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Abstract

We consider a generalization of the maximum flow problem in which the amounts of flow
entering and leaving an arc are linearly related. More precisely, if z(e) units of flow enter an
arc e, z(e)y(e) units arrive at the other end. For instance, nodes of the graph can correspond
to different currencies, with the multipliers being the exchange rates. We require conservation
of flow at every node except a given source node. The goal is to maximize the amount of flow
excess at the source,

This problem is a special case of linear programming, and therefore can be solved in polyno-
mial time. In this paper we present the first polynomial time combinatorial algorithms for this
problem. The algorithms are simple and intuitive.
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1 Introduction

Consider the following problem in financial analysis. An investor wants to take advantage of the
discrepancies in prices of securities at different stock exchanges and of the currency conversion rates.
His objective is to maximize his profit by trading at different exchanges and by converting currencies.
The generalized circulation problem, considered in this paper, models the above situation, assuming
that a bounded amount of money is available to the investor and that bounded amounts of securities
can be traded without affecting the prices.

The generalized circulation problem is a generalization of the maximum flow problem. Each arc
(v, w) in the network has a gain factor v(v, w) and a capacity u(v, w). If  units of flow enter the arc
at v, then z - y(v, w) units of flow arrive at w. The graph has a special node, called the source. The
objective is to find a flow that maximizes the excess at the source. (Alternative formulations of the
problem are discussed in Section 2.4.) In the model of the above financial analysis problem, nodes
correspond to different currencies and securities, and arcs correspond to possible transactions. Gain
factors represent the prices or the exchange rates. For example, an arc with gain factor of 113 from
a vertex representing IBM stocks to a vertex representing U.S. dollars models the possibility of
selling the stocks at $113 per share.

The generalized circulation problem is important both from practical and theoretical points of
view, First of all, many problems in fields ranging from science and engineering to operations re-
search and financial analysis can be modeled as generalized circulation problems (see e.g., [Law76]).
From a theoretical viewpoint, the generalized circulation problem is, probably, the simplest, most
combinatorial linear programming problem for which no strongly polynomial algorithm is known.
The construction of a strongly polynomial algorithm for linear programming is an outstanding open
problem in the theory of algorithms. The only types of linear programs currently known to be solv-
able in strongly polynomial time are those that either have two variables per inequality [Meg83], or
have (0, +1, —1) constraint matrix [Tar86]. The strongly polynomial algorithm for the second type
of linear programs grew out of ideas developed for the first strongly polynomial algorithm for the
minimum cost flow problem [Tar85]. We believe that developing a strongly polynomial algorithm
for the generalized circulation problem may lead to a strongly polynomial algorithm for the linear
programming problem.

In this paper we give the first polynomial-time combinatorial algorithms’ for the generalized
circulation problem. The importance of designing such algorithms for this problem is twofold.
Combinatorial methods may lead to algorithms that are more efficient, both in theory and in
practice, than algorithms based on general linear programming techniques. (For example, this
is the case for the minimum-cost circulation problem.) Furthermore, we feel that a combinatorial
approach is more likely to yield the insight needed to design a strongly polynomial algorithm for the
generalized circulation problem, and we view our results as a significant first step in this direction.

The generalized circulation problem is in many respects similar to the minimum-cost circula-
tion problem, where each arc has a cost per unit of flow in addition to capacity. Both problems
can be viewed as problems of transporting a commodity from a producer to a consumer. Intu-
itively, the only difference between the two problems lies in the method of payment for shipping

'By combinatorial algorithms we mean algorithms that exploit the combinatorial structure of the underlying
network (as oppesed to being based on analytic ideas like the interior point methods for linear programming).
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costs: in the case of the minimum-cost circulations, these costs are paid with money; in the case
of the generalized circulations — with the commodity itself. The similarity is not only intuitive;
the linear programming dual of these problems, as well as optimality conditions, are very simi-
lar. Both problems are special linear programs, and therefore can be solved in polynomial time
using general-purpose linear programming algorithms, such as the ellipsoid method [Kha80] or Kar-
markar’s algorithm [Kar84]. Although closely related to the minimum-cost circulation problem, the
generalized circulation problem is not yet as well understood. Polynomial-time combinatorial algo-
rithms for the minimum-cost circulation problem were known for a long time [EK72]; more recently,
strongly polynomial combinatorial algorithms were developed as well [Tar85].

The running time bounds of the best combinatorial algorithms for the minimum-cost circulation
problem are far superior to the running time bounds of the algorithms based on the general linear
programming techniques. Under the assumption that the input numbers are not too large (have size
O(logn)), the fastest known algorithm for the problem [GTS7] runs in O(nmlog(n®/m)log(nC))
time?, where C is the absolute value of the biggest arc cost (see also [AGOTS7]). The fastest
strongly polynomial algorithm for the problem [Or188] runs in O(m(m + nlogn)logn) time.

In spite of the similarity between the minimum-cost circulation and the generalized circulation
problems, the current techniques for design of efficient combinatorial algorithms for the former are
not sufficient to yield efficient algorithms for the latter. The only previously known polynomial-time
algorithms for the generalized circulation problem are based on polynomial-time linear programming
algorithms.

Although the previous work on combinatorial algorithms for the generalized flow problem did not
yield polynomial-time algorithms, it did produce useful insights into the structure of the problem.
These insights lead to combinatorial algorithms that run in finite time. Special variants of the
linear programming simplex method have been developed for the generalized flow problem (see
e.g., [EGK79]). These variants give combinatorial methods for solving the generalized network flow
problem. Algorithms that iteratively augment the current flow have also been studied (see e.g.,
[Jew58,Law76,PE84]). However, no polynomial-time bounds are known for these algorithms.?

We present two algorithms, one based on the repeated application of a minimum-cost flow
subroutine, and another based on the idea of augmenting along a biggest improvement path [EK72]
and the idea of canceling negative cycles [GT88,Kle67]. We assume that the capacities are integers
represented in binary, each gain is given as a ratio of two integers, and denote the value of the
biggest integer used to represent the gains and capacities by B. Under these assumptions, the
first algorithm runs in O(n?m(m+nlogn) lognlog B) time and the second in O(n?m? log n log? B)
time.

The fastest general-purpose linear-programming algorithm currently known [Vai87], when ap-
plied to the generalized circulation problem, runs in O(m*log nlog B) time. Using techniques from
[KV86], this algorithm can be modified to take advantage of the special structure of the problem:
the resulting algorithm runs in O(n%5m!5 logn log B) time (Vaidya, personal communication). The
running time bounds of our algorithms are better than the bounds achieved by the general-purpose

*In this paper, we denote the number of nodes in the input network by m and the number of arcs in the network
by m.

3PlJ,!:tl. and Elmaghraby [PE84] claim to have developed a strongly polynomial algorithm based on iterative ang-
menta_mun of flow. However, the proof in the paper has a major gap, and the method used for the augmenting path
selection does not seem to be sophisticated enough to yield a polynomial-time algorithm.
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linear programming algorithms. Although our time bounds are slightly worse than the time bound
of Vaidya's specialization of his linear programming algorithm mentioned above, our algorithms lose
by only a logarithmic factor on sparse graphs. Unlike Vaidya’s algorithm, our approach exploits
the combinatorial structure of the problem. Therefore we feel that it will lead to bounds that are
better than those arising from implementations of general-purpose linear programming methods.

In this paper we introduce new tools for the design of combinatorial algorithms for the general-
ized circulation problem. Analysis of our algorithms is based on new insights into the combinatorial
structure of the problem. We believe that these tools and insights will lead to faster algorithms
and to a better understanding of combinatorial structure of various network flow problems.

This paper is organized as follows. Section 2 defines the generalized circulation problem and
closely related concepts, and gives their important algorithmic and combinatorial properties. Sec-
tion 3 introduces the vertex labels, which are used to convert a given instance of the problem into
an equivalent instance with several useful combinatorial properties. Section 4 describes two sim-
ple combinatorial algorithms for the generalized circulation problem. Section 5 describes our first
polynomial time algorithms, which is based on a minimum-cost flow subroutine. In Section § we
present our second algorithm, based on the idea of augmenting the flow along a “big improvement”
path. The last section contains concluding remarks.

2 Definitions and Background

In this section we define the generalized circulation problem, present a number of fundamental
facts about it, and discuss several related concepts. In addition, we describe several variants of
the generalized circulation problem and discuss the relationship among them. We also review the
minimum-cost circulation problem and discuss the close relationship between this problem and the
generalized circulation problem.

2.1 Minimum-Cost Circulation Problem

First we discuss the minimum-cost circulation problem. A circulation network is a directed graph
G = (V, E) with arc capacities given by a non-negative capacity function u : £ — R...* We assume
that G' has no multiple arcs, i.e.. E C V x V. If there is an arc from a node v to a node w, this
arc is unique by the assumption, and we will denote it by (v, w). This assumption is for notational
convenience only. We also assume, without loss of generality, that the input graph G is symmetric:
(v,w) € E <> (w,v) € E.

In the context of the minimum-cost circulation problem we need the following definitions. A
pseudoflow is a function f: F — R that satisfies the following constraints:

flvyw) < u(v,w) Y(v,w)e E (capacity constraint), (1)
flo,w)=—f(w,v) Y(v,w)e E (flow antisymmetry constraint). (2)
‘Ro. = R{J{oc}.



Remark: To gain intuition, it is often useful to think only about the non-negative components of a
pseudoflow (or a generalized pseudoflow, defined in the next section). The antisymmetry constrains
reflect the fact that a flow of value z going from v to w can be thought of as a flow of value (—=2)
from w to v. The negative flow values are introduced only for notational convenience. N ote, for
example, that one does not have to distinguish between lower and upper capacity bounds: the
capacity of the arc (v, w) represents a lower bound on the flow value on the opposite are,

Given a pseudoflow f, the residual capacity function uy : E — R is defined by us(v,w) =
u(v,w) — f(v,w). The residual graph with respect to a pseudoflow f is given by Gy = (V, Ey),
where Ey = {(v,w) € E|us(v,w) > 0}. An ezcess Ex;(v) at a node v is equal to

Exs(v) = — Z flu,v). (3)

(uw}EE

We will say that a node v has excess if Exs(v) is positive, and has deficit if it is negative. A
circulation is a pseudoflow with zero excess at every node:

Exj(v) =0 (flow conservation constraint). (4)

A cost function is a real-valued function on arcs ¢ : E — R. Without loss of generality, we assume
that costs are antisymmetric:

e(v,w) = —e(w,v) V(v,w)€ E (cost antisymmetry constraint). (5)

A cost of a circulation f is given by

el f) = Z ffl?, w]c{v, w]-

(vw)€E:f(v,w)>0

The minimum-cost circulation problem is to find a minimum-cost (optimal) circulation in an input
network.

Next we state two criteria for optimality of a circulation. Define the cost of a cycle to be the
sum of costs of arcs along the cycle.

Theorem 2.1 ([BS65]) A circulation is optimal if and only if ils residual graph contains no
negative-cost eycles,

To state the second criterion, we need the notions of the price function and the reduced cost
function. A price funetion is a labeling on nodes p : ¥V — R. A reduced cost function with
respect to a price function p is defined by ep(v,w) = (v, w) + p(v) — p(w). These notions, which
originate in the theory of linear programming, are crucial for many minimum-cost flow algorithms.
As linear programming dual variables, node prices have a natural economic interpretation: they can
be interpreted as current market prices of the commodity. We can interpret reduced cost cp(v, w)
as the cost of buying a unit of commodity at v, transporting it to w, and then selling it.

