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Abstract

A formal mechanism for enhancing nuclear fusion rates is proposed. The
enhancement results whenever the reacting nuclei preferentially migrate in a
restricted subspace of phase space—in particular, a fractal subspace. An ex-
tended Lawson criterion is derived, and the prospects for this mechanism in
condensed matter are discussed.
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The results of recent experiments suggest the possibility of deuterium fusion
(d-d reaction) occurring in certain metals (palladium in particular) at room tem-
perature[l’z]. It is known that these metals are permeable to hydrogen, and that it
accumulates at defects in the latticelS). The palladium is seasoned with deuterium
by using it as a cathode in the electrolysis of heavy water. The question remains
as to how the nuclei can overlap each other for a sufficient time to fuse.

The working hypothesis will be to assume that the fuel is restricted to move in a
(generally) fractal subspace embedded in the material with a fractional dimension,
d* < 3. An asterisk on a variable will denote the generalization to the subspace of
the corresponding 3-space quantity. A familiar example of a fractal subspace is the
“snowflake” curve, which is embedded in two dimensions but has d* = log4/ log 3.
The result will be to increase the effective “density” of the deuterium, n*, while
decreasing the corresponding fusion “cross section,” ¢*, by a lesser amount. This
will result in a reduced mean free path for fusion, A = 1/(n*c*).

For the time being, we will consider only the deuterium and the fractal space
in which it is confined—independent of any assumptions about the structure of the
lattice in which 1t resides. The following analysis is based on classical notions,
but should be relevant to the quantum mechanical case as well. Justification and
interpretation of the calculation may be made after the fact in ways similar to those
made with renormalization and other formal mathematical methods.

Solids are manifestly three dimensional, i.e., extensive quantities scale like r¢,
where r is the sample diameter and d = 3. However, regions that are smaller than
some crossover length, L, can have a fractional dimension, d*, such that extensive
quantities scale like r*". In general, this multifractal behavior will have many scales
and dimensions, but the essential features can be captured with two.

Let N be the number of particles in a region with diameter L. Then the “den-
sities” relevant to the fractal space satisfy

N L°n
V- L
If we have an “interaction radius,” b (which is implicitly defined by equation (3)

below), then the effective “cross section,” o*, is essentially the “area” of a d* — 1
dimensional disk and scales like

*
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where the constant of proportionality depends on velocity and the details of the

projection of the ordinary cross section, o, onto the fractal space as seen by the
moving particles.

Following Segré[4], the power density due to the reaction of species 1 and 2 is

P12z = ning (U'U) 12Wia2,



where Wi, is the energy produced per fusion. We want to generalize this formula
to fractal spaces, and will specialize the discussion to a single type of reactant, viz.,
deuterium. Hence, we will drop the subscripts. The average interaction “volume”
swept out per unit time by the relative velocity of two particles is (c*v), where the
average is taken over a Maxwellian velocity distribution. The number of fusions per
unit time for any deuteron is then n*(c*v). Finally, the power “density” is given by

x

p* = =n**(a*v)W,
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where the factor of 1/2 prevents double counting. In order to achieve the scientific
break-even point, this power “density” must be maintained for a time, 7, in order
to supply a total energy “density” of %;n* kT; where T; is the ignition temperature,
and d* is the number of degrees of freedom available to the plasma. Demanding
that p*r exceed this gives
1 d"kT;
n'r > ——.
(o*0)W
The usual Lawson criterion says that
3kT;

nrT > (m“)min = W’

so the extended Lawson criterion is
AT > (N7 )min-

Using equation (1) gives the boost factor
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which in turn sets the value of b used in (2).

