowledge base. Modularity is an engineering concern
for any knowledge-based system; under uncertainty the problem is magnified by the

sensitivity of probabilistic relations to surrounding context [21].

37

38 CHAPTER 4. THE EFFECTS OF ACTIONS

4.1.1 Robustness to Modification

To illustrate one of the modularity problems that arise in probabilistic knowledge
representations, I adduce an example from Cooper’s NESTOR [9] that was used by
Spiegelhalter [46] for another purpose. NESTOR’s domain is hypercalcemia, hence
the program includes a knowledge base relating a patient’s calcium level to other
physiological states and associated findings. In Spiegelhalter’s model fragment, the
unconditional or prior probability of coma is .05. To us non-physicians this value
seems high; a much lower fraction of people we know are comatose. Of course, the
number may be valid for the population treated by the program: patients identified
somehow for a hypercalcemia work-up.

The point is that the knowledge base contains no definition for the population
it is applicable to. Elsewhere, Spiegelhalter and Knill-Jones [47] discuss the issue
of transportability of statistical knowledge bases, concluding that it remains a seri-
ous problem. A greater difficulty, in my view, is the limitation it imposes on the
scope of any such knowledge base. Suppose we wished to extend NESTOR’s domain
by including medical knowledge from another program working in a neighboring or
overlapping clinical area. Patil’s ABEL [35], for example, models disorders of elec-
trolytes other than calcium, and considers more deeply the acid/base issues relevant
to hypercalcemia. In broadening the domain, we have no idea which parts of the
hypercalcemia model remain valid and which must be changed in light of the mod-
ified population and new interacting variables. Although the same is strictly true
of ABEL’s knowledge—we cannot be perfectly confident that the electrolyte model is
still correct when calcium is considered explicitly—the causal link structure of ABEL
is more robust than the precise statistical relationships.

The robustness of causal links rests partly in their imprecision (weaker statements
hold in more contexts and are therefore more modular), but also in that they capture
a critical aspect of the domain knowledge. A causal model is deserving of the name if
its surface representation reflects a theory or set of organizing principles underlying
the domain. By this argument, the correspondence to demonstrably robust cognitive

structures translates to a computational mechanism that is less sensitive to context

4.2. QUALITATIVE INFLUENCES 39

than an arbitrary selection of observed relationships among variables.’

4.1.2 Combinatorics of Expansion

Another important modularity problem associated with probabilistic knowledge is a
potential for complexity explosion for incremental additions to the knowledge base. In
a representation like Pearl’s Bayes networks [36], introducing a new event e requires in
general a reassessment of the probability distribution over all events not conditionally
independent of e [21]. For n such events the complexity of this task is 2"; adding an
event doubles the difficulty.

Cooper’s algorithm [9] avoids this problem by deriving weaker conclusions from
the network representation. In NESTOR’s knowledge base, only marginal influences
are specified; interactions among events influencing a common variable are not de-
scribed. The combination can therefore imply only bounds on the joint probability
distribution. The bounds can be strengthened by NESTOR’s assumption that multiple
influences act at most independently (that is, non-synergistically).

4.2 Qualitative Influences

Modularity has been the prime motivation for restricting attention to qualitative in-
fluences. While exact probabilistic statements are invariably context-sensitive, the
direction of the relationship among variables is often constant. Qualitative influ-
ences are abstractions of probabilistic relationships that preserve only this direction
information.

The concept of qualitative influences was introduced in a previous paper [58]. In
the sections below, I present the basic definitions, extending the formalism to handle
multi-valued parameters as well as dichotomous events. The chosen definition for

lUltimately, robustness of any representation is a matter for empirical confirmation. The argu-
ment here is based on an assumption that structure imposed on knowledge by humans is motivated
by similar computational concerns. See McCarthy and Hayes [33] for an early discussion of compu-
tational reasons for some psychological structuring of the world.

40 CHAPTER 4. THE EFFECTS OF ACTIONS

qualitative influences is justified by a set of desiderata for the combining operations.

4.2.1 Example: The Digitalis Therapy Advisor

We start our discussion of qualitative influences with a simple causal model example
taken from Swartout’s program for digitalis therapy [49]. The model, shown in Fig-
ure 4.1, is a fragment of the knowledge base that Swartout used to re-implement the

Digitalis Therapy Advisor [18] via an automatic programmer.

Digitalis

Figure 4.1: Part of the causal model for digitalis therapy. The direction on a link

from a to b indicates the effect of an increase in a on b.

In the figure the elliptical nodes represent random variables. The rectangular
node is a decision variable, in this case the dosage of digitalis administered to the
patient. The hexagonal node is called the value node and represents the utility of the
outcome to the patient. This terminology and notation are adapted from influence
diagrams [45], a probabilistic modeling formalism similar to Bayes networks [36].

Influences among the variables are indicated by dependence links, annotated with
a sign denoting the direction of influence. Thus digitalis negatively influences conduc-
tion and positively influences automaticity. In the remainder of this section I develop
a semantics for these influence links that justifies the kinds of inferences we require

from models similar to that of Figure 4.1.

4.2. QUALITATIVE INFLUENCES 41

4.2.2 Definitions

Informally, a qualitative influence is a statement of the form “event variable a makes
event variable b more (less) likely.” When a and b are dichotomous, this statement
is easy to capture in a probabilistic assertion. Let A and A denote the assertions
a = true and a = false, respectively, and similarly for B and B. Then we say “a

positively influences b,” written S%(a,b), if and only if
vz Pr(B|Az) > Pr(B|Az). (4.1)

In the equation, = ranges over all assignments to the other event variables consistent
with both A and A. The quantification is necessary to assert that the influence holds
in all contexts, not just marginally. Conditions analogous to (4.1) and those following
serve to define negative and zero influences, omitted here for brevity.

Formalizing S¥ is not quite so straightforward when a and/or b can take on more
than two values. In such cases we want to capture the idea that “higher values of a
make higher values of b more likely.” An obvious prerequisite for such statements is
some interpretation of “higher.” Therefore we require that each random variable be
associated with a partial order > on its values. For numeric variables such as “serum
creatinine concentration” this relation has the usual interpretation; for scales like
“mild/moderate/severe pain” an interpretation will have to be contrived. Although
> is a different relation for each variable, in the discussion below the notation is
always disambiguated by context.

The more troublesome part of defining positive influences is in specifying what
it means to “make higher values of b more likely.” Intuitively, we want a statement
that the probability distribution for b tends to be shifted toward higher values as
a increases. To make such a statement we need an ordering which, given any two
cumulative probability distributions G; and G5 over b, determines whether G, is
“higher” than G.2

*Technically, these cumulative distributions are only well-defined if > is a total order. These
statements as well as the definitions and conditions below can be extended to partial orders by

requiring each to hold for any total order >’ that is a completion of >. For example, any statement

42 CHAPTER 4. THE EFFECTS OF ACTIONS

However, not all probability distributions can be easily ordered according to size of
the random variable. Different rankings are obtained through comparing distributions
by median, mean, or mean-log, for example. We require an ordering that is robust
to changes of these measures, because the random variables are described by merely
ordinal scales (see Krantz et al. for a definition [25]). In some cases they may be only
partially ordered.

An ordering criterion with the robustness we desire is first-order stochastic domi-
nance (FSD) [60]. FSD holds for G, over G if and only if the mean of G, is greater
than the mean of G, for any monotonic transform of b. That is, for all monotonically

increasing functions ¢,

f 3(b)dGy(b) 2 f (b)dGa(b). (4.2)
A necessary and sufficient condition for (4.2) is
Vb G1(b) < Ga(b). (4.3)

That is, for any given value of b the probability of obtaining b or less is smaller for
Gy than for G2. For further discussion and a proof that (4.3) is equivalent to FSD,
see Fishburn and Vickson [17].