Theorem 2.2 ([FF62]) The cost of a circulation f is minimum if and only if there is a price
function p such that, for each arc (v, w),



ep(v,w) < 0 = f(v,w) = u(v,w) (complementary slackness constraint). (6)

Another useful fact about circulations is the decomposition theorem, which states that a circu-
lation can be viewed as a collection of flows along cycles,

Theorem 2.3 ([FF62]) For every circulation f, there exists a collection of k < m simple cycles
C1,...,Ck in G, and k positive numbers, &y, ...,8;, such that an arc (v, w) appears on one of the
cycles only if f(v,w) > 0, and for every (v,w) € E

fobywy= > &- Y &

ii{v,w) is on wfw,v) is on &

2.2 The Generalized Circulation Problem

In this section we formally define generalized pseudoflows, generalized circulations, and the Een-
eralized circulation problem. We study combinatorial properties of the generalized pseudoflows
and generalized circulations, and describe the correspondence between these properties and the
properties of regular circulations and pseudoflows discussed in the previous section.

In the generalized circulation problem, every arc has a gain factor associated with it, with the
gains given by a gain function v : £ — R*.5 We assume (without loss of generality) that the gain
function is antisymmetric;

Y(v,w)=v"Yw,v) Y(v,w)€ E (gain antisymmetry constraints). (7)

Remark: Recall that the gain factors in our financial analysis problem correspond to currency
exchange rates. Though the exchange rates are usually not antisymmetric, it is easy to use multiple
arcs to describe them by a network that satisfies gain antisymmetry constraints.

In the case of ordinary flows, if f(v,w) units of flow are shipped from v to w, f(v,w) units
arrive at w. In the case of generalized flows, if g(v,w) units of flow are shipped from v to w,
7(v, w)g(v, w) units arrive at w. A generalized pseudoflow is a function g : E — R that satisfies
the capacity constraints (1) and the generalized antisymmetry constraints:

9(v,w) = —y(w, v)g(w,v) ¥(v, w) € E (generalized antisymmetry constraints). (8)

If y(v,w) > 1, then (v,w) is a gain arc; if y(v,w) < 1, then (v,w) is a loss arc. A gain of a
path (cycle) is a product of gains of arcs on the path (cycle). Given a generalized pseudoflow g,
the definitions of residual capacities, residual graph, and excesses are the same as for the ordinary
pseudoflows.

A generalized circulation is a generalized pseudoflow that satisfies conservation constraints (4)
at all nodes except at the source node.

The input to a generalized circulation problem is a tuple (G = (V, E),u,v,s), where G is a
directed graph, u is a capacity function, ¥ is a gain function, and s is the source. For simplicity

*R* denotes the set of positive real numbers.



we assume that the capacities are finite and non-negative. As before, for notational convenience,
we assume that G is symmetric, has no multiple arcs, and that the residual graph of the zero flow
is strongly connected. A value of a generalized pseudoflow g is the excess Ex,;(s). The output
of a generalized circulation algorithm is a generalized circulation of the highest possible value (an
optimal generalized circulation).

Unless mentioned otherwise, we assume that the capacities are given as integers, each gain is
given as a ratio of two integers, and that all integers are represented in binary. We denote the
biggest integer used to represent capacities and gains by B. In addition, we denote the maximum
of a product of gain numerators on a simple path or cycle in the input graph by T, and the least
common multiple of numerators and denominators of all gains in the problem by L. Clearly, T < B"
and L < B?*". However, T and L are often significantly smaller than implied by the above bounds.
In particular, this is the case for some of the problems obtained via reductions.

A flow-generating cycle is a cycle whose gain is greater than 1, and a flow-absorbing cycle is a
cycle whose gain is less than 1. Observe that if one unit of flow leaves a node v and travels along a
flow-generating cycle, more than one unit of flow arrives at ». Thus we can augment the flow along
this cycle, that is, we can increase the excess at any node of the cycle while preserving excesses at
other nodes by increasing flow along the arcs in the cycle and correspondingly decreasing flow on
the opposite arcs, to satisfy the generalized antisymmetry constraints.

Recall the financial analysis interpretation of the generalized circulation problem, discussed
in the introduction. From the investor’s point of view, a residual flow-generating cycle is an
opportunity to make profit. However, it is possible to take advantage of this opportunity only
if there is a way to transfer the profit to the investor’s bank account (the source node). This
motivates the following definition.

A generalized augmenting path (GAP)is a residual flow-generating cycle and a (possibly trivial)
residual path from a node on the cycle to the source. Given a generalized circulation and a GAP
in the residual graph, we can augment the flow along the GAP, increasing the value of the current
circulation. The role of GAPs in the generalized circulation problem is similar to the role of
negative-cost cycles in the minimum-cost circulation problem: both can be used to augment the
flow and thus improve the value of the current solution.

In the case of the maximum-flow problem, the flow is optimal if and only if the correspond-

ing residual graph contains no augmenting paths [FF62]. A similar result holds for generalized
circulations.

Theorem 2.4 [Ona67] A generalized circulation is optimal if and only if its residual graph contains
no GAPs.

Using the linear programming dual of the problem, it is possible to specify an alternate criterion
of optimality, similarly to the way it is done for the minimum-cost circulation problem. We refer
to the dual variables as prices. As in the context of the minimum-cost circulation problem, a price
function p is a labeling of nodes by real numbers. In addition, in the context of the generalized
circulation problem, we require p(s) = 1. Node prices can also be interpreted as market prices of
the commodity at nodes, which motivates the definition of the reduced cost function. If a unit of
flow is purchased at v and shipped to w, then 7(v, w) units arrive at w. Buying the unit at v costs
p(v), and selling v(v, w) units at w returns p(w)y(v,w). Thus the reduced cost of (v,w) is defined

7



ep(v, w) = p(v) — p(w)y(v, w).

Linear programming duality theory provides the following optimality criterion, which is similar to
the one given by Theorem 2.2 for minimum-cost circulations.

Theorem 2.5 A generalized circulation is optimal if and only if there exists a price function p,
such that the complementary slackness conditions (6) hold for each arc (v, w)e E.

2.3 Decomposition of Generalized Pseudoflows

Theorem 2.3 states that a circulation can be decomposed into cycles. Next we prove a similar result
for generalized pseudoflows. We show how to decompose a generalized pseudoflow into elements,
where each element is a “simple” generalized pseudoflow.

We start by defining five types of such elements. Given a generalized pseudoflow g, let £(g)
denote the set of nodes with excess and let D(g) denote the set of nodes with deficits. Each element
of the decomposition is a simple pseudoflow and belongs to one of the five types, where the type is
defined according to the graph induced by the set of arcs on which g is positive.

Type I A path from £(g) to D(g). Creates a deficit and an excess at the two ends of the path.
Type I1 A flow-generating cycle and a path connecting this cycle to a node in £(g). Creates excess
at the end of the path. (If the path ends at the source, then this corresponds to a GAP.)
Type III A flow-absorbing cycle and a path connecting this cycle to a node in D(g). Creates deficit
at the end of the path.
Type IV A cycle with unit gain. Does not create any excesses or deficits.

Type V A pair of cycles connected by a path, where one of the cycles generates flow and the other
one absorbs it. Does not create any excesses or deficits.

Theorem 2.8 A generalized pseudofiow g can be decomposed into components gy, . .., g with k <
m such that
g(v,w) =3 g

where each component g; is a generalized pseudoflow that is positive only on arcs (v,w) with
g(v,w) > 0, and that belongs to one of the above mentioned types. This decomposition ean be
found in O(nm) time.

Proof: We prove the theorem by induction on the number of arcs with non-zero flow value. Let
G’ denote the subgraph of G consisting of the arcs with positive flow value. If G is acyclic, then a
decomposition consisting only of paths (generalized pseudoflows of type I) can be easily found by
tracing the flow from some node with deficit to some node with excess. Otherwise, let C be a cycle
in G'. If this cycle has gain 1, then we can subtract flow around the cycle until one arc on the cycle
has zero flow value. The subtracted flow is of type IV, and the theorem follows by induction.

Now consider the case when the gain of C is more than 1 (the case when the gain is less than
1 can be treated similarly). Decrease the flow along this cycle until one of the arcs along the cycle
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has zero flow value, creating deficit at one of the nodes v on the cycle, and denote the removed flow
by h. Decompose g — h according to the induction hypothesis. This decomposition will include a
number of components that create the deficit at v. These components can be either of Type Il or of
Type II1, and each is responsible for some amount of deficit, such that all the amounts sum up to
the deficit at v in g — h. Observe that each one of these components, together with an appropriate
fraction of h, corresponds to an element of Type I or V in the decomposition of g.

For establishing the running time, observe that the above procedure decreases the number of
arcs with positive flow value in O(n) time. |

2.4 Alternative Formulations

The generalized circulation problem can be stated in several ways. In this section we present
different formulations of the problem and discuss the relationship among them. Understanding this
relationship is important since different practical problems can be modeled in different terms, and
certain algorithms seem more natural when applied to certain formulations.

Generalized Flow Problem (See [Law76] under the name of “fows with losses and gains™.)
The input to the problem is a graph G = (V, E), a gain function 4 : E — R, a source s, and a sink
t. A generalized flow if a function on arcs that satisfies the antisymmetry constraints on all arcs
and the conservation constraints on all nodes except s and t. The value of the flow is defined to be
the amount of flow into the sink. Among all the generalized pseudofiows of maximum value, the
goal is to find a generalized pseudoflow that minimizes the flow out of the source. The generalized
flow problem is reducible to the generalized flows with profit.

Generalized Flows with Profit Problem (GFP Problem) The input to this problem is the
same as the input to the generalized flow problem plus a number r € R* that gives the ratio of
the price per unit of commodity at the sink to the price per unit of commodity at the source. The
goal is to find a generalized flow that maximizes the profit. For a generalized flow g, the profit is
rExy(t) + Ex,(s). To reduce a generalized flow problem to the GFP problem, chose r to be large
enough (but finite); for example, r = B™ + 1.

The following linear-time reductions show that the GFP problem is equivalent to the generalized
circulation problem. Given an instance (G = (V,E),v,s,1,r) of the GFP problem, we define
an equivalent instance of the generalized circulation problem by adding an arc (¢,s) with very
large (> nB?) capacity and a gain of r; and defining s to be the source. Given an instance
(G = (V, E),v,s) of the generalized circulation problem, add a new node ¢ to the graph, along with
the arcs (s,1) and (t,s), assign unit gain and very high ( > nB?) capacity to these arcs, and let
r=1,

2.5 The Restricted Problem

Instead of solving the generalized circulation problem directly, we will solve a restricted version of
the problem. The restricted problem has the same input as the generalized circulation problem, but



with an additional assumption that all flow-generating cycles in the residual graph of the zero flow
pass through the source. This restricted problem has a simpler combinatorial structure and leads
to simpler algorithms. In this subsection we shall give an O(nm)-time reduction of the general
problem to the restricted one. Unless stated otherwise, in the subsequent sections we will refer to
the restricted version of the problem under the name of the generalized circulation problem.