To see how the extra factor of 4 in the confinement parameter helps, let 7 =
10~*barns be a typical cross section and take L = 1 um. Then b = /7 = 10~ cm
and

b

_ 3 1 q103-a*)

1= 10 :

This should be viewed against a standard value of (n7 )y of about 10 ecm™3s, as-
suming an ignition temperature of T; = 10keV. One-dimensional confinement is
the most favorable type to expect and gives a boost of twenty orders of magni-
tude! This would allow the ignition temperature to drop substantially. One might
think that equation (3) actually favors a small cross section, but b is fixed by the
cross section at the given ignition temperature. The relevant parameters are the
dimensionality, d*, and the length scale, L. The interpretation of motion is rather



strained for d* < 1, but we should not dismiss the possibility. Fortunately, the
enhancement diverges as d* — 0. This makes sense as the fuel becomes confined to
discrete points.

In condensed matter, hydrogen densities would be on the order of 10%* cm™ to
start with, but the thermal energies would be too small to overcome the Coulomb
barrier. We would then need to operate in the pycnonuclear regime, where the
fusion rate is very sensitive to density{51. Jones et al. refer to this as piezonuclear
fusion, and note that a reduction by a factor of two in atomic separation would
enhance tunneling enough to explain their results(. Thus, for a saturated hydride,
we would only need to increase the density by an order of magnitude. Suppose that
the fractal space had a “thickness”, a, where a < L, so that it was again three
dimensional on the smallest scales. Then the new density would be

3-d*
n' = (-JE) n.
a

Once again we see the dimensional deficit, ¢ = 3 — d*, coming in. Here, a might
be on the order of a lattice spacing, a = 1078 cm. With the value of L above, we
would need a dimensionality of d* = 2.75 to squeeze the deuterons together.

How might the motion of the deuterium be confined to a fractal space? On small
scales, spatial restriction could be caused by dislocations which provide natural
channels where the fuel might collect. Defects can be points, lines, or boundaries
(and surfaces), so the most natural dimensions for these subspaces are zero, one,
and two respectively. On large scales, it is conceivable that wave interactions with
the lattice could cause momentum space restriction, even though each energy band
forms a three-dimensional continuum. Deuterons, being bosons, can be squeezed
into the same state, thus encouraging tunneling. Dimensional confinement, from
any mechanism and to any extent, would enhance the fusion rate.

In actuality, the system would separate into a normal (three-dimensional) phase
and a fractal phase. The Gibbs free energy for the fractal phase is

G=E-TS4 P'V*=uN.

One would expect that the chemical potential, y, of the deuterium would be much
higher in the restricted phase because of Coulomb repulsion and lowered entropy.
But if the physics in the fractal space were sufficiently odd, the balance could be
tipped to favor dimensional confinement. This would require a very strange equation
of state indeed! It has been noted!1:2! that nonequilibrium processes (current flow
in particular) are important, so the thermal character of a plasma might not be
necessary. In any case, restricting the motion of the fuel is essential. All of this
brings to mind superconductivity and superfluidity, where high order and unusual
transport phenomena are found.



The thrust of this paper is not to explain the (inconclusive as of this writing)
results of the current round of experiments, but to use this opportunity to suggest
possible implications of dimensional confinement in condensed matter, particularly
with respect to fusion. If this mechanism could be realized, it would provide an
elegant method for harnessing fusion in the laboratory—in contrast to the chaotic,
brute force approach taken in magnetic and inertial confinement reactors. Re-
gardless of the outcome of these experiments, research into attaining fusion with
phase space restriction and localization in condensed matter may yield promising
results. Many new and surprising phenomena in condensed matter physics illus-
trate the potential of this program: superconductivity, quasi-crystals, organic and
anisotropic conductors, laser driven particle acceleration, and the development of
advanced electrochemical cells, just to name a few. Research and development in
the semiconductor industry could play an important role because of the need to un-
derstand transport phenomena and to fabricate submicron structures and special
compounds. Finally, the effects of dimensional confinement should be distinguished
from any mechanism that may cause it. This could turn out to be a good way to
think about the final theory of cold fusion. We eagerly await more experimental
clues and theoretical developments to settle the question.
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