We are now ready to define qualitative influences. Let F(b|a;z) be the cumulative
density function (CDF) for b given a = a; and context z.*> Then S*(a,b) if and only
if

Yai, a2,z a1 = a; = F(blayz) FSD F(blasz). (4.4)

Adopting the convention for binary events that true > false, we see that (4.4) is a
generalization of (4.1).

involving a cumulative distribution G must hold for all Gs induced by total orders consistent with
>

3As above, z is an assignment to the remaining random variables consistent with the condition

a = a;. We need to include r here and in the definitions below because these conditions will be
applied in situations where x is partially or totally known. If we had stated the conditions in
marginal terms (“on average, a positively influences §”) it would not be valid to apply them in
specific contexts.

4.2. QUALITATIVE INFLUENCES 43

Finally, we need a special definition for the desirability of influences among random

variables. The variable a positively influences utility, U™ (a), if and only if
Vay, a2, @y 2 az = ulay, z) > ulag,), (4.3)

where u is a utility function [43] defined over the event space.

4.2.3 Justification for the Definitions

In a forthcoming paper [57], I demonstrate three propositions that provide theoretical
support for the S* definition above.

Proposition 1 Ifa and c are not connected by any direct links, S*(a,b), and S*(b,c),
then S*(a,c) holds in the reduced network obtained by removing b from the original

and recomputing influences.

That is, qualitative influences are transitive. Chains of influences can be combined

by sign multiplication.
Proposition 2 Given the following conditions:
1. S7(a,b) is defined by (4.6), where R is some relation on CDFs:
Vai,az,x ay 2 a3 = F(blayz) R F(blasz). (4.6)

2. Proposition 1.

3. For binary b, ay > a,, and z,
F(blayz) R F(blasz) < Pr(Bla;z) > Pr(Blasz). (4.7)
the weakest R is FSD.

In other words, S* is the weakest condition on posteriors that generalizes the binary
definition and guarantees chaining of influences. To extend the argument for 5% to

other possible (non-posterior) definitions, we must appeal to decision-making.

44 CHAPTER 4. THE EFFECTS OF ACTIONS

Proposition 3 Consider the following conditions:

1. a and u are not connected by any direct links
2. U+ (b)
3. Ut(a) in the network with b removed

Conditions 1 and 2 imply 3 if and only if S*(a,b) as defined by (4.4).

Proposition 3 demonstrates that while conditions that are weaker than S* may be
sufficient for propagating influences across chains, they are not adequate to justify

decisions across chains.

4.2.4 Conditional Influences

Conditional influences—defined for binary events in a previous paper [58]—simply
delimit the range of z in (4.4). The notation S*°(a,b) means that a positively
influences b given that proposition C holds. In terms of the definition above, S*1°(a, b)
if and only if

Yay, a3,z ay > az = F(blayCz) FSD F(bla;Cx), (4.8)

where z now ranges over assignments to the variables consistent with a = a; and C.
With conditional influences, the effect of an action or event can be made to depend
on other actions or events. As noted in Section 3.2.2, this mechanism corresponds to

the use of preconditions in traditional Al planning.

4.2.5 Extensions

The basic definitions above can be extended in a variety of ways. Swartout’s XPLAIN
knowledge base included the “domain principle” that if a state variable acts synergis-
tically with the drug to induce toxicity, then smaller doses should be given for higher
observations of the variable [49]. This fact could be derived by a domain-independent
inference procedure given a suitable definition for qualitative synergy. We can say

that two variables synergistically influence a third if their joint influence is greater (in

4.3. EFFECT REPRESENTATION AND THE STRIPS ASSUMPTION 45

the sense of FSD) than separate statistically independent influences.* However, in the
domain Swartout’s program was applied this solution is misleading because digitalis
does not really act synergistically with Ca or K deviations in increasing automaticity.
Rather, the dosage reduction is warranted by a greater-than-linear increase in toxic-
ity (or disutility) for increases in automaticity. Such a relationship can be captured
by an assertion that the utility function is concave in automaticity (in a sense that
automaticity is synergistic with itself), given a cardinal scale for automaticity. Car-
dinality also permits other variations on qualitative influences which are beyond the

scope of this proposal.

4.3 Effect Representation and the STRIPS As-
sumption

The effect of an action is represented by a collection of S* and S~ assertions, proba-
bilistic versions of the add and delete lists of STRIPS [16]. Preconditions are captured
by conditions on the influences. As stated in Section 3.2.2, the STRIPS-like assumption
is that conditional independence holds for variable pairs not explicitly appearing in
influences.® Conditional independence can be denoted by S°, defined by substituting
“=" for FSD in equation (4.4). We can override the assumption in particular cases
without specifying an influence by asserting S°(a, b).

As Grosof [19] lucidly points out, application of the conditional independence
assumption based on the absence of explicit influences is a form of non-monotonic

reasoning. In the dynamic view of constructing and manipulating the network of

4This is the reverse of the relation assumed by Cooper’s NESTOR [9] for combining common
influences (discussed in Section 4.1.2).
5To define this assumption completely, we need to specify the set of conditioning events for the

independence condition. In Pearl’s terminology [37, page 34, events a and b are conditionally in-
dependent given any set of events that d-separafes them in the directed graph formed by explicit
influences. When a and b are connected by a direct influence there will be no such set. For a defini-
tion of d-separation and a more precise characterization of independence properties of probabilistic
network formalisms, see Pearl’s report.

46 CHAPTER 4. THE EFFECTS OF ACTIONS

influences, S* may be a non-monotonic predicate. Any formal interpretation of the
normative status of the planner as a whole must take into account the process of

assembling models from the knowledge base.

4.4 Creating Observables

In addition to influencing the value of event variables, actions can also cause events
to become observable and therefore eligible to appear as a condition in a plan. Ob-
servable creation places a constraint on plans beyond the specification of Section 3.1;
it must be possible to order the actions so that all observables are created before they
are used as conditions. This constraint ensures that we are not implicitly conditioning
on observation on the value of the observation itself.

I will refer to observable-creating actions as tests. This mechanism differs some-
what from the representation of information dependencies in influence diagrams [45];
there the observability of events does not change but the values of the observables are
influenced by tests. One way to implement this (Ross Shachter, personal communica-
tion) is to make the observable o a deterministic function of an underlying physiologic
state s and a binary variable indicating whether the test was performed. The result
is 0 = s if the test is performed, with o a noninformative constant otherwise. In the
scheme proposed here, the test action directly causes s to be observable. The result is
formally equivalent, but maintaining the distinction in the knowledge representation

provides advantages when it comes to plan formulation and dominance proving.

Chapter 5

SUDO-Planner

5.1 Dominance Proving

The dominance prover is the only remaining component needed to instantiate the
planning framework of Section 2.3. S* provides a basis for the domain modeling
language, and U can generate a partial preference order among plans. The ability to
prove dominance among plans based on the semantics of action effects is the keystone
of the proposed domain modeling language outlined in the two preceding chapters.

Techniques for deriving dominance from a qualitative probabilistic network rep-
resentation were described and illustrated in a previous paper [58]. In a nutshell,
the inference procedure reduces the network by a procedure analogous to Shachter’s
technique for evaluating quantitative influence diagrams [45]. The §* and U* rela-
tions in the reduced graph induce a partial order on the likelihoods and utilities in
the model. Case analysis is then applied to determine that one plan is preferred to
another by Savage’s “sure-thing principle” [43, page 21]. Other techniques (for ex-
ample, “hypothetical optimality” introduced in the earlier work [58]) may be applied
to improve efficiency and enhance dominance-proving power in particular cases.