One of the nice facts about the restricted problem is that the optimality condition given by
Theorem 2.4 simplifies in this case, and becomes very similar to Theorem 2.1. To prove this we
need a lemma that will also be useful later.

Lemma 2.7 Let g be a generalized pseudoflow in a restricted problem.

1. If the excess of every node other than the source is non-negative, then for every node v there
exists an (v, s)-path in the residual graph G,.

2. If the residual graph of a generalized pseudoflow g has no flow-generating eycles and the excess
of every node other then s is non-positive, then for every node v there ezists an (s, v)-path in
the residual graph G,.

Proof: The proof is by induction on the number of arcs with positive flow value. Let G' be the
subgraph induced by these arcs. Both statements are easy to prove when G” is acyclic. Now suppose
G' contains a cycle C. This cycle is in the residual graph of the zero flow and therefore if its gain
is more than 1, it has to pass through the source. Consider the case when the gain of C is at most
1. Decreasing the flow along C can only decrease the deficit at some node. The first claim follows
by induction. Observe that if there are no flow-generating cycles in the residual graph of g, then
the gain of C has to be at least 1, which proves the second claim. The case of C having a gain of
more than 1 can be checked in a similar way, |

Theorem 2.8 [Ona66] Given a restricted problem, generalized circulation g is optimal if and only
if the residual graph of g contains no flow-generating cycles.

Proof: Clearly, if the residual graph of the generalized pseudoflow has no flow generating cycles,
then it has no GAPs, and therefore it is optimal. To see the converse, consider a flow-generating
cycle in the residual graph. We have to show that there is a path in the residual graph connecting
this cycle to the source. The generalized circulation g has non-negative excess at every node, and
hence, by the the above lemma, there is a path from every node to the source. |

Corollary 2.9 Given a restricted problem, a generalized circulation g is optimal if and only if the
residual graph of g has no negative-cost cycles, with ¢ = — log~ as the cost function.

This corollary implies that the optimality of a solution for an instance of the restricted problem
can be tested in one shortest path computation.

Finally, we show how to reduce the generalized circulation problem to the restricted version of
this problem. The reduction works as follows. First, we saturate all gain arcs. More formally, define
a generalized pseudoflow h by h(v, w) = u(v, w) if (v, w) is a gain are, h(v, w) = —y(w, v)u(w, v) if
(v,w) is a loss are, and h(v, w) = 0 otherwise. For every v € V : Exy(v) < 0, add an arc (v, s) of
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gain y(v,s) = B™ + 1 and capacity u(v,s) = —Exy(v). (We also add reverse arcs with capacity 0
to preserve symmetry.) For every v € V' : Ex;(v) > 0, add an arc (s, v) of gain v(s,v) = B" +1
and capacity u(s,v) = Exp(v)/v(s,v) (and the reverse arcs with capacity 0 to preserve symmetry).
Finally, define h to be zero on the new arcs. Let G be the extended graph. Then the transformed
problem is (G‘, Uk, 7, 8). Intuitively, the new arcs assure that nodes that have positive excess with
respect to h are supplied with an adequate amount of “almost free” commodity, and nodes that
have deficits with respect to h send adequate amount of commodity to s, whenever possible.

Theorem 2.10 Given an optimal generalized circulation § in the network (G,ux,v,s) one can
construct an optimal generalized circulation in (G, u,v,s) in O(nm) time.

Proof: Define a pseudoflow g’ by g¢'(v, w) = §(v,w) + h(v,w) for every (v,w) € E. Observe that
the residual graph of ¢’ is the restriction of the residual graph of § to arcsin E. Anodeve V — s
has deficit in ¢’ if and only if the arc (v, s) with gain B™ 4+ 1 is in the residual graph of §. Similarly,
the node v € V — s has excess in ¢’ if and only if the arc (s, v) with gain B" + 1 is in the residual
graph of §. By Theorem 2.8, there are no flow-generating cycles in the residual graph of §, which
implies that there are no paths from nodes with excess to nodes with deficit in the residual graph
of g'. Let § be the subset of nodes from which s is reachable in the residual graph of g'. Note, that
there are no nodes with excess in § — s.

Decompose g’ as described in Theorem 2.6. Since there is no path in the residual graph from
nodes with excess to nodes with deficit, the decomposition does not include elements of type I
(paths). Therefore, excesses are created by flow-generating cycles, and deficits are created by
flow-absorbing cycles. The existence of a flow-absorbing cycle in the decomposition implies that
there are flow-generating cycles in the residual graph of ¢', which, by Theorem 2.8, contradicts the
optimality of §. This implies that ¢’ cannot have deficits.

Subtract from the pseudoflow g’ the elements of the decomposition that create the excesses at
nodes other than s, Let g be the resulting generalized circulation. We claim that ¢ is optimal.
Observe that on arcs (v, w) inside S or entering §, the flow value g(v,w) = g'(v,w) = (v, w) +
h(v,w), and therefore there are no flow-generating cycles contained in S. Furthermore, the source
s is not reachable from nodes outside 5. Therefore the residual graph of g cannot contain a GAP.

Note that if B is the biggest integer in the input problem, then the biggest integer in the
transformed problem can be as high as B® + 1. On the other hand, the transformation can not
cause a significant increase in T' and L: the corresponding parameters 7' and L’ of the transformed
problem are bounded by B"(B™ + 1) < B?>*+! and B?™(B" + 1) < B™, respectively.

3 Vertex Labels and Equivalent Problems

Recall the financial analysis interpretation of the generalized circulation problem, described in the
introduction, where vertices correspond to different securities or currencies, and arcs correspond to
possible transactions. Suppose one country decides to change the unit of currency (for example,
Great Britain could decide to introduce the penny as the basic currency unit, instead of the £, or
Italy could erase a couple 0’s at the end of its bills). This causes an appropriate update of the
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exchange rates. Some of the capacities are changed as well (for example, a million £ limit on the
exchange from £ to DM would now read as a limit of 100 million pennies).

The operation of changing the units of measure is called relabeling and the equivalent problem
obtained by relabeling is called the relabeled problem. Let p : V — R+ be a function denoting
the number of old units per each new unit at nodes of the network. Given a function j4, we shall
refer to p(v) as the label of v.

Definition: Given a function u: V — R* and a network N = (V, E,~,u), the relabeled network
is Ny = (V, E,v,,u,), where the relabeled capacities and the relabeled gains are defined by
uu(v,w) = u(v,w)/p(v)
Yo, w) = (v, w)a(v)/p(w).

Given a generalized pseudoflow g and a labeling y, the relabeled residual capacity is defined by:

(v, w)— g(v, w)
p(v)

Hy_p(tl',w} =

The following lemma relates pseudoflows in the original and the relabeled networks.

Lemma 3.1 If N is a generalized network and g is a generalized pseudoflow in N, then g,(v,w) =
g(v,w)/u(v) is a generalized pseudofiow in the relabeled network N u+ Moreover, the residual graphs
of g and g, are the same.

The idea of relabeling was used by Glover and Klingman [GK73] (under the name “scaling™)
to show that the generalized network flow problem in which the n flow conservation constraints
are linearly dependent is equivalent to the maximum-flow problem. The name “scaling” comes
from the fact, that relabeling corresponds to multiplying the columns of the corresponding linear
program by scalars,

3.1 Canonical Relabeling

Let g be a generalized psendoflow whose residual graph has the property that all flow-generating
cycles go through s (for example, the zero flow in the restricted problem). We shall use two
symmetric ways to relabel a residual network. One is the canonical relabeling from the source, and
the other is the canonical relabeling to the source. We use the first relabeling when we want to push
additional flow from s, and the second when we want to push additional flow into s.

The canonical relabeling from the source applies when every node v € V is reachable from the
source s via a path in the residual graph of the generalized pseudoflow g. For every node v € V,
the canonical label u(v) is defined to be equal to the gain of the highest-gain simple s-v path in the
residual graph. That is, one new unit corresponds to the amount of flow that can reach the node
v if one old unit of flow is pushed along the most efficient simple path in the residual graph from s
to v, ignoring capacity restrictions along the path.

Observe that the highest-gain path is the shortest path when arc lengths are defined to be
e(v,w) = —log(v(v,w)). Because of the assumption that all flow-generating cycles pass through
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the source, the highest-gain path can be easily found by a single shortest-path computation, since
deleting the arcs entering s from the residual graph yields a graph with no negative cycles.

The canonical relabeling to the source is defined similarly. It applies if there is a path in the
residual graph from every node to the source s. The canonical label y is defined as the inverse of
the gain of the highest-gain simple v-s path in the residual graph.

The following important properties of the canonically relabeled problem are easy to prove.

Theorem 3.2 After a canonical relabeling from the source:

1. Every arc e with non-zero residual capacity, other than the arcs entering the node s, has
Tule) £ 1.

2. For every node v, there ezists a path from s to v in the residual graph with v,(e) = 1 for all
arcs e on the path.

3. The most efficient flow-generating cycles consist of an (s, v)-path for some v € V with q,(e) =
1 along the path, and the arc (v,s) € E, such that v,(v,s) = max(v,(e) : e € E,).

Theorem 3.3 After a canonical relabeling to the source:

1. Every arc € with non-zero residual capacity, other than the arcs leaving the node s, has
Tul€) < 1.

2. For every node v, there ezists a path from v to s in the residual graph with Yul€) = 1 for all
arcs e on the path.

3. The most efficient flow-generating cycles consist of an (v, 8)-path for some v € V with y,(e) =
1 along the path, and the arc (s,v) € E, such that v,(s,v) = max(yu(e) : e € E,).

There is a simple correspondence between the units used for a relabeling and the prices from
the linear programming dual of the problem. Intuitively, making the unit at a vertex v smaller,
while keeping the price per unit constant, corresponds to increasing the price at v. In other words,
changing the unit at v to u(v) and keeping the price per unit (p(v)) constant has the same effect as
keeping the size of the unit and setting the price to p(v) = p(v)/p(v). If the price at every node is
1, then canonical relabeling from the source corresponds to changing the prices to p(v) = (u(v))™2.
Note that, ignoring the arcs entering s, these prices are the marginal costs of the commodity, that

is, the minimum prices (per unit) for which one could get some additional amount of the commodity
to the nodes.

We can reformulate the optimality conditions of Theorem 2.5 to use labels instead of prices,

Lemma 3.4 A generalized circulation g in a restricted problem is optimal if and only if there ezists
a labeling p such that every arc in the residual graph of the generalized circulation has v,(e) < 1.

We say that a labeling u is optimal if there exist a generalized circulation g such that g and p
satisfy the conditions of Lemma 3.4.

Lemma 3.5 The optimality of a labeling u for a restricted problem can be checked in one mazimum-
flow computation.
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Proof: Relabel the network with labels . Suppose g is a generalized circulation that satisfies
the optimality conditions with u, and let g, be the corresponding generalized circulation in the
relabeled network. If v,(v,w) > 1 then, by the optimality conditions, g(v,w) = u(v,w), that is,
gu(v, w) = uu(v, w). Due to the symmetry, this uniquely defines the flow value on every arc with
Yule) # 1. The labeling u is optimal if and only if g, can be extended to a feasible generalized
circulation in the relabeled network. Hence, it is sufficient to solve a network flow feasibility problem
on the subgraph of the relabeled network induced by the arcs with unit relabeled gain. |l

During a computation one has to keep the size of the numbers under control. The following
lemma provides bounds on some of the numbers occurring in the algorithms.

Lemma 3.6 Lei g be a generalized pseudoflow such that the canonical relabeling from the source {or
to the source) in the residual graph applies. Let p denote the canonical labels. Then T~! < ple) €T
and both numerator and denominator of u(v) are divisors of L, for every v € V.

Proof: The label u(v) is equal to the gain of an s-v path in G, and hence satisfies the above claim,
by the definitions of T and L. |

The following theorem will be used to prove termination for both of our polynomial-time algo-
rithms. For a node v, a generalized pseudoflow g, and labels y, let Ex, ,(v) denote the relabeled
excess of the node v, that is, the total excess of the pseudoflow corresponding to ¢ in the relabeled
network with labels 4 (Exg u(v) = Exy(v)/p(v)). Consider the subgraph G’ of G induced by the
arcs with unit relabeled gain. By Lemma 3.6, in a canonically relabeled network the relabeled
capacity of every arc with relabeled gain different from 1 is a multiple of L=, The next theorem
states that the same is almost true for the arcs in G'. For any subset §, the relabeled capacity of
arcs of G’ entering S plus the relabeled excesses of the nodes in § is an integer multiple of L1,

Theorem 3.7 Let g be a generalized pseudoflow whose residual graph contains no flow-generating
cycles. Let p denote the canonical labels when relabeling from the source (or to the source) in the
residual graph of a generalized pseudoflow g. For any subset § C v,

X= Z Ex; .(v) + E g, u(w, v)

vES UES;wﬁs and '?H{E'-T-'}=1

is an integer multiple of L=,

Proof: By Lemma 3.6, the labels, relabeled gain factors, and relabeled capacities, are multiples of
L~'. However, this is not necessarily true for the relabeled residual capacities. First consider an
arc with relabeled gain higher than 1. By assumption, the flow on this arc is equal to the capacity,
so the flow is a multiple of L~!. By symmetry, the flow value on an arc (v, w), with relabeled gain
of less than 1 is equal to (—7ulw, v)uu(w,v)), so it is also a multiple of L=, This might not be
true for arcs with unit relabeled gain.

The main observation is that the value of X is unchanged when the value of the flow is changed
on an arc (and its opposite, to preserve the antisymmetry) with a unit relabeled gain. Indeed, if the
arc e is contained in S, then changing the flow on e changes the excess at the two ends of the arc
by opposite amounts. On the other hand, if e is outside of S, then it does not affect the expression.
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Consider an arc e entering S. A change in the flow on e results in the change in the excess at
the head of e and in the corresponding change in the residual capacity of e (in the opposite way).
Consequently, one can replace the flow value on all arcs with unit relabeled gain by zero without
changing the value of the expression. In the resulting generalized pseudoflow all flow values are
multiples of L=!, and therefore every term in the expression is an integer multiple of L=1. |

4 Simple Algorithms

In this section we present two simple algorithms for the generalized circulation problem. Both
algorithms are based on the natural approach of augmenting along flow-generating cycles. Though
the algorithms are not efficient, we describe them in order to give some intuition for the polynomial-
time algorithms presented in the subsequent sections.

The first algorithm, due to Onaga [Ona66], is similar to the minimum-cost flow method that
augments the flow along a cheapest augmenting path [BG61,Jew58]. In the input network, all flow-
generating cycles pass through the source. Onaga observed that this property is retained if the
augmentation is done along the highest-gain flow-generating cycle. Onaga’s algorithm iteratively
augments the generalized circulation along highest-gai flow-generating cycles in the residual graph,
until there are no such cycles left. By Theorem 3.2, if all flow-generating cycles pass through the
source, then the highest-gain flow-generating cycle can be found by a shortest path computation.
Therefore, each iteration of this algorithm consists of a shortest-path computation followed by an
augmentation along a flow-generating cycle through the source.

By Theorem 2.8, we know that when the algorithm terminates, the resulting generalized circu-
lation is optimal. However, similarly to the minimum-cost flow algorithm that augments the flow
along the cheapest path, this algorithm does not run in finite time [FF62]. In order to make the
running time finite, we use a maximum-flow algorithm as a subroutine to augment flow along all of
the highest-gain flow-generating cycles at once, instead of augmenting the flow on a cycle-by-cycle
basis. The resulting algorithm is similar to Jewell’s [Jew58] algorithm that solves the minimum-cost
flow problem by repeatedly applying a maximum-flow subroutine to the arcs with zero reduced cost
and then changing the prices.

More precisely, consider the residual graph after the canonical relabeling from the source. Let
a = max{y,(v,s) : (v,s) € E,;}, and let N, be the generalized network with underlying graph G,
that is induced by the arcs with unit relabeled gains and arcs {(v,s) : (v,8) € Ey,7u(v,s) = a}
and their opposites. Then, by Theorem 3.2, all flow-generating cycles with the highest gain lie
in G,. Observe that any non-generalized augmentation of flow in Ga, i.e., augmentation that

disregards the gain factors and views G, as a standard network, corresponds to a valid generalized
augmentation in G.

Lemma 4.1 4 (ordinary) flow in G, that mazimizes the sum of the flow values on the arcs entering
s with the gain factor & corresponds to an optimal generalized circulation in G,,.

Therefore, by a single maximum-flow computation, we can augment the flow so that there are no

flow-generating cycles that pass through the source in G, and therefore there are no flow-generating
cycles with gain e in the residual graph.
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Step 1 Find g, canonical labeling from the source.
If 44(v,w) < 1 on every arc of the residual graph, then halt (the current circulation
is optimal).
Otherwise let & = max.eg, 7u(€).

Step 2 Let G, = (V, E,) be the network induced by residual arcs with either unit reduced
gain or reduced gain of @, and their opposites.
Find a circulation f' in G, using the residual relabeled capacities, that maximizes.
the flow on the ares with reduced gain & in to s

Step 3 Update the current solution by setting g(v,w) = g(v,w) + f'(v, w)u(v) ¥(v,w) €
E;v # s, and set the value g(s,w) Yw € V to keep the symmetry.

Figure 1: A single iteration of the maximum-flow based algorithm.

The maximum-flow based algorithm proceeds in iterations, where at each iteration we compute
the canonical relabeling from the source, construct G,, compute the appropriate maximum-flow,
and interpret the result as an augmentation of the current generalized circulation. See Figure 1
for a more formal description. All flow-generating cycles in the residual graphs of the generalized
circulations found throughout the algorithm pass through the source, which guarantees that the
canonical relabeling is applicable. The optimality of the solution produced when the algorithm
terminates follows from Theorem 2.8.

Theorem 4.2 The highest gain of a flow-generating cyele in the residual graph is strictly decreasing
from one iteration to another, and therefore the number of iterations is bounded by the number of
different gains of simple flow-generating eycles in the original network.

Corollary 4.3 If the gain factors in the input are all integer powers of 2 (or of any other constant),
then the above algorithm runs in polynomial time.

Observe, that the first algorithm described in this section may not terminate, whereas the
second algorithms terminates in exponential time. In the next two sections we describe more
efficient algorithms for the problem.

5 Algorithm MCF

In this section we present our first algorithm that solves the restricted version of the generalized
circulation problem in polynomial time. Unless stated otherwise, we will refer to the restricted
problem as the generalized circulation problem. This algorithm is based on a minimum-cost flow
subroutine, so we call it Algorithm MCF. The main idea of the algorithm is best described by
contrasting Algorithm MCF with the maximum-flow based algorithm, presented in the previous
section. At each iteration, both algorithms solve a simpler flow problem, and interpret the result
as an augmentation in the generalized circulation network. The maximum-flow based algorithm
is slow because at each iteration it considers only arcs with unit relabeled gains and some of the
arcs adjacent to the source, disregarding the rest of the graph completely. The algorithm presented
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Step 1 Find y, canonical labeling from the source.
If yu(v, w) < 1 on every arc of the residual graph and Yv € (V — ) : Ex, ,(v) =0,
then halt (the current circulation is optimal).

Step 2 Introduce costs e(v, w) = —logv,(v, w) on the arcs of the network.
Find a minimum cost pseudoflow f’ in the residual relabeled network G that has
excess Expi(v) = - Ex; .(v) for every node ve V — s,

Step 3 Let g’ be the interpreted version of f'.
Update the current solution by setting g(v, w) = g(v, w) +¢'(v, w)p(v) ¥(v,w) € E.

Figure 2: Inner loop of Algorithm MCF.

in this section considers all arcs, assigns cost ¢(e) = —log+, to each arc, and solves the resulting
minimum-cost circulation problem (disregarding flow gains and losses).

The interpretation of a pseudoflow f is a generalized pseudoflow g, such that g(v,w) = Jlo,w)
if f(v,w) 2 0 and g(v, w) = —7,(w, v) f(w, v) otherwise, as in the maximum-flow based algorithm.
Note that, as opposed to the case of the maximum-flow based algorithm, where the interpretation
of a feasible circulation is a feasible generalized circulation, the interpretation of a minimum-cost
circulation leads to a generalized pseudoflow. Whenever the circulation uses ares with relabeled
gain of less than 1, its interpretation has deficits. A connection between a pseudoflow f and its
interpretation is given by the following lemma.

Lemma 5.1 The residual graphs of a pseudoflow f and its interpretation g as a generalized pseud-
oflow are the same.

The algorithm starts with the zero generalized pseudoflow, which has flow generating cycles
in the residual graph. By the definition of the restricted problem, all these cycles path through
the source. Using this fact, we will show that the only iteration that creates a positive excesses is
the first one, and that the only positive excess created is the one at the source. Each subsequent
iteration tries to use this excess to balance deficits at various nodes of the graph, created by
interpretation of flow through arcs with relabeled gain of less then 1. In each iteration we find a
minimum-cost flow that satisfies the deficits that were left after the previous iteration.

Algorithm MCF, shown in Figure 2, maintains a generalized pseudoflow g in the original (non-
relabeled) network, such that the excess at every node other than the source is non-positive. The
algorithm proceeds in iterations. At each iteration it canonically relabels the residual graph, solves
the corresponding minimum-cost flow problem in the relabeled network, and interprets the result
as a generalized augmentation.

5.1 Analysis of the Inner Loop of the Algorithm

In this section we prove that each iteration of Algorithm MCF can be implemented to run in in
polynomial time, and show that the algorithm produces an optimal generalized circulation upon
termination. The proof that the number of iterations is polynomial is deferred until the next
section.
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The most important property of a minimum-cost flow, for this application, is that its residual
graph has no negative cycles. By Lemma 5.1 this yields the following corollary:

Corollary 5.2 The residual graphs of the generalized pseudoflows introduced by the algorithm in
Step 3 have no flow-generating cyeles.

Lemma 5.3 The following statements are true for a generalized pseudoflow g that is constructed
by Step 4:

1. The canonical relabeling applies to the residual graph of g.
2. All excesses, except at the source, are non-positive.

Proof: We will prove the lemma by induction on the number of iterations. Assume that at the end
of an iteration we have a generalized pseudoflow g that satisfies the statements of the lemma. We
shall prove that the statements are satisfied at the end of the next iteration.