The generalization of S* to multi-valued parameters creates additional inference
opportunities not considered in the previous paper. For example, in some models
there exists a landmark value corresponding to the optimal setting of some action

parameter, perhaps the ideal dosage of a drug or a threshold value of a test. The

47

48 CHAPTER 5. SUDO-PLANNER

dominance prover can deduce the effect of other actions and events on this optimal
value. This is the reasoning process operating in the digitalis example above (Sec-
tion 4.2.5), where the program determines that the dosage should be reduced in the
presence of increased calcium.

A complete and formal specification of the dominance prover is beyond my capa-
bilities in the current state of this research. One feature is clear, however: a planner
with only qualitative influences will not be able to make choices involving real trade-
offs. The aim of further work will be to produce a dominance prover that makes

“resolvable by qualitative influences” a good operational definition for “tradeoff.”?

5.2 Input Specification of a Planning Problem

Now that we have all of SUDO-PLANNER's components, we are prepared to discuss the
interface between the program and a user with a problem. In the most straightforward
application of these planning mechanisms, the user would describe the state of the
world via a domain model and set the planner off to construct a plan lattice to
determine the set of admissible plans.

This usage mode, however, is bound to prove unsatisfactory for any real prob-
lem. A planner with a moderately large medical knowledge base would be obliged
to consider the advisability of actions spanning the range from taking blood pressure
to prophylactic heart transplants for every patient. We need a method that focuses
attention without recklessly overlooking valid therapeutic opportunities.

The criterion I propose is a default assumption about the status quo plan in
operation before SUDO-PLANNER is consulted.? Specifically, the planner assumes that

the status quo plan is optimal given the previous state of information about the world.

!That dominance with respect to qualitative influences captures our intuitive notions of tradeoff
cannot be demonstrated rigorously. In part to test this claim, | am currently collaborating with
Alan Moskowitz, Thomas Wu, and Jerome Kassirer in a cognitive study of therapy planning by
physicians. To date, we have collected and are in the process of analyzing protocols of physicians

thinking aloud about solutions to the case presented in Chapter 6.
*For an autonomous planner, the status quo plan is the one being executed when this deliberation
commences.

5.2. INPUT SPECIFICATION OF A PLANNING PROBLEM 49

As input, SUDO-PLANNER takes an encoding of this plan along with a description of
the observed changes in the world that prompted the call for re-planning. The planner
uses the optimality assumption to restrict its attention to plan modifications that are
justified by the information changes.

For example, suppose a patient who is not currently receiving any treatment
presents with tooth decay. Given that a heart transplant was not considered a good
idea before (it was not part of the status quo plan), it cannot now be recommended
because there is no further indication for the surgery in the changed information
state. Under the STRIPS-like assumption of Section 4.3, events and actions affect
only those variables connected by qualitative influence paths. This should shrink the
set of actions we need consider for any particular change in state.

Unfortunately, this scheme does not quite work. In our knowledge base there is
an undirected path between any pair of nodes—if only because all eventually con-
nect to the value node. Therefore, without further kinds of assertions or mechanisms
our planner cannot always easily shield seemingly irrelevant actions from considera-
tion. The following is a counterexample situation where tooth decay indicates heart
transplant.

Suppose our patient is a borderline candidate for transplant that fell just below
the threshold in our previous optimization because his life expectancy is too short to
justify such a risky and costly operation. Further, the pessimistic estimate of lifetime
was partly due to a significant probability that the patient has disease D;, which is
nearly always fatal in short order. Disease D;—a very benign disorder with similar
symptoms to D;—is considered equally likely, but even a .5 chance of D, ruled out
the heart transplant. Now the patient complains of tooth decay, which is a commeon
manifestation in D, patients but unheard of among D; sufferers. Given our revised
belief about the unlikely nature of D; our patient’s life expectancy is substantially
increased, thereby qualifying him for a heart transplant.

Although this scenario is contrived, something like it must be admitted possible
whenever action and event variables have common effects. Stronger influence asser-
tions (such as synergy) can sometimes help, but will probably not be sufficient in a

satisfactory fraction of cases.

50 CHAPTER 5. SUDO-PLANNER

SUDO-PLANNER will provide a few facilities for the user to exercise heuristic con-
trol over its search space. The most obvious of these is simply to let the user specify
(partially or completely) the repertoire of actions for the planner to consider. More
sophisticated techniques allow the user to indirectly constrain the action set by re-
stricting attention to particular internal variables. For example, SUDO-PLANNER
might be directed to confine itself to plans that treat the present illness or other des-
ignated disease states. In the scenario above, the planner could (suboptimally, as it
turned out®) omit heart transplant from consideration because it does not affect any
clinical variables influenced by tooth decay. Instead SUDO-PLANNER would concen-
trate, presumably, on filling the cavities and recommending good brushing practices.

In the course of implementing SUDO-PLANNER I will explore additional heuristic
mechanisms for focusing attention in models such as these. I hope to characterize
conditions for their validity. Further work will continue the search for theoretical
devices for justified focus of attention. A preliminary suggestion is offered in the next

section.

5.3 Focus Justifications: Common Practice Cases

In medicine, established practice provides a constraint on acceptable plans beyond
what might otherwise be considered reasonable action. We can represent some fea-
tures of common practice in the structures developed for SUDO-PLANNER.

A common practice axiom describes, for a given case or class of cases, features of
the acceptable treatment plans. Often these features can be captured in the plan con-
straint language of Section 3.3. For a specific patient presentation pattern, commeon
practice might dictate that a particular plan class subsumes the admissible plans,
or that others are nogood. Alternately, a feature of plans may be associated with
necessary or sufficient (rarely both) conditions on cases.

Such constraints, when available, can be directly applied by the dominance prover.

Although decisions justified by common practice constraints may be less satisfying

3The planner does not wrongly decide that a heart transplant is not in the optimal plan, it merely
fails to consider the issue.

5.4. TRADEOFF ORACLES 51

than those derived from “first principles” of the domain model, the former is preferred

to decisions based on arbitrary heuristics.

5.4 Tradeoff Oracles

The use of common practice axioms described above illustrates the more general prin-
ciple of using aggregate decisions to constrain lower-level tradeoffs. When common
practice dictates a decision not derivable from a domain model, some combinations
of tradeoff resolutions in the original model are thereby ruled out.

To study this central process in multi-level reasoning, I will experiment with SUDO-
PLANNER augmented with a fradeoff oracle: a device for unwedging the dominance
prover when it gets stuck. The rationale for this piece of machinery is that in rich
reasoning situations, knowledge akin to the common practice constraints above is
pervasive. Tradeoff resolutions might arise from a variety of sources—clinical trials,
mathematical models, hypothetical reasoning, or leaps of faith, for example—that
do not mesh easily with the primary domain model. Analysis of the planner with a
tradeoff oracle will shed light on whether and how planners like this can exploit such
knowledge without requiring a precise account of the source and generation of the
knowledge itself.

In the implementation, the pseudo-oracle will answer either randomly or according
to hand-coded specifications. Evaluation of SUDO-PLANNER’s use of the oracle is
based on the amount of dominance propagation and lower-level tradeoffs resolved for
each oracle consultation.

5.5 A Note on Knowledge Engineering

The knowledge representations chosen for SUDO-PLANNER are not really intended for
human consumption. While I certainly will have to work with them in constructing
some examples for the planner, these structures are really designed as an internal
target language to encode planning-relevant objects derived from other forms of in-

formation in a large knowledge base.

52 CHAPTER 5. SUDO-PLANNER

The other forms of knowledge I am thinking of range from physiological models,
like that in Long’s program for heart failure [29], to representations of clinical trial
studies, as proposed by Rennels [39]. The feasibility of generating qualitative influence
assertions from other types of causal models is supported by the existence of programs
performing similar tasks—Downing’s qualitative sensitivity analysis [13] and Weld’s

comparative analysis [53], for example.

Chapter 6

An Example: The
Hepatoma/AAA Case

The best way to bring together the ideas presented thus far in this proposal is to work
through an example plan formulation. The case chosen for illustration was recently
analyzed by Wong et al. [62] for a Clinical Decision Consultation at the Tufts-New
England Medical Center (TNEMC).

The patient is a 73-year-old-man discovered to have hepatoma (liver cancer) and
an abdominal aortic aneurysm (AAA). The cancer severely degrades the patient’s life

expectancy, as does the threat of aneurysm rupture, which is usually fatal.

6.1 Action Hierarchy

A variety of diagnostic and therapeutic actions are available to the physicians man-
aging this case, shown hierarchically in Figure 6.1. The hierarchy is rooted by A, the
set of all actions. The class of diagnostic tests, immediately below A in the figure,
is defined informally to include all actions that make observable some clinical state
of the patient. One subclass consists of treatability tests, where the observable bears
upon the efficacy of a potential therapy. Here the only relevant test is the hepatic
workup, which reveals whether the hepatic mass is surgically removable. We can

invent a physiologic state named resectable that is made observable by the hepatic

33

54 CHAPTER 6. AN EXAMPLE: THE HEPATOMA/AAA CASE

workup.
A
Diagnostic Test Treatment
| T TS
Treatability Test Hepatoma Rx AAA Rx
| P |
Hepatic Workup Chemotherapy Resection AAA Repair

Figure 6.1: A hierarchy of actions for the hepatoma/AAA example.

Treatments are actions that influence clinical variables, usually in a desirable fash-
ion. Subclasses of treatments relevant to this case are those that influence the state of
the patient’s hepatoma or his AAA. A surgical procedure, AAA Repair, is available
to treat the latter, while two therapeutic options may be considered for the hep-
atoma. Resection is the surgical removal possible when the mass is resectable,) and
chemotherapy is an alternate medical approach.

Given the hierarchy of actions and the specification of observables, we can con-
struct the corresponding plan lattice. The set of all plans is generated by the produc-
tion rule of Section 3.1 from the primitive action set {workup, resection, chemother-
apy, repair} and the single observable resectable created by workup. Under the con-

2

straint that each action may be applied at most once,” even this simple configuration

! As discussed in Section 3.2.2, we model this situation by treating the resection as a no-op when
the condition resectable is false.

*This constraint cannot be completely captured within the constraint language. We can designate
the plan class [aa, €] to be nogood for a bound to each of the four actions here, but this only limits
unconditional repetition of actions. For the remaining discussion, I will assume that a sufficient
mechanism for enforcing this restriction exists. Note also that without such a constraint, the set
of possible plans is infinite. However, the planner can still derive useful properties about the (also
infinite) set of admissible plans. This suggests that cardinality of the admissible plan set is not a
perfect measure of progress.

on
o

6.2. CASE INPUT

yields 72 distinct syntactically valid plans.® Beyond this, we need to rely on our

dominance-proving planner to prune the set.

6.2 Case Input

If the knowledge base really contained only these four actions, there would be little
need to take advantage of attention-focusing mechanisms in the input module. In a
more realistic context, however, the program has specifications for numerous actions
in addition to these, most of them unrelated to this case.

Rather than require the user to specify the action set directly, we can achieve the
same result in this case by directing the planner to limit attention to actions affecting

the hepatoma and AAA disease states. The input consists of
e The previously optimal plan: nil

e Changes in patient state: increase (in the FSD sense) in hepatoma state, in-

crease in AAA state
e Focus rule: consider only plans to influence these disease states.

As noted in Section 5.2, this focus rule is not generally valid. However, at present
it is the best compromise I have come up with between direct user specification of

the plan space and unfocused search.

6.3 Qualitative Influence Diagram

Let us examine the domain model for this problem. The effects of the available actions

and relevant events are described by the qualitative influence diagram depicted in
Figure 6.2.

3Without workup, there are 2° = 8 unconditional plans. With workup, plans are conditional on
resectable. For each value of the condition, there are the same & unconditional possibilities, leading
to & x 8 = 64 combinations. The total number of plans is 8 + 64 = 72.

56 CHAPTER 6. AN EXAMPLE: THE HEPATOMA/AAA CASE

1R
c =~
+
—|RE
o|RE, heP +|RE ¥ ojsD
5 OIRE sy -I50
+
() =%
a ~(aaa +IrE
o|RE o|sD
h ~i55
w iy stm
key:
¢: chemotherapy hep: hepatoma disease state severity
r: resection aaa: AAA severity
AAA repair sd: death from surgery
w: workup stm: short-term morbidity
rb: resectability of hepatoma | u: mortality “rate”

Figure 6.2: Qualitative influence diagram for the hepatoma/AAA example.

6.3. QUALITATIVE INFLUENCE DIAGRAM 37

In the diagram, boxes denote action variables and circles event variables. The
hexagon is the value node, used to distinguish the special event variable u, which
denotes expected utility. Directions on the links indicate qualitative influences; a link
from a to b annotated with +|y, for example, asserts S*¥(a, b). Links without direc-
tion are informational. An arrow from action to event indicates observable creation;
the reverse orientation signals that the observable is available for conditioning.

The action variables in Figure 6.2 are the primitive actions ¢, r, a, and w—the
leaves of the action hierarchy of Figure 6.1. To reason at higher levels of abstraction
we would create corresponding diagrams that substituted intermediate action classes
from the hierarchy. Further discussion of this possibility is deferred to Section 6.6.

In the model there are disease states corresponding to the two medical problems,
the hepatoma and the AAA. The potential therapies reduce the disease states, except
that resection is a no-op when the tumor is not resectable [S{'ﬁg(r, hep)). Both dis-
ease states positively influence mortality “rate”—roughly the likelihood of death in
any future time period conditional on surviving that far out.? The two surgical proce-
dures, resection and AAA repair, each increase the likelihood of death from surgery.
In addition, they contribute to short-term morbidity, as does the hepatic workup to
determine resectability. Mortality, short-term morbidity, and surgical death are all
undesirable (I/™), although the first two are irrelevant when the latter occurs.

The planner draws conclusions from the model by inference from the qualitative
influences. The basic inference rule is influence chaining by sign multiplication as de-
scribed in Section 4.2. For example, AAA repair has the benefit of reducing mortality
due to the AAA, but contributes to short-term morbidity and the risk of mortality
from the surgical procedure. In the next section, we will see how inferences such as

these can support dominance-proving in the plan lattice.

4The quote marks signal that the parameter is not really a rate in that it may not be constant
over time.

58 CHAPTER 6. AN EXAMPLE: THE HEPATOMA/AAA CASE

6.4 Plan Lattice

Part of the plan lattice for this problem is depicted in Figure 6.3. The plan classes in
the lattice were selected manually; automatic generation of the lattice will be driven
by the dominance prover as described briefly below. Given the plan classes, a simple
algorithm can compute all the subsumptions represented in the figure. For the present
discussion, we presume that the lattice is set up as presented before the dominance
proving and propagation commences.

Specialization links connected by horizontal chords indicate that the included
subclasses cover the parent class. That is, the parent plan class is equivalent to the
union of their plans. From dominance property (2.10) (the < direction), it follows
that . .