By Corollary 5.2, the residual graph of g has no flow-generating cycles, and therefore, by
Lemma 2.7, every node is reachable from the source in the residual graph of g. Hence, we can
compute the canonical relabeling from the source at Step 1, which proves the first statement of the
lemma. Moreover, the absence of flow-generating cycles in the residual graph means that there are
no arcs with relabeled gain of more than 1 in this graph. Therefore, the interpretation of flow f',
computed at Step 2, can create only deficits, which proves the second statement.

To prove the correctness of the statements after the first iteration, recall the assumption that the
residual graph of the zero generalized pseudoflow is strongly connected. Also, by definition of the
restricted problem, all flow-generating cycles in the residual graph of the zero generalized pseudoflow
pass through the source. Therefore we can apply canonical relabeling from the source. Moreover,
after the relabeling, all arcs with relabeled gain of more than 1 enter the source. Therefore, the
only node that can have a positive excess after the interpretation of the flow f! is the source. ||

Lemma 5.4 For a generalized pseudoflow g and the labeling yu after Step 1, there exists a pseud-
oflow f' in the relabeled residual network of g with Exsi(v) = —Exy(v) for every node v € V — s.

Proof: Let g be a generalized pseudoflow at the beginning of an iteration. Decompose it according
to Theorem 2.6. The only elements of the decomposition that can contribute to deficits are paths
from nodes with deficits to the source and paths from nodes with deficits to flow-abserbing cycles.
Existence of a flow-absorbing cycle in the decomposition implies that there are flow-generating
cycles in the residual graph of g, which contradicts Corollary 5.2, and therefore there are no flow-
absorbing cycles in the decomposition.

Consider a subset of the nodes § containing the source. By the previous lemma, the only node
that can have a positive excess is the source, and therefore it is sufficient to prove that the relabeled
residual capacity of the cut defined by § exceeds the sum of the relabeled deficits.

Consider an (s, v)-path in the decomposition where v ¢ S, and let (w;,w;) be an arc on this
path that leaves §. Recall that one of the properties of the decomposition is that (w,, wy ) is an arc
of the residual graph. By Corollary 5.2, there are no flow-generating cycles in the residual graph of
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g, and hence the relabeled gain of every arc in the residual graph of g is at most 1. Therefore, the
sum of deficits created by the paths in the decomposition that use this arc, is at most the relabeled
residual capacity of the opposite arc (wg,w;). |

The above lemmas show that the algorithm can proceed until a generalized circulation is found.
By Corollary 5.2 and Theorem 2.8, the generalized circulation found is optimal. Hence, we have
proved the following theorem.

Theorem 5.5 Each iteration of the algorithm can be implemented in polynomial time, and the
generalized circulation g, produced by the algorithm upon termination, is optimal,

5.2 Bounding the Number of Iterations

Consider a generalized pseudoflow g at the beginning of an iteration. The fact that there are deficits
and that there are no flow-generating cycles in the residual graph means that the current excess at
the source is an overestimate on the value of the maximum possible excess. It is easy to see that the
sum of the deficits (after the relabeling) at all the nodes except at the source is a lower bound on
the amount of the overestimation. This suggests to use this value, Defg, u) = 2 vpa(—EXg u(v)),
as a measure of the proximity of a generalized pseudoflow to an optimal generalized circulation.

First we show that if Def(g,u) is very small, then the algorithm terminates after one more
iteration.

Theorem 5.6 If Def(g,u) < L~ before Step 2 of an iteration, then the algorithm produces an
optimal generalized circulation at the end of Step 3 of this iteration.

Proof: We claim that the pseudoflow f', computed at Step 2 of this iteration, uses zero cost arcs
only. To see this, consider a set of nodes § containing the source s. We have to argue that the sum
of the relabeled deficits of the nodes not in § is at most equal to the sum of the relabeled residual
capacities of the zero cost arcs entering S. Clearly, the difference is at most Def(g,u) < L1,
Applying Theorem 3.7 to the complement of § shows that this difference is an integer multiple of
L~1. Therefore, it is non-positive.

The interpretation g’ of a pseudoflow f' that uses zero cost arcs only, is equal to the pseudoflow.
Therefore, no deficits are left after Step 3. The lemma follows because the residual graph contains
no flow-generating cycles throughout the algorithm (by Corollary 5.2). |

An important observation is that the labels # are monotonically decreasing during the algorithm.
The next lemma relates the decrease in the labels to the price function from the minimum-cost flow
computation. Let p’ denote the optimal price function associated with the pseudoflow f’ found in
Step 2. Assume, without loss of generality, that p'(s) = 0.

Lemma 5.7 Let f' be the minimum-cost pseudoflow found in Step 2 of an iteration, and let P
be the associated price funetion. For each node v, the canonical relabeling in Step 1 of the next
iteration decreases the label u(v) by at least a factor of 2°'(v),
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Proof: The decrease in the label of a node v is computed by finding a shortest path in the residual
graph from s to v. The price function p’ is optimal, and hence the reduced costs of the arcs in the
residual graph are non-negative. Therefore, the length of any (s,v) path is at least p/(v) — p'(s).
|

For the analysis of the algorithm we decompose the minimum cost flow into paths, and consider
the paths one by one. The decomposition is based on the following lemma.

Lemma 5.8 ([FF62]) Let f be a minimum-cost flow that satisfies given (non-negative) demands
at every node other than s and let p be an optimal price function such that p(s) = 0. The flow f
can be decomposed into cycles and paths from s to the other nodes, such that the eycles and the
paths are in the residual graph of the zero flow, the eycles have non-positive cost, and the cost of
the paths ending at a node v is at most p(v).

Proof: For every node v € V add the arcs (v,s) and (s,v). Extend the flow f to these arcs, so
that it becomes a circulation. Define the cost of an arc (v, s) to be equal to ¢(v,8) = —p(v). The
new arcs have zero reduced cost, and hence the circulation is of minimum cost.

The lemma is proved by applying Theorem 2.3 to decompose this circulation into cycles. Note
that the arcs opposite to the ones that belong to the cycles of the theorem are in the residual graph
of the circulation. Therefore, the cycles have non-positive cost. Any cycle that that uses a new arc
(v, ) corresponds to (s,v)-paths in the original graph. |

The key idea of the analysis is to distinguish two cases: Case 1, where the flow f’ can be
decomposed into “cheap” paths, (e.g., p(v) is small, say p(v) < log 1.5, for every v € V); and
Case 2, where there exists v € V such that p/(v) is “large” (= log1.5). We show that in the first
case Def(f, u) decreases significantly, while in the second case, by Lemma 5.7, some of the labels
decrease significantly. Using Theorem 5.6 and Lemma 3.6, we prove that neither case can occur
too many times.

The following lemma is used to estimate the total deficit created when interpreting a flow as a
generalized pseudoflow.

Lemma 5.9 Let f' be a flow along a simple path P from s to some other node v that satisfies
one unit of deficit at v. Let g' be the interpretation of f' as a generalized pseudoflow. Assume
that all relabeled gains along the path P are at most 1, and denote them by v1,...,v:. Then
after augmenting by ¢, the unit of deficit at v is replaced by deficits that sum up to at most
(Theick 7)™ = 1.

Proof: The deficit created at the ith node of the path is (1 — ), for i = 1,...,k. Using the

assumption that the gain factors along the path are at most 1. the sum of the deficits can be
bounded by

k k 1
Z(l-’ﬁ}ﬂz S £ 3

i=1 i=1 H;=i i n?:l ¥i
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Using this lemma and Theorem 2.6, we bound the value of Def(g,u) after an application of
Step 3. Let p’ be an optimal price function associated with the flow f’, such that p’(s) = 0. Let
3 = max,ev p'(v) denote the maximum price.

Lemma 5.10 The value of Def(g, i) after an application of Step 3 can be bounded by 28 _ 1 times
its value before the Step.

Proof: Use Lemma 5.8 to decompose f’ into paths and cycles. Interpret the psendoflow f’ by
interpreting the cycles and the paths one by one. The costs associated with the arcs of the residual
graph of the generalized pseudoflow g are non-negative, and therefore the cycles in the decompo-
sition consist of zero-cost arcs only. Interpretation of the flow along these cycles does not change
the flow value; in particular it does not create deficits. By the above lemma, when interpreting a
path from s to v, the deficit at v is replaced by deficits that sum up to at most 2¢'(¥) — 1 < 26 1
times the deficit at v satisfied by this path. |

Corollary 5.11 Ifp'(v) < log 1.5 for every node v, then Def(g, 1) decreases by a factor of 2 during
the application of Step 3.

The remaining difficulty is the fact that the function Def(g,u) can increase, either when the
canonical relabeling is done in Step 1 or in Step 3 when Case 2 applies. However, if Def(g, u) has
increased by some factor during relabeling (Step 1), or after interpretation of f' (Step 3), then at
least one of the nodes is relabeled by the same factor. More precisely,

Lemma 5.12 If either during Step 3 of one iteration or Step 1 of the next one, Def(g, ) increases
by a factor of a, then the label of some node decreases by at least a factor of o during Step 1 of the
nezt iteration.

Proof: The increase in Def(g, u) during Step 1 is due to relabeling, and hence the deficit at a node
can increase during this Step by a factor of @ if and only if the label at this node decreases by
the same factor. By Lemma 5.10, the increase in Def(g, u) during Step 3 is bounded by 27, where
8 = max p'(v). Hence, if Def(g, u) increases by a during this step, there exists a node v such that
P/(v) > loga. By Lemma 5.7, this means that u(v) decreases by at least a during Step 1 of the
next iteration. ||

Combining the above results, we can bound the overall growth of Def(g, 1) during an execution
of the algorithm.

Lemma 5.13 The growth of the function Def(g,u) throughout an execution of the algorithm is
bounded by a factor of TOM),

Proof: The function Def(g, u) can increase either as a result of Step 1 or Step 3. By the above
lemma, such increase is followed by a decrease in the label of one of the nodes by at least the
same factor during the subsequent relabeling. The claim follows from Lemma 3.6, that limits the
decrease of the label of any node. |

Due to Lemma 3.6, Case 2 cannot occur too often. The above lemma helps to bound the number
of times Case 1 can occur.
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Theorem 5.14 The algorithm terminates in O(nlogT) = O(n?®log B) iterations.

Proof: Lemma 3.6 shows that Case 2 cannot occur more than O(nlogT) times. When Case 1
applies, the value of Def(g, ) decreases by a factor of 2. The value of Def(g, 1) is at most O(nBT)
after the first iteration, and by Theorem 5.6, the algorithm terminates when this value decreases
below L~!. Lemma 5.13 limits its increase during the algorithm. Hence, Case 1 cannot occur more
than O(nlogT) times. |

To get a bound on the running time, we have to decide which minimum-cost flow algorithm to
use as a subroutine. The best choice turns out to be Orlin’s [Orl88] strongly polynomial algorithm,

Theorem 5.15 The above generalized flow algorithm can be implemented so that it will use at most
O(n*m(m+nlogn)lognlog B) arithmetic operations on numbers whose size is bounded by O(mlog B).

Remark: The choice of a strongly polynomial minimum-cost flow algorithm is somewhat surprising,
since our algorithm is not strongly polynomial. The reason for this choice is that, the current best
scaling algorithms would give worse running times, even when the size of the numbers in the input
is small. Observe that the number of bits needed to represent the capacities of the intermediate
minimum-cost flow problems can be as high as mlog B, which would make a capacity-scaling
algorithm too slow. The classical cost-scaling algorithms cannot be used directly because the costs
are (irrational) logarithms of rational numbers. A cost-scaling algorithm can be constructed based
on the idea of e-optimality, as done in [Gol87,GT87]. Note that the gain of a flow-generating cycle
can be as small as 2-9(8"), and hence the absolute value of the cost of a negative cycle can be as
small as B~9("), This means that the required precision seems to be Q(B~"), and therefore the
cost-scaling algorithms are too slow as well.

6 The Fat-Paths Algorithm

Recall that a GAP is defined to be a flow-generating cycle with an augmenting path connecting
this cycle to the source. A natural way to make progress towards an optimal solution is to increase
the flow along a GAP. We call this a generalized augmentation. Clearly, if the augmentations are
done along arbitrary GAPs, we do not get a polynomial-time algorithm. One way to improve the
running time is to execute only those generalized augmentations that result in a significant progress
towards an optimal solution.

We divide a generalized augmentation into two parts: augmenting the flow along a flow-
generating cycle and bringing the created excess to the source. Our algorithm first saturates
all flow-generating cycles, creating excesses at various nodes of the graph, and only then looks for
augmenting paths from nodes with excess to the source. Note that this method does not create
deficits. A natural way to measure the progress of this algorithm is by the difference between
the excess at the source in the current generalized pseudoflow and the excess at the source in the
optimal solution. This difference is called the ezcess discrepancy. We shall show that if the ex-
cess discrepancy is very small, a single maximum-flow computation produces an optimal solution
(similarly to Theorem 5.6).
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Stage 1 Cancel all flow-generating cycles by calling the Cancel-Cycles procedure.

Stage 2 Compute u, the canonical labeling to the source. Let E' be the set of all arcs with
unit relabeled gain. Consider nodes with excess as sources with capacity bounded by
the value of their relabeled excess, and compute maximum flow f* from these nodes
to the source in the graph induced by the arcs in E’ with the relabeled residual
capacities. Update the generalized pseudoflow g by setting g(v,w) = g(v,w) +
fv, wp(v) ¥(v,w) € E'.

Terminate if Ex,(v) =0¥Yv eV —s.

Stage 3 Repetitively call Faf-dugmentation procedure to augment the flow along A-fat paths
from nodes with excess to the source, as long as such paths exist.
Set A=AJ2.

Figure 3: A single phase of the Fat-Path algorithm.

Consider an augmenting path with an excess in the beginning of the path. Even if this excess
is very large, the increase in the excess at the source caused by an augmentation along this path is
limited, and depends on both the capacities and the gains of arcs on the path. We call this limit
the fatness of the path. A simple v-s path is A-fat if, given unlimited supply at v, at least A units
of flow can be sent to s along this path. An arc is A-fat if it belongs to a A-fat path. Saturating
all the flow-generating cycles before bringing the excesses to the source facilitates the search for
A-fat paths.

The section consists of three parts. In the first part we describe the Fat-Path algorithm, as-
suming existence of the Fat-Augmentation and the Cancel-Cycles procedures, and discuss the cor-
rectness and the running time of the algorithm. The second part presents the Fat-Augmentation
procedure. This procedure finds a A-fat path in the residual graph and augments the flow along
it. The third part of this section is devoted to the description of the Cancel-Cycles procedure,
which transforms a generalized pseudoflow with flow-generating cycles in its residual graph into a
generalized pseudofiow with no such cycles, without creating any deficits.

6.1 Fat-Path Algorithm - Overview

The Fat-Path algorithm, described in Figure 3, solves the restricted prablem in phases. The goal
of each phase is to decrease the bound on the excess discrepancy by at least a constant factor. The
input and output of a phase is a generalized pseudoflow with non-negative excesses,

Each phase consists of three stages. The input to the first stage is a generalized pseudoflow
with non-negative excesses and, possibly, with flow-generating cycles. This stage uses procedure
Cancel-Cycles, described in Section 6.3, to cancel all such cycles, creating new excesses at various
nodes of the graph.

In the second stage we test whether it is possible to bring all the excesses to the source over
the most efficient residual paths. This is done by canonically relabeling to the source and then
computing a maximum flow in the graph induced by the unit relabeled gain arcs. Observe that by
Lemma 2.7, the canonical relabeling to the source applies. There are no flow-generating cycles in the
residual graph after the first stage, and an augmentation of the flow along arcs with a unit relabeled
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gain does not create new ones. Therefore, if we succeed in bringing all excess to the source using
these arcs, the resulting generalized circulation is optimal, and the algorithm terminates. This
stage may be viewed as a variation of a single iteration of the maximum-flow based algorithm,
described in Section 4.

The input to the third stage is a generalized pseudoflow with nonnegative excesses and no
flow-generating cycles, and a “fatness” parameter A (initially set to B?). This stage iteratively
augments the flow on A-fat paths from nodes with excess to the source, reducing the excess at the
starting node of the path and increasing the excess at the source. The stage continues until there
are no more A-fat paths from nodes with excess to the source. Before the next phase, the value of
A is decreased by a factor of 2. We shall show that this stage does not introduce flow-generating
cycles in the graph induced by the A-fat arcs.

The following lemma indicates that the excess discrepancy is a good measure of progress.

Lemma 6.1 If the ezcess discrepancy is below L™, and there are no negative ezcesses or flow-
generating cycles, then all the ezcesses will be brought to the source by Stage 2 of the Fat-Path
algorithm,

Proof: We claim that after Stage 2 the excess discrepancy is an integer multiple of L=, This
means that the excess discrepancy decreases by at least L~ in between any two iteration, which
directly implies the lemma.

Consider the generalized pseudoflow g before Stage 2. Let (S,5) be the cut saturated by the
maximum flow computation in Stage 2, such that there are no excesses left in S and s € . Let I
denote the canonical labels computed during this stage. The excess at the source after this stage
is equal to the sum of Ex, ,(v) for v € § plus the sum of the relabeled capacities of the arcs with
relabeled gain 1 entering S. Applying Theorem 3.7 to V' = §, the pseudoflow g, and the labels u,
we conclude that this sum is an integer multiple of L-1. ||

The following lemma bounds the excess discrepancy in terms of A.
Lemma 6.2 The excess discrepancy at the end of a phase is at most O(mA).

Proof: Let g be a generalized pseudoflow at the end of a phase and let g" be an optimal generalized
circulation. Let E+ = {e|g*(e) > g(e)} be the ares with positive residual flow, and let Gt =
(V, E*). The residual pseudoflow 9" — g can be decomposed according to Theorem 2.6. The arcs
opposite to the ones used by the cycles in the decomposition are in the residual graph of the
generalized circulation g*, and therefore the decomposition consists only of paths from nodes with
excess to the source and GAPs. Note that each one of these paths and GAPs is in G+. There are

at most O(m) paths and GAPs used, and therefore it is sufficient to show that each one of them
contributes at most A to the excess at the source.

First, consider paths from excesses to the source. By construction, no path in G, from excess
to the source is A-fat. Also, we have E+ C E;. Hence, there are no A-fat paths in G+ either.
Therefore, a path cannot contribute more than A to the excess at the source.

By Lemma 6.8, the subgraph of G, induced by the A-fat arcs has no flow-generating cycles.
We know that E+ C E,, and therefore every flow-generating cycle in G+ has at least one arc
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Initialize: Start with an empty tree.
For all v € V' — s, set Gain(v) = 0.
Set Gain(s) = 1 and Father(s) = s.
Step 1  while there are nodes outside the tree with non-zero Gain do
a) Let v be a node not in the tree with the maximum Gain.
b} Add the arc (v, Father(v)) to the tree.
¢)For every neighbor w of v (i.e., (w,v) € E), if
uy(w, v)yu(w, v)Gain(v) > A and Gain(w) < Gain(v)y,(w,v),
then update Gain(w) = Gain(v)y,(w,v) and Father(w) = v.
Step 2  Relabel the nodes in the tree using u(v)Gain(v) as the new label of node v (so that

the relabeled gain of the tree arcs becomes 1). )
Step 3  If there exists a node with excess in the tree, augment the current generalized
pseudoflow from this node to s along the unique path in the tree.

Figure 4: The Fat-Augmentation algorithm.

that is not A-fat. Consider a GAP in the decomposition and let (v, w) be a non A-fat arc along
the flow-generating cycle in the GAP. The contribution of this GAP to the excess of the source is
bounded by the fatness of the (v,s)-path in the GAP. The arc (v, w) is not A-fat, which implies
that the fatness of this path is less than A. ]

In Sections 6.2 and 6.3, we prove that the Fat-Augmentation and the Cancel-Cycles procedures
can be implemented to run in O(m + nlogn) and O(mn?lognlog B) time, respectively. This leads
to the following theorem:

Theorem 8.3 The Fat-Path algorithm runs in O(m*n?lognlog? B) time.

Proof: By Lemma 6.1, the algorithm terminates after O(mlog B) phases. An augmentation either
decreases the number of nodes with excess or increases the excess at the source by at least A. By
Lemma 6.2, this gives an O(m) bound on the number of augmentations per phase. |

6.2 Fat-Augmentation

The procedure Fat-Augmentation, shown in Figure 4, is a crucial part of the Fat-Path algorithm.
It finds a node with excess such that the source is reachable from this node through a A-fat path,
then finds the highest-gain A-fat augmenting path from this node to the source, and augments.

First we describe a simple (but not the most efficient) version of the algorithm. Consider
a highest-gain augmenting path from a node v to the source. Either this path is A-fat, or the
capacity of the arc (v, w) that would be saturated when the flow is augmented along this path,
times the gain of the part of the path from v to the source, is below A. In this case we call (v, w)
critical. The observation that a critical arc cannot be A-fat leads to a simple algorithm. First,
find a highest-gain path from a node with excess, and check its fatness, If it is A-fat, we are done.

If not, look for a critical arc, delete this arc from the set of arcs considered when searching for a
highest-gain path, and repeat.
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It is important to note that if an augmentation is done along the highest-gain A-fat path, then
disregarded arcs do not become A-fat.

The above algorithm runs in polynomial time, but its running time can be improved. A faster
method, proposed to us by Robert Tarjan (personal communication), is the one described in Fig-
ure 4. The main idea is to recognize and disregard arcs that are not A-fat while constructing a
highest-gain path. Let Gf denote the graph induced by the A-fat arcs in the residual graph of g.
We search for a tree in G‘? that is rooted at s, such that the path in this tree from any node to the
source s has the highest gain among all A-fat paths from this node to the source. We call a tree
with this property the “Max-Gain” tree. In order to improve the efficiency of finding this tree, we
maintain a set of labels pu, such that all A-fat arcs have relabeled gains of at most 1. In particular,
these labels guarantee that there are no flow-generating cycles in G2.