UP:2P =\ D(P:,P), (6.1)

i=1 i=1
at least one of the subclasses must dominate the parent. This fact will be useful
below.

Using the qualitative influence diagram of Figure 6.2, the dominance prover can
derive dominance conditions (in particular, restrictions) that hold among plan classes
in the lattice. The following is a plausible sequence of inference steps by which the
set of admissible plans is pruned by successive dominance assertions.

Step 0: No resection without workup. This is conceptually more like a
domain condition than a dominance condition. It can be specified directly in the
knowledge representation by asserting that the partial plan [R, W] is a nogood, or
alternately D(0,Pyg). It is sufficient to constrain unconditional plans in this case
because all conditional plans contain W (but see footnote 2). Because the two plan
classes Py and Pyg cover Py, we can apply property (6.1) to deduce that P, is restricted
to Pa, or D(Ps,P;1). The “0” on the specialization link from P; to Ps in Figure 6.3
indicates that this becomes a restriction link by step 0.

Step 1: Plans with workup must not have resection if not resectable.
Our domain model asserts that resection is a no-op if the tumor is not resectable (r

is conditionally independent of everything if RB). No-ops may always be eliminated

6.4. PLAN LATTICE

P
P

= [eq]

Il

I

‘P3=
Pq,:

Ps =
Pr =

Ps

[e, W]

[W, €] (if RB (Py) (P1))
[e, CW]

[C, W]

[W., €] (if RB (P1) (Pa))
[e, CRW]

[C, RW]

[W, €] (if RB (P;) (P2))

Pa
Pio
Pu

= [W,¢] (if RB (P1o) (P1)

P =
Pz =
Pu =

Pis
Pis
Prr

[e, RW]
(R, W]

[W, €] (if RB (P1o) (Ps)
[W, €] (if RB (Puo) (P5)
[CR, W]

[W, €] (if RB (P14) (P2))
[R,CW]

[W, €] (if RB (Pis) (Pr))

)
)
)

Figure 6.3: A plan lattice for the example.

60 CHAPTER 6. AN EXAMPLE: THE HEPATOMA/AAA CASE

from plans, therefore plans with R on the RB condition may be ruled out. In this
lattice, this enables us to restrict Pyy to Pig, its counterpart with R on the out-list
for the non-resectable condition.

Step 2: Plans with workup must have resection if resectable. This is a
special case of the more general principle that it is suboptimal to perform costly tests
unless there is some action contingent on the result of the test. Here we derive the
conclusion from the following line of reasoning. Suppose the optimal plan includes
workup (w). The effects of w are unambiguously non-positive—it increases short-term
morbidity which in turn reduces utility. Therefore, the only justification for including
w in the plan is that w creates the observable rb. Introduction of an observable can
only have benefits if the plan is conditioned on that variable. In this model, the only
influences affected by rb are those of resection (r) on the events hep, sd, and stm.
Because we already know from step 1 that conditional plans must have out(R) if BB,
they must have the opposite if RB.> Thus, P; is restricted to Py; and Ps to Pia
because Pyp is just Py with the constraint that R is included.®

Step 3: Plans without resection must include chemotherapy. Chemother-
apy has no morbidity cost, and positive benefit on unresected hepatoma, according to
the model. Its effect is ambiguous when the tumor has been resected. The constraint
that C must be in plans without R restricts Py to Pr and correspondingly Pz to Pia.

For the sake of clarity, the pruned plan lattice is reproduced in Figure 6.4. The
leaves of this lattice form the set of admissible plans because they are reached from
L via restriction paths. The only branches along the way are for covers, which are in

essence disjunctive restrictions by property (6.1).

In our example, the set of admissible plans is P U P;3. Resolving the influence of
chemotherapy on hepatoma severity given resection would rule out either P;5 or 7.

If S*8(c, hep), then adjuvant chemotherapy is warranted (P;s).

5This derivation is not an artifact of treating resection of an unresectable hepatoma as a no-op.
A model that treated it as a surgical procedure with mortality and morbidity but no therapeutic
value would support the same inferences.

%Note that even though Pyq is nogood as a standalone plan (by step 0), it is legitimate as part
of a compound plan.

6.4. PLAN LATTICE 61

_.--""'f-'"“‘-..
J-.’_,..-"" _\‘--._,_‘
'P1 'Pz
i ™~
Ps Pu
3 !
P, Pr2
5
pla
Pis Pz

Figure 6.4: The pruned plan lattice.

Assuming that adjuvant chemotherapy is not recommended (P;7), the admissible

plans are:
1.6
2. AC
3. W (if RB (R) (C))
4. W (if RB (R) (AC))
5. W (if RB (AR) (C))
6. W (if RB (AR) (AC))

The plans with adjuvant chemotherapy are the same as 3-6 above with C added to
the RB condition. Note that these are complete plans, not plan classes, stated in the
plan language of Section 3.1.

62 CHAPTER 6. AN EXAMPLE: THE HEPATOMA/AAA CASE

6.5 Comparison of Results

It is instructive to compare the admissible plan set derived by the planner with the
strategies considered in the original TNEMC analysis. Assuming adjuvant chemother-
apy is non-efficacious (an apparent assumption of the TNEMC analysts), the planner
produces the six plans listed above. The decision tree for the case, depicted in Fig-

ure 6.5, also evaluated six strategies.

Decision Tree Hepatoma-AAA

Sxlective

Figure 6.5: The decision tree for the hepatoma/AAA case.

In the decision tree, the strategies chemotherapy only, AAA repair only, hepatic
workup, both, and selective correspond to plans numbered 1, 2, 3, 6, and 5, respectively,
in the list at the end of Section 6.4. The remaining strategy, no therapy, corresponds
to the null plan that was ruled inadmissible by the dominance prover. In fact, no
therapy is clearly dominated under the model’s assumptions about chemotherapy; it

was only included in the original analysis for purposes of comparison.

6.6. HIERARCHICAL PLAN FORMULATION 63

The set of admissible plans included one other that was not considered in the
TNEMC analysis.
W (if BB (R) (AC)) (6.2)

Plan 6.2 is the opposite of the plan labeled selective above. According to the plan,
AAA repair is performed if and only if the hepatoma is not resected. This policy is
not at all reasonable because it makes more sense to undergo surgery for the AAA if
the tumor is resected and therefore the patient is expected to live longer. The costs
of the surgery are up front (possible mortality and short-term morbidity from the
procedure), while the benefits are accrued over the patient’s lifetime (eliminate risk
of rupture). Unfortunately, the qualitative model of Figure 6.2 is too weak to support
this argument.

This problem could be fixed via an appeal to qualitative synergy. The hepatoma
and AAA have independent effects on the mortality “rate” u, but this parameter
in turn has a greater-than-linear effect on utility.” Extensions to the qualitative
influence representation and reasoning mechanisms to capture this phenomenon would

significantly broaden the powers of this planner.

6.6 Hierarchical Plan Formulation

The preceding analysis proceeded at a single level of abstraction, the lowest. In a
simple isolated example such as this, it is difficult to demonstrate the facilities for
multi-level reasoning or to make a case for the value of such a capability.

To plan at a higher level of abstraction, we construct a domain model in terms
of the higher-level actions in the action taxonomy. For example, we could have con-
structed a qualitative influence diagram analogous to that of Figure 6.2 with actions
like “treatability test” and “hepatoma treatment” substituted for workup and re-
section. In fact, such an influence diagram for the generic test/treat decision was

presented in a previous paper [58]. In this case, most of the qualitative influences

"When u is really a constant rate, life expectancy is 1/u by the DEALE model [2]. Because this
function is convex, decreasing i by a given amount increases life expectancy more when u is lower.