The input to Fat-Augmentation is a parameter A, generalized pseudoflow g, and a set of labels
4, such that the relabeled gain «, of arcs in Gﬁ“ is at most 1. The output is a generalized pseudoflow
g', together with updated labels y', such that the relabeled gain of the arcs in Gf,k with respect to
' is at most 1.

The procedure can be viewed as a search for a shortest-path tree in G?, where the length of an
arc with relabeled gain v, is —log+,. There are no A-fat arcs with relabeled gain of above 1, and
therefore the A-fat tree can be “grown” like in the Dijkstra’s shortest-path algorithm.

Initially, the A-fat tree consists only of s. With each node v, we associate Gain(v), which is
the maximum gain of a A-fat path found so far from v to s. We initialize Gain(v) = 0, for all
v € V — {s}. Like in the Dijkstra’s shortest path algorithm, at each iteration we find a node v
that has the largest Gain among the nodes not in the tree, and add it to the tree. The difference
is in the way we update the Gain of its neighbors. An arc (v,w) is disregarded by the algorithm

if ug(v, w)Gain(w)y,(v, w) < A. We show below that an arc is disregarded if and only if it is not
A-fat.

After the tree is constructed, the labels u are updated, so that the relabeled gains of the arcs
in the tree are equal to 1. Then we find a node in the tree with positive excess and augment the
flow on the path from this node to the source.

To prove the correctness of the algorithm, we need to show that each augmentation is done
only along a A-fat path, that the procedure finds a A-fat path if such a path exists, and that the
subgraph of the A-fat arcs does not contain a flow-generating cycle.

Lemma 6.4

1. The arcs used for updates in Step le are A-fat.
2. Augmentation is done on a A-fat path.

Proof: Consider a path from some node to s in the tree constructed by the algorithm, and let
(v,w) be a critical arc with respect to this path. This means that the fatness of this path is equal
to uy(v, w)Gain(v) = uy(v, w)Gain(w)y,(v, w). By construction, this is at least A, and hence the
path is A-fat. A similar argument shows that all arcs used for updates are A-fat. |
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Lemma 6.5 If all A-fat arcs have relabeled gains of less than or equal to 1 at the beginning of the
procedure Fat-Augmentation, then Step 2 constructs a valid Maz-Gain tree.

Proof: By Lemma 6.4, the arcs used for updating in Step lc are all A-fat. Therefore the length
(—log<v,) of the arcs considered for updates is non-negative. Step 1 is an implementation of
Dijkstra’s shortest path algorithm on the graph induced in G, by the considered arcs. Therefore
the constructed tree is the shortest-path tree in this graph.

To prove the lemma, we have to show that disregarded arcs are not A-fat. Let (v, w) be the
first A-fat arc disregarded by the algorithm. By definition there exists a path P; from w to s such
that (v,w) and P, form a A-fat path. Denote by P; the path from w to s in the tree. The arc
(v, w) is the first A-fat arc disregarded by the algorithm, and therefore, by construction, P; is the
highest gain A-fat path. Moreover, we have

Gain(w) = T 7ule) > T 7ule)-
e eEP

The path (v,w) and P, is A-fat, and therefore u,(v, w)y,(v, w) [leer 71u(€) = A. Hence,
ug(v, w)Gain(v)yu(v,w) > A. This contradiction shows that no A-fat arc will be disregarded by
the algorithm. |

As an immediate corollary we get the following lemmas.

Lemma 6.6 If the procedure did not augment, the source is not reachable in Gf‘ from any node
with excess.

Lemma 6.7 If all A-fat arcs have relabeled gain less than or equal to 1 at the beginning of an
iteration of the procedure Fat-Augmentation, then the same is true after the relabeling in Step 2.

Lemma 6.8 In the graph Gﬁ, where g’ is the generalized pseudofliow g' returned by the procedure,
there are no flow-generating cyeles, and all ares have relabeled gain of at most 1.

Proof: The new labels u are computed so that the augmentation is done along a path with relabeled
gain 1. Therefore, the arcs whose residual capacity increases due to this augmentation all have
relabeled gain 1. Since augmentation is done along the highest gain A-fat path, arcs that do not
lie along this path do not become A-fat. |

The algorithm Fat-Augmentation can be implemented using Fibonacci heaps, similarly to the
Fredman-Tarjan [FT87] implementation of the Dijkstra’s shortest path algorithm,

Theorem 6.9 The Fat-Augmentation algorithm runs in O(m + nlogn) time.

6.3 Canceling Flow-Generating Cycles

The aim of the algorithm described in this section is to convert a generalized pseudoflow g into a
generalized pseudoflow g’ whose residual graph has no flow-generating cycles, without decreasing
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the excess at the nodes. The idea is to cancel flow-generating cycles in the residual graph, while
increasing the excesses at some nodes of the graph and without creating any deficits. The algorithm
is an adaptation of Goldberg and Tarjan’s [GT88] minimum cost flow algorithm that iteratively
cancels negative-cost cycles in the residual graph.

Throughout this section, we refer to a generalized pseudoflow with no flow-generating cycles in
the residual graph as passive. The Cycle-Canceling algorithm of Goldberg and Tarjan is based on
the idea of e-optimality. A circulation is said to be e-optimal if the mean of the arc costs along
any cycle in its residual graph, i.e., the sum of the costs divided by the number of arcs in the
cycle) is at least —e. To adapt this algorithm for generalized pseudoflows, we introduce the cost
e(v,w) = —logy(v,w) on the arcs. We say that a generalized pseudoflow is e-passive if the mean
cost of a cycle in its residual graph is at least —e. In other words, a generalized pseudoflow is
e-passive if the geometric mean of the gain-factors along every residual cycle is at most 2*. Given
a generalized pseudoflow g, let ¢, denote the minimum e such that g is e-passive. The following
lemma corresponds to Theorem 3.3 in [GT88].

Lemma 6.10 A generalized pseudoflow g can be relabeled so that the relabeled gain of any are in
the residual graph of g is at most 2%,

Proof: Define the length of an arc (v, w) in the residual graph to be I(v,w) = —logy(v,w) + ¢,.
By definition of ¢;, there are no negative-cost cycles with respect to this length. For v € V, let
p(v) denote the length of the shortest path from v to s in the residual graph. (By Lemma 2.7 such
path exist.) It can be seen that relabeling the graph using labels u(v) = 2-7(*) leads to a graph
with the relabeled gain of every arc being below 2%, |

The following lemma corresponds to Theorem 3.2 in [GTSS).
Lemma 6.11 Ife;, < 1/(nT), then any e-passive generalized pseudofiow is passive.

Proof: Consider a cycle in the residual graph of a pseudoflow. By definition of T, if this cycle has
gain above 1, then its gain is at least 1 4+ 7=, This means that the mean cost of this cycle is at
most —(1/n)log(1+T-1) < 1/(aT). |

In the case of the minimum-cost flow problem, the Goldberg-Tarjan Cycle Canceling algorithm
cancels cycles consisting of arcs with negative reduced cost. In the case of generalized pseudoflows
we shall cancel cycles consisting of arcs with relabeled gain of above 1.

The algorithm is described in Figure 5. It starts with e = log B and proceeds in phases, where
a phase consists of relabeling the graph so that the relabeled gain of every arc in the residual graph
is at most 2° (see Lemma 6.10), and cancelling all cycles in the graph induced by the arcs with
relabeled gain above 1. Observe, that in the end of a phase any flow-generating cycle contains at
least one arc with relabeled gain below 1, and the rest of the arcs have relabeled gain below 2¢.
Hence, we can set € = (1 — 1/n)e and start the next phase.

Lemma 6.12 The algorithm terminates in O(logT) = O(nlog B) phases, producing a generalized
pseudoflow with no flow-generating cycles.
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Step 1 Relabel the residual network so that y(v,w) < 2¢ for every (v,w) in the residual
graph of the generalized pseudoflow g.
Step 2 Cancel all cycles in the residual graph of g where the relabeled gain of every arc is

above 1.
Set e=(1=1)e.

Figure 5: A single phase of the Cancel-Cycle algorithm.

Froof: Immediate from Lemma 6.11 and the above discussion. |

Each time we cancel a cycle, we saturate at least one resudual arc with relabeled gain above
1, and do not create any new such arcs. Therefore, we cancel at most m cycles during a single
phase. Canceling a single flow-generating cycle, while creating excess at one of the nodes of the
cycle, can be done in O(n) time. By marking nodes that do not belong to cycles, we can easily
obtain a running time of O(nm) per phase, which leads to a total running time of O(n®mlog B).

This running time can be improved using a variant of the Dynamic Tree data structure. Dynamic
trees were introduced in [ST83,Tar83,ST85], and implement the operations described in Figure 6,
were each operation takes amortized O(logn) time. This data structure was used for speeding up
several maximum flow and minimum cost flow algorithms [ST83,Gol87,GTar,GT87,GT88], includ-
ing the Cycle-Canceling algorithm for minimum-cost flows. The main idea is that augmenting the
flow along a path does not saturate all the arcs along this path. Instead, the path is subdivided
into shorter paths. Storing these paths in a dynamic tree data structure allows to use the add-value
operation to augment the flow in time wich is logarithmic in the length of the path.

Unfortunately, this technique can not be applied directly for generalized circulations. The
problem arises when we want to cancel a cycle. In order to do this, we have to update the residual
capacities of the arcs along the cycle. The amount of flow pushed along the arcs of the cycle is
different in each arc and depends on the gains of the arcs. Therefore this update can not be done
by subtracting the same value from all of them, as it is done in the case of flows.

We use a variant of the Dynamic Tree data structure, which we call the Generalized Dynamic
Tree (GDT). The operations supported by this data structure are shown in Figure 7. The data
structure is used to store and update the residual capacities of the arcs along the paths currently
considered for augmentation. These arcs form a set of disjoint rooted trees. We shall show below
that the Generalized Dynamic Tree operations can be implemented in O(logn) amortized time
(Theorem 6.14).

Using Generalized Dynamic Trees, we can speed up Step 2 of the Cancel-Cycle algorithm to
run in O(mlogn) time. This implementation is shown in Figure 8. The algorithm picks a node v
that is not yet marked as useless, and finds the root r of the tree that this node belongs to. If there
are no arcs with relabeled gain above 1 from r to some node which was not yet marked as useless,
we mark r as useless, remove it from the tree, and decompose the tree into a number of smaller
trees. On the other hand, if there exists an arc (r,w) with relabeled gain above 1 and w was not
yet marked, then w belongs to some tree. Let r’ be the root of this tree. If v’ and = are different
nodes, then at this point we know that there is an augmenting path from v to r', that uses (r, w).
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make-free(v): Make node v into a one-node dynamic tree. Node v must be in no other tree.
find-root(v): Find and return the root of the tree containing node v.

find-value(v): Find and return the value of the tree arc connecting v to its parent. If v is a tree root,
return infinity.
find-min(v): Find and return the ancestor w of v such that the tree arc connecting w to its parent
has minimum value along the path from v to find-root(v). In case of a tie, choose the
node w closest to the tree root. If v is a tree root, return v.
change-value(v, z): Add real number z to the value of every arc along the path from v to find-root(v).
link(v, w, z): Combine the trees containing v and w by making w the parent of v and giving the
new tree arc joining v and w the value z. This operation does nothing if v and w are
in the same tree or if v is not a tree root.
cut(v): Break the tree containing v into two trees by deleting the arc from v to its parent.
This operation does nothing if v is a tree root.