64 CHAPTER 6. AN EXAMPLE: THE HEPATOMA/AAA CASE

specified for the low-level actions are reasonably considered true for their generic
categories. That a hepatoma treatment negatively influences the hepatoma disease
state when the treatability condition is satisfied is more a definition of these abstract
categories than an incidental fact of the world.

Discovering dominance properties at high levels of abstraction can have great ad-
vantages in searching a large plan space. Suppose that our knowledge base included
twelve different varieties of chemotherapy regimens that could be considered for this
patient. Establishing the major relation between chemotherapy actions and admis-
sible plans (step 3 above) at the aggregate level saves a lot of effort compared to
deriving the result for each regimen individually.

A plan lattice extensively developed at high levels of abstraction can serve as
compiled structure for storing precomputed dominance results that can be applied
to particular cases. For example, the results of the generic test/treat constrain just
about any more specific planning problem. Starting with the pruned lattice eliminates
the need to re-derive those results for the particular instantiations. The conclusions
are passed on via plan subsumption and dominance propagation, operations generally

simpler than dominance proving.

6.7 Discussion

To put it mildly, this extended example is a bit rough at the edges. The exposition

glossed over several issues and leaves a list of unanswered questions including:

¢ How exactly is the qualitative influence diagram constructed from a primitive

knowledge representation? This breaks down into several sub-questions:

— What does this representation look like in NIKL?

— How are event variables for the influence diagram derived from the repre-

sentation for events themselves?

— What is the unification mechanism for creating the right associations be-
tween events in influence links? This is especially important for reasoning

at multiple levels of abstraction.

6.7. DISCUSSION 65

e How are nogoods specified outside the dominance process? This was required
twice above: consider at most one of each action and no resection without

workup.

e What is the complexity of dominance propagation, particularly the use of cov-

ers?

These and other unresolved issues will be the primary subjects of attention in the
course of this thesis project. I expect that several of the notations and constructs

employed in the example will need to be modified in the final implementation of
SUDO-PLANNER.

Chapter 7
Research Plan

Work over the coming year will refine this model of planning under uncertainty with
partially satisfiable objectives. The major software components will be implemented
(plan subsumption and dominance propagation algorithms, influence network gener-
ator, dominance prover, and case input interface). Along with the actual design and
programming, I will devote effort toward developing mathematical characterizations
of the procedure’s capabilities. Although interaction with a full-blown knowledge
base will not be possible in the short term, substantial knowledge base fragments at
an extremely shallow level of specification will be developed to test the planner.

Some specific tasks:

o Collect more examples. In addition to the case of Section 6, I have also closely
examined a decision problem involving a patient with a large AAA but at risk
for surgery because of coronary artery disease and a history of cerebrovascular
problems. This case was analyzed by Dunn [14] and previously explored by me

in a study of reasoning about utility models [54].

e Encode actions and events to support examples, at least at the surface level
(clinical influences).

e Develop a scenario for deriving qualitative influences from physiological or em-
pirical models (for example, assume availability of the heart failure program [29]

or Roundsman [39]). This will not be implemented.

66

7.1. CURRENT IMPLEMENTATION STATE 67

e Invent constructs and reasoning mechanisms to handle qualitative synergy.

Further study of temporal issues. (However, no extensions to the plan or con-

straint languages will be incorporated in the implementation.)

Development of focus mechanisms (input module and constructs).

e Theoretical investigation of valid focus rules. The implementation may include

invalid focus heuristics.

Work out protocol for use of tradeoff oracle.

I expect to get some help in knowledge base construction and example collection

from our medical collaborators.

7.1 Current Implementation State

As of June 17, 1987, the following components have been implemented:

e A high-level classifier that assumes the nodes in the subsumption graph handle

the predicate subsumes-p.

e The algorithms for plan class simplification and subsumption, described in Ap-
pendix A.

e Mechanisms for propagating dominance relations within the plan graph, based

on the properties of Section 2.2.
o A skeletal NIKL knowledge base of actions and events.

e Development scaffolding, including programmer’s interface to the graph struc-
tures and a naive planning algorithm based on random mutation of existing

plan class descriptions.

63 CHAPTER 7. RESEARCH PLAN

7.2 Evaluation Criteria

This project should be considered a success if it achieves the following:

¢ Reasonable plan formulation performance on several medical examples drawn
from the TNEMC case files. The cases should exercise overlapping portions of
the knowledge base without confounding each other.

o Demonstration of the facility and advantages of planning at multiple levels of

abstraction.

e A dominance prover that seems to capture the intuitive notion of “tradeoff.”

7.3 Timetable

Finish implementation of basic planning engine: 1 October 1987
Finish knowledge base construction and example collec- 1 March 1988
tion and debugging, including tuning of planning engine:

Circulate near-final thesis draft: 1 April 1988
Thesis delivery date: 29 April 1988

Appendix A

Plan Class Algorithms

A.1 Simplification

Partial plans can be simplified to facilitate subsumption computation. The following
rewriting removes superfluous conditionalization by propagating common constraints

out of conditionals.

(if OBS ([IN,,OUT\] CP,) ([IN2,OUTy] CP;3)) —
[INy A IN,,OUT; 7 OUT] (A1)
(if OBS ([IN,,OUTy] CP,) ([IN,,OUT:) CPs))

The operations A and 7 are variants on intersection that take action subsumption
into account. The combination of I N and I N; constraints is the collection of actions
that are in both or have a specialization in both, taking care to avoid multiple uses
of the same constraint. We can compute this combination by finding the maximal
match® of the bipartite graph formed by connecting the elements of IN; and I N, that
are related by subsumption, then taking the more general element of each edge in the
match. For example, suppose we have actions A;,...,.A4, such that A; subsumes A;
if and only if ¢ > j. Some sample values of the A operation for this situation are
given in Table A.1.

'For this purpose, maximality must take into account preference for edges with stronger (more
specific) actions. A more precise statement of the algorithm is deferred to the thesis report.

69

70 APPENDIX A. PLAN CLASS ALGORITHMS

Ay Ag Ay A As A], W A Ay FAN .4.2 Ay vr Ag

Az A A A, Ay Az
Aids Az As Az A Az A
A Az Az A Az A1 Az As

A Az AA | AA As A1 As Ay

Table A.1: Sample values of the A, 77, &', and 7' operations. In this example, A;

subsumes A; if and only if 1 = j.

In combining the OUT lists, we do not have to worry about multiple uses of the
constraints. OUT; 7 OUT; simply contains the strongest (most general for OUT
constraints) actions that are subsumed by actions present in both lists. Some simple
examples of 57 appear in Table A.1.

Notice that rewrite rule A.1 may sometimes require combination of unconditional

action in-out list pairs produced by different conditionals at the same level of nesting.

The rule for combining is as follows:
[IN1, OUTy] [IN,,OUTz] — [IN; A" IN,, OUT, 7' OUTs), (A.2)

where A’ and 57’ are variants of union dual to A and v7. Again, the operation on IN
lists is the complicated one. To compute A’ for two action lists, find the maximal
match of the bipartite graph formed by compatibility edges (two action classes are
compatible if and only if they are not disjoint), then return the more specific element of
each edge in the match, along with any unmatched actions. Note that this operation
does not produce a unique value if there is more than one maximal match.

The 57’ operator produces an out-list containing actions that are in either OUT;
or OUT;. If one of the lists contains an action that has a subsuming counterpart in
the other, the more general action is included in the combination. Examples of these
operations are also included in Table A.1.

We can also rewrite partial plans to achieve any canonical ordering of the nesting

A.2. COMPUTING PLAN SUBSUMPTION 71

of observables:

(if o1 (if 02 (P1) (P2)) (if 02 (Ps) (Ps)) —

(A.3)
(if 02 (if o1 (P1) (Ps)) (if 01 (P2) (Pa))

A.2 Computing Plan Subsumption

The analysis of Section 2.6 suggests that an important feature of the constraint lan-
guage is its support for subsumption computations. The following algorithm derives
subsumption relations among partial plans in this language, though it is incomplete

in two respects:

1. The algorithm ignores relations among the OBS predicates. It would fail to

determine, for example, that P; subsumes P,, where

Py = (ifz>5(Po) (L))

(A.4)
Py = I:lf z>0 I['pu) '[:L‘-}]

2. Simplification does not catch all condition-independent features of plans that
may be buried in if clauses. Another example of a missed subsumption of P,
over Ps is:

P = [Ae
Py = (if o ([As€]) ([As,€]))
where .4; subsumes both .4, and .43, but neither .4, nor .43 subsumes the other.

(A.5)

The algorithm assumes a subroutine for computing subsumption among action
classes (P-ACTIONs). Because actions in SUDO-PLANNER are represented as NIKL
concepts, we can determine action subsumption directly from the pre-classified tax-
onomy. The subsumption algorithm tests the following conditions, sufficient for
subsumes(Py, Pa):

1. For every action token a € IN; there exists a distinct token &’ € I N; such that
a subsumes a’. Let I V] be the set of actions a in I N; matched with the actions
a from TV,

72 APPENDIX A. PLAN CLASS ALGORITHMS

2. For every action token a € OUTh:

e there exists no action token a’ in IN; — I N} such that a subsumes a’, and

s there exists a token (not necessarily distinct for different as) a’ € OUT;

such that a’ subsumes a.

3. For every top-level conditional in P; of the form (if 0 (Pa1) (Pe1)) there is a
corresponding conditional in P, of the form? (if o (Paz2) (Psz)) and both

o P, subsumes Paa

e P;; subsumes Py,

Condition 1 can be tested with an algorithm for maximal bipartite matching in
time O(n®/?) [24]. The matching is with respect to the graph formed by connecting
a; to af iff a; subsumes af. If the cardinality of the matching is equal to the size IN;
the condition is satisfied.

The test for condition 2 is easier because the mapping from OUT) to OUT; may
be many-to-one. A straightforward verification of the condition is O(n?).

Notice that condition 3 requires two recursive calls to the subsumption algorithm
on partial plans at one deeper level of nesting. Flattened out, condition 3 amounts
to a large and of a set of subsumption problems whose input sizes sum to that of the
original problem. Because the complexity of condition 1 is more than linear, the worst
case for subsumption is when the partial plans are described by in-lists only. The
overall time complexity of the algorithm is O(n®/?) steps, where action subsumption
is presumed to take unit time.

I can think of some simple enhancements to the algorithm which would eliminate
part of the second type of incompleteness mentioned above without degrading com-
plexity. And there are certainly some simple event predicate subsumptions we can
use to strengthen the algorithm. A precise description of the final procedure and

characterization of its completeness will appear in the thesis.

It may be necessary to rearrange P; via transformations like (A.3) to get this corresponding
conditional to top-level. The complexity analysis below ignores this computation phase because it
is dominated by verification of these conditions.

Bibliography

[1] James F. Allen. Towards a general theory of action and time. Artificial Intelli-
gence, 23:123-154, 1984.

[2] J. Robert Beck, Jerome P. Kassirer, and Stephen G. Pauker. A convenient
approximation of life expectancy (the ‘DEALE’) I. Validation of the method.
American Journal of Medicine, 73:883-888, 1982.

[3] Ronald J. Brachman and Hector J. Levesque. The tractability of subsumption
in frame-based description languages. In Proceedings of the National Confer-
ence on Artificial Intelligence, pages 34-37, American Association for Artificial
Intelligence, 1984.

[4] Ronald J. Brachman and James G. Schmolze. An overview of the KL-ONE knowl-
edge representation system. Cognitive Science, 9:171-216, 1985.

[5] David Chapman. Nonlinear planning: A rigorous reconstruction. In Pro-
ceedings of the Ninth International Joint Conference on Artificial Intelligence,
pages 1022-1024, 1985.

[6] David Chapman. Planning for conjunctive goals. AI-TR 802, Massachusetts In-
stitute of Technology, Artificial Intelligence Laboratory, 545 Technology Square,
Cambridge, MA, 02139, November 1985.

[7] David Chapman. Planning for conjunctive goals. Artificial Intelligence, forth-
coming, 1987.

[8] Eugene Charniak and Drew McDermott. Introduction to Artificial Intelligence.
Addison-Wesley, Reading, MA, 1985.

[9] Gregory Floyd Cooper. NESTOR: A Computer-Based Medical Diagnostic Aid
that Integrates Causal and Probabilistic Knowledge. PhD thesis, Stanford Uni-
versity, November 1984.

73

T4 BIBLIOGRAPHY

[10] Louis Anthony Cox, Jr. Mathematical Foundations of Risk Measurement. PhD
thesis, Massachusetts Institute of Technology, May 1986.

[11] Johan de Kleer. An assumption-based TMS. Artificial Intelligence, 28:127-162,
1986.

[12] Johan de Kleer. Problem solving with the ATMS. Artificial Intelligence, 28:197-
224, 1986.

[13] Keith L. Downing. Diagnostic improvement through qualitative sensitivity anal-
ysis and aggregation. In Proceedings of the National Conference on Artificial
Intelligence, American Association for Artificial Intelligence, 1987.

[14] Van H. Dunn. Grand rounds, Beth Israel hospital. 1984. Unpublished decision
analysis consult report, Division of Clinical Decision Making, Tufts-New England
Medical Center.

[15] Jerome A. Feldman and Robert F. Sproull. Decision Theory and Artificial In-
telligence II: The hungry monkey. Cognitive Science, 1:158-192, 1977.

[16] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application
of theorem proving to problem solving. Artificial Intelligence, 2:189-208, 1971.

[17] Peter C. Fishburn and Raymond G. Vickson. Theoretical foundations of stochas-
tic dominance. In [60].

[18] G. Anthony Gorry, Howard Silverman, and Stephen G. Pauker. Capturing clini-
cal expertise: A computer program that considers clinical responses to digitalis.
American Journal of Medicine, 64:452-460, March 1978.

[19] Benjamin N. Grosof. Non-monotonicity in probabilistic reasoning. In John F.
Lemmer, editor, Uncertainty in Artificial Intelligence, North-Holland, 1987.

[20] Steve Hanks and Drew McDermott. Default reasoning, nonmonotonic logics,
and the frame problem. In Proceedings of the National Conference on Artifi-

cial Intelligence, pages 328-333, American Association for Artificial Intelligence,
1986.

[21] David E. Heckerman and Eric J. Horvitz. The myth of modularity in rule-
based systems. In John F. Lemmer, editor, Uncertainty in Artificial Intelligence,
North-Holland, 19837.

[22] J. P. Hollenberg. The decision tree builder: An expert system to simulate medical
prognosis and management. Medical Decision Making, 4(4), 1984. Abstract from
the Sixth Annual Meeting of the Society for Medical Decision Making.

=]

o

BIBLIOGRAPHY

[23] Samuel Holtzman. Intelligent Decision Systems. PhD thesis, Stanford Univer-
sity, March 1985.