Figure 6: Dynamic tree operations.

make-tree(v): Make node v into a one-node dynamic tree. Node v must be in no other tree.
find-root(v): Find and return the root of the tree containing node v,
find-cap(v): Find and return the residual capacity of the tree arc connecting v to its parent. If v
is a tree root, return infinity.
find-gain(v): Find and return the gain of the path in the tree connecting node v to to find-root(v).

find-sat(v): Find and return node w, such that the arc between w and its parent is the first one
to get saturated if we increase the flow along the path from v to find-roof(v). In case
of a tie, choose the node w closest to the tree root. If v is a tres root, return v.

change-cap(v, z): Update the residual capacities of the arcs on the path from v to find-roet(v). The
residual capacity of each are (w,w') on this path is decreased by z times the gain of
the path from v to w in the tree.
link{v, w, z, 7): Combine the trees containing v and w by making w the parent of v and assigning z
and 7 to be the residual capacity and gain of this arc, respectively. This operation
does nothing if v and w are in the same tree or if v is not a tree root.

cut({v): Break the tree containing v into two trees by deleting the arc from v to its parent.
This operation does nothing if v is a tree root.

Figure 7: Generalized Dynamic Tree operations.
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[Initialize]
for each node v, unmark v and perform make-tree (v);
while there exists an unmarked node v do begin
let r = find-root{v);
if there exists an arc (r,w) in the residual graph with v,(r,w) > 1
then begin
if find-root (w) # r then do [extend the path]
link(r, w, ug .(r, w), vu(r, w));
else begin [cancel the cycls]
& = min{ug u(r, w), find-gain{w)find-cap(find-sat(w))};
glr,w) = g(r,w) + p(r)s;
change-cap(w, &y, (r, w));
while find-cap(find-sat(w)) = 0 do begin
z = find-sat{w);
9(z, parent(z)) = u(z, parent(z));
cut(z);
end;
end:
else begin [remove r from the path]
mark r;
for each node z such that r = parent(z) do begin
9(z,r) = u(z,r) — p(z)find-cap(z);
cullz);
end;
end;
end;
end.

Figure 8: Implementation of Step 2 of the Cancel-Cyeles algorithm.
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In this case we insert (r, w) into our data structure by linking the two trees. If both v and w belong
to the same tree, we have found a flow-generating cycle that consists of the are (r, w) and the path
from w to r in the tree. In this case we augment the flow along this cycle, removing from the tree
all arcs whose residual capacity becomes zero.

A straightforward analysis of the above procedure shows that it requires O(m) tree operations.
By Theorem 6.14, the use of Generalized Dynamic Trees leads to O(mlogn) running time per
phase. As it was already mentioned, after at most O(n?log B) phases the pseudoflow is passive,
and therefore we have:

Theorem 8.13 The Cycle-Canceling algorithm runs in O(mn®lognlog B) time.

6.4 Implementing the Generalized Dynamic Tree Data Structure

The implementation of Genaralized Dynamic Trees is based on two data structures. The first one
is similar to the standard Dynamic Tree, and is used to store the gains on the arcs of the path.
Using it, we can compute the gain of any path from a node to the root of the tree this node belongs
to in amortized O(logn) time.

To implement the other operations that are supported by a Generalized Dynamic Tree data
structure, we use a variant of Dynamic Trees that, in addition of supporting all the dynamic tree
operations, supports the multiply-value operation that multiplies all the values stored in a tree by
a constant. This data structure is used to store residual capacities that are relabeled to the root of
the tree. In other words, instead of the capacity of the arc (v, w), we store this capacity multiplied
by the gain of the path from v to the root. The advantage of storing the capacities in this way
is that changing the flow along a path changes the residual capacities of the arcs along the path
by different amounts, dependent on the gains, whereas the relabeled capacities are changed by the
same amount. The multiply-value operation is needed to relabel the capacities of the new trees
to the new roots when we cut or join the trees. We will show (Theorem 6.15) that a sequence
of dynamic trees operations, possibly including multiply-value operations, can be implemented in
Of{log N) amortized time, where N is the number of make-tree operations used. As a corollary, we
get the following theorem.

Theorem 6.14 A sequence of M Generalized Dynamic Tree operations takes O(Mlog N) time,
where N is the number of make-tree operations in the SEquence.

In order to be able to add the multiply-value operation to the standard dynamic tree operations,
we change the way information is stored inside each element of the dynamic tree. Recall, that in
a dynamic tree each tree is regarded as a collection of arc-disjoint paths. Dynamic tree operations
are implemented in terms of operations on these paths. In order to implement a new operation,

one has to add this operation to the set of operations supported by the underlying data structure
that implements paths.

Each path in a Dynamic Tree is represented as a search tree, where the key is the distance from
the end of the path. In the implementation suggested in [ST85] the search tree used is a splice tree.
In order to distinguish between the trees in the graph (defined by the link and cut operations), and
the search trees that represent paths, we call the latter trees solid.
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Let Minvalue(v) denote the minimum among the values of the descendants of v in a solid tree.
Each node of a solid tree holds the following information:

Avalue(v) = wvalue(v) — Minvalue(v)
Ami _ Minvalue(v) if v is a solid tree root
i) = Minvalue(v) — Minvalue(parent(v)) otherwise.

Each operation on a path, say find-minimum(v), consists of scanning the solid tree representing
the path from the node associated with v to the root of the tree. Minvalue(v) can be computed by
summing the values of Amin in the nodes encountered during this scan. Using this representation,
adding a value to all the capacities on a path requires adding this value to Amin of the root of the
solid tree, which takes constant time.

In order to be able to multiply the stored values by a constant without scanning all the nodes
on the path, each node contains the following information instead of the above data:

Yoaluals) = Avalue(v) if v is a solid tree root,
WREE = Avalue(v)/Avalue(parent(v)) otherwise.
Dmin(y) = Amin(v) if v is a solid tree root,

e . Amin(v)/Amin(parent(v)) otherwise.

It is easy to see, that by scanning the nodes on a path from a given node to the root of the solid
tree, we can compute Amin and Avalue of all the scanned nodes, and hence, we can also compute
Minvalue(v) and value(v). More precisely, in order to be able to compute Amin and Avalue even
if some of them are zero, we keep the above ratios as tuples.

Observe that a change in the information stored in the root of a solid tree is sufficient in order
to multiply value(v) for every node in the solid tree by a constant. Adding a constant to value(v)
for all nodes v in the solid tree can be done by changing the information stored in the root of the
solid tree and in its sons only. The rest of the operations on paths, required for the dynamic tree
operations, are implemented exactly as for the standard dynamic trees.

Using the analysis of the Dynamic Tree data structure by Sleator and Tarjan either in [ST83] or
in [ST83], it is straight-forward to see that storing Yvalue and ¥min instead of Avalue and Amin
in the nodes of the solid trees does not increase the running time. This means that it is possible to
add the multiply-value operation to the set of the operations supported by dynamic trees without
increase in the running time, which implies the following theorem.

Theorem 6.15 A sequence of M Dynamic Tree operations, possibly including multiply-value op-
erations, takes O(M log N) time, where N is the number of make-tree operations in the sequence.

7 Conclusions

We have presented two polynomial-time combinatorial algorithms for the generalized circulation
problem. The first algorithm is based on the repeated application of a minimum-cost flow sub-
routine; the second algorithm is based on the idea of augmenting along the biggest improvement
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path [EK72] and the idea of canceling negative cycles [GT88,Kle67]. Previous polynomial-time
algorithms for the problem were based on general-purpose linear programming techniques, and the
combinatorial structure of the problem was used solely for improving the efficiency of computing
the required matrix inversions. Our results show that the problem can be handled by methods that
are closer to the combinatorial methods traditionally used for network flow problems.

Our algorithms use a combinatorial technique, which we call Canonical Relabeling. Although
the labels produced by Canonical Relabeling are closely related to marginal prices from linear
programming duality theory, we use them in a different way. In particular, we use the notion of
“reduced gain”, instead of using the natural notion of “reduced cost”™. An interesting question is
to see whether an algorithm similar to the MCF Algorithm can be developed using the prices and
the reduced costs instead of the labeles and the relabeled gains.

A by-product of our research is an increased appreciation of strongly polynomial algorithms.
Our algorithms repeatedly use procedures to find shortest paths, maximum-flows, and minimum-
cost flows. The input to these procedures may contain numbers which are much bigger than those
in the input to the original problem. (See the remark at the end of the Section 5.) Because of this
fact, we obtain better bounds by using strongly polynomial algorithms to solve these subproblems.
This phenomena suggests that strongly polynomial algorithms may be important in practice as well
as in theory: even though the numbers that occur in a statement of a problem may be relatively
small, the numbers that occur in the intermediate problems can be large. This observation gives
additional motivation to study strongly polynomial algorithms.

The methods used in [Tar85] for designing a strongly polynomial algorithm for the minimum cost
circulation problem were extended in [Tar86] for linear programs with integer constraint matrices.
This yields an algorithm for the generalized circulation problem, whose running time is independent
of the size of the capacities, and polynomial in n, m, and the number of bits needed to represent
the gains. Our algorithms exploit a similarity between the gains and certain corresponding costs.
Unfortunately, we were unable to use this similarity to extend the methods of [Tar86] to construct
a strongly polynomial algorithm for the generalized circulation problem.

An interesting observation is that despite the apparent similarity between gains in the gener-
alized circulation problem and costs in the minimum-cost circulation problem, the roles of these
numbers are quite different. The difference stems from the fact that the gains appear in the con-

straint matrix of the corresponding linear program, whereas the costs appear only in the objective
function.

In some applications, the generalized circulation problem is naturally stated by giving logarithms
of gains in the input. For example, in the context of electrical networks, it is customary to use
decibels to measure power loss in transmission lines. We call this representation of the problem
the compact representation. This representation is also natural from the theoretical point of view,
because of the intuitive correspondence between a generalized circulation problem with a gain
function v and the minimum-cost flow problem with the cost function —logy. On the compact
representation, our algorithms do not run in polynomial time, and neither do the algorithms based
on the linear programming techniques. In fact, all algorithms described in this paper that run
in polynomial time on the original representation of the problem run in pseudo-polynomial time
(i.e., in polynomial time if the input numbers are given in unary) on the compact representation.
Solving the problem in polynomial time assuming the compact representation is closely related to
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finding a strongly polynomial algorithm for the generalized circulation problem. It is interesting
to note that if the input numbers of the compact representation are given in unary, the simple
Maximum Flow Based algorithm has the best time among the algorithms discussed in this paper
(see Corollary 4.3).

An important extension of the generalized circulation problem is the generalized circulation with
costs problem. This problem has costs in addition to gains and capacities, and a fixed price p(s) per
unit of commodity of the source. The goal is to maximize profit, where the profit of a generalized
circulation g is defined in a natural way. Vaidya's algorithm handles this extended problem with
no modifications. Our algorithms, however, cannot handle this problem. It would be interesting to
see if our algorithms can be modified to handle the generalized circulation with costs problem. A
promising approach is to use the linear programming prices and reduced costs, as discussed above.
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