[24] John E. Hopcroft and Richard M. Karp. An n®? algorithm for maximum match-
ings in bipartite graphs. SIAM Journal on Computing, 2:225-231, 1973.

[25] David H. Krantz, R. Duncan Luce, Patrick Suppes, et al. Foundations of Mea-
surement. Academic Press, New York, 1971.

[26] David M. Kreps and Evan L. Porteus. Temporal von Neumann-Morganstern and
induced preferences. Journal of Economic Theory, 20:81-109, 1979.

[27] Curtis P. Langlotz, Lawrence M. Fagan, Samson W. Tu, et al. A therapy plan-
ning architecture that combines decision theory and artificial intelligence tech-
niques. Computers and Biomedical Research, 1987.

[28] Doug Lenat, Mayank Prakash, and Mary Shepherd. CYC: Using common sense
knowledge to overcome brittleness and knowledge acquisition bottlenecks. A[
Magazine, 6(4):65-85, 1986.

[29] W. J. Long, S. Naimi, M. G. Criscietello, et al. An aid to physiological reason-
ing in the management of cardiovascular disease. In Proceedings of the IEEE
Computers in Cardiology Conference, pages 3-6, September 1984.

[30] Tomads Lozano-Pérez, Matthew T. Mason, and Russell H. Taylor. Automatic

synthesis of fine-motion strategies for robots. International Journal of Robotics
Research, 3(1):3-24, 1984.

[31] Marie B. Macaisa and Candace L. Sidner. Plan representation and plan recog-
nition. 1987. Abstract presented somewhere.

[32] David Allen McAllester. Reasoning Utility Package User’s Manual. AIM 667,
Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 545
Technology Square, Cambridge, MA, 02139, 1982.

[33] J. McCarthy and P. J. Hayes. Some philosophical problems from the stand-
point of artificial intelligence. In B. Meltzer and D. Michie, editors, Machine
Intelligence 4, pages 463-502, Edinburgh University Press, 1969.

[34] Drew McDermott. Planning and acting. Cognitive Science, 2:71-109, 1978.

[35] Ramesh S. Patil. Causal representation of patient illness for electrolyte and acid-
base diagnosis. TR 267, Massachussetts Institute of Technology, Laboratory for

Computer Science, 545 Technology Square, Cambridge, MA, 02139, October
1931.

6 BIBLIOGRAPHY

[36] Judea Pearl. Fusion, propagation, and structuring in belief networks. Artificial
Intelligence, 29:241-288, 1986.

[37] Judea Pearl. Markov and Bayes networks: A comparison of two graphical repre-
sentations of probabilistic knowledge. Technical Report R-46, UCLA Computer
Science Department, September 1986.

38) Edwin P. D. Pednault. Preliminary report on a theory of plan synthesis. Tech-
nical Note 358, SRI Artificial Intelligence Center, August 1985.

[39] Glenn Douglas Rennels. A Computational Model of Reasoning from the Clinical
Literature. PhD thesis, Stanford University, June 1986.

[40] Cynthia J. Rutherford, Byron Davies, Arnold I. Barnett, et al. A computer
system for decision analysis in Hodgkins Disease. TR 271, Massachussetts Insti-

tute of Technology, Laboratory for Computer Science, 545 Technology Square,
Cambridge, MA, 02139, 1981.

[41] Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial
Intelligence, 5:115-135, 1974.

[42] Earl D. Sacerdoti. A Structure for Plans and Behavior. American Elsevier, 1977,

[43] Leonard J. Savage. The Foundations of Statistics. Dover Publications, New
York, second edition, 1972.

[44] James G. Schmolze and Thomas A. Lipkis. Classification in the KL-ONE knowl-
edge representation system. In Proceedings of the Eighth International Joint
Conference on Artificial Intelligence, pages 330-332, 1983.

[45] Ross D. Shachter. Evaluating influence diagrams. Operations Research, 34:871-
882, 1986.

[46] David J. Spiegelhalter. Probabilistic reasoning in predictive expert systems. In
Laveen N. Kanal and John F. Lemmer, editors, Uncertainty in Artificial Intelli-
gence, pages 4767, North-Holland, 1986.

[47] David J. Spiegelhalter and Robin P. Knill-Jones. Statistical and knowledge-
based approaches to clinical decision-support systems, with an application in
gastroenterology. Journal of the Royal Statistical Society, 147:35-77, 1984.

[48] Mark Stefik. Planning with constraints (MOLGEN: part 1). Artificial Intelli-
gence, 16(2):111-140, 1981.

BIBLIOGRAFHY [

[49] William R. Swartout. XPLAIN: A system for creating and explaining expert
consulting programs. Artificial Intelligence, 21:285-325, 1983.

[50] William Swartout and Robert Neches. The shifting terminological space: An
impediment to evolvability. In Proceedings of the National Conference on Artifi-
cial Intelligence, pages 936-941, American Association for Artificial Intelligence,
1986.

[51] Josh Tenenberg. Planning with abstraction. In Proceedings of the National Con-
ference on Artificial Intelligence, pages 76-80, American Association for Artificial
Intelligence, 1986.

[52] Marc B. Vilain. The restricted language architecture of a hybrid representation
system. In Proceedings of the Ninth International Joint Conference on Artificial
Intelligence, pages 547-551, 1985.

[53] Daniel S. Weld. Comparative analysis. In Proceedings of the Tenth International
Joint Conference on Artificial Intelligence, 1987.

[54] Michael Paul Wellman. Reasoning about preference models. TR 340, Massachus-
setts Institute of Technology, Laboratory for Computer Science, 545 Technology
Square, Cambridge, MA, 02139, May 1985.

[55] Michael P. Wellman. Representing health outcomes for automated decision for-
mulation. In MEDINFO 86: Proceedings of the Fifth Conference on Medical
Informatics, pages 789-793, October 1986.

[56] Michael P. Wellman. Dominance and subsumption in constraint-posting plan-
ning. In Proceedings of the Tenth International Joint Conference on Artificial
Intelligence, 1987.

[57] Michael P. Wellman. Probabilistic semantics for qualitative influences. In Pro-
ceedings of the National Conference on Artificial Intelligence, American Associ-
ation for Artificial Intelligence, 1987.

[58] Michael P. Wellman. Qualitative probabilistic networks for planning under un-
certainty. In John F. Lemmer, editor, Uncertainty in Artificial Intelligence,
North-Holland, 1987.

[59] Michael P. Wellman and David E. Heckerman. The role of calculi in uncertain
reasoning. In Proceedings of the Workshop on Uncertainty in Artificial Intelli-
gence, July 1987.

78

[60]

[61]

(62]

[63]

[64]

BIBLIOGRAPHY

G. A. Whitmore and M. C. Findlay, editors. Stochastic Dominance: An Approach
to Decision Making Under Risk. D. C. Heath and Company, Lexington, MA,
1978.

Robert Wilensky. Meta-planning: Representing and using knowledge about plan-
ning in problem solving and natural language understanding. Cognitive Science,
5(3):197-233, 1981.

John B. Wong, Alan J. Moskowitz, and Stephen G. Pauker. Clinical decision
analysis using microcomputers—A case of coexistent hepatocellular carcinoma
and abdominal aortic aneurysm. Western Journal of Medicine, 145:805-815,
1986.

Ramin Zabih. Dependency-Directed Backtracking in Non-Deterministic Scheme.
Master’s thesis, Massachussetts Institute of Technology, Cambridge, MA, Jan-
uary 1987.

Ramin Zabih, David McAllester, and David Chapman. Non-deterministic lisp
with dependency-directed backtracking. In Proceedings of the National Confer-

ence on Artificial Intelligence, American Association for Artificial Intelligence,
1987